
ar
X

iv
:1

40
9.

48
29

v1
  [

cs
.C

E
]  

16
 S

ep
 2

01
4

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2014 1

Calculation of Generalized Polynomial-Chaos Basis
Functions and Gauss Quadrature Rules in
Hierarchical Uncertainty Quantification

Zheng Zhang,Student Member, IEEE, Tarek A. El-Moselhy, Ibrahim (Abe) M. Elfadel,Senior Member, IEEE,
and Luca Daniel,Member, IEEE

Abstract—Stochastic spectral methods are efficient techniques
for uncertainty quantification. Recently they have shown excellent
performance in the statistical analysis of integrated circuits. In
stochastic spectral methods, one needs to determine a set of
orthonormal polynomials and a proper numerical quadrature
rule. The former are used as the basis functions in a generalized
polynomial chaos expansion. The latter is used to compute the
integrals involved in stochastic spectral methods. Obtaining such
information requires knowing the density function of the random
input a-priori. However, individual system components are often
described by surrogate models rather than density functions.
In order to apply stochastic spectral methods in hierarchical
uncertainty quantification, we first propose to construct physi-
cally consistent closed-form density functions by two monotone
interpolation schemes. Then, by exploiting the special forms of
the obtained density functions, we determine the generalized
polynomial-chaos basis functions and the Gauss quadrature
rules that are required by a stochastic spectral simulator.The
effectiveness of our proposed algorithm is verified by both
synthetic and practical circuit examples.

Index Terms—Uncertainty quantification, stochastic circuit
simulation, density estimation, generalized polynomial chaos,
Gauss quadrature, surrogate model.

I. I NTRODUCTION

DUE to significant manufacturing process variation, it
has become necessary to develop efficient uncertainty

quantification tools for the fast statistical analysis of electronic
circuits and systems [1]–[18]. Monte Carlo simulators [6]–[8]
have been utilized in statistical circuit analysis for decades.
Recently, stochastic spectral methods [19]–[24] have emerged
as a promising technique for the uncertainty quantification
of integrated circuits [1]–[5]. Such methods approximate the
stochastic solution by a truncated generalized polynomial
chaos expansion [25]–[27], which converges much faster than
Monte Carlo when the parameter dimensionality is not high.
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Fig. 1. Demonstration of hierarchical uncertainty quantification.

This work is motivated by the need for hierarchical un-
certainty quantification based on stochastic spectral methods.
Consider Fig. 1 that demonstrates the uncertainty quantifica-
tion of a complex system. In this system, there existq readily
obtained surrogate models:

x̂i = fi(~ξi), with ~ξi ∈ R
di , i = 1, · · · , q (1)

where x̂i is a variable dependent on multiple lower-level
random parameters. In transistor-level simulation,x̂i is a
device-level parameter (e.g., threshold voltage of a transistor)
influenced by some geometric and process variations. In a
statistical behavior-level simulator [8],̂xi is the performance
metric of a small circuit block (e.g., the frequency of a voltage-
controlled oscillator) affected by some device-level param-
eters~ξi. Typical surrogate models include linear (quadratic)
response surface models [8], [28]–[32], truncated generalized
polynomial chaos representations [1], [2], smooth or non-
smooth functions, stochastic reduced-order models [11], [14],
[33], and some numerical packages that can rapidly evaluate
fi(~ξi) (e.g., computer codes that implement a compact statis-
tical device model). By solving a system-level equation, the
output~h can be obtained.

Instead of simulating the whole system starting from the
bottom-level random parameters~ξi’s, uncertainty quantifica-
tion can be performed in a hierarchical way. By treatingx̂i’s
as the random inputs for the higher-level equation, the output~h
can be computed more efficiently. This treatment can dramat-
ically reduce the parameter dimensionality and problem size.
Related work in this direction includes the statistical analysis
of phase-lock loops [8] and the statistical timing analysisof
digital VLSI [16]–[18]. In all existing works, Monte Carlo was
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utilized to perform the higher-level simulation.
Whenx̂i’s are mutually independent, it is possible to further

speed up the hierarchical uncertainty quantification flow by
using stochastic spectral methods [1]–[5], [19]–[24]. In this
case, high-accuracy results may be obtained by fast simulation
if ~h smoothly depends on̂xi’s (even if fi(~ξi) is non-smooth).
In order to apply available stochastic spectral methods, we
need to determine a set of orthonormal polynomials as the
basis functions for generalized polynomial chaos expansions.
Sometimes we also need a proper numerical quadrature rule
(such as Monte Carlo, Gauss quadrature, etc.) [3]. In this
paper, we will consider Gauss quadrature since it is widely
used in stochastic spectral methods. Both tasks require the
probability density function of each random inputx̂i. Existing
techniques typically assume that the random inputs have some
well-known distributions (e.g., Gaussian, uniform, Gamma
and Beta distributions), and make use of available quadrature
rules and orthogonal polynomials (e.g., Hermite, Legendre,
Laguerre and Jacobi polynomials) [1]–[5], [20]–[27]. This
assumption obviously does not hold in our case: the probability
density function of̂xi is not readily available from its surrogate
model.

Therefore, a question is how to determine the generalized
polynomial-chaos basis functions and Gauss quadrature rules
from a general surrogate model. This paper aims to partly
answer this key question in hierarchical uncertainty quan-
tification. Our method is based on the ideas of changing
variables and monotone interpolation [34]–[37]. Specifically,
we represent the random input as a linear function of a new
parameter, and treat such parameter as a new random input.
Using two monotone interpolation schemes, physically consis-
tent closed-form cumulative density functions and probability
density functions can be constructed for the new random input.
Due to the special forms of the obtained density functions, we
can easily determine a proper Gauss quadrature rule and the
basis functions for a generalized polynomial chaos expansion.

We focus on the general framework and verify our method
by using both synthetic and performance-level circuit surrogate
models. Our method can be employed to handle a wide variety
of surrogate models, including device-level models for SPICE-
level simulators [1]–[3], circuit-level performance models for
behavior-level simulation [8], as well as gate-level statistical
models for the timing analysis of digital VLSI [16]–[18]. In
this paper we will focus only on the derivation of the basis
functions and Gauss quadrature rules and refer the reader
interested to the extensive literature on how to use them in
a stochastic spectral simulator (see [1]–[5], [20]–[27] and the
references therein).

