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Abstract—As minimum feature size and pitch spacing further
decrease, triple patterning lithography (TPL) is a possible 193nm
extension along the paradigm of double patterning lithography
(DPL). However, there is very little study on TPL layout decom-
position. In this paper, we show that TPL layout decomposition
is a more difficult problem than that for DPL. We then propose a
general integer linear programming formulation for TPL layout
decomposition which can simultaneously minimize conflict and
stitch numbers. Since ILP has very poor scalability, we propose
three acceleration techniques without sacrificing solution quality:
independent component computation, layout graph simplifica-
tion, and bridge computation. For very dense layouts, even
with these speedup techniques, ILP formulation may still be
too slow. Therefore, we propose a novel vector programming
formulation for TPL decomposition, and solve it through effective
semidefinite programming (SDP) approximation. Experimental
results show that the ILP with acceleration techniques can reduce
82% runtime compared to the baseline ILP. Using SDP based
algorithm, the runtime can be further reduced by 42% with some
tradeoff in the stitch number (reduced by 7%) and the conflict
(9% more). However, for very dense layouts, SDP based algorithm
can achieve 140× speed-up even compared with accelerated ILP.

1. INTRODUCTION

As minimum feature size further scales, the semiconductor
industry is greatly challenged of patterning sub-22nm half-
pitch due to the delay of viable next generation lithography
such as Extreme Ultra Violet (EUV). Double patterning lithog-
raphy (DPL) is widely recognized as a promising solution for
32nm, 22nm, and possibly 16nm volume chip production.

As shown in Fig. 1, the key challenge of DPL lies in the
decomposition process by which the original layout is divided
into two masks. Then, there are two exposure/etching steps,
through which the layout can be produced. The advantage of
this approach is that the effective pitch can be doubled, which
improves the lithography resolution. During the decomposi-
tion, when the distance between the two patterns is less than
minimum colorable distance mins, they need to be assigned
to different masks to avoid a conflict. Sometimes conflict can
be solved by splitting a pattern into two touching parts, called
stitches. In Fig. 1(b), polygon a is split into two polygons
a1 and a2 in order to resolve the decomposition conflicts.
However the introduced stitches lead to yield loss due to
overlay error [1]. Therefore, two of the main challenges in
layout decomposition are conflict and stitch minimization.

The paradigm of double patterning may be further extended
to triple patterning lithography (TPL). Industry has already
explored the test-chip patterns with triple patterning or even
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Fig. 1. In DPL, a single layer is decomposed into two masks and the pitch
can be increased effectively.
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Fig. 2. (a) In DPL, even stitch insertion can not avoid native conflict. (b)
The native conflicts can be resolved by TPL.

quadruple patterning [2]. By using TPL, we can achieve further
feature-size scaling through pitch-tripling.

It shall be noted that in DPL, even with stitch insertion,
there may be native conflicts [3]. Fig. 2(a) shows a three-
way conflict cycle between features a, b and c, where any
two of them are within the mins. As a consequence, there
is no chance to produce a conflict-free solution using DPL
decomposition. However, we can easily resolve this problem
if the layout is decomposed into three masks as shown in
Fig. 2(b). Yet this does not mean TPL layout decomposition
problem becomes easier. Actually since the features can be
packed closer, the problem turns out to be more difficult, as
to be shown in Section 2.

Much previous research focuses on the double patterning
layout decomposition problem, which is generally regarded as
a two-coloring problem on a conflict graph. Integer Linear
Programming (ILP) is adopted in [4][5] to minimize the stitch
number and/or the conflict number. Xu et al. [6] propose an
efficient graph reduction-based algorithm for stitch minimiza-
tion, and Yang et al. [7] propose a fast min-cut based approach.
A matching based decomposer is proposed to minimize both
the conflict and the stitch numbers [8]. To resolve the native
conflict, several works introduce layout modification to further
minimize the conflict number [9][10][11]. However, layout
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modification may cause new problems, i.e., timing closure,
hotspot.

