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Abstract—Model order reduction of nonlinear circuits (espe-
cially highly nonlinear circuits), has always been a theoretically
and numerically challenging task. In this paper we utilize tensors
(namely, a higher order generalization of matrices) to develop a
tensor-based nonlinear model order reduction (TNMOR) algo-
rithm for the efficient simulation of nonlinear circuits. Unlike
existing nonlinear model order reduction methods, in TNMOR
high-order nonlinearities are captured using tensors, followed by
decomposition and reduction to a compact tensor-based reduced-
order model. Therefore, TNMOR completely avoids the dense
reduced-order system matrices, which in turn allows faster
simulation and a smaller memory requirement if relatively low-
rank approximations of these tensors exist. Numerical experi-
ments on transient and periodic steady-state analyses confirm
the superior accuracy and efficiency of TNMOR, particularly in
highly nonlinear scenarios.

Keywords—Tensor, nonlinear model order reduction, reduced-
order model

I. INTRODUCTION

THE complexity and reliability of modern VLSI chips rely
heavily on the effective simulation and verification of

circuits during the design phase. In particular, mixed-signal
and radio-frequency (RF) modules are critical and often hard
to analyze due to their intrinsic nonlinearities and their large
problem sizes. Consequently, nonlinear model order reduction
(NMOR) becomes necessary in the electronic design automa-
tion (EDA) flow. The goal of NMOR is to find a reduced-
order model (ROM) that simulates fast and yet still captures
the input-output behavior of the original system accurately.

Compared to the mature model order reduction (MOR)
methods in linear time-invariant (LTI) systems [1]–[4], NMOR
is much more challenging. Several projection-based NMOR
methods have been developed in the last decade. In [5], [6],
the nonlinear system is expanded into a series of cascaded
linear subsystems, whereby the outputs from the low-order
subsystems serve as inputs to the higher-order ones. Then,
existing projection-based linear MOR methods, e.g., [1], [3],
can be applied to these linear subsystems recursively. We
refer to the method in [5], [6] as the “standard projection”
approach. Nonetheless, in this method, the dimension of the
resulting ROM grows exponentially with respect to the orders
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of the subsystems. Moreover, to reduce the size of Arnoldi
starting vectors, lower order projection subspaces are used to
approximate the column spaces of the higher order system
matrices. Consequently, approximation errors in lower order
subspaces can easily propagate and accumulate in higher order
subsystems.

To tackle this accuracy issue, a more compact NMOR
scheme, called NORM, is proposed in [7] where each explicit
moment of high-order Volterra transfer functions is matched.
For weakly nonlinear circuits, NORM exhibits an extraordi-
nary improvement in accuracy over the standard projection
approach since lower order approximations are completely
skipped. The resulting ROM tends to be more compact as
the sizes of lower order reduced subsystems will not carry
forward to higher order ones. However, this approach still
needs to build the reduced but dense system matrices whose
dimensions grow exponentially as the order increases. This
limits the practicality of NORM as simulation of small but
dense problems is sometimes even slower than simulating the
large but sparse original system.

To overcome the curse of dimensionality, rather than treating
the exponentially growing system matrices as 2-dimensional
matrices, their nature should be recognized. To this end,
tensors, as high dimensional generalization of matrices, can
be utilized. In recent years, there has been a strong trend
toward the investigation of tensors and their low-rank approxi-
mation [8]–[13], due to their high dimensional nature ideal for
complex problem characterization and their efficient compact
representation ideal for large scale data analyses. Therefore,
it is natural to characterize circuit nonlinearities by tensors
whereby the tensor structure can be exploited to reduce the
original nonlinear system.

In this paper, we propose a tensor-based nonlinear model or-
der reduction (TNMOR) scheme for typical circuits with a few
nonlinear components. The work is a variation of the Volterra
series-based projection methods [5]–[7]. The nonlinear system
is modeled by a truncated Volterra series up to a certain high
order. However, in the proposed method, the higher order
system matrices are modeled by high-order tensors, so that
the high dimensional data can be approximated by the sum of
only a few outer products of vectors via the canonical tensor
decomposition [8], [12], [14]. Next, the projection spaces
are generated by matching the moments of each subsystem,
in terms of those decomposed vectors. Finally, the ROM
is represented in the canonical tensor decomposition form,
where the sparsity of the high dimensional system matrices
is preserved after TNMOR.
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The main contribution of this work is that unlike previ-
ous approaches, simulation of the TNMOR-produced ROM
completely avoids the overhead of solving high-order dense
system matrices. This truly allows the simulation to exploit
the acceleration brought about by NMOR. We remark that the
utilization of TNMOR depends on the existence of low-rank
approximations of these high-order tensors, which are gener-
ally available for circuits with a few nonlinear components.
Moreover, the size of the ROM depends only on the tensor
rank and the order of moments being matched for each system
matrix. In other words, it will not grow exponentially as the
order of subsystems increases, which enables NMOR of highly
nonlinear circuits not amenable before.