II. RELATED WORK AND BACKGROUND REVIEW

A. Related Work on Density Estimation

Let x be a random variable, both kernel density estima-
tion [38]–[40] and asymptotic probability extraction [29], [30]
aim to approximate its probability density functionρ(x).

Kernel Density Estimation:with N samples forx, ker-
nel density estimation approximates its probability density
function by using a set of kernel functions. The probability

density function generated by kernel density estimation is
non-negative, and the resulting cumulative density function
is bounded in[0, 1]. However, kernel density estimation is
seldom used in circuit modeling due to several shortcomings.
First, the approximated probability density function is not
compact: one has to store all samples as the parameters of a
density function, which is inefficient for reuse in a stochastic
simulator. Second, it is not straightforward to generate samples
from the approximated probability density function. Third,
the accuracy of kernel density estimation highly depends on
the specific forms of the kernel functions (although Gaussian
kernel seems suitable for the examples used in this work) as
well as some parameters (e.g., the smoothing parameter). This
paper will not construct the closed-form probability density
function by kernel density estimation, instead we will use the
numericalresults from kernel density estimation as a reference
for accuracy comparison.

Asymptotic Probability Extraction:if x is a linear quadratic
function of some lower-level Gaussian parameters~ξ, asymp-
totic probability extraction [29], [30] can efficiently approxi-
mateρ(x) by moment matching. It has become the mainstream
algorithm used in statistical circuit yield analysis and optimiza-
tion. Asymptotic probability extraction and its variant [31]
treat ρ(x) as the impulse response of a linear time-invariant
system, then approximatesρ(x) using asymptotic waveform
evaluation [41]. Several shortcomings have limited the appli-
cation of asymptotic probability extraction and its variants:

1) Some assumptions of asymptotic probability extraction
may not hold: i)~ξ are assumed Gaussian variables, whereas
in reality ~ξ can be non-Gaussian; ii)x may not be a linear
quadratic function of~ξ; iii) the statistical moments ofx may
be unbounded, and thus asymptotic waveform evaluation [41]
cannot be applied.

2) The density functions from moment matching may be
physically inconsistent. The cumulative density functionmay
have oscillations and the probability density function maybe
negative, as shown by [29], [30] and the recent work [42], as
well as by our experiments in Section VI-D. This is because
the impulse response of a linear system is not guaranteed
non-negative when generated by asymptotic waveform eval-
uation [41]. Negative probability density functions cannot be
used for the stochastic simulation of a physical model.

3) The resulting density function may blow up, as shown
in Section VI-D and in [42]. There are two reasons for
that. First, inaccurate moment computation can cause positive
poles for a linear system, leading to an unbounded time-
domain response. Second, asymptotic waveform evaluation is
numerically unstable, which is well known in interconnect
macromodeling. This is one of the important reasons why the
model order reduction community has switched to implicit
moment matching by Krylov-subspace projection.

B. Generalized Polynomial-Chaos Basis Function and Gauss
Quadrature

In order to apply stochastic spectral methods, one normally
needs a set of generalized polynomial-chaos basis functions
to approximate the stochastic solution of a physical model.
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Very often, a proper quadrature rule such as Gauss quadrature
method [43] is also required to set up a deterministic equation
in intrusive solvers such as stochastic Galerkin [4], [5] and
stochastic testing [1]–[3], or to recover the coefficients of each
basis function for the solution in non-intrusive (i.e., sampling-
based) solvers such as stochastic collocation [20]–[23].

Basis Function Construction.Given ρ(x) (the probability
density function ofx), the generalized polynomial-chaos basis
functions ofx are a set of orthonormal polynomials

∫

R

φi(x)φj(x)ρ(x)dx = δi,j (2)

where integersi and j denote the polynomial degrees, and
δi,j is a Delta function. In order to obtainφi(x)’s, a set of
orthogonal polynomialsπi(x)’s are first constructed via the
well-known three-term recurrence relation [44]:

πi+1(x) = (x− γi)πi(x)− κiπi−1(x), i = 0, 1, · · ·
π−1(x) = 0, π0(x) = 1,

(3)

where

γi =

∫

R

xπ2
i (x)ρ(x)dx

∫

R

π2
i (x)ρ(x)dx

, κi+1 =

∫

R

π2
i+1(x)ρ(x)dx

∫

R

π2
i (x)ρ(x)dx

, i = 0, 1, · · · ,
(4)

andκ0 = 1. Hereπi(x) is a degree-i polynomial with leading
coefficient 1. After that, the first̂n + 1 basis functions are
obtained by normalization:

φi(x) =
πi(x)√

κ0κ1 · · ·κi
, for i = 0, 1, · · · , n̂. (5)

The obtained univariate basis functions can be easily extended
to the multivariate cases, as detailed in Section II-A of [3].

Gauss-Quadrature Rule.When computing an integral with
Gauss quadrature [43] one typically uses the expression

∫

R

g(x)ρ(x)dx ≈
n̂+1
∑

j=1

g(xj)wj (6)

which provides an exact result ifg (x) is a polynomial of
degree≤ 2n̂+1. The quadrature pointsxj ’s and weightswj ’s
depend onρ (x). Define a symmetric tridiagonal matrix

J =



















γ0
√
κ1

√
κ1 γ1

. . .
. . .

. . .
.. .

. . . γn̂−1
√
κn̂√

κn̂ γn̂



















, (7)

and let its eigenvalue decomposition beJ = UΣUT , whereU
is a unitary matrix. Denote the(i, j) entry of U by ui,j , then
xj is the j-th diagonal element ofΣ, and the corresponding
weightwj is u21,j [43]. Using tensor product or sparse grids,
1-D Gauss quadrature rules can be easily extended to multi-
dimensional cases [20]–[23].

Remark 2.1:The main bottleneck of the above procedures
lies in (4), which requires computing a set of integrals. This
step can be non-trivial ifρ(x) is not in a proper form. When

surrogate 
models

CDF & PDF
gPC and 

Gauss quadrature 
rule

random 
samples

Fig. 2. Construct generalized polynomial-chaos (gPC) bases and Gauss
quadrature rules from surrogate models. Here CDF and PDF means “cumu-
lative density function” and “probability density function”, respectively.

such integrals are not accurately computed, the constructed ba-
sis functions can be erroneous. Furthermore,κi’s may become
negative, making computing the Gauss-quadrature points and
weights impossible.