Until now, there are very few investigations on TPL lay-
out decomposition. [12] proposes a triple patterning coloring
algorithm, which adopts SAT Solver. However, their work
only deals with contact arrays, not general layout structures
with wires, contacts, and so on. Besides, it does not involve
any stitch minimization. [13][14] propose a self-aligned triple
patterning (SATP) process to extend 193nm immersion lithog-
raphy to half-pitch 15nm patterning. But the SATP process
cannot insert any stitch, which would greatly constrain the
possible layout patterns that are decomposable [15]. To our
best knowledge, there is no study so far on layout decompo-
sition on TPL for general layout styles.

In this paper, we propose the first systematic study on
layout decomposition for triple patterning lithography. We
first formulate a general ILP formulation for TPL layout
decomposition to simultaneously minimize conflict and stitch.
To improve scalability, we further propose three acceleration
techniques without loss of solution quality: layout graph sim-
plification, independent component computation and bridges
computation. A semidefinite programming based approxima-
tion algorithm is further proposed to improve scalability.
Semidefinite programming is an extension of linear program-
ming to approximately solve NP-hard problems and it has been
successfully applied to many combinatorial problems [16][17].
Our main contributions of this paper include:
• General ILP formulation to simultaneously minimize

conflict and stitch for TPL layout decomposition;
• Three acceleration techniques to improve ILP scalability;
• A novel vector programming formulation for TPL de-

composition and its semidefinite programming based ap-
proximation algorithm which can further deal with very
dense layouts where even accelerated ILP becomes too
slow;

• Our experimental results are very promising in terms of
quality of results and runtime tradeoff.

The rest of the paper is organized as follows: in Section 2,
we discuss the problem formulation and then analyze prob-
lem complexity. The basic algorithm and some acceleration
techniques are described in section 3. Section 4 proposes a
semidefinite programming based algorithm to further accel-
erate the basic algorithm. Section 5 presents the experiment
results, followed by conclusion in Section 6.

2. PROBLEM FORMULATION AND COMPLEXITY

Some preliminaries on TPL are provided in this section,
including some definitions and the problem formulation. We
also demonstrate the complexity of the problem.

A. Problem Formulation

Given a layout which is specified by features in polygonal
shapes, a layout graph [4] and a decomposition graph [9] are
constructed.

Definition 1 (Layout Graph): The layout graph (LG) is
an undirected graph whose nodes are the given layout’s

b
f

e
a

c d

(a)

d
a

b
f

c

e

(b)

b
f

e
a

c d

(c)

d1
a

b
f

c

e1

d2

e2

(d)

Fig. 3. Layout graph construction and decomposition graph construc-
tion (a) Input layout representing as irregular polygons. (b)Corresponding
layout graph, where all edges are conflict edges. (c)The node projec-
tion. (d)Corresponding decomposition graph, where dash edges are stitch
edges.

polygonal shapes and where an edge exists if and only if the
two polygonal shapes are within minimum coloring distance
mins of each other.

Fig. 3(a) gives an example of an input layout; the corre-
sponding layout graph is shown in Fig. 3(b). All the edges
in a layout graph are called Conflict Edges (CE). A conflict
exists if and only if two nodes are connected by a CE and
are in the same mask. In other words, each conflict edge is a
conflict candidate.

Definition 2 (Decomposition Graph): Given a layout rep-
resented by a set of polygonal shapes, the decomposition graph
(DG) is an undirected graph with a single set of nodes V , and
two sets of edges, CE and SE, which contain the conflict
edges and stitch edges, respectively. V has one or more nodes
for each polygonal shape and each node is associated with
a polygonal shape. An edge is in CE iff the two polygonal
shapes are within minimum coloring distance mins of each
other. An edge is in SE iff there is a stitch between the two
nodes which are associated with the same polygonal shape.

On the layout graph, the node projection is first performed,
where projected segments are highlighted by bold lines in Fig.
3(c). Based on the projection result, all the legal splitting
locations are computed. Then the decomposition graph is
constructed, as shown in Fig. 3(d). Note that the conflict edges
are marked as black edges, while stitch edges are marked as
dash edges.

Problem 1 (TPL layout decomposition): Given a layout
which is specified by features in polygonal shapes, the layout
graph and the decomposition graph are constructed. Our goal
is to assign all the nodes in the decomposition graph to three
masks to minimize the stitch number and the conflict number.