The paper is organized as follows. Section II reviews the
backgrounds of Volterra series, existing NMOR approaches,
as well as tensors and tensor decomposition. After that,
Section III presents the tensor-based modeling of nonlinear
systems. The proposed TNMOR is described in Section IV
and simulation of the TNMOR-reduced ROM is discussed
in Section V. Numerical examples are given in Section VI.
Finally, Section VII draws the conclusion.

II. BACKGROUND AND RELATED WORK

A. Volterra subsystems

We consider a nonlinear multi-input multi-output (MIMO)
time-invariant circuit modeled by the differential-algebraic
equation (DAE)

d

dt
[q (x(t))] + f (x(t)) = Bu(t), y(t) = LTx(t), (1)

where x ∈ Rn and u ∈ Rl are the state and input vec-
tors, respectively; q(·) and f(·) are the nonlinear capacitance
and conductance functions extracted from the modified nodal
analysis (MNA); B and L are the input and output matrices,
respectively. The nonlinear system can be expanded under a
perturbation around its equilibrium point x0 by the Taylor
expansion

d

dt
[C1x+ C2(x⊗ x) + C3(x⊗ x⊗ x) + · · · ] +G1x

+G2(x⊗ x) +G3(x⊗ x⊗ x) + · · · = Bu, (2)

where ⊗ denotes the Kronecker product and we will use
the shorthand x 3⃝ = x ⊗ x ⊗ x etc. for the Kronecker
powers throughout the paper. The conductance and capacitance
matrices are given by

Gi =
1

i!

∂if

∂xi

∣∣∣∣
x=x0

∈ Rn×ni

, Ci =
1

i!

∂iq

∂xi

∣∣∣∣
x=x0

∈ Rn×ni

.

(3)

By Volterra theory and variational analysis [15], [16], the
solution x to (2) is approximated with the Volterra series
x(t) = x1(t)+x2(t)+x3(t)+ · · · , where xi(t) is the response

to each of the following Volterra subsystems
d

dt
[C1x1] +G1x1 = Bu, (4a)

d

dt
[C1x2] +G1x2 = −

d

dt

[
C2x1

2⃝
]
−G2x1

2⃝, (4b)

d

dt
[C1x3] +G1x3 = −

d

dt

[
C3x1

3⃝ + C2(xi1 ⊗ xi2 )3
]
−G3x1

3⃝

−G2(xi1 ⊗ xi2 )3, (4c)
d

dt
[C1x4] +G1x4 = −

d

dt

[
C4x1

4⃝ + C3(xi1 ⊗ xi2 ⊗ xi3 )4

+C2(xi1 ⊗ xi2 )4
]
−G4x1

4⃝−G3(xi1⊗ xi2⊗ xi3 )4−G2(xi1 ⊗ xi2 )4,
(4d)

and so on, where (xi1 ⊗ xi2)3 = x1 ⊗ x2 + x2 ⊗ x1,
(xi1 ⊗ xi2 ⊗ xi3)4 = x1⊗x1⊗x2+x1⊗x2⊗x1+x2⊗x1⊗x1

and more generally (xi1 ⊗ · · · ⊗ xin)k =
∑

i1+···+in=k xi1 ⊗
· · · ⊗ xin , i1, . . . , in ∈ Z+, where Z+ denotes the set of
positive integers.

B. Existing projection-based NMOR methods
To reduce the original system (2), the standard projection

approach [5], [6] treats (4) as a series of MIMO linear systems,
with the right hand side of each equation serving as its actual
“input”. Then, the projection-based linear MOR approach,
e.g., [1], is applied.