III. T HE PROPOSEDFRAMEWORK

In this paper,̂xi’s in Fig. 1 are assumed mutually indepen-
dent. With this assumption, we can consider each surrogate
model independently. For simplicity, let

x̂ = f(~ξ), with ~ξ ∈ R
d (8)

represent a general surrogate model. We employ the linear
transformation

x =
x̂− a

b
(9)

to define a new random inputx, which aims to improve the
numerical stability. Once we obtain the cumulative density
function and probability density function ofx (denoted asp(x)
andρ(x), respectively), then the cumulative density function
and probability density function of̂x can be obtained by

p̂(x̂) = p

(

x̂− a

b

)

and ρ̂(x̂) =
1

b
ρ(
x̂− a

b
) (10)

respectively.
As shown in Fig. 2, we first construct the density functions

of x in a proper way, then we determine the generalized
polynomial-chaos bases ofx and a proper Gauss quadrature
rule based on the obtained density functions. With the obtained
cumulative density function, random samples ofx could be
easily obtained for higher-level Monte Carlo-based simulation,
however such task is not the focus of this paper. Our proposed
framework consists of the following steps.

• Step 1.UseN Monte Carlo samples (or readily available
measurement/simulation data) to obtain the discrete cu-
mulative density function curve of̂x = f(~ξ). Sincef(~ξ)
is a surrogate model, this step can be extremely efficient.

• Step 2. Let δ > 0 be a small threshold value,̂xmin

and x̂max be the minimum and maximum values of
x̂ from the Monte Carlo analysis (or available data),
respectively. We seta=x̂min − δ, b=x̂max + δ − a, then
N samples ofx in the interval(0, 1) are obtained by the
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linear transformation (9). The obtained samples provide
a discrete cumulative density function forx.

• Step 3. From the obtained cumulative density function
curve ofx, pick n≪ N points(xi, yi) for i = 1, · · · , n.
Herexi denotes the value ofx, andyi the corresponding
cumulative density function value. The data are mono-
tone:xi < xi+1 and0 = y1 ≤ · · · ≤ yn = 1.

• Step 4.Use a monotone interpolation algorithm in Sec-
tion IV to construct a closed-form functionp(x) to
approximate the cumulative density function ofx.

• Step 5. Compute the first-order derivative ofp(x) and
use it as a closed-form approximation toρ(x).

• Step 6. With the obtainedρ(x), we utilize the pro-
cedures in Section V to construct the generalized
polynomial-chaos basis functions and Gauss quadrature
points/weights forx.

Many surrogate models are described by truncated gener-
alized polynomial chaos expansions. The cost of evaluating
such models may increase dramatically when the lower-level
parameters~ξ have a high dimensionality (which may occa-
sionally happen), although the surrogate model evaluationis
still much faster than the detailed simulation. Fortunately, in
practical high-dimensional stochastic problems, normally only
a small number of parameters are important to the output and
most cross terms will vanish [45]–[47]. Consequently, a highly
sparse generalized polynomial chaos expansion can be utilized
for fast evaluation. Furthermore, when the coupling between
the random parameters are weak, quasi-Monte Carlo [48] can
further speed up the surrogate model evaluation.

In Step 3, we first select(x1, y1) = (0, 0) and (xn, yn) =
(1, 1). Then data points are selected such that

|xi+1 − xi| ≤
1

m
and |yi+1 − yi| ≤

1

m
, (11)

where m is an integer used to controln. This constraint
ensures that the interpolation points are selected properly such
that the behavior around the peak ofρ(x) is well captured.
In practical implementation, fork = 2, · · · , n − 1, the point
(xk, yk) is selected from the cumulative density function curve
subject to the following criteria:

√

(yk−1 − yk)2 + (xk−1 − xk)
2 ≈ 1

m
. (12)

For x /∈ [x1, xn], we setρ(x)=0. This treatment introduces
some errors in the tail regions. Approximating the tail regions
is non-trivial, but such errors may be ignored if rare failure
events are not a major concern (e.g., in the yield analysis of
some analog/RF circuits).

Remark 3.1:Similar to standard stochastic spectral sim-
ulators [1]–[5], [20]–[27], this paper assumes thatx̂i’s are
mutually independent. It is more difficult to handle correlated
and non-Gaussian random inputs. Not only is it difficult
to construct the density functions, but also it is hard to
construct the basis functions even if the multivariate density
function is given [19], [49]. How to handle correlated non-
Gaussian random inputs remains an open and important topic
in uncertainty quantification [19]. Some of our progress in this
direction will be reported in [50].

The most important parts of our algorithm are Step 4 and
Step 6. In Section IV we will show how we guarantee that
the obtained density functions are physically consistent.Step
6 will be detailed in Section V, with emphasis on an efficient
analytical implementation.

IV. I MPLEMENTATION OF THE DENSITY ESTIMATOR

This section presents the numerical implementation of our
proposed density estimation. Our implementation is based on
two monotone interpolation techniques, which are well studied
in the mathematical community but have not been applied to
uncertainty quantification. Since we approximate the cumula-
tive density functionp(x) in the intervalx ∈ [x1, xn], in both
methods we setp(x)=y1=0 for x < x1 andp(x)=yn=1 for
x > xn, respectively.

A. Method 1: Piecewise Cubic Interpolation

Our first implementation uses a piecewise cubic interpo-
lation [34], [35]. With the monotone data from Step 3 of
Section III, we constructp(x) as a cubic polynomial:

p(x) = c1k + c2k(x− xk) + c3k(x− xk)
2 + c4k(x− xk)

3 (13)

for x ∈ [xk, xk+1], 0 < k < n. If yk=yk+1, we simply
setc1k=yk andc2k=c

3
k=c

4
k= 0. Otherwise, the coefficients are

selected according to the following formula [35]

c1k = yk, c2k = ẏk,

c3k =
sk−ẏk+1−2ẏk

∆xk
, c4k =

2sk−ẏk+1−ẏk

(∆xk)
2

(14)

where ∆xk=xk+1−xk, sk=
yk+1−yk

∆xk
. This formula ensures

that p(x) andp′(x) are continuous,p(xk) = yk andp′(xk) =
ẏk. Herep′(x) denotes the 1st-order derivative ofp(x).