TABLE I
NOTATION

Notation used in Mathematical programming

CE set of conflict edges

SE set of stitch edges.

V the set of polygens.

ri the ith layout polygons

xi variable denoting the coloring of ri
cij 0-1 variable, cij = 1 when a conflict between ri and rj

sij 0-1 variable, sij = 1 when a stitch between ri and rj

Notation used in ILP formulation

xi1, xi2 two 1-bit 0-1 variables to represents 3 colors

cij1, cij2 two 1-bit 0-1 variables to determine cij

sij1, sij2 two 1-bit 0-1 variables to determine sij

B. Problem Complexity

At first glance, the layout decomposition is similar to graph
coloring problem. However, since stitch edges are introduced,
the problem to minimize conflict and stitch is more compli-
cated. For double patterning case, deciding whether a graph
is 2-colorable is easy by determining if there exists odd
cycles. For conflict and stitch minimization, if a decomposition
graph is planar DPL layout decomposition can be solved in
polynomial time [8]. In order to solve the triple patterning
issue, the problem becomes more complicated.

Lemma 1: Deciding whether a planar graph is 3-colorable
is NP-complete [18].

Lemma 1 can be naturally extended to general graph. Based
on Lemma 1, the methodology in [12] is not suitable for
TPL decomposition: SAT solver can only work for 3-colorable
layout graph, which cannot be checked in polynomial time.

Lemma 2: Coloring a 3-colorable graph with 4 colors is
NP-complete [19].

3-coloring problem is to assign the nodes in one 3-colorable
graph to 3 colors. Since coloring the graph with 4 colors
cannot be finished in polynomial time, it can be shown 3-
coloring problem is NP-hard. Based on above lemmas, even
the decomposition graph is planar, we reach the following
theorem:

Theorem 1: TPL layout decomposition problem is NP-
hard.

We can prove this theorem by reducing 3-Coloring problem
to the TPL decomposition problem. Due to page limit, the
detailed proof is skipped here.

3. BASIC ALGORITHM

In this section, we will present our basic algorithms, which
are based on the Integer Linear Programming (ILP). Since
the timing complexity for ILP is very high, we propose
three acceleration techniques to divide the whole problem into
several smaller ones. The entire flow is shown in Fig. 4.

A. Mathematical Formulation for TPL Decomposition

The mathematical formulation for TPL layout decompo-
sition is shown in (1). For convenience, some notations in

mathematical programming and ILP formulation are listed in
Table I. The objective is to simultaneously minimize both
the conflict number and the stitch number. The parameter α
is a user-defined parameter for assigning relative importance
between the conflict number and the stitch number.

min
∑

eij∈CE

cij + α
∑

eij∈SE

sij (1)

s.t. cij = (xi == xj) ∀eij ∈ CE (1a)
sij = xi ⊕ xj ∀eij ∈ SE (1b)
xi ∈ {0, 1, 2} ∀i ∈ V (1c)

where xi is a variable for the three colors of rectangles ri,
cij is a binary variable for conflict edge eij ∈ CE and sij
is a binary variable for stitch edge eij ∈ SE. Constraint (1a)
is used to evaluate the conflict number when touch nodes ri
and rj are assigned different colors (masks). Constraint (1b)
is used to calculate the stitch number. If node ri and node rj
are assigned the same color (mask), stitch sij is introduced.

B. ILP Formulation for TPL Layout Decomposition

We will now show how to formulate (1) with Integer Linear
Programming. Note that eqs. (1a) and (1b) can be linearized
only when xi is a 0-1 variable [4], which cannot represent
three different colors. To handle this problem, we represent
the color of each node using two 1-bit 0-1 variables xi1 and
xi2. In order to limit the number of colors for each node to
3, for each pair (xi1, xi2) the value (1, 1) is not permitted. In
other words, only values (0, 0), (0, 1) and (1, 0) are allowed.