Suppose up to k1th-order (viz. from 0th to k1th) moments
of x1 in (4a) are matched by a Krylov subspace projector
x1 ≈ Vk1 x̃1, the number of columns of Vk1 is (k1 + 1)l.
After that, (4b) is recast into a concatenated, stacked descriptor
system and Vk1 is used to approximate its input by assuming
x1

2⃝ ≈ (Vk1 x̃1)
2⃝ = Vk1

2⃝x̃1
2⃝,[

C1 −I
0 0

] [
ẋ2

ẋ2e

]
+

[
G1 0
0 I

] [
x2

x2e

]
= −

[
G2

C2

]
x1

2⃝

≈ −
[
G2Vk1

2⃝

C2Vk1

2⃝

]
x̃1

2⃝. (5)

Consequently, the multiple Krylov starting vectors of (5)

become −
[

G2Vk1

2⃝

C2Vk1

2⃝

]
instead of −

[
G2

C2

]
, therefore the

dimensionality of the input is reduced to (k1+1)2l2 from n2.
If up to k2th order moments of x2 are preserved, (4b) can be
reduced by another projection x2 ≈ Vk2 x̃2 to a smaller linear
system with (k2+1)(k1+1)2l2 inputs. Similarly, higher order
projectors Vk3 , Vk4 , etc. are obtained by iteratively reducing
the remaining subsystems in (4).

Suppose we have N linear subsystems in (4) and k =
k1 = k2 = · · · = kN order of moments are matched in
each subsystem, the standard projection approach will result
in a ROM with size O(k2N−1lN ). Thus, in practical circuit
reduction examples, k1, k2, etc. should be relatively small
(otherwise the size of the reduced system may even exceed
n quickly), which could hamper the accuracy of the ROM.

Instead of regarding (4) as a set of linear equations,
NORM [7] derives frequency-domain high-order nonlinear
Volterra transfer functions H2(s1, s2), H3(s1, s2, s3), etc. as-
sociated to the subsystems in (4). These transfer functions
are expanded into multivariate polynomials of s1, s2, . . . such
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Fig. 1. (a) A tensor A ∈ R3×4×2. (b) Illustration of A×1U1×2U2×3U3.

that the coefficients (moments) can be explicitly matched. In
NORM, the size of an N th-order ROM is in O(kN+1lN ) if
k = k1 = · · · = kN

1.
In both aforementioned methods, the final step consists of

replacing the original nonlinear system (2) by a smaller system
via the transformations

x̃ = V Tx, B̃ = V TB, L̃ = V TL,

G̃i = V TGi(V
i⃝), C̃i = V TCi(V

i⃝),
(6)

where i = 1, . . . , N and V = orth[Vk1 , Vk2 , Vk3 , . . .] is the
orthogonal projector. Suppose q is the size of the reduced state,
G̃i and C̃i will be dense matrices with O(qi+1) entries, despite
the sparsity of Gi and Ci. To store these dense matrices, the
memory space required grows exponentially.

C. Tensors and tensor decomposition
Some tensor basics are reviewed here, while more tensor

properties and decompositions can be found in [9].
1) Tensors: A dth-order tensor is a d-way array defined by2

A ∈ Rn1×n2×···×nd . (7)

For example, Fig. 1(a) depicts a 3rd-order 3 × 4 × 2 tensor.
In particular, scalars, vectors and matrices can be regarded as
0th-order, 1st-order and 2nd-order tensors, respectively.

Matricization is a process that unfolds or flattens a tensor
into a 2nd-order matrix. The k-mode matricization is aligning
each kth-direction “vector fiber” to be the columns of the
matrix. For example a 3rd-order n1×n2×n3 tensor A can be
1-mode matricized into an n1×n2n3 matrix A(1) as illustrated
in Fig. 2.

2) Tensor-matrix product: The k-mode product of a tensor
A ∈ Rn1×···×nk×···×nd with a matrix U ∈ Rpk×nk results in
a new tensor A ×k U ∈ Rn1×···×nk−1×pk×nk+1×···×nd given
by

(A×k U)j1···jk−1mkjk+1···jd =

nk∑
jk=1

Aj1···jk···jdUmkjk . (8)

A conceptual explanation of k-mode product is to multiply
each kth-direction “vector fiber” in A by the matrix U . An

1The complexity refers to the single-point expansion algorithm of NORM.
The multi-point version of NORM would have a lower complexity.

2We denote tensors by calligraphic letters, e.g., A and G.

n2

n3

n2 n2 n2

A
(1)

n3n2

n1 n1

Fig. 2. 1-mode matricization of a 3rd-order tensor.

illustration of the multiplication to a 3rd-order tensor is shown
in Fig. 1(b).

The “Khatri-Rao product” is the “matching columnwise”
Kronecker product. The Khatri-Rao product of matrices A =
[a1, a2, . . . , ak] ∈ Rn1×k and B = [b1, b2, . . . , bk] ∈ Rn2×k is
defined by A⊙B = [a1⊗b1, a2⊗b2, . . . , ak⊗bk] ∈ Rn1n2×k.
If A and B are column vectors, A ⊙ B = A ⊗ B. And if A
and B are row vectors, A⊙B becomes the Hadamard product
(viz. element-by-element product) of the two rows.