The key of this implementation is how to computeẏk such
that the interpolation is accurate andp(x) is non-decreasing.
The value ofẏk is decided by two steps. First, we compute
the first-order derivativėy(xk) by a parabolic method:

ẏ(xk) =











s1(2∆x1+∆x2)−s2∆x1

x3−x1
, if k = 1

sn−1(2∆xn−1+∆xn−2)−sn−2∆xn−1

xn−xn−2
, if k = n

sk∆xk−1+sk−1∆xk

xk+1−xk−1
, if 2 < k < n− 1.

(15)
This parabolic method has a2nd-order accuracy [35]. Second,
ẏk is obtained by perturbinġy(xk) (if necessary) to enforce the
monotonicity ofp(x). The monotonicity ofp(x) is equivalent
to p′(x) ≥ 0, which is a2nd-order inequality. By solving this
inequality, a feasible region foṙyk, denoted byA, is provided
in [34]. Occasionally we need to projectẏ(xk) ontoA to get
ẏk if ẏ(xk) /∈ A. In practice, we use the simpler projection
method suggested by [35]:

ẏk =

{

min
(

max (0, ẏ(xk)) , 3s
k
min

)

, if sksk−1 > 0
0, if sksk−1 = 0

(16)
with s0=s1, sn=sn−1 and skmin=min(sk, sk−1). The above
procedure projectṡy(xk) onto a subset ofA, and thus the
monotonicity ofp(x) is guaranteed.
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Algorithm 1 piecewise cubic density estimation
1: Evaluate the model (8) to obtainN samples of̂x;
2: Shift and scalêx to obtainN samples forx;
3: Pick n data points(xk, yk), under constraint (11);
4: Calculateẏ(xk) using the parabolic method (15);
5: for k = 1, · · · , n do
6: if yk = yk+1, setc1k=yk andc2k=c

3
k=c

4
k= 0;

7: else
8: Computeẏk according to (16);
9: Compute the coefficients in (14).

10: end
11: end for

Oncep(x) is constructed, the probability density function
of x can be obtained by

ρ(x) = p′(x) = c2k + 2c3k(x− xk) + 3c4k(x− xk)
2 (17)

for xk≤ x≤ xk+1. Note that forx /∈ [x1, xn], p′(x) = 0.
Calculating p′(x) may amplify the interpolation errors.

However, the error is acceptable since the constructedp(x)
is smooth enough andp′(x) is continuous. The pseudo codes
of Algorithm 1 summarize the steps of this approach.

B. Method 2: Piecewise Rational Quadratic Interpolation

Our second implementation is based on a piecewise rational
quadratic interpolation [36], [37]. In this implementation, we
approximate the cumulative density function ofx by

p(x) =
N(x)

D(x)
=
α1
k + α2

kx+ α3
kx

2

β1
k + β2

kx+ β3
kx

2
(18)

for x ∈ [xk, xk+1]. The coefficients are selected by the
following method: whenxk = xk+1, we setα1

k = yk, β1
k = 1

and all other coefficients to zero; otherwise, the coefficients
are decided according to the formula

α1
k = yk+1x

2
k − wkxkxk+1 + ykx

2
k+1,

α2
k = wk(xk + xk+1)− 2yk+1xk − 2ykxk+1,
α3
k = yk+1 − wk + yk,
β1
k = x2k − vkxkxk+1 + x2k+1,
β2
k = vk(xk + xk+1)− 2xk − 2xk+1, β

3
k = 2− vk,

with wk =
yk+1ẏk+ykẏk+1

sk
and vk =

ẏk+ẏk+1

sk

(19)

where sk is defined the same as in piecewise cubic in-
terpolation. In this interpolation scheme, the sufficient and
necessary condition for the monotonicity ofp(x) is very
simple: ẏk ≥ 0. In order to satisfy this requirement, the slope
ẏk is approximated by the geometric mean

ẏk =















(s1)
x3−x1
x3−x2 (s3,1)

x1−x2
x3−x2 , if k = 1

(sn−1)
xn−xn−2

xn−1−xn−2 (sn,n−2)
xn−1−xn

xn−1−xn−2 , if k = n

(sk−1)
xk+1−xk

xk+1−xk−1 (sk)
xk−xk−1

xk+1−xk−1 , if 1 < k < n
(20)

with sk1,k2
=

yk1
−yk2

xk1
−xk2

. Similarly, the probability density
function ofx can be approximated by

ρ(x) = p′(x) =
N ′(x)D(x) −D′(x)N(x)

D2(x)
, (21)

Algorithm 2 piecewise rational quadratic density estimation
1: Evaluate the model (8) to obtainN samples ofx;
2: Shift and scalêx to obtainN samples forx;
3: Pick n data points(xk, yk), under constraint (11);
4: for k = 1, · · · , n do
5: Calculateẏk using the formula in (20);
6: if yk = yk+1

7: setα1
k = yk, β1

k = 1 and other coefficients to zero;
8: else
9: compute the coefficients ofN(x) andD(x) using (19).

10: end
11: end for

for x ∈ [xk, xk+1].
Note that in piecewise cubic interpolation, a projection

procedure is not required, since the monotonicity ofp(x) is
automatically guaranteed. The pseudo codes of this density
estimation method are provided in Algorithm 2.

C. Properties ofp(x)

It is straightforward to show that the obtained density func-
tions are physically consistent: 1)p(x) is differentiable, and
thus its derivativep′(x) always exists; 2)p(x) is monotonically
increasing from0 to 1, and the probability density function
ρ(x) is non-negative.

We can easily draw a random sample from the obtained
p(x). Let y ∈ [0, 1] be a sample from a uniform distribution,
then a sample ofx can be obtained by solvingp(x) = y
in the intervaly ∈ [yk, yk+1]. This procedure only requires
computing the roots of a cubic (or quadratic) polynomials,
resulting in a unique solutionx ∈ [xk, xk+1]. This property
is very useful in uncertainty quantification. Not only are
random samples used in Monte Carlo simulators, but also
they can be used in stochastic spectral methods. Recently,
compressed sensing has been applied to high-dimensional
stochastic problems [45]–[47]. In compressed sensing, random
samples are normally used to enhance the restricted isometry
property of the dictionary matrix [51].