Thus, (1) can be formulated as follows:

min
∑

eij∈CE

cij + α
∑

eij∈SE

sij (2)

s.t. xi1 + xi2 ≤ 1 (2a)
xi1 + xj1 ≤ 1 + cij1 ∀eij ∈ CE (2b)
(1− xi1) + (1− xj1) ≤ 1 + cij1 ∀eij ∈ CE (2c)
xi2 + xj2 ≤ 1 + cij2 ∀eij ∈ CE (2d)
(1− xi2) + (1− xj2) ≤ 1 + cij2 ∀eij ∈ CE (2e)
cij1 + cij2 ≤ 1 + cij ∀eij ∈ CE (2f )
xi1 − xj1 ≤ sij1 ∀eij ∈ SE (2g)
xj1 − xi1 ≤ sij1 ∀eij ∈ SE (2h)
xi2 − xj2 ≤ sij2 ∀eij ∈ SE (2i)
xj2 − xi2 ≤ sij2 ∀eij ∈ SE (2j)
sij ≥ sij1, sij ≥ sij2 ∀eij ∈ SE (2k)

The objective function is the same as that in (1), which
minimizes the weighted summation of the conflict number and
the stitch number. Constraint (2a) is used to limit the number
of colors for each node to 3.

Constraints (2b) to (2f ) are equivalent to constraint (1a),
where 0-1 variable cij1 demonstrates whether xi1 equals to
xj1, and cij2 demonstrates whether xi2 equals to xj2. 0-1
variable cij is true only if two nodes connected by conflict
edge eij are in the same color, e.g. both cij1 and cij2 are true.
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Layout Graph Simplification

Fig. 4. Basic Algorithms Flow

Similarly, constraints (2g) to (2k) are equivalent to con-
straint (1b). 0-1 variable sij1 demonstrates whether xi1 is
different from xj1, and sij2 demonstrates whether xi2 is
different from xj2. Stitch sij is true if either sij1 or sij2 is
true.

C. Acceleration Techniques

Since ILP is an NP-hard problem, its runtime increases
dramatically with the size of a decomposition graph. We
propose three acceleration techniques to simplify the layout
graph and the decomposition graph in order to reduce the time
complexity of ILP. As shown in Fig.4, our acceleration flow
consists of three steps: Independent Component Computation,
Layout Graph Simplification and Bridges Computation.

1) Independent Component Computation: We propose in-
dependent component computation on the decomposition
graph to reduce the ILP problem size without losing optimality.
In a layout graph of real design, we observe many isolated
clusters. Therefore, we can break down the whole design
into several independent components, and apply basic ILP
formulation for each one. The overall solution can be taken
as the union of all the components without affecting the
global optimality. The runtime of ILP formulation decreases
dramatically with the reduction of variables and constraints,
and the coloring assignment can be effectively accelerated. In-
dependent component computation is a well-known technique
which has been applied in many previous studies [4][5][7][9].

Algorithm 1 Layout Graph Simplification and Color Assign-
ment
Require: Layout Graph G to be simplified, stack S

1: while ∃n ∈ G s.t. degree(n) ≤ 2 do
2: S.push(n);
3: G.delete(n);
4: end while
5: Decomposition graph construction.
6: TPL layout decomposition for nodes not be simplified.
7: while !S.empty() do
8: n = S.pop();
9: G.add(n);

10: Assign n a legal color.
11: end while
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Fig. 6. Bridges Computation. (a) After bridges computation, label edge eab
as bridge. (b) In two sub-graphs carry out ILP formulation. (c) Rotate colors
in one sub-graph to add bridge.

2) Layout Graph Simplification: We can simplify the layout
graph by removing all nodes with degree less than or equal
to two. At the beginning, all nodes with degree less than or
equal to two are detected and removed temporarily from the
layout graph. This removing process will continue until all the
nodes are at least degree-three. The layout graph simplification
algorithm is shown in Algorithm 1.

If all the nodes in the layout graph can be pushed onto
the stack, Algorithm 1 can solve TPL layout decomposition
optimally in linear time. As an example shown in Fig.5, every
node can be pushed onto stack and finally be colored when
is popped off. Note that even when some nodes cannot be
simplified, layout graph simplification can reduce problem size
dramatically. Additionally, we observe that this algorithm can
also partition the layout graph into several sub-graphs.

