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Abstract—Stochastic spectral methods are efficient techniques
for uncertainty quantification. Recently they have shown egellent
performance in the statistical analysis of integrated ciraits. In
stochastic spectral methods, one needs to determine a set of
orthonormal polynomials and a proper numerical quadrature
rule. The former are used as the basis functions in a generaled

polynomial chaos expansion. The latter is used to compute ¢ ‘model __.- surrogate _Su”ogate
integrals involved in stochastic spectral methods. Obtaiimg such AR .. model . ”,‘_0‘_’,9'
information requires knowing the density function of the random 51 ; fCE f
input a-priori. However, individual system components are often lower-level lower-level lowerlevel
described by surrogate models rather than density functios. parameters parameters parameters

In order to apply stochastic spectral methods in hierarchial
uncertainty quantification, we first propose to construct physi-
cally consistent closed-form density functions by two mortone
interpolation schemes. Then, by exploiting the special fans of
the obtained density functions, we determine the generaled
polynomial-chaos basis functions and the Gauss quadrature
rules that are required by a stochastic spectral simulator.The
effectiveness of our proposed algorithm is verified by both
synthetic and practical circuit examples.

Fig. 1. Demonstration of hierarchical uncertainty quatsifion.

This work is motivated by the need for hierarchical un-
certainty quantification based on stochastic spectral ousth
Consider Fig[Il that demonstrates the uncertainty quaantific
tion of a complex system. In this system, there existadily

Index Terms—Uncertainty quantification, stochastic circuit obtained surrogate models:

simulation, density estimation, generalized polynomial ltaos,

Gauss quadrature, surrogate model. = fi(gi), with 5 c Rdi, 1)

where z; is a variable dependent on multiple lower-level
random parameters. In transistor-level simulatian, is a

UE to significant manufacturing process variation, i#evice-level parameter (e.g., threshold voltage of a iséory

has become necessary to develop efficient uncertaiffjluenced by some geometric and process variations. In a
quantification tools for the fast statistical analysis @ostonic ~Statistical behavior-level simulatdr|[8}; is the performance
circuits and system$[1J=[18]. Monte Carlo simulatdrs [B]- Metric of a small circuit block (e.g., the frequency of a agk-
have been utilized in statistical circuit analysis for dées controlled oscillator) affected by some device-level para
Recently, stochastic spectral methads [19F-[24] have geter etersgZ Typical surrogate models include linear (quadratic)
as a promising technique for the uncertainty quantificatid@sponse surface models [€], [28]32], truncated geizexdl
of integrated circuits [1][5]. Such methods approximdte t Polynomial chaos representatioris [1]] [2], smooth or non-
stochastic solution by a truncated generalized polynomgnooth functions, stochastic reduced-order models [IH], [
chaos expansiofi [25]=[27], which converges much faster thE3], and some numerical packages that can rapidly evaluate

Monte Carlo when the parameter dimensionality is not highfi(¢:) (€.g., computer codes that implement a compact statis-
tical device model). By solving a system-level equatiorg th
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output’ can be obtained.

Instead of simulating the whole system starting from the
bottom-level random paramete{Ss, uncertainty quantifica-
tion can be performed in a hierarchical way. By treatin
as the random inputs for the higher-level equation, theuilftp
can be computed more efficiently. This treatment can dramat-
ically reduce the parameter dimensionality and problera.siz
Related work in this direction includes the statistical lgsia
of phase-lock loops [8] and the statistical timing analysfis
digital VLSI [16]-[1€]. In all existing works, Monte Carlo as
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utilized to perform the higher-level simulation. density function generated by kernel density estimation is

When:;’s are mutually independent, it is possible to furthemon-negative, and the resulting cumulative density fmcti
speed up the hierarchical uncertainty quantification flow by bounded in[0,1]. However, kernel density estimation is
using stochastic spectral methods$ [L]-[5].1[19]+[24]. hist seldom used in circuit modeling due to several shortcomings
case, high-accuracy results may be obtained by fast siipnlatFirst, the approximated probability density function ist no
if h smoothly depends oi;’s (even if fi(é) is non-smooth). compact: one has to store all samples as the parameters of a
In order to apply available stochastic spectral methods, wensity function, which is inefficient for reuse in a stodias
need to determine a set of orthonormal polynomials as thenulator. Second, it is not straightforward to generatedas
basis functions for generalized polynomial chaos expassiofrom the approximated probability density function. Third
Sometimes we also need a proper numerical quadrature rille accuracy of kernel density estimation highly depends on
(such as Monte Carlo, Gauss quadrature, efd.) [3]. In thise specific forms of the kernel functions (although Gaussia
paper, we will consider Gauss quadrature since it is widekgrnel seems suitable for the examples used in this work) as
used in stochastic spectral methods. Both tasks require thell as some parameters (e.g., the smoothing parametes). Th
probability density function of each random inpyt Existing paper will not construct the closed-form probability déysi
techniques typically assume that the random inputs have sofunction by kernel density estimation, instead we will use t
well-known distributions (e.g., Gaussian, uniform, Gammaumericalresults from kernel density estimation as a reference
and Beta distributions), and make use of available quadratdior accuracy comparison.
rules and orthogonal polynomials (e.g., Hermite, Legendre Asymptotic Probability Extractionf x is a linear quadratic
Laguerre and Jacobi polynomials)l [1J-[5], [20/=[27]. Thigunction of some lower-level Gaussian parametgrasymp-
assumption obviously does not hold in our case: the proipabiltotic probability extraction[[29],[[30] can efficiently apxi-
density function ofz; is not readily available from its surrogatematep(x) by moment matching. It has become the mainstream
model. algorithm used in statistical circuit yield analysis andimyza-