Finally, it becomes easy to determine the generalized
polynomial-chaos basis functions and a proper quadrature rule
for x due to the special form ofρ(x). This issue will be
discussed in Section V.

Remark 4.1:Our proposed density estimator only requires
some interpolation points from a discrete cumulative den-
sity function curve. The interpolation points actually canbe
obtained by any appropriate approach. For example, kernel
density estimation will be a good choice if we know a proper
kernel function and a good smoothing parameter based on
a-priori knowledge. When the surrogate model is a linear
quadratic function of Gaussian variables, we may first employ
asymptotic probability extraction [29] to generate a physically
inconsistent cumulative density function. After that, some
monotone data points (withyi’s bounded by0 and1) can be
selected to generate a piecewise cubic or piecewise rational
quadratic cumulative density function. The new cumulative
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density function and probability density function become
physically consistent and can be reused in a stochastic simu-
lator.

V. DETERMINE BASIS FUNCTIONS AND GAUSS

QUADRATURE RULES

This section shows how to calculate the general-
ized polynomial-chaos bases and the Gauss quadrature
points/weights ofx based on the obtained density function.

A. Proposed Implementation

One of the many usages of our density estimator is to
fast compute a set of generalized polynomial-chaos basis
functions and Gauss quadrature points/weights by analytically

computing the integrals in (4). Letπ2
i (x) =

2i
∑

k=0

τi,kx
k, then

we have

∫

R

xπ2
i (x)ρ(x)dx =

2i
∑

k=0

τi,kMk+1,

∫

R

π2
i (x)ρ(x)dx =

2i
∑

k=0

τi,kMk

(22)

where Mk denotes thek-th statistical moments ofx. By
exploiting the special form of our obtained density function,
the statistical moments can be computed as

Mk =

+∞
∫

−∞

xkρ(x)dx =

xn
∫

x1

xkρ(x)dx =

n−1
∑

j=1

Ij,k (23)

whereIj,k denotes the integral in thej-th piece:

Ij,k =

xj+1
∫

xj

xkρ(x)dx = Fj,k(xj+1)− Fj,k(xj). (24)

Here Fj,k(x) is a continuous analytical function under the
constraint d

dt
Fj,k(x) = xkρ(x) for x ∈ [xj , xj+1]. The key

problem of our method is to constructFj,k(x). When ρ(x)
is obtained from Alg. 1 or Alg. 2, we can easily obtain the
closed form ofFj,k(x), as will be elaborated in Section V-B
and Section V-C.

Remark 5.1:This paper directly applies (4) to compute
the recurrence parametersγi and κi. As suggested by [44],
modified Chebyshev algorithm [52] can improve the numerical
stability when constructing high-order polynomials. Modified
Chebyshev algorithm indirectly computesγi and κi by first
evaluating a set of modified moments. Again, if we employ the
ρ(x) obtained from our proposed density estimators, then the
calculation of modified moments can also be done analytically
to further improve the accuracy and numerical stability.

B. ConstructFj,k(x) using the Density Function from Alg. 1

Whenρ(x) is constructed by Alg. 1,xkρ(x) is a polynomial
function of at most degreek+2 inside the interval[xj , xj+1].
Therefore, the analytical form ofFj,k(x) is

Fj,k(x) = aj,kxk+3 + bj,kx
k+2 + cj,kxk+1 (25)

with
aj,k =

3c4j
k+3 , bj,k =

2c3j−6c4jxj

k+2 ,

cj,k =
c2j−2c3jxj+3c4jx

2
j

k+1 .

C. ConstructFj,k(x) using the Density Function from Alg. 2

If ρ(x) is constructed by Alg. 2, for anyx ∈ [xj , xj+1] we
rewritexkρ(x) as follows

xkρ(x) =
xk[N ′(x)D(x)−D′(x)N(x)]

D2(x)

= d
dx

(

xkN(x)
D(x)

)

− kxk−1N(x)
D(x) .

Therefore,Fj,k(x) can be selected as

Fj,k(x) =
xkN(x)

D(x)
−F̃j,k(x), with

d

dx
F̃j,k(x) =

kxk−1N(x)

D(x)
.

In order to obtainF̃j,k(x), we perform a long division:

kxk−1N(x)

D(x)
= P̃j,k(x) +

R̃j,k(x)

D(x)
(26)

whereP̃j,k(x) andR̃j,k(x) are both polynomial functions, and
R̃j,k(x) has a lower degree thanD(x). Consequently,

F̃j,k(x) = F̃ 1
j,k(x) + F̃ 2

j,k(x) (27)

where F̃ 1
j,k(x) and F̃ 2

j,k(x) are the integrals of̃Pj,k(x) and
R̃j,k(x)
D(x) , respectively. It is trivial to obtainF̃ 1

j,k(x) since

P̃j,k(x) is a polynomial function.
The closed form ofF̃ 2

j,k(x) is decided according to the
coefficients ofD(x) and R̃j,k(x), as is summarized below.

Case 1:if β3
j 6= 0, thenR̃j,k(x) = r̃0j,k+r̃

1
j,kx. Let us define

∆j := 4β1
j β

3
j − β2

j , then we can select̃F 2
j,k(x) according to

the formula in (28).
Case 2: if β3

j = 0 and β2
j 6= 0, then R̃j,k(x) = r̃0j,k is a

constant. In this case, we select

F̃ 2
j,k(x) =

r̃0j,k
β2
j

ln
∣

∣β2
j x+ β1

j

∣

∣ . (29)

Case 3:if β3
j = β2

j = 0, thenR̃j,k(x) = 0. In this case we
set F̃ 2

j,k(x) = 0.
Remark 5.2:Occasionally, the projection procedure (16)

in Alg. 1 may cause extra errors at the end points of some
intervals. If this problem happens we recommend to use Alg.
2. On the other hand, if high-order basis functions is required
we recommend Alg. 1, since the moment computation with
the density from Alg. 2 is numerically less stable (due to the
long-term division and the operations in (28).

VI. N UMERICAL EXAMPLES

This section presents the numerical results on a synthetic
example and the statistical surrogate models from two practical
analog/RF circuits. The surrogate models of these practical
circuits are extracted from transistor-level simulation using
the fast stochastic circuit simulator developed in [1]–[3]. All
experiments are run in Matlab on a 2.4GHz 4-GB RAM laptop.