3) Rank-1 tensors and canonical decomposition: A rank-1
tensor of dimension d can be written as the outer product of
d vectors

A = a(1) ◦ a(2) ◦ · · · ◦ a(d), a(k) ∈ Rnk , (9)

where ◦ denotes the outer product. Its element Ai1i2···id =

a
(1)
i1

a
(2)
i2

· · · a(d)id
, where a

(k)
ik

is the ikth entry of vector a(k).
The CANDECOMP/PARAFAC (CP) decomposition3 [8],

[9], [14], [17] approximates a tensor A by a finite sum of
rank-1 tensors, which can be written by

A ≈
R∑

r=1

a(1)r ◦ a(2)r ◦ · · · ◦ a(d)r , a(k)r ∈ Rnk , (10)

where R ∈ Z+. Concisely, using the factor matrices
A(k) , [a

(k)
1 , a

(k)
2 , . . . , a

(k)
R ] ∈ Rnk×R, the right-hand side

of the CP (10) can be expressed by the notation A ≈
[[A(1), . . . ,A(d)]]. Moreover, it is worth mentioning that the
k-mode matricization of A could be reconstructed by these
factor matrices

A(k) ≈A(k)(A(d)⊙ · · · ⊙A(k+1)⊙A(k−1)⊙ · · · ⊙A(1))T .
(11)

The rank of the tensor A, rank(A), is the minimum value of
R in the exact decomposition (10). A rank-R approximation
of a 3rd-order tensor is shown in Fig. 3.

Several methods have been developed to compute the
CP decomposition, for example, the alternating least squares
(ALS) [8], [17] (as well as many of its derivatives) or the
optimization methods such as CPOPT [11]. Most of them solve
the optimization problem of minimizing the Frobenius norm

3CANDECOMP (canonical decomposition) by Carroll and Chang [8] and
PARAFAC (parallel factors) by Harshman [17]. They are found independently
in history, but the underlying algorithms are the same.
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Fig. 3. A CP decomposition of a 3rd-order tensor.

of the difference between the original tensor and its rank-R
approximation

min f(A(1), . . . ,A(d)) , 1

2

∥∥∥A− [[A(1), . . . ,A(d)]]
∥∥∥2
F
.

(12)

The ALS algorithm iteratively optimizes one factor matrix A(i)

at a time, by holding all other factors fixed and solving the
linear least square problem

min
A(i)

f(A(1), . . . ,A(d)) (13)

for the updated A(i). Alternatively, CPOPT calculates the
gradient of the objective function f in (12) and uses the generic
nonlinear conjugate gradient method to optimize (12). For both
ALS and CPOPT, the rank R should be prescribed and is fixed
during the computation. It is reported in [11] that the computa-
tional complexities for both ALS and CPOPT to approximate
an N th-order tensor A ∈ Rn1×···×nN are O(NQR) per
iteration, where Q =

∏N
i=1 ni. It is also mentioned in [11] that

ALS is several times faster than CPOPT in general. However
CPOPT shows an “essentially perfect” accuracy compared with
ALS. A review of different CP methods also can be found
in [9].

III. TENSOR-FORM MODELING OF NONLINEAR SYSTEMS

To begin with, we give an equivalent tensor-based modeling
of the nonlinear system (2). Recall the definitions of Gi and
Ci in (3), it is readily found that these coefficient matrices are
respectively 1-mode matricizations of (i + 1)th-order tensors
Gi and Ci,

Gi, Ci ∈ R

i+1︷ ︸︸ ︷
n× · · · × n, (14)

where the elements (Gi)j0j1···ji and (Ci)j0j1···ji are coefficients
of the Πi

k=1xjk term in Gi and Ci, respectively. For instance,
G2 is an n × n2 matrix while G2 is a 3rd-order n × n × n
tensor, i.e., G2 is the 1-mode matricization of G2.

According to Proposition 3.7 in [13], the Kronecker matrix
products in (2) can be represented by the tensor mode multi-
plication via Gi(x

i⃝) = Gi×2x
T ×3x

T · · ·×ix
T ×i+1x

T and
Ci(x

i⃝) = Ci ×2 x
T ×3 x

T · · · ×i x
T ×i+1 x

T . Therefore, (2)
is equivalent to

d

dt

[
C1×2 xT + C2×2 xT ×3 xT + C3×2 xT ×3 xT ×4 xT + · · ·

]
+G1×2 xT + G2×2 xT ×3 xT + G3×2 xT ×3 xT ×4 xT + · · · = Bu.