Therefore, a question is how to determine the generalizédn. Asymptotic probability extraction and its variamtl]3
polynomial-chaos basis functions and Gauss quadratues ruteat p(z) as the impulse response of a linear time-invariant
from a general surrogate model. This paper aims to par8ystem, then approximatggz) using asymptotic waveform
answer this key question in hierarchical uncertainty quaaevaluation[[41l]. Several shortcomings have limited theliapp
tification. Our method is based on the ideas of changimgtion of asymptotic probability extraction and its vat&n
variables and monotone interpolation [34]4[37]. Spediiga 1) Some assumptions of asymptotic probability extraction
we represent the random input as a linear function of a nemay not hold: i){ are assumed Gaussian variables, whereas
parameter, and treat such parameter as a new random inputeality gcan be non-Gaussian; i) may not be a linear
Using two monotone interpolation schemes, physically sensquadratic function of; iii) the statistical moments of may
tent closed-form cumulative density functions and prolitgbi be unbounded, and thus asymptotic waveform evaluaftion [41]
density functions can be constructed for the new randontinpgannot be applied.
Due to the special forms of the obtained density functiores, w 2) The density functions from moment matching may be
can easily determine a proper Gauss quadrature rule and phgsically inconsistent. The cumulative density functinay
basis functions for a generalized polynomial chaos expansi have oscillations and the probability density function niay

We focus on the general framework and verify our methaskgative, as shown by [29], [30] and the recent work [42], as
by using both synthetic and performance-level circuitegate well as by our experiments in Sectibn VI-D. This is because
models. Our method can be employed to handle a wide vari¢tye impulse response of a linear system is not guaranteed
of surrogate models, including device-level models forC3I non-negative when generated by asymptotic waveform eval-
level simulators|[[L]+[B], circuit-level performance mdsléor uation [41]. Negative probability density functions cahibe
behavior-level simulation [8], as well as gate-level statal used for the stochastic simulation of a physical model.
models for the timing analysis of digital VLS [L6]=[18]. In  3) The resulting density function may blow up, as shown
this paper we will focus only on the derivation of the basit Section[VI-D and in [[42]. There are two reasons for
functions and Gauss quadrature rules and refer the reattet. First, inaccurate moment computation can causeiyp®sit
interested to the extensive literature on how to use thempoles for a linear system, leading to an unbounded time-
a stochastic spectral simulator (seé [L]-[5]./[20]+-[27§idhe domain response. Second, asymptotic waveform evaluation i

references therein). numerically unstable, which is well known in interconnect
macromodeling. This is one of the important reasons why the
Il. RELATED WORK AND BACKGROUND REVIEW model order reduction community has switched to implicit

. N t matching by Krylov-sub jection.
A. Related Work on Density Estimation moment matching by Brylov-subspace projection

Let =z be a random variable, both kernel density estima- ) ] ) )
tion [38]-[40] and asymptotic probability extractidn [2480] B. Generalized Polynomial-Chaos Basis Function and Gauss
aim to approximate its probability density functipfiz). Quadrature

Kernel Density Estimationwith N samples forz, ker- In order to apply stochastic spectral methods, one normally
nel density estimation approximates its probability dgnsineeds a set of generalized polynomial-chaos basis fursction
function by using a set of kernel functions. The probabilitto approximate the stochastic solution of a physical model.
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Very often, a proper quadrature rule such as Gauss quadratu
method[[43] is also required to set up a deterministic equati
in intrusive solvers such as stochastic Galerkin [4], [5¢ an
stochastic testing [1]=[3], or to recover the coefficierfteach
basis function for the solution in non-intrusive (i.e., sdimg-
based) solvers such as stochastic collocafion [20]-[23].
Basis Function ConstructionGiven p(x) (the probability
density function ofr), the generalized polynomial-chaos basis
functions ofx are a set of orthonormal polynomials

/ 61(2); (2)p(x)dz = 51
R

Gauss quadrature

surrogate
models

I s random
. samples !

(2)
Fig. 2.  Construct generalized polynomial-chaos (gPC) vasal Gauss

. . . . uadrature rules from surrogate models. Here CDF and PDsrigamu-
where integers and j denote the polynomial degrees, angkhtve density function” and “probability density functity respectively.

d;; is a Delta function. In order to obtaiy;(z)’'s, a set of
orthogonal polynomialsr;(x)’s are first constructed via the
well-known three-term recurrence relation [44]: such integrals are not accurately computed, the consttete

Finn (2) = (& — 75) mi(@) — Remir (@), i =0, 1,--- sis functions can be erroneous. Furthermegés, may become

7 1(x) =0, mo(x) =1, (3) negauve_, makmlg computing the Gauss-quadrature poirds an
weights impossible.
where
D{M?(m)p(r)dr I{77?,+1(sc)p(ac)vlw o1 1. THE PROPOSEDFRAMEWORK
71'273“1' = T 2N (g 1= s Lyttt . . . .
[ mi@)p(@)dz i EHOEOLE In this paper;’s in Fig.[d are assumed mutually indepen-
(4)  dent. With this assumption, we can consider each surrogate

andrko = 1. Herem;(z) is a degree-polynomial with leading model independently. For simplicity, let
coefficient 1. After that, the firsfi + 1 basis functions are

obtained by normalization: T = f(f), with £ € R? (8)
bilx) = mi(z) Cfori—0.1,--- 0. ) represent a general surrogate model. We employ the linear
KOR1 - Ky transformation .
r—a
The obtained univariate basis functions can be easily deign == 9)

to the multivariate cases, as detailed in Section II-AL6f [3]
Gauss-Quadrature Rul&Vhen computing an integral with
Gauss quadraturg [43] one typically uses the expression

to define a new random input, which aims to improve the
numerical stability. Once we obtain the cumulative density
function and probability density function ef(denoted ag(x)

ntl and p(z), respectively), then the cumulative density function

/Q(CC)P(CC)dx ~ > glal)uw (6) and probability density function of can be obtained by
R j=1 . .
A T—a R 1 z2—a
which provides an exact result i (z) is a polynomial of p(Z) _p< > and p(&) = gp( b ) (10)

degree< 27+ 1. The quadrature pointg’’s and weightsw’’s
depend orp (z). Define a symmetric tridiagonal matrix

Yo Vv E1
V1 §a!

respectively.