In the following experiments, we use the density functions
from kernel density estimation as the “reference solution”
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F̃ 2
j,k(x) =























r̃1j,k
2β3

j

ln
∣

∣β3
j x

2 + β2
j x+ β1

j

∣

∣+
2β3

j r̃
0
j,k−β2

j r̃
1
j,k

β3
j

√
∆j

arctan
2β3

jx+β2
j√

∆j

, if ∆j > 0

r̃1j,k
2β3

j

ln
∣

∣β3
j x

2 + β2
j x+ β1

j

∣

∣− 2β3
j r̃

0
j,k−β2

j r̃
1
j,k

β3
j

√
−∆j

arctan
2β3

jx+β2
j√

−∆j

, if ∆j < 0

r̃1j,k
2β3

j

ln
∣

∣β3
j x

2 + β2
j x+ β1

j

∣

∣− 2β3
j r̃

0
j,k−β2

j r̃
1
j,k

β3
j (2β3

j
x+β2

j)
, if ∆j = 0

(28)

because: 1) as a standard technique, kernel density estimation
is most widely used in mathematics and engineering; 2) kernel
density estimation guarantees that the generated probability
density function is non-negative, whereas asymptotic proba-
bility extraction cannot; 3) Gaussian kernel function seems to
be a good choice for the examples in this paper. However, it
is worth noting that the density functions from kernel density
estimation are not efficient for reuse in higher-level stochastic
simulation. We plot the density functions of̂x (the original
random input) instead ofx (the new random input after a
linear transformation) since the original one is physically more
intuitive. To verify the accuracy of the computed generalized
polynomial-chaos bases and Gauss quadrature points/weights,
we define a symmetric matrixVn̂+1 ∈ R

(n̂+1)×(n̂+1), the(i, j)
entry of which is

vi,j =

n̂+1
∑

k=1

wkφi−1

(

xk
)

φj−1

(

xk
)

.

Here xk and andwk are the computedk-th Gauss quadra-
ture point and weight, respectively. Thereforevi,j approxi-
mates the inner product ofφi−1(x) andφj−1(x), defined as
∫

R

φi−1 (x)φj−1 (x) ρ(x)dx, by n̂ + 1 quadrature points. Let

I n̂+1 be an identity matrix, then we define an error:

ǫ = ||I n̂+1 − Vn̂+1||∞ (30)

which is close to zero when our constructed basis functions
and Gauss-quadrature points/weights are accurate enough.

A. Synthetic Example

As a demonstration, we first consider the following synthetic
example with four random parameters~ξ = [ξ1, · · · , ξ4]:

x̂ = f(~ξ) = ξ1 + 0.5 exp(0.52ξ2)

+0.3
√

2.1× |ξ4|+ sin (ξ3) cos (3.91ξ4)

where ξ1, ξ2 and ξ3 are all standard Gaussian random vari-
ables, andξ4 has a uniform distribution in the interval
[−0.5, 0.5]. This model is strongly nonlinear with respect to
~ξ due to the exponential, triangular and square root functions.
It is also non-smooth atξ4 = 0 due to the third term in the
model. This model is designed to challenge our algorithm.
Using this surrogate model,106 samples ofx are easily created
to generate the cumulative density function curve within1
second.

Density Estimation:we setm = 45 and select74 data
points from the obtained cumulative density function curve
using the constraint in (12). After that, both Alg. 1 and Alg.2
are applied to generatep(x) andρ(x) as approximations to the
cumulative density function and probability density function of
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Fig. 3. Cumulative density function (CDF) and probability density function
(PDF) approximation of̂x for the synthetic example. The reference PDF is
generated by kernel density estimation (KDE).

x, respectively. The CPU times cost by our proposed density
estimators are in millisecond scale, since only simple algebraic
operations are required. After scaling by (10), the cumulative
density function and probability density function of the orig-
inal random input̂x (p̂(x̂) and ρ̂(x̂), respectively) from both
algorithms are compared with the original cumulative density
function and probability density function in Fig. 3. Clearly,
p̂(x̂) is indistinguishable with the original cumulative density
function (from Monte Carlo simulation); and̂ρ(x̂) overlaps
with the original probability density function (estimatedby
kernel density estimation using Gaussian kernels). Note that
the results from kernel density estimation are not efficientfor
reuse in higher-level stochastic simulation, since all Monte
Carlo samples are used as parameters of the resulting density
function.

It is clearly shown that the generatedp̂(x̂) [and thusp(x)]
is monotonically increasing from0 to 1, and that the generated
ρ̂(x̂) [and thusρ(x)] is non-negative. Therefore, the obtained
density functions are physically consistent.

Basis Function:Using the obtained density functions and
the proposed implementation in Section V, a set of orthonor-
mal polynomialsφk(x)’s are constructed as the basis functions
at the cost of milliseconds. Fig. 4 show the first five general-
ized polynomial-chaos basis functions. Note that althoughthe
computed basis functions from two methods are graphically
indistinguishable, they are actually slightly different since Alg.
1 and Alg. 2 generate different representations forρ(x).
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Fig. 4. Computed generalized polynomial-chaos basis functionsφk(x) (k =
0, · · · , 4) for the synthetic example. (a) uses the probability density function
from Alg. 1, and (b) uses the probability density function from Alg. 2.

TABLE I
COMPUTEDGAUSS QUADRATURE POINTS AND WEIGHTS FOR THE

SYNTHETIC EXAMPLE.

with ρ(x) from Alg. 1 with ρ(x) from Alg. 2
xk wk xk wk

0.082620 0.311811 0.084055 0.332478
0.142565 0.589727 0.144718 0.576328
0.249409 0.096115 0.252980 0.089027
0.458799 0.002333 0.463207 0.002150
0.837187 0.000016 0.835698 0.000016

Gauss Quadrature Rule:settingn̂ = 4, five Gauss quadra-
ture points and weights are generated using the method pre-
sented in Section V. Table I shows the results from two kinds
of approximated density functions. Clearly, since the probabil-
ity density functions from Alg. 1 and Alg. 2 are different, the
resulting quadrature points/weights are also slightly different.
The results from both probability density functions are very
accurate. Using the probability density function from Alg.1,
we haveǫ = 2.24× 10−14, and the error (30) is7.57× 10−15

if ρ(x) from Alg. 2 is employed.