3) Bridges Computation: A bridge of a graph is an edge
whose removal disconnects the graph into two components. If
the two components are independent, removing the bridge can
divide the whole ILP into two independent ILP formulations.

Theorem 2: Partitioning decomposition graph by re-
moving bridges does not introduce new stitches.

An example of the bridges computation is shown in Fig. 6.
First of all, conflict edge eab is found to be a bridge. Removing
the bridge divides the decomposition graph into two sides.
After ILP based color assignment, if node a and node b are
assigned the same color, we can rotate colors of all nodes in
one sub-graph. Similar method can be adopted when bridge
is a stitch edge. We adopt an O(|V |+ |E|) algorithm [20] to
find bridges in decomposition graph.

Using above three acceleration techniques, the ILP formu-
lation can still achieve optimal solutions. In other words, our
acceleration algorithms can keep optimality. Due to page limit,
we skip the detailed discussion here.

4. SDP BASED ALGORITHM

Although the accelerated algorithms can simplify the prob-
lem size in many ways, ILP may still be too slow for
large problems which cannot be simplified effectively. In this
section we provide an approximation algorithm to obtain more
rapid solutions. First, a novel vector programming for TPL
layout decomposition is formulated. Then we relax the vector
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Fig. 5. This layout can be directly decomposed by layout graph simplification. (a) Input layout. (b) Corresponding layout graph. (c)(d)(e) Iteratively remove
and push in nodes with edges no more than 2. (f)(g)(h)(i) Iteratively pop up and recover node, and assign any legal color. (j) Final decomposition result.

(-    ,      )√3
2

1
2

(1, 0)

(-    ,-     )√3
2

1
2

Fig. 7. Three vectors (1, 0), (− 1
2
,
√
3

2
), (− 1

2
,−

√
3
2
) represent three

different colors.

programming into Semidefinite Programming (SDP). Given
this solution from Semidefinite Programming, we can obtain
the TPL decomposition results in polynomial time.

A. Vector Programming for TPL Layout Decomposition

In TPL decomposition, there are three possible colors. We
set a unit vector ~vi for every node i. If eij is a conflict edge,
we want nodes ~vi and ~vj to be far apart. If eij is a stitch
edge, we hope for nodes ~vi and ~vj to be the same. As shown
in Fig. 7, we associate all the nodes with three different unit
vectors: (1, 0), (− 1

2 ,
√
3
2 ) and (− 1

2 ,−
√
3
2 ). Note that the angle

between any two vectors of the same color is 0, while the
angle between vectors with different colors is 2π/3.

Additionally, we define the inner product of two m-
dimension vectors ~vi and ~vj as follows:

~vi · ~vj =
m∑

k=1

vikvjk

where each vector ~vi can be represented as (vi1, vi2, . . . vim).
Then for the vectors ~vi, ~vj ∈ {(1, 0), (− 1

2 ,
√
3
2 ), (− 1

2 ,−
√
3
2 )},

we have the following property:

~vi · ~vj =
{

1, ~vi = ~vj
− 1

2 ~vi 6= ~vj

Based on the above property, we can formulate the TPL
layout decomposition as the following vector program [21]:

min
∑

eij∈CE

2

3
(~vi · ~vj +

1

2
) +

2α

3

∑
eij∈SE

(1− ~vi · ~vj) (3)

s.t. ~vi ∈ {(1, 0), (−
1

2
,

√
3

2
), (−1

2
,−
√
3

2
)} (3a)

Formula (3) is equivalent to mathematical formula (1). Since
the TPL decomposition is NP-hard, this vector programming is
also NP-hard. In the next part, we will relax (3) to semidefinite
programming, which can be solved in polynomial time.