As shown in Fig[R, we first construct the density functions
of x in a proper way then we determine the generalized
polynomial-chaos bases af and a proper Gauss quadrature
rule based on the obtained density functions. With the abthi

J= ) (") cumulative density function, random samplesazotould be
A _ easily obtained for higher-level Monte Carlo-based sirioig
?;;_} V}y’i”" however such task is not the focus of this paper. Our proposed

framework consists of the following steps.

o Step 1.Use N Monte Carlo samples (or readily available
measurement/simulation data) to obtain the discrete cu-
mulative density function curve of = f(&). Since f(£)

is a surrogate model, this step can be extremely efficient.
Step 2.Let § > 0 be a small threshold valu€i,,;,

and Z,.x be the minimum and maximum values of
z from the Monte Carlo analysis (or available data),
respectively. We set=x,i, — d, b=Zmax + 0 — a, then

N samples ofr in the interval(0, 1) are obtained by the

and let its eigenvalue decomposition be- UXUT, whereU
is a unitary matrix. Denote thg, j) entry of U by u; ;, then
27 is the j-th diagonal element oE, and the corresponding
weightw’ is u%,j [43]. Using tensor product or sparse grids,
1-D Gauss quadrature rules can be easily extended to multi»
dimensional case$§ [20[=[R3].

Remark 2.1:The main bottleneck of the above procedures
lies in (@), which requires computing a set of integrals.sThi
step can be non-trivial ib(x) is not in a proper form. When
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linear transformation {9). The obtained samples provide The most important parts of our algorithm are Step 4 and

a discrete cumulative density function for Step 6. In Sectiofi IV we will show how we guarantee that
« Step 3.From the obtained cumulative density functiorthe obtained density functions are physically consistBtep
curve ofz, pick n < N points(z;,y;) fori =1,--- ,n. 6 will be detailed in Sectiof v, with emphasis on an efficient

Herez; denotes the value af, andy; the corresponding analytical implementation.
cumulative density function value. The data are mono-
toneix; < x;pp and0=y; <--- <y, =1.

o Step 4.Use a monotone interpolation algorithm in Sec-
tion [IV] to construct a closed-form functiop(z) to This section presents the numerical implementation of our

IV. IMPLEMENTATION OF THE DENSITY ESTIMATOR

approximate the cumulative density functionaaf proposed density estimation. Our implementation is based o
» Step 5.Compute the first-order derivative @fz) and two monotone interpolation techniques, which are well istdd
use it as a closed-form approximation A@r). in the mathematical community but have not been applied to

o Step 6. With the obtainedp(z), we utilize the pro- uncertainty quantification. Since we approximate the camul
cedures in Sectior ]V to construct the generalizéive density functiorp(z) in the intervale € [z1, ], in both
polynomial-chaos basis functions and Gauss quadratumethods we sep(xz)=y,=0 for < z; and p(x)=y,=1 for
points/weights forz. x > x,, respectively.

Many surrogate models are described by truncated gener-
alized polynomial f:haos expansions. The cost of evaluatlg\g Method 1: Piecewise Cubic Interpolation
such models may increase dramatically when the lower-level o . ) . o
parameters have a high dimensionality (which may occa- Qur first |mplem§ntat|on uses a piecewise cubic interpo-
sionally happen), although the surrogate model evaluationlation [34], [35]. With the monotone data from Step 3 of
still much faster than the detailed simulation. Fortunatei Sectiorll, we construcp(x) as a cubic polynomial:
practical high-dimensional stochastic problems, norynatily o1, 2 S, N2, A/ 3
a small number of parameters are important to the output arff®) = o+ ci(@ — o) + o —2k)” + e (@ — )" (13)

most cross terms will vanish [45]=[47]. Consequently, &ilg for » € [2), 214], 0 < k < n. If ye=ys1, We simply

sparse generalized polynomial chaos expansion can bmdt"'setc}c:yk andc2=ci=ci= 0. Otherwise, the coefficients are

for fast evaluation. Furthermore, when the coupling betwegg|ected according to the following formula[35]
the random parameters are weak, quasi-Monte Carlo [48] can

further speed up the surrogate model evaluation. k= Y _Ci :ka, - _ (14)
In Step 3, we first seledtry,y1) = (0,0) and (z,,, y,) = cf = BB ) = W

(1,1). Then data points are selected such that
] ] where Azp=x11—xk, S’FW' This formula ensures
|ziv1 — 2| < — and |yip1 —vil < —, (11) thatp(x) andp’(z) are continuousp(xy) = yi andp’(xy) =
m m yr. Herep(z) denotes the 1st-order derivative ofz).
where m is an integer used to control. This constraint  The key of this implementation is how to compute such
ensures that the interpolation points are selected pippadh  that the interpolation is accurate ap@r) is non-decreasing.
that the behavior around the peak gffr) is well captured. The value ofy;, is decided by two steps. First, we compute

In practical implementation, fok = 2,---,n — 1, the point the first-order derivativej(z;) by a parabolic method:
(2, yx) is selected from the cumulative density function curve

subject to the following criteria: nEant o) b if k=1
1 U(Ik) _ Sn—1(2AZ, 1+ ATy _2)—8n_2ATn_1 ifk=n
i Tm—Tm_ )
\/(ykfl - yk)2 + (kal - Ik)Q ~ m (12) SkAﬂCk—ﬁ-Sk—lAIk’ ’ f2<k<n-—1.