B. Colpitts Oscillator

We now test our proposed algorithm on a more practical
example, the Colpitts oscillator circuit shown in Fig. 5. The
design parameters of this circuit areR1=2.2 kΩ, R2=R3=10
kΩ, C2=100 pF, C3=0.1µF, andα=0.992 for the BJT. The
oscillation frequency is mainly determined by the values
of L1, C1 and C2. In this circuit, L1=150 + N (0, 9) nH
and C1=100 + U(−10, 10) pF are random variables with
Gaussian and uniform distributions, respectively. We construct
a surrogate model using generalized polynomial chaos expan-
sions and the stochastic shooting Newton solver in [2]. The
oscillation frequencyfosc is expressed as

x̂ = fosc = f(~ξ) =
1

10
∑

k=1

Tkψk(~ξ)

(31)

where the denominator is a 3rd-order generalized polynomial
chaos representation for the period of the oscillator, withψk(~ξ)
being thek-th multivariate generalized polynomial-chaos basis
function of ~ξ andTk the corresponding coefficient. Although
the period is a polynomial function of~ξ, the frequency is not,
due to the inverse operation. In order to extract the cumulative
density function curve,5×105 samples are utilized to evaluate

6V

R1

Q1

Vout

C3

R2

R3
L1

C1

C2

Fig. 5. Schematic of the Colpitts oscillator.
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Fig. 6. Cumulative density function (CDF) and probability density function
(PDF) approximation for the frequency of the Colpitts oscillator. The reference
PDF is generated by kernel density estimation (KDE).

the surrogate model (31) by Monte Carlo, which costs225
seconds of CPU times on our Matlab platform.

Density Estimation:106 data points on the obtained cu-
mulative density function curve are used to constructp(x)
andρ(x), which costs only several milliseconds. After scaling
the constructed closed-form cumulative density functionsand
probability density functions from Alg. 1 and Alg. 2, the
approximated density functions of the oscillation frequency
are compared with the Monte Carlo results in Fig. 6. The
constructed cumulative density functions by both methods are
graphically indistinguishable with the result from Monte Carlo.
The bottom plots in Fig. 6 also show a good match between
our obtainedρ̂(x̂) with the result from kernel density esti-
mation. Again, important properties of the density functions
(i.e., monotonicity and boundedness of the cumulative density
function, and non-negativeness of the probability densityfunc-
tion) are well preserved by our proposed density estimation
algorithms.

Basis Function:Using the obtained density functions and
the proposed implementation in Section V, a set of or-
thonormal polynomialsφk(x)’s are constructed as the basis
functions at the cost of milliseconds. Fig. 7 shows several
generalized polynomial-chaos basis functions ofx. Again,
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Fig. 7. Computed generalized polynomial-chaos basis functionsφk(x) (k =
0, · · · , 4) for the Colpitts oscillator. (a) uses the probability density function
from Alg. 1, and (b) uses the probability density function from Alg. 2.

TABLE II
COMPUTEDGAUSS QUADRATURE POINTS AND WEIGHTS FOR THE

COLPITTS OSCILLATOR.

with ρ(x) from Alg. 1 with ρ(x) from Alg. 2
xk wk xk wk

0.170086 0.032910 0.170935 0.032456
0.309764 0.293256 0.310016 0.292640
0.469034 0.441303 0.468658 0.439710
0.632232 0.217359 0.631249 0.218274
0.788035 0.016171 0.786226 0.016820

the basis functions resulting from our two density estimation
implementations are only slightly different.

Gauss Quadrature Rule:the computed five Gauss quadra-
ture points and weights are shown in Table II. Again the
results from two density estimations are slightly different.
The results from both probability density functions are very
accurate. Usingρ(x) from Alg. 1, we haveǫ = 1.3× 10−13,
and the error is1.45× 10−13 if we useρ(x) from Alg. 2.

C. Low-Noise Amplifier

In this example we consider the statistical behavior of the
total harmonic distortion at the output node of the low-noise
amplifier shown in Fig. 8. The device ratios of the MOS-
FETs areW1/L1=W2/L2=500/0.35 andW3/L3=50/0.35.
The linear components areR1=50Ω, R2=2 kΩ, C1=10
pF, CL=0.5 pF, L1=20 nH and L3=7 nH. Four random
parameters are introduced to describe the uncertainties:ξ1 and
ξ2 are standard Gaussian variables,ξ3 and ξ4 are standard
uniform-distribution parameters. These random parameters are
mapped to the physical parameters as follows: temperature
T=300 + 40ξ1 K influences transistor threshold voltage;
VT=0.4238 + 0.1ξ2 V represents the threshold voltage under
zero Vbs; R3=0.9 + 0.2ξ3 kΩ and L2=0.8 + 1.2ξ4 nH.
The supply voltage isVdd=1.5 V, and the periodic input is
Vin = 0.1sin(4π × 108t) V.

The surrogate model for total harmonic distortion analy-
sis is constructed by a numerical scheme as follows. First,
the parameter-dependent periodic steady-state solution at the
output is solved by the non-Monte Carlo simulator in [2],
and is expressed by a truncated generalized polynomial chaos
representation withK basis functions:

Vout(~ξ, t) =

K
∑

k=1

vk(t)ψk(~ξ)

V in

Vdd

Vout

M1

M2

M3
CL

R1

R2

R3

C1 L1

L2

L3

Fig. 8. Schematic of the low-noise amplifier.
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Fig. 9. Cumulative density function (CDF) and probability density function
(PDF) for the total harmonic distortion (THD) of the low-noise amplifier. The
reference PDF is generated by kernel density estimation (KDE).

wherevk(t) is the time-dependent coefficient of the general-
ized polynomial chaos expansion for the periodic steady-state
solution and is actually solved at a set of time points during
the entire period[0, T ]. Next,vk(t) is expressed by a truncated
Fourier series:

vk(t) =
a0k
2

+
J
∑

j=1

(

ajk cos(jωt) + bjk sin(jωt)
)

with ω = 2π
T

. The coefficientsajk andbjk

ajk =
2

T

T
∫

0

vk(t) cos(jωt)dt, b
j
k =

2

T

T
∫

0

vk(t) sin(jωt)dt

are computed by a Trapezoidal integration along the time axis.
Finally, the parameter-dependent total harmonic distortion is
obtained as

x̂ = THD = f(~ξ) =

√

√

√

√

J
∑

j=2

[

(aj(~ξ))
2
+(bj(~ξ))

2
]

(a1(~ξ))
2
+(b1(~ξ))

2

with aj(~ξ) =
K
∑

k=1

ajkφk(
~ξ), bj(~ξ) =

K
∑

k=1

ajkφk(
~ξ).