B. Semidefinite Programming Approximation

Constraint (3a) requires solutions of (3) be discrete. After
removing this constraint, we generate formula (4) as follows:

min
∑

eij∈CE

2

3
(~yi · ~yj +

1

2
) +

2α

3

∑
eij∈SE

(1− ~yi · ~yj) (4)

s.t. ~yi · ~yi = 1, ∀i ∈ V (4a)

~yi · ~yj ≥ −
1

2
, ∀eij ∈ CE (4b)

This formula is a relaxation of (3) since we can take any
feasible solution ~vi = (vi1, vi2) to produce a feasible solution
of (4) by setting ~yi = (vi1, vi2, 0, 0, · · · , 0), i.e. ~yi · ~yj =
1 and ~yi · ~yj = ~vi · ~vj in this solution. Thus if ZR is the
value of an optimal solution of formula (4) and OPT is an
optimal value of formula (3), it must satisfy: ZR ≤ OPT . In
other words, solution of (4) is an approximation to that in (3).
Since we only care about the value of ~yi, program (4) can be



further simplified by eliminating the constants in the objective
function:

min
∑

eij∈CE

(~yi · ~yj)− α
∑

eij∈SE

(~yi · ~yj) (5)

s.t. (4a)− (4b)

Without discrete constraint (3a), programs (4) and (5) are
not NP-hard now. To solve (5) in polynomial time, we will
show that it is equivalent to a semidefinite programming.
Semidefinite programming (SDP) is similar to linear pro-
gramming which has a linear objective function and linear
constraints. However, a square symmetric matrix of variables
can be constrained to be positive semidefinite. Although
semidefinite programs are more general than linear programs,
both of them can be solved in polynomial time. Besides, the
relaxation based on the semidefinite programming has better
theoretical results than those based on LP [16].

Consider the following standard semidefinite program:

SDP: min A •X (6)
Xii = 1, ∀i ∈ V (6a)

Xij ≥ −
1

2
, ∀eij ∈ CE (6b)

X � 0 (6c)

where A • X is the inner product between two matrices A
and X , i.e.

∑
i

∑
j AijXij . Here Aij is the entry that lies in

the i-th row and the j-th column of matrix A. Constraint (6c)
means matrix X should be positive semidefinite.

Aij =

 1, ∀eij ∈ CE
−α, ∀eij ∈ SE
0, otherwise

(7)

Similarly, Xij is the i-th row and the j-th column entry of
X . Note that the solution of SDP is represented as a positive
semidefinite matrix X , while solutions of vector programming
are stored in a list of vectors. However, we can show that they
are equivalent.

Lemma 3: A symmetric matrix X is positive semidefinite
if and only if X = V V T for some matrix V .

Given a positive semidefinite matrix X , using the Cholesky
decomposition we can find corresponding matrix V in O(n3)
time.

Theorem 3: The semidefinite program (6) and the vector
program (5) are equivalent.

Proof: Given solutions of (5) {~v1, ~v2, · · · ~vm}, the corre-
sponding matrix X is defined as Xij = ~vi · ~vj . In the other
direction, based on Lemma 3, given a matrix X from (6),
we can find a matrix V satisfying X = V V T by using the
Cholesky decomposition. The rows of V are vectors {vi} that
form the solutions of (5).

C. Mapping Algorithm

Solutions of program (6) are continuous, while optimal
solutions in (3) are discrete. In this subsection we map the
continuous solutions into discrete ones.

In the matrix X generated by SDP, if Xij is close to 1, then
nodes i and j should be in the same mask, while if Xij is close
to −0.5, node i and node j tend to be in different masks. Our
mapping algorithm is given in Algorithm 2, which finds the
relative relationships among the nodes and maps them into
three different masks. First some triplets are constructed and
sorted to store all Xij information. Then, we carry out our
mapping algorithm in two steps. In the first step, if Xij is close
to 1, the node i and the node j will be in the same mask, while
if Xij is close to −0.5, they will be labeled to be in different
masks. Here the vectors UnionLevel[k] and SepaLevel[k] are
some user defined parameters: UnionLevel[] are close to 1 and
SepaLevel[] are close to −0.5. In the second step, we continue
to union the node i and the node j with maximum Xij until
all nodes are assigned into three masks.

We use the disjoint-set data structure to group nodes into
three masks. Implemented with “union by rank” and “path
compression”, the running time per operation of disjoint-set
is almost constant [22]. Let n be the number of nodes, and
the number of triplets is n2. Sorting all the triplets requires
O(n2logn). Since all triplets are sorted, each of them can be
visited at most once. Because the runtime of each operation
can be finished almost in constant time, the complexity of
Algorithm 2 is O(n2logn).