Th+1—Tk—1

_ : - (15)
Forz ¢ [z1,2n], we setp(x)=0. This treatment mtroducgsThiS parabolic method has2ad-order accuracy [35]. Second,

some errors in the tail regions. Approximating the tail e . . . o :

is non-trivial, but such errors may be ignored if rare faglur/k 1S Obta?"?e‘j by perturbing(zy,) (if ngcessary)_to enfc_)rce the

events are not a major concern (e.g., in the yield analysis rppnotonicity ofp(z). The monotonicity op(z) is equivalent
= to p’(x) > 0, which is a2nd-order inequality. By solving this

some analog/RF circuits). . . . : X . :
Remark 3.1:Similar to standard stochastic spectral Sim|_nequal|ty, a feasible region fgj;., denoted by, is provided

ulators [1]45], [20]-[27], this paper assumes thats are in [@] Occasionally we r_1eed to projeg(xk)_ontoA to get
mutually independent. It is more difficult to handle corteth U 1 glay) ¢ A In practlc.e, we use the simpler projection
and non-Gaussian random inputs. Not only is it difﬁculrtnethOOI suggested bl [B5];

to construct the density functions, but also it is hard to [ min (max (O,l'l(xk))735ﬁlin),

construct the basis functions even if the multivariate dgns Y% = { 0, if spsp_1 =0

function is given [[19], [[4B]. How to handle correlated non- (16)
Gaussian random inputs remains an open and important topith so=s1, s,=s,-1 and sfnin:min(sk,sk,l). The above
in uncertainty quantificatior [19]. Some of our progresshis t procedure projectg(z;) onto a subset of4, and thus the
direction will be reported in[[50]. monotonicity ofp(z) is guaranteed.

if spsp_1 >0
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Algorithm 1 piecewise cubic density estimation Algorithm 2 piecewise rational quadratic density estimation
1: Evaluate the mode[]8) to obtaiN samples off; 1: Evaluate the mode[]8) to obtaiN samples ofr;
2: Shift and scale: to obtain N samples forz; 2: Shift and scalei to obtain N samples forz;
3: Pick n data points(xy, yx), under constrain{(11); 3: Pick n data points(xy, yx), under constrain{{11);
4: Calculatey(zy) using the parabolic methof (15); 4 for k=1,--- ,ndo
5. for k=1,--- ,ndo 5: Calculatey, using the formula in[{20);
6: If yr = yrr1, Setc,lc:yk and ci:ci:ci: 0; 6: if yp = yrt1
7. else 7. setaj =y, B3 = 1 and other coefficients to zero;
8: Computey, according to[(Tb); 8 else
9:  Compute the coefficients if_(114). 9:  compute the coefficients df () and D(x) using [19).
10: end
11: end for 10: end
11: end for

Oncep(x) is constructed, the probability density function
of z can be obtained by for x € [z, xp11].
Note that in piecewise cubic interpolation, a projection
o _ 2 3/, 40, 2
pla) =p'(w) = ¢+ 26 (x — ap) + ey (w — )™ (17) procedure is not required, since the monotonicityp(f) is
for 2, < r< 1, 1. Note that forz ¢ [x1,x,], p'(z) = 0. automatically guaranteed. The pseudo codes of this density
Calculating p’(z) may amplify the interpolation errors. estimation method are provided in Algorithrh 2.
However, the error is acceptable since the construpted
is smooth enough anpl () is continuous. The pseudo code%' Properties ofp()

of Algorithm[1 summarize the steps of this approach. ) ) ) .
It is straightforward to show that the obtained density func

. . . . . tions are physically consistent: b)x) is differentiable, and
B. Method 2: Piecewise Rational Quadratic Interpolation 4 \<'its derivative/ () always exists; 2)(z) is monotonically

Our second implementation is based on a piecewise ratiofidreasing from0 to 1, and the probability density function
quadratic interpolatiori [36][[37]. In this implementatiove (z) is non-negative.

approximate the cumulative density functionzoby We can easily draw a random sample from the obtained
N(z) ol + a2z +ada? p(z). Lety € [0,1] be a sample from a uniform distribution,
p(z) = (18) then a sample of: can be obtained by solving(z) = y

- 1 2 3

D(@) By + Bz + re? in the intervaly € [yx,yr+1]. This procedure only requires

for x € [zg,zrp1]. The coefficients are selected by theomputing the roots of a cubic (or quadratic) polynomials,

following method: whenr;, = x4 1, we setoy, = yx, B =1 resulting in a unique solutiom € [z, z;+1]. This property

and all other coefficients to zero; otherwise, the coeffisienis very useful in uncertainty quantification. Not only are

are decided according to the formula random samples used in Monte Carlo simulators, but also

they can be used in stochastic spectral methods. Recently,

compressed sensing has been applied to high-dimensional

stochastic problem&[45]-[47]. In compressed sensinglaan

Bl = 22 — vpziies - Iiﬂa (19) samples are normglly used to .enhance the restricted ispmetr

B2 = vk + Trsr) — 20 — 2ps1, B =2 — vy, property of_ the dictionary matrix [51]. . .

with wy, — Ve et Un s o g v = G+t F|naIIy_, it become; easy to determine the generalized
Sk Sk polynomial-chaos basis functions and a proper quadratiee r

where s, is defined the same as in piecewise cubic irfer x due to the special form op(z). This issue will be

terpolation. In this interpolation scheme, the sufficient a discussed in Sectidn]V.

necessary condition for the monotonicity ofz) is very Remark 4.1:Our proposed density estimator only requires

simple:y, > 0. In order to satisfy this requirement, the slopgome interpolation points from a discrete cumulative den-

1 _ 2 2

0415 = Yk+1T) — WETkTh+1 + YeThiq,

i = we(Tk + Trg1) — 2Uk41Tk — 2YkThoi1,
3 _

O = Yk+1 — Wk + Yk,

Ui IS approximated by the geometric mean sity function curve. The interpolation points actually caa
o »y-p obtained by any appropriate approach. For example, kernel
(51)‘”3";2 {Sf&l)”’” , df /?I: 17T density estimation will be a good choice if we know a proper
Yk = (Snfl)ﬁ (5n7n72)ﬁ7 ifk=n kernel function and a good smoothing parameter based on
Tkl =Tk R a-priori knowledge. When the surrogate model is a linear

(55_1) P11 (5)os1=7b-1  if 1 < k <7
(20)
with sp, k, = 22-Y2  Similarly, the probability density

i Ty —Tk
function of z can be

guadratic function of Gaussian variables, we may first egnplo
asymptotic probability extraction [29] to generate a pbghy
2 . inconsistent cumulative density function. After that, ®om
approximated by monotone data points (with;’s bounded by0 and 1) can be
, N'(x)D(x) — D'(x)N(x) selected to generate a piecewise cubic or piecewise rationa
plz) =p'(z) = D2(z) (2D quadratic cumulative density function. The new cumulative
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density function and probability density function becomeith

. . . L 3ct 2¢%—6
physically consistent and can be reused in a stochastic-simu aj i = k_jﬂg, bjr= CJH;JIJ,
lator. 02-—2031j+304m2.