(15)

The key to the tensor-form modeling is to pre-decompose
these high dimensional tensors via CP. In practical circuit
systems, in spite of the growing dimensionality, high-order
nonlinear coefficients Gi and Ci (Gi and Ci) are almost always
sparse. Therefore it is advantageous to make a rank-R CP
approximation of Gi or Ci for a relatively small R. In other
words, we can use a few rank-1 tensors to express Gi and Ci
by

Gi ≈ [[G
(1)
i , . . . ,G

(i+1)
i ]] =

rg,i∑
r=1

g
(1)
i,r ◦ · · · ◦ g(i+1)

i,r ,

Ci ≈ [[C
(1)
i , . . . ,C

(i+1)
i ]] =

rc,i∑
r=1

c
(1)
i,r ◦ · · · ◦ c(i+1)

i,r ,

(16)

where i = 2, . . . , N , rg,i and rc,i are the tensor ranks of Gi and
Ci, respectively, g(k)i,r , c

(k)
i,r ∈ Rn, G(k)

i = [g
(k)
i,1 , . . . , g

(k)
i,rg,i

] ∈
Rn×rg,i and C

(k)
i = [c

(k)
i,1 , . . . , c

(k)
i,rc,i

] ∈ Rn×rc,i , for k =
1, . . . , i + 1. It should be noticed that different permutations
of indices can result in the same polynomial term. For ex-
ample, term x1x2 can be represented by any combination of
αx1x2+(1−α)x2x1. Therefore, the high-order tensors are not
unique for a specific nonlinear system and the consequent low-
rank approximations (16) could be very different. Nonetheless,
we use the tensors with minimum nonzero entries in our
implementation, as they tend to be sparser such that lower
rank approximations are usually available.

Using the CP structure (16), the original nonlinear sys-
tem (15) can be approximated by absorbing tensor products
of x into the factor matrices
d

dt

[
C1 ×2 xT + [[C

(1)
2 , xTC

(2)
2 , xTC

(3)
2 ]]

+[[C
(1)
3 , xTC

(2)
3 , xTC

(3)
3 , xTC

(4)
3 ]] + · · ·

]
+ G1 ×2 xT

+ [[G
(1)
2 , xTG

(2)
2 , xTG

(3)
2 ]]+[[G

(1)
3 , xTG

(2)
3 , xTG

(3)
3 , xTG

(4)
3 ]]+ · · ·

= Bu. (17)

Applying (11), the 1-mode matricization of (17) is simply
d

dt

[
C1x+C

(1)
2

(
xTC

(3)
2 ⊙ xTC

(2)
2

)T
+C

(1)
3

(
xTC

(4)
3 ⊙ xTC

(3)
3

⊙xTC
(2)
3

)T
+ · · ·

]
+G1x+G

(1)
2

(
xTG

(3)
2 ⊙ xTG

(2)
2

)T

+G
(1)
3

(
xTG

(4)
3 ⊙ xTG

(3)
3 ⊙ xTG

(2)
3

)T
+ · · · = Bu, (18)

and its corresponding 1-mode matricized Volterra subsystems
are given by
d

dt
[C1x1] +G1x1 = Bu, (19a)

d

dt
[C1x2] +G1x2 = −

d

dt

[
C

(1)
2

(
xT
1 C

(3)
2 ⊙ xT

1 C
(2)
2

)T
]

−G
(1)
2

(
xT
1 G

(3)
2 ⊙ xT

1 G
(2)
2

)T
, (19b)

d

dt
[C1x3] +G1x3 = −

d

dt

[
C

(1)
3

(
xT
1 C

(4)
3 ⊙ xT

1 C
(3)
3 ⊙ xT

1 C
(2)
3

)T

+C
(1)
2

(
xT
i1
C

(3)
2 ⊙ xT

i2
C

(2)
2

)T
3

]
−G

(1)
3

(
xT
1 G

(4)
3 ⊙ xT

1 G
(3)
3 ⊙ xT

1 G
(2)
3

)T

−G
(1)
2

(
xT
i1
G

(3)
2 ⊙ xT

i2
G

(2)
2

)T
3
, (19c)

and so on.
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IV. TNMOR
Without loss of generality, we start from (18) and (19) to

derive TNMOR. It can be observed that (19) is a series of
linear systems where x1 is solved by the first equation with
input u, x2 is the solution to the second linear system with the
input dependent on x1, and similarly x3 is solved in the third
system with its input dependent on x1 and x2.