Algorithm 2 Mapping Algorithm
1: Solve the program (6), get a matrix X .
2: Label each non-zero entry Xi,j as a triplet (Xij , i, j).
3: sort all (Xij , i, j) by Xij .
4: for k = 1 to R do
5: for each triple (Xij , i, j) do
6: if Xij > UnionLevel[k] && Compatible(i, j) then
7: Union(i, j);
8: end if
9: end for

10: for each triple (xij , i, j) do
11: if Xij < SepaLevel[k] then
12: Seperate(i, j);
13: end if
14: end for
15: end for
16: while Masks number > 3 do
17: Pick triple with maximum Xij and Compatible(i, j);
18: Union (i, j);
19: end while

D. An Example of the SDP Based Algorithm

Fig. 8 shows an example of the decomposition graph. This
graph includes 7 conflict edges and 1 stitch edge, and can
be colored with 3 colors. Moreover, the graph is not 2-
colorable since it contains odd cycles. Here we show how the
semidefinite programming can be used to solve TPL layout
decomposition problem.
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Fig. 8. Example to color decomposition graph. (a)Input decomposition graph.
(b)Using semidefinite programming and Algorithm 2, we assign nodes into 3
different colors (masks).

If we set α = 0.1, then matrix A is as follow:

A =


0 1 1 −0.1 1
1 0 1 0 1
1 1 0 1 0
−0.1 0 1 0 1
1 1 0 1 0


After solving the semidefinite programming (6), we can get

a matrix X as following:

X =


1.0 −0.5 −0.5 1.0 −0.5

1.0 −0.5 −0.5 −0.5
1.0 −0.5 1.0

. . . 1.0 −0.5
1.0


here we only show the upper part of the matrix X .

From the matrix X we can find that node 1 and node 4
should be in the same color (because X14 = 1.0), and node 3
and node 5 should also be in the same color (because X35 =
1.0). However, since X12, X13 and X15 are close to −0.5,
nodes 2, 3 and 5 cannot be assigned in the same color as
node 1. Using Algorithm 2, we can map all the nodes into
three colors: {1, 4}, {2} and {3, 5}. The final mapping result
is shown in Fig. 8(b).

5. EXPERIMENTAL RESULTS

We implement our algorithm in C++ and test it on an Intel
Core 3.0GHz Linux machine with 32G RAM. OpenAccess2.2
[23] is used for interfacing with GDSII directly. We choose
CBC [24] as our solver for the integer linear programming, and
CSDP [25] as the solver for the semidefinite programming.

ISCAS-85 & 89 benchmarks are scaled down and modified
to reflect the 16nm technology node. The metal one layer
is used for experimental purposes, because it is one of the
most complex layers in terms of layout decomposition. The
minimum width and spacing become 25nm and 30nm. The
minimum colorable distance is set as 85nm, and the minimum
overlapping margin for stitch insertion is 10nm. The parameter
α is set as 0.1.

A. Comparison

First, we show the effectiveness of the layout graph sim-
plification and the bridges computation. Table II compares
the Normal ILP and the Accelerated ILP, where the Normal

ILP only uses independent component computation technique,
while the Accelerated ILP uses all three acceleration tech-
niques. Columns “SE#” and “CE#” denote the stitch edge
number and conflict edge number respectively. From Table
II we can see that layout graph simplification and bridges
computation are quite effective: the stitch edge number can
be reduced by 90%, while the conflict number can be reduced
by 93%. The columns “st#” and “cn#” show the stitch number
and the conflict number in the final design. “CPU(s)” is
computational time in seconds. Compared with the Normal
ILP, the Accelerated ILP can achieve the same results in
around 18% of the runtime. Note that if no accelerative
technique is used, the runtime for ILP is unacceptable even for
small circuits like C432. From Table II we can see that both
ILP formulations can achieve the optimal solutions, because
of the same conflict number and stitch number.

Second, we verify the quality and efficiency of our ap-
proximation algorithm based on semidefinite programming.
Table II also compares the Accelerated ILP and the SDP
based algorithm, where “SDP Based” denotes the semidefinite
programming based algorithm. Note that these two methods
share the same decomposition graph, i.e. both the stitch edge
number and the conflict edge number in their decomposition
graph are equal. As we can see, using SDP based method the
runtime can be further reduced by 42% and the stitch number
can be reduced by 7%. The tradeoff for this acceleration is
the 9% more conflicts.