C' — J J JJ
Jik k+1 :

V. DETERMINE BASIS FUNCTIONS AND GAUSS

QUADRATURE RULES C. ConstructFj ,(x) using the Density Function from Alg. 2

If p(z ) is constructed by Alg. 2, for any € [z, z;11] we

This section shows how to calculate the genera]J write 2% p(z) as follows

ized polynomial-chaos bases and the Gauss quadrature

z*[N'(z)D(z)—D'(z)N (z

points/weights ofr based on the obtained density function. ok p(z) = [V (@) 1()2)(1) (@)N(@)]
_d (mkN(m)) _ ka* ' N(x)
T dx D(x) D(z) -

A. Proposed Implementation

One of the many usages of our density estimator is tg'erefore.f%.(x) can be selected as

fast compute a set of generalized polynomial-chaos basis 2PN (z) d kxF=IN(x)
functions and Gauss quadrature pomts/welghts by analiytic Fyn(z) = D(x) ~Eyule), with 2 dx o () = D(x)
2 ~
computing the integrals ii(4). Let? (x) = Z mipe’ then o order to obtainF ;. (), we perform a long division:
we have kb N (x) By o(a) + R i(z) (26)
7 = ',kl
fa:w x)dx = Z Tie M1, D(x) / D(x)
(22)  whereP; ;(x) and R x(x) are both polynomial functions, and
f7T z)dr = Z i,k M Rj ;(z) has a lower degree thab(z). Consequently,
k=
n _ 7l 2

where M;, denotes thek-th statistical moments of:. By Fyi(@) = Fj . (2) + Fjp.(x) (27)

exploiting the special form of our obtained density funotio \here Fl L(z) and F2k($) are the integrals of, () and
the statistical moments can be computed as Ry(x) ’ "

D(x
. - N n- Pjyi():z:) is a polynomial function.

My, = /fC p(x)ds = /x p(@)dz = Iix  (23)  "The closed form of?, () is decided according to the
e @ =1 coefficients ofD(z) and R;,(z), as is summarized below.

wherel; ;. denotes the integral in thgth piece: Case Lif 37 # 0, thenR; i (x) = 7}, +7] ,x. Letus define

= 48] 82 — 57, then we can seleo.’c“2 . (z) according to

the formula in IIZB)
ik = / p()dr = Fjx(xji1) = Fjr(z;)- (24) Case 2:if 57 = 0 and 37 # 0, then R; 1.(z) = 7, is a

, respectively. It is trivial to obtainl:“jl_k(:v) since
+oo i

Tyt

zj constant. In this case, we select
Here Fj_,k(:c) is a continuous analytical function under the -5 NO )
constraint-£ F; (z) = 2¥p(z) for @ € [z;,2;41]. The key Fi(@) = 52 1n|5 EHE (29)

problem of our method is to construét; ;. (z). When p(x) R

is obtained from Alg. 1 or Alg. 2, we can easily obtain the Case 3:if 3} = 7 =0, thenR; »(x) = 0. In this case we

closed form ofF} ;(x), as will be elaborated in Secti¢n V- BsetFJQ, (x) = 0.

and Section V-C. Remark 5.2:0ccasionally, the projection procedufe](16)
Remark 5.1:This paper directly applied](4) to computen Alg. 1 may cause extra errors at the end points of some

the recurrence parameters and ;. As suggested by [44], intervals. If this problem happens we recommend to use Alg.

modified Chebyshev algorithrin [62] can improve the numerical On the other hand, if high-order basis functions is resglir

stability when constructing high-order polynomials. Migeti we recommend Alg. 1, since the moment computation with

Chebyshev algorithm indirectly computes and «; by first the density from Alg. 2 is numerically less stable (due to the

evaluating a set of modified moments. Again, if we employ tHeng-term division and the operations [0_[28).

p(z) obtained from our proposed density estimators, then the

calculation of modified moments can also be done analyyicall VI. NUMERICAL EXAMPLES

to further improve the accuracy and numerical stability. This section presents the numerical results on a synthetic

example and the statistical surrogate models from two joalct
B. ConstructF; ,(x) using the Density Function from Alg. 1analog/RF circuits. The surrogate models of these practica
Whenp(z) is constructed by Alg. L% p(z) is a polynomial circuits are extracted from transistor-level simulatiosing

function of at most degrek+ 2 inside the intervalz;, ;. 1]. the fast stochastic circuit simulator developedlih [1]-[&}
Therefore, the analytical form of; ,(z) is experiments are run in Matlab on a 2.4GHz 4-GB RAM laptop.

In the following experiments, we use the density functions
Fjr(z) = aj 52" + b 22 4 ¢, (25) from kernel density estimation as the “reference solution”
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3 2
T In ’53.%'2 + fx+ 61’ + 72[3]” s 5Tk gretan 2Pi2tR , ifA; >0

25* \/A_J Aj
=9 2877 B2F 283x+p2 .
FP(z) = ;ﬂg In|B3a? + B + B| — # arctan —J—=F, if A7 <0 (28)
k 3.2 2 1) _ 28075 kB35 k N
2;33 ln|ﬂx + Bix + B; | ](éﬁggﬁjﬁj) iftA; =0
because: 1) as a standard technique, kernel density estimat @ ®)
is most widely used in mathematics and engineering; 2) kerne ~ * original CDF ! original CDF
density estimation guarantees that the generated prdapabil os o p(@) by Alg. 1 08 o p(@) by Alg. 2
d_e.nsny funqtlon is non-negatlve,. whereas asymptoUc aob 08
bility extraction cannot; 3) Gaussian kernel function sed¢m
be a good choice for the examples in this paper. However, i %4 o4
is worth noting that the density functions from kernel dgnsi 02 02
estimation are not efficient for reuse in higher-level ststit
simulation. We plot the density functions &f (the original S g0 0 %0 %@ PR
random input) instead of (the new random input after a 02 © o 9
linear transformation) since the original one is physiceibre
intuitive. To verify the accuracy of the computed genegliz 0.15 0.15
polynomial-chaos bases and Gauss quadrature pointsisgeigh
we define a symmetric matri; ,; € R(*TDx(+1) the(i, 5) 01 01
entry of which is
0.05 0.05
n+1
Vi = Z w ¢1 1 ¢J 1 ( ) S0 0 20w 6080 S0 0 2 40 60 80
z T