(32)
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Fig. 10. Computed generalized polynomial-chaos basis functions φk(x)
(k = 0, · · · , 4) for the low-noise amplifier. (a) uses the probability density
function from Alg. 1, and (b) uses the probability density function from Alg.
2.

TABLE III
COMPUTEDGAUSS QUADRATURE POINTS AND WEIGHTS FOR THE

LOW-NOISE AMPLIFIER.

with ρ(x) from Alg. 1 with ρ(x) from Alg. 2
xk wk xk wk

0.131542 0.056766 0.140381 0.073309
0.251826 0.442773 0.261373 0.470691
0.385311 0.4432588 0.395704 0.400100
0.550101 0.066816 0.561873 0.055096
0.785055 0.001056 0.798122 0.000803

We setJ = 5 in the Fourier expansion, which is accurate
enough for this low-noise amplifier. We use a 3rd-order
generalized polynomial chaos expansion, leading toK=35.
This surrogate model is evaluated by Monte Carlo with5×105

samples at the cost of330 seconds.
Density Estimation:114 points are selected from the ob-

tained cumulative density function curve to generatep(x) and
ρ(x) by Alg. 1 and Alg. 2, respectively, which costs only
several milliseconds. After scaling, Fig. 9 shows the closed-
form density functions for the total harmonic distortion ofthis
low-noise amplifier, which matches the results from Monte
Carlo simulation very well. The generatedp(x) monotonically
increases from0 to 1, andρ(x) is non-negative. Therefore, the
obtained density functions are physically consistent.

Basis Function:Using the obtained density functions, sev-
eral orthonormal polynomials ofx are constructed. Fig. 10
shows the first five basis functions ofx. Again, the basis
functions resulting from our two density estimation imple-
mentations look similar since the density functions from both
methods are only slightly different.

Gauss Quadrature Rule:Five Gauss quadrature points and
weights are computed and listed in Table III. Again the results
from two density estimations are slightly different due to
the employment of different density estimators. When the
density functions from piecewise cubic and piecewise rational
quadratic interpolations are used, the the errors defined in(30)
are3.11× 10−14 and4.34× 10−14, respectively.

D. Comparison with Asymptotic Probability Extraction

Finally we test our examples by the previous asymptotic
probability extraction algorithm [29], [30]. Since our surrogate
models are not in linear quadratic forms, we slightly modify

asymptotic probability extraction: as done in [18] we use
Monte Carlo to compute the statistical moments. All other
procedures are exactly the same with those in [29], [30].

As shown in Fig. 11, asymptotic probability extraction
produces some negative probability density function values
for the synthetic example and the Colpitts oscillator. The
probability density functions of the low-noise amplifier are
also slightly below0 in the tail regions, which is not clearly
visible in the plots. Compared with the results from our
proposed algorithms (that are non-negative and graphically
indistinguishable with the original probability density func-
tions), the results from asymptotic probability extraction have
larger errors. As suggested by [29], [30], we increase the order
of moment matching to15, hoping to produce non-negative
results. Unfortunately, Fig. 11 (d) and (e) show that negative
probability density function values still appear, although the
accuracy is improved around the peaks. Further increasing the
order to17, we observe that some positive poles are generated
by asymptotic waveform evaluation [41]. Such positive poles
make the computed probability density functions unbounded
and far from the original ones, as demonstrated by Fig. 11
(g) & (h). For the low-noise amplifier, the approximated
probability density function curve also becomes unbounded
once we increase the order of moment matching to20, which
is not shown in the plot.

These undesirable phenomenon have been explained in
Section II-A [c.f. Items2) and 3)]. Although it is possi-
ble to compute the statistical moments in some other ways
(e.g., using maximum likelihood [53] or point estimation
method [31]), the shortcomings of asymptotic waveform evalu-
ation (i.e., numerical instability and causing negative impulse
response for a linear system) cannot be overcome. Because
the density functions from asymptotic probability extraction
may be physically inconsistent, they cannot be reused in a
stochastic simulator (otherwise non-physical results maybe
obtained). Since the obtained probability density function is
not guaranteed non-negative, the computedκi in the three-
term relation (3) may become negative, whereas (4) implies
thatκi should always be non-negative.

VII. C ONCLUSIONS

Motivated by hierarchical uncertainty quantification, this
paper has proposed a framework to determine generalized
polynomial-chaos basis functions and Gauss quadrature rules
from surrogate models. Starting from a general surrogate
model, closed-form density functions have been constructed
by two monotone interpolation techniques. It has been shown
that the obtained density functions are physically consistent:
the cumulative density function is monotone and bounded
by 0 and 1; the probability density function is guaranteed
non-negative. Such properties are not guaranteed by existing
moment-matching density estimators. By exploiting the special
forms of our obtained probability density functions, general-
ized polynomial-chaos basis functions and Gauss quadrature
rules have been easily determined, which can be used for
higher-level stochastic simulation. The effectiveness ofour
proposed algorithms has been verified by several synthetic and
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Fig. 11. Probability density functions extracted by asymptotic probability extraction (APEX) [29], [30], compared with the results from kernel density
estimation (KDE). Left column: the synthetic example. Central column: frequency of the Colpitts oscillator. Right column: total harmonic distortion (THD)
of the low-noise amplifier. (a)-(c): with10 moments; (d)-(f): with15 moments; (g)-(i): with17 moments.

practical circuit examples, showing excellent efficiency (at the
cost of milliseconds) and accuracy (with errors around10−14).
The obtained generalized polynomial-chaos basis functions
and Gauss quadrature points/weights allow standard stochastic
spectral methods to efficiently handle surrogate models in a
hierarchical simulator.
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