B. Efficiency

In order to further evaluate the scalability of our SDP
based method, we create four additional benchmarks (C1-C4)
to test two decomposition algorithms on very dense layouts.
Table III lists the comparison of the Speed-up ILP and the
SDP based method on these very dense layouts. As we can
see, compared with the Speed-up ILP, SDP based method
can reduce stitch number by 10% while introduces 5% more
conflicts. Furthermore, SDP based method can achieve 140×
speed-up. The reason for the dramatically acceleration is that:
for a low density layout, the decomposition problem can
be divided into many sub-problems, and typically each sub-
problem contains no more than 20 nodes. While for high
density layout, there are more nodes in each sub-problem,
where SDP can be much faster than ILP.

TABLE III
COMPARISON ON VERY DENSE LAYOUTS

Circuit SE# CE# Accelerated ILP SDP Based
st# cn# CPU(s) st# cn# CPU(s)

C1 16 247 1 5 5.5 0 6 0.29
C2 38 289 0 15 17.32 0 16 0.77
C3 24 381 0 14 33.41 0 15 0.32
C4 56 437 9 32 203.17 9 32 0.49

avg. - - 2.5 16.5 64.9 2.25 17.3 0.468
ratio - - 1 1 1 0.9 1.05 0.007



TABLE II
RUNTIME AND PERFORMANCE COMPARISONS

Circuit Comp# Normal ILP Accelerated ILP SDP Based
SE# CE# st# cn# CPU(s) SE# CE# st# cn# CPU(s) st# cn# CPU(s)

C432 261 300 930 0 1 38.01 32 136 0 1 1.11 0 1 0.26
C499 418 566 2239 0 0 34.15 171 838 0 0 6.34 0 4 1.01
C880 516 844 2219 1 3 25.91 6 24 1 3 0.49 1 3 0.06

C1355 872 1008 2543 0 1 23.27 2 14 0 1 0.12 0 1 0.03
C1908 1132 1332 4480 0 1 48.66 1 14 0 1 0.10 0 1 0.03
C2670 1501 2186 7469 0 4 101.98 6 40 0 4 0.50 0 4 0.10
C3540 1964 3197 9283 2 2 3975.25 9 40 2 2 0.43 2 2 0.11
C5315 2767 4644 13211 5 0 173.86 20 70 5 0 0.70 5 0 0.18
C6288 3740 5319 11394 ? ? > 7200 259 509 9 72 26.05 9 72 1.36
C7552 4164 6591 19187 ? ? > 7200 64 180 10 6 2.19 7 9 0.46
S1488 588 1932 4284 0 1 73.37 31 54 0 1 0.50 0 1 0.1
S38417 9385 15912 40734 ? ? > 7200 1617 2724 3 19 20.56 3 21 9.33
S35932 23565 25252 71198 ? ? > 7200 3776 6317 3 18 49.87 3 22 33.55
S38584 24724 28808 74968 ? ? > 7200 3657 6066 4 26 44.16 4 26 34.52
S15850 20881 33134 87358 ? ? > 7200 3877 6504 6 34 49.18 6 39 35.92

avg. - 8735 23433 - - - 901.8 1568.7 2.87 12.53 13.49 2.67 13.73 7.80
ratio - 1 1 - - - 0.10 0.07 1 1 1 0.93 1.09 0.58

6. CONCLUSION

In this paper, we propose a general integer linear program-
ming (ILP) formulation for the TPL layout decomposition
to simultaneously minimize the conflicts and stitches. To
improve scalability, we develop three acceleration techniques
without losing solution quality: layout graph simplification,
independent component computation and bridges computation.
Furthermore, we propose a novel semidefinite programming
algorithm to improve scalability for very dense layouts. Ex-
perimental results show that our methods are very effective.
Since this is the first systematic attempt on TPL layout
decomposition for general layouts, we expect to see a lot of
researches as TPL may be adopted by industry in the near
future.
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