Here z* and andw" are the computed-th Gauss quadra- Fig. 3. Cumulative density function (CDF) and probabilitgngity function
ture point and weight, respectively. Therefarg; approxi- (PDF) approximation ofi for the synthetic example. The reference PDF is
mates the inner product af;_, (x) and ¢J71( ), defined as generated by kernel density estimation (KDE).

fcbl 1(x) ¢j—1 (z) p(x)dx, by n + 1 quadrature points. Let

n+1 be an identity matrix, then we define an error: x, respectively. The CPU times cost by our proposed density
estimators are in millisecond scale, since only simplelaigie
€= [llat1 = Vasalloo (30) operations are required. After scaling lhy](10), the cunigat
which is close to zero when our constructed basis functiofignsity function and probability density function of theger
and Gauss-quadrature points/weights are accurate enoughinal random inputz (5() and j(i), respectively) from both
algorithms are compared with the original cumulative dignsi
function and probability density function in Fif] 3. Clearl
p(&) is indistinguishable with the original cumulative density
As a demonstration, we first consider the following synthetfynction (from Monte Carlo simulation); angd(i) overlaps
example with four random parametefs= &1, -+ ,&]: with the original probability density function (estimatéxy
5= f(g) — &1+ 0.5 exp(0.5265) kr(]ernel dlensfity eitimatlic()jn us_ing G_ausgian kernels).ﬁ_Nfcme th
+0.34/2.1 x |&4] + sin (&3) cos (3.91&4) the results from kernel density estimation are not efficent
reuse in higher-level stochastic simulation, since all kon
where ¢y, & and & are all standard Gaussian random vari€arlo samples are used as parameters of the resulting ylensit
ables, and¢, has a uniform distribution in the intervalfunction.
[-0.5,0.5]. This model is strongly nonlinear with respect to It is clearly shown that the generatgd) [and thusp(z)]
¢ due to the exponential, triangular and square root funstioris monotonically increasing froito 1, and that the generated
It is also non-smooth af, = 0 due to the third term in the p(&) [and thusp(z)] is non-negative. Therefore, the obtained
model. This model is designed to challenge our algorithrdensity functions are physically consistent.
Using this surrogate model)® samples of: are easily created Basis Function:Using the obtained density functions and
to generate the cumulative density function curve within the proposed implementation in Sect[oh V, a set of orthonor-
second. mal polynomialspy (z)’s are constructed as the basis functions
Density Estimation:we setm = 45 and select74 data at the cost of milliseconds. Fifil 4 show the first five general-
points from the obtained cumulative density function curnvieed polynomial-chaos basis functions. Note that althotixgh
using the constraint in (12). After that, both Alg. 1 and Aly. computed basis functions from two methods are graphically
are applied to generatéz) andp(z) as approximations to the indistinguishable, they are actually slightly differeimce Alg.
cumulative density function and probability density fuontof 1 and Alg. 2 generate different representationsft).

A. Synthetic Example
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(b)

50
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400 —k=1 400 —k=1
—k=2 —k=2
300 —k=3 300 —k=3
—k=4 —k =4

200

100

200

0.2 0.4 0.6
T

0.8 1

0.2

04 06 08 1
T

Fig. 4. Computed generalized polynomial-chaos basis iomet, (z) (k =
0,---,4) for the synthetic example. (a) uses the probability dgrfsihction
from Alg. 1, and (b) uses the probability density functioonr Alg. 2.

TABLE |
COMPUTED GAUSS QUADRATURE POINTS AND WEIGHTS FOR THE

SYNTHETIC EXAMPLE.

with p(z) from Alg. 1

with p(z) from Alg. 2

zF

wk

zF

wk

0.082620

0.311811

0.084055

0.332478

0.142565

0.589727

0.144718

0.576328

0.249409

0.096115

0.252980

0.089027

0.458799

0.002333

0.463207

0.002150

0.837187

0.000016

0.835698

0.000016

(@)

Fig. 5. Schematic of the Colpitts oscillator.

(b)

0.8

original CDF

0.6 o p(@) by Alg. 1

0.4

0.2

0.8

original CDF
o (&) by Alg. 2

0.6

0.4

0.2

%4 56 58 60 62 64
#=fosc MHz

()

%45 58 60 62 64
F=fose MHz

(d)

——PDF via KDE
+ (&) by Alg. 1

—PDF via KDE
« p(#) by Alg. 2

0.3 0.3

Gauss Quadrature Rulesettingn = 4, five Gauss quadra-
ture points and weights are generated using the method pr
sented in SectionlvV. Tablé | shows the results from two kinds
of approximated density functions. Clearly, since the pinb
ity density functions from Alg. 1 and Alg. 2 are differentgth %
resulting quadrature points/weights are also slightlyedént.

The results from both probability density functions areyver

accurate. Using the probability density function from Alg Fig. 6. Cumulative density function (CDF) and probabilitgndity function

) . _15 (PDF) approximation for the frequency of the Colpitts datdr. The reference
we havee = 2.24 x 10~'%, and the erroif(30) i§.57 x 10 PDF is generated by kernel density estimation (KDE).
if p(z) from Alg. 2 is employed.