Similar to [1], [5]–[7], the frequency-domain transfer func-
tion of (19a) is given by

H1(s) = (sG−1
1 C1 + I)−1G−1

1 B , (−sA1 + I)−1B1. (20)

To match up to k1th-order moments of (20), its projec-
tion space Vk1 is the Krylov subspace of Kk1+1(A1, B1) if
H1(s) is expanded around the origin, where Km(A, p) =
span{p,Ap, . . . , Am−1p}. The Krylov subspace can be effi-
ciently calculated by the block Arnoldi iteration [1].

The 2nd-order subsystem (19b) can be recast into[
C1 −I
0 0

] [
ẋ2

ẋ2e

]
+

[
G1 0
0 I

] [
x2

x2e

]
= −

[
G

(1)
2 0

0 C
(1)
2

][(
xT
1 G

(3)
2 ⊙ xT

1 G
(2)
2

)T(
xT
1 C

(3)
2 ⊙ xT

1 C
(2)
2

)T
]
, (21)

Consequently, (21) could be treated as a linear system with
rg,2 + rc,2 inputs and its transfer function reads

H2(s) =

(
s

[
G−1

1 C1 −G−1
1

0 0

]
+ I

)−1
[
−G−1

1 G
(1)
2 0

0 −C
(1)
2

]
, (−sA2 + I)−1B2. (22)

Suppose k2th-order moments of H2(s) are matched, its Krylov
subspace is obtained by Kk2+1(A2, B2). Thus, we have Vk2

to be the first n rows of Kk2+1(A2, B2) (noticing H2(s) is a
2n× 1 vector).

For the 3rd-order subsystem (19c), similarly, it could be
represented by another linear system[

C1 −I
0 0

] [
ẋ3

ẋ3e

]
+

[
G1 0
0 I

] [
x3

x3e

]

=−
[
G

(1)
3 0 G

(1)
2 0

0 C
(1)
3 0 C

(1)
2

]
(
xT
1 G

(4)
3 ⊙ xT

1 G
(3)
3 ⊙ xT

1 G
(2)
3

)T(
xT
1 C

(4)
3 ⊙ xT

1 C
(3)
3 ⊙ xT

1 C
(2)
3

)T(
xT
i1
G

(3)
2 ⊙ xT

i2
G

(2)
2

)T
3(

xT
i1
C

(3)
2 ⊙ xT

i2
C

(2)
2

)T
3


(23)

with rg,3 + rc,3 + rg,2 + rc,2 inputs. Moreover, the 3rd-order
transfer function is given by

H3(s) =

(
s

[
G−1

1 C1 −G−1
1

0 0

]
+ I

)−1

·

[
−G−1

1 G
(1)
3 0 −G−1

1 G
(1)
2 0

0 −C
(1)
3 0 −C

(1)
2

]
,(−sA2 + I)−1 [ B3 B2 ] . (24)

Consequently, the Krylov subspace of the 3rd-order subsys-
tem should be Kk3+1(A2, [B3 B2]) = Kk3+1(A2, B3) ∪

Kk3+1(A2, B2), if the number of moments being matched
is k3. However, it is readily seen that if k3 ≤ k2, we have
Kk3+1(A2, B2) ⊆ Kk2+1(A2, B2). Since Kk2+1(A2, B2) has
already been obtained from H2(s), Kk3+1(A2, B2) does not
need to be recomputed. Therefore, only Kk3+1(A2, B3) should
be counted at this stage and we denote its first n rows to be
Vk3 .

Higher order linear transfer functions can be obtained in a
similar way. The ith-order projector Vki is the first n rows of

Kki+1(A2, Bi), where Bi =

[
−G−1

1 G
(1)
i 0

0 −C
(1)
i

]
.

The reducing projector for the nonlinear system is
the orthogonal basis of all Vkis, denoted by V =
orth([Vk1 , Vk2 , . . .]). The size of an N th-order ROM is
in O(k1l + k2(rg,2 + rc,2) + k3(rg,3 + rc,3) + · · · +
kN (rg,N + rc,N )) = O(Nkr), where k = max{k1, . . . , kN}
and r = max{l, rg,2 + rc,2, . . . , rg,N + rc,N}. Comparing
with O(k2N−1lN ) in the standard projection approach and
O(kN+1lN ) in NORM, a slimmer ROM can be achieved if
low-rank CP of the tensors are available.