0.2 0.2

0.1 0.1

56 58 60 62 64 %56 58 60 62 64
&= fosc MHz #= fose MHz

B. Colpitts Oscillator the surrogate model (B1) by Monte Carlo, which caz2§

We now test our proposed algorithm on a more practicd¢conds of CPU times on our Matlab platform.
example, the Colpitts oscillator circuit shown in Fig. 5.eTh Density Estimation:106 data points on the obtained cu-
design parameters of this circuit aRa=2.2 k2, Ro.=R3;=10 Mulative density function curve are used to constrpict)
k2, Co=100 pF, C5=0.1uF, anda=0.992 for the BJT. The andp(z), which costs only several milliseconds. After scaling
oscillation frequency is mainly determined by the valueée constructed closed-form cumulative density functiand
of Ly, €, and C,. In this circuit, L; =150 + A(0,9) nH probability density functions from Alg. 1 and Alg. 2, the
and ;=100 + U(—10,10) pF are random variables with approximated density functions of the oscillation frequen
Gaussian and uniform distributions, respectively. We troigs  are compared with the Monte Carlo results in Hig. 6. The
a surrogate model using generalized polynomial chaos exp&anstructed cumulative density functions by both methads a
sions and the stochastic shooting Newton solver’In [2]. Tigaphically indistinguishable with the result from Monter®.
oscillation frequenc}foSC is expressed as The bottom plOtS in Fldje also show a gOOd match between
B 1 our obtainedj(z) with the result from kernel density esti-
&= fose = f(§) = T — mation. Again, important properties of the density funesio
S Trthe (g) (i.e., monotonicity and boundedness of the cumulative ithens
k=1 function, and non-negativeness of the probability derfsity-
where the denominator is a 3rd-order generalized polynomi®n) are well preserved by our proposed density estimation
chaos representation for the period of the oscillator, Wi;tf) algorithms.
being thek-th multivariate generalized polynomial-chaos basis Basis Function:Using the obtained density functions and
function offandi the corresponding coefficient. Althoughthe proposed implementation in Sectiéd V, a set of or-
the period is a polynomial function ﬁ the frequency is not, thonormal polynomialsp, (x)’'s are constructed as the basis
due to the inverse operation. In order to extract the curivelatfunctions at the cost of milliseconds. Figl 7 shows several
density function curve; x 10° samples are utilized to evaluategeneralized polynomial-chaos basis functions 2of Again,

(31)
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(@) (b)

—k=0
400 | —k = 1]
—k=2
30 |—k=3
—k=4
20t \
10
0
-10
-2 -2
0 02 04 06 08 1 0 02 04 06 08 1
xr xr

Fig. 7. Computed generalized polynomial-chaos basis iomet), () (k =
0,---,4) for the Colpitts oscillator. (a) uses the probability dgnsunction ) . ) »
from Alg. 1, and (b) uses the probability density functionnfr Alg. 2. Fig. 8. Schematic of the low-noise amplifier.

TABLE I (a) (b)

COMPUTED GAUSS QUADRATURE POINTS AND WEIGHTS FOR THE 1 1
COLPITTS OSCILLATOR — original CDF original CDF

0.8 o P(#) by Alg. 1 038 o p(&) by Alg. 2

with p(z) from Alg. 1 | with p(z) from Alg. 2 0.6 0.6
0.170086 | 0.032910 | 0.170935] 0.032456 04 04
0.309764| 0.293256 | 0.310016| 0.292640 02
0.469034| 0.441303 | 0.468658| 0.439710
0.632232| 0.217359 | 0.631249| 0.218274 0 0

0.788035| 0.016171 | 0.786226] 0.016820 04 08y o7 08 04 05 oy °7 o8

(© (d)

0.2

—PDF via KDE ——PDF via KDE
. . . . . . * p(@) by Alg. 1
the basis functions resulting from our two density estiorati * (@) by Alg. 2

implementations are only slightly different. 10 10

Gauss Quadrature Rulghe computed five Gauss quadra-
ture points and weights are shown in Table Il. Again the
results from two density estimations are slightly differen
The results from both probability density functions areyver
accurate. Using(z) from Alg. 1, we havee = 1.3 x 10713, O —— | Ot ——
and the error is.45 x 10713 if we usep(z) from Alg. 2. =THD #=THD

. . Fig. 9. Cumulative density function (CDF) and probabilitgndity function
C. Low-Noise Amplifier (PDF) for the total harmonic distortion (THD) of the low-sei amplifier. The

In this example we consider the statistical behavior of tH&erence PDF is generated by kermel density estimationBD
total harmonic distortion at the output node of the low-Bois

amplifier shown in Fig[18. The device ratios of the MOSynerey,(t) is the time-dependent coefficient of the general-
FETs areW,/L1=Wa/Ly=500/0.35 and W3/L3=50/0.35.  jzed polynomial chaos expansion for the periodic steadest
The linear components aré; =509, Ry=2 k€, C1=10 gp|ution and is actually solved at a set of time points during

pF, C1=0.5 pF, L1=20 nH and L3=7 nH. Four random the entire periodo, 7). Next, v, () is expressed by a truncated
parameters are introduced to describe the uncertaigtie®nd Fqyrier series:

& are standard Gaussian variablég, and &, are standard 0
uniform-distribution parameters. These random pararaeter on(t) = 2k 4 Z (a',i cos(jwt) + by, sin(jwt))
mapped to the physical parameters as follows: temperature 2

T=300 + 40&; K influences transistor threshold voltage;

Vr=0.4238 + 0.1&, V represents the threshold voltage undefith « = 37 The coefficients:] andb;

zero Vs, R3=0.9 + 0.2&3 kQ and L,=0.8 + 1.2& nH.

T
The supply voltage id/3q=1.5 V, and the periodic input is al = %/ ) cos(jwt)dt, bl = = /Uk ) sin(jwt)dt
0

Jj=1

Vin = 0.1sin(47 x 10%¢t) V.
The surrogate model for total harmonic distortion analy-
sis is constructed by a numerical scheme as follows. Firéf€ computed by a Trapezoidal integration along the time. axi

the parameter-dependent periodic steady-state solutitimea Finally, the parameter-dependent total harmonic distorts

output is solved by the non-Monte Carlo simulator i [2]°Ptained as
and is expressed by a truncated generalized polynomiakchao ZJJ [(m@)ﬂ(w@)ﬂ
representation withi' basis functions: #=THD = (&) = \| == =7
’ (@ @) () (32)
_ . K. . - K -
Vout f t) = Z with @/ (§) = > aim( ), Y€)= (Ii@c( ).

k=1 k=1 k=1
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(@) (0)

120 120 ——— asymptotic probability extraction: as done in_[18] we use
tog —k=1 1og| —k=1 Monte Carlo to compute the statls_t|cal moments. All other
80l —k=3 80| —k=3 procedures are exactly the same with those in [29], [30].
ol —2 o2 As shown in Fig.[ M, asymptotic probability extraction
0 » produces some negative probability density function &lue
" N for the_ _synthetu_: example and the CO|pItFS oscnla_tpr. The
N N probability density functions of the low-noise amplifierear
0 0 also slightly belowo in the tail regions, which is not clearly
2% o2 04 06 08 1 Y 04 06 08 1 visible in the plots. Compared with the results from our

proposed algorithms (that are non-negative and graphicall

Fig. 10. Computed genera"zed po|yn0mia|-chaos basistiﬁmrm¢k(x) indistinguishable W|th the Original probablllty densityrfc-

(k =0,---,4) for the low-noise amplifier. (a) uses the probability densi tjons), the results from asymptotic probability extrantivave
fzunctlon from Alg. 1, and (b) uses the probability densitydtion from Alg. Iarger errors. As Suggested MZQJ:BO]. we increase tderor
' of moment matching td 5, hoping to produce non-negative
TABLE Il results. Unfortunately, Fig. 11 (d) and (e) show that negati

COMPUTED GAUSS QUADRATURE POINTS AND WEIGHTS FOR THE probablllty density funCtion Va|ueS St|” appear, althbll@e

LOW-NOISE AMPLIFIER. .. . .
accuracy is improved around the peaks. Further increakimg t

With p(z) from Alg. T | with p(z) from Alg. 2 order tol17, we observe that some positive poles are generated
zF wk zF wk by asymptotic waveform evaluation [41]. Such positive gole
8-;21232 8-252;32 g-ggg% 8-2;328513 make the computed probability density functions unbounded
0 50E3 T T 0 IA37588 0395704 0400100 and far from the original ones, as (_j(_amonstrated by_IEEd;. 11
0550101 0.066816 | 0561873 0.055096 (9) & (h). For the low-noise amplifier, the approximated
0.785055| 0.001056 | 0.798122| 0.000803 probability density function curve also becomes unbounded

once we increase the order of moment matchingtowhich

is not shown in the plot.
We setJ = 5 in the Fourier expansion, which is accurate These undesirable phenomenon have been explained in
enough for this low-noise amplifier. We use a 3rd-ordeection[I[-A [c.f. ltems2) and 3)]. Although it is possi-
generalized polynomial chaos expansion, leadingkte35. ble to compute the statistical moments in some other ways
This surrogate model is evaluated by Monte Carlo With10° (e.g., using maximum likelihood [53] or point estimation
samples at the cost @B0 seconds. method[[31]), the shortcomings of asymptotic waveform aval

Density Estimation:114 points are selected from the ob-ation (i.e., numerical instability and causing negativgirtse
tained cumulative density function curve to genergte) and response for a linear system) cannot be overcome. Because
p(z) by Alg. 1 and Alg. 2, respectively, which costs onlythe density functions from asymptotic probability extraot
several milliseconds. After scaling, Figl 9 shows the diesemay be physically inconsistent, they cannot be reused in a
form density functions for the total harmonic distortiontbis ~ stochastic simulator (otherwise non-physical results rbay
low-noise amplifier, which matches the results from Montebtained). Since the obtained probability density functie
Carlo simulation very well. The generatg(lr) monotonically not guaranteed non-negative, the computedn the three-
increases frond to 1, andp(x) is non-negative. Therefore, theterm relation [[B) may become negative, wheréas (4) implies
obtained density functions are physically consistent. that x; should always be non-negative.

Basis Function:Using the obtained density functions, sev-
eral orthonormal polynomials of are constructed. Fid. 10
shows the first five basis functions of Again, the basis
functions resulting from our two density estimation imple- Motivated by hierarchical uncertainty quantification, sthi
mentations look similar since the density functions fronthbo paper has proposed a framework to determine generalized
methods are only slightly different. polynomial-chaos basis functions and Gauss quadratues rul

Gauss Quadrature RuleFive Gauss quadrature points androm surrogate models. Starting from a general surrogate
weights are computed and listed in Tablé Ill. Again the rssulmodel, closed-form density functions have been constducte
from two density estimations are slightly different due t®y two monotone interpolation techniques. It has been shown
the employment of different density estimators. When tHbat the obtained density functions are physically coesst
density functions from piecewise cubic and piecewise natio the cumulative density function is monotone and bounded
quadratic interpolations are used, the the errors defin@@)n by 0 and 1; the probability density function is guaranteed
are3.11 x 1074 and4.34 x 10~'4, respectively. non-negative. Such properties are not guaranteed by rexisti
moment-matching density estimators. By exploiting thecgde
forms of our obtained probability density functions, geater
ized polynomial-chaos basis functions and Gauss quaeratur

Finally we test our examples by the previous asymptoticles have been easily determined, which can be used for
probability extraction algorithmi [29].[30]. Since our sngate higher-level stochastic simulation. The effectivenessoof
models are not in linear quadratic forms, we slightly modifproposed algorithms has been verified by several synthetic a

VII. CONCLUSIONS

D. Comparison with Asymptotic Probability Extraction
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Fig. 11.

Probability density functions extracted by asywtipt probability extraction (APEX)[129],[130], compared twithe results from kernel density

estimation (KDE). Left column: the synthetic example. @ahtolumn: frequency of the Colpitts oscillator. Right wain: total harmonic distortion (THD)

of the low-noise amplifier. (a)-(c): with0 moments; (d)-(f): with15 moments; (g)-(i): with17 moments.

practical circuit examples, showing excellent efficienathe
cost of milliseconds) and accuracy (with errors arouod'4).
The obtained generalized polynomial-chaos basis funstion
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memory design,1TEEE Trans. Computer-Aided Design Integr. Circuits
Syst, vol. 28, no. 8, pp. 1176-1189, Aug. 2009.

and Gauss quadrature points/weights allow standard stticha [77 ——, “why Quasi-Monte Carlo is better than Monte Carlo atimh hy-
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