Finally, the tensor-based ROM is given by the following
projection

x̃ = V Tx, B̃ = V TB, L̃ = V TL,

G̃i = [[G̃
(1)
i , . . . , G̃

(i+1)
i ]] = [[V TG

(1)
i , . . . , V TG

(i+1)
i ]],

C̃i = [[C̃
(1)
i , . . . , C̃

(i+1)
i ]] = [[V TC

(1)
i , . . . , V TC

(i+1)
i ]],

G̃1 = V TG1V, C̃1 = V TC1V, i = 2, . . . , N,

(25)

which looks similar to (6) except for the tensor CP structure.
By utilizing this structure, only the G̃

(k)
i and C̃

(k)
i matrices

need to be stored, and simulation of the ROM can be sig-
nificantly speeded up as will be seen in the next section,
as long as low-rank CP approximations of Gi and Ci are
available. Algorithm 1 summarizes the TNMOR assuming a
DC expansion point.

The computational complexity of TNMOR is dominated by
the CP decompositions of Ci and Gi. Any CP method can be
used to extract the rank-1 factors. We use CPOPT to compute
the CP in TNMOR. Although CPOPT is not as remarkably fast
as ALS, we find in practice that CPOPT can always achieve
a better accuracy under the same rank. The computational
cost for CPOPT to optimize a rank-rg,N approximation of
GN is in O(NnN+1rg,N ) per iteration. By contrast, the costs
for NORM and the standard projection method to calculate
the Krylov starting vectors for an N th-order subsystem are
in O(kNn2N ) and O(k3N

2

lN
2

nN ), respectively. It should be
noticed that the CP decompositions only need to be done once
and the resulting reduced CP structure can be used in different
on-going simulations.

Another key issue is how to heuristically prescribe/estimate
the rank for each tensor. It is readily found that accurate low-
rank CP approximations of the high dimensional tensors is
critical to the proposed method. Although it will be shown
in Section V that the size of the ROM and the time com-
plexity for its simulation are proportional to the tensor ranks
rGs and rCs, the efficiency of the proposed model will be
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Algorithm 1 TNMOR Algorithm
Input: N,Gi, Ci, B, L, ki, kN ≤ kN−1 ≤ · · · ≤ k1
Output: G1, C1, G̃i, C̃i, B̃, L̃, i = 2, . . . , N

1: for i = 2 to N do
2: G̃i = Gi; C̃i = Ci;
3: [[G

(1)
i , . . . ,G

(i+1)
i ]] = CP(G̃i);

4: [[C
(1)
i , . . . ,G

(i+1)
i ]] = CP(C̃i);

5: end for
6: A1 = −G−1

1 C1; B1 = G−1
1 B;

7: Vk1 = Kk1+1(A1, B1);
8: for i = 2 to N do

9: A2 =

[
G−1

1 C1 −G−1
1

0 0

]
; Bi =

[
−G−1

1 G
(1)
i 0

0 −C
(1)
i

]
;

10: Vki = Kki+1(A2, Bi);
11: end for
12: V = orth([Vk1 , Vk2 , . . . , VkN

]);
13: G̃1 = V TG1V ; C̃1 = V TC1V ; B̃ = V TB; L̃ = V TL;
14: for i = 2 to N do
15: G̃i = [[V TG

(1)
i , . . . , V TG

(i+1)
i ]];

16: C̃i = [[V TC
(1)
i , . . . , V TC

(i+1)
i ]];

17: end for

compromised if large ranks are required to approximate the
tensors. Unfortunately, unlike matrices, there are no feasible
algorithms to determine the rank of a specific tensor; actually it
is an NP-hard problem [18]. Nonetheless, a loose upper bound
on the maximum rank of a sparse tensor is the number of its
nonzero entries. Furthermore, in practical circuit examples, we
find that m

2 to m
3 would be a possible rank to approximate a

sparse tensor with m nonzero elements. As shown by examples
in Section VI, this empirical rank works well for systems
with fewer than O(n) nonlinear components. Meanwhile, there
is a significant amount of analog and RF circuits with a
few (usually in O(1)) transistors, for instance, amplifiers and
mixers, which would potentially admit low-rank tensor approx-
imations. For systems with more than O(n) nonlinearities,
such as ring oscillators or most discretized nonlinear partial
differential equations, however, no reduction can be achieved
by TNMOR if any of the tensor ranks exceeds n. It should be
remarked that such systems may still be reduced by NORM,
if relatively low order of moments is matched.

V. ROM SIMULATION

Here we show that whenever low-rank tensor approxima-
tions of Gi and Ci exist, TNMOR can help to accelerate
simulation and avoids the exponential growth of the memory
requirement, versus the reduced but dense models generated
by the standard projection method or NORM. We describe
the time complexity by means of the two key processes in
circuit simulation, namely, function evaluation and calculation
of the Jacobian matrices. For the ease of illustration, we
assume the conductance matrix C1 = I and all higher order
Ci = 0, i = 2, . . . , N . Extension to general cases is
straightforward.

A. Function evaluation
Rewrite (2) for the ROM

f(x̃) , ˙̃x = −G̃1x̃− G̃2x̃
2⃝ − G̃3x̃

3⃝ − · · ·+ B̃u, (26)

where f(x̃) is the function to be evaluated in the simulation.
Using the ROM in (25), the equivalent 1-mode matricization
of (26) is

f(x̃) = −G̃1x̃− G̃
(1)
2

(
x̃T G̃

(3)
2 ⊙ x̃T G̃

(2)
2

)T

− G̃
(1)
3

(
x̃T G̃

(4)
3 ⊙ x̃T G̃

(3)
3 ⊙ x̃T G̃

(2)
3

)T

− · · ·+ B̃u. (27)

It should be noticed that all x̃T G̃
(k)
i and x̃T C̃

(k)
i are row

vectors, therefore ⊙ corresponds to the element-by-element
multiplication between matrices. If up to the N th-order non-
linearity is included and the size of the ROM is q, the time
complexity for evaluating (27) is in O(N2qrg) where rg =
max{rg,2, . . . , rg,N}, while it is in O(qN+2) for the model (6)
used in the standard projection approach and NORM.

B. Jacobian matrix
Consider the Jacobian matrix of f(x̃) which is often used

in time-domain simulation

Jf (x̃) , −G̃1 − G̃2(x̃⊗ I + I ⊗ x̃)

− G̃3(x̃⊗ x̃⊗ I + x̃⊗ I ⊗ x̃+ I ⊗ x̃⊗ x̃)− · · · . (28)

Its equivalent 1-mode matricization is given by

Jf (x̃) = −G̃1 − G̃
(1)
2

(
x̃T G̃

(3)
2 ⊙ G̃

(2)
2 + G̃

(3)
2 ⊙ x̃T G̃

(2)
2

)T

− G̃
(1)
3

(
x̃T G̃

(4)
3 ⊙ x̃T G̃

(3)
3 ⊙ G̃

(2)
3 + x̃T G̃

(4)
3 ⊙ G̃

(3)
3 ⊙ x̃T G̃

(2)
3

+ G̃
(4)
3 ⊙ x̃T G̃

(3)
3 ⊙ x̃T G̃

(2)
3

)T
− · · · . (29)

The complexity for the standard projection method or NORM
to calculate (28) is in O(NqN+2). For the tensor formula-
tion, the complexity for evaluating (29) is further reduced to
O(Nq(N + q)rg).

C. Space complexity
In our proposed method, the amount of memory space for

the ROM is determined by the factor matrices in (25), which
should be in O(Nqr), where r = max{rg,2+ rc,2, . . . , rg,N +
rc,N}. For the existing standard projection approach and
NORM, the storage consumption is dominated by the matrices
G̃N and C̃N whose numbers of elements are in O(qN+1).

VI. NUMERICAL EXAMPLES

In this section, TNMOR is demonstrated and compared with
the standard projection approach and NORM. All experiments
are implemented in MATLAB on a desktop with an Intel i5
2500@3.3GHz CPU and 16GB RAM. To fairly present the
results, all time-domain transient analyses are solved by the
trapezoid discretization with fixed step sizes. In the simulations
of the original system, the ROMs of the standard projection
and NORM approaches, (26) and (28) are used to evaluate the
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Vrf+ Vrf-

Vif+ Vif-

Fig. 4. A double-balanced mixer.

TABLE I. ROM SIZES AND CPU TIMES OF MOR FOR THE MIXER
(SMALL SIGNAL)

Method k1 k2 k3 CPU time size of ROM
standard projection [5], [6] 1 1 — 0.09s 52

NORM [7] 2 2 — 0.56s 30
TNMOR 2 2 0 4.5s 39

TABLE II. CPU TIMES AND ERRORS OF TRANSIENT SIMULATIONS
FOR THE MIXER (SMALL SIGNAL)

Transient full model standard NORM [7] TNMORprojection [5], [6]
size 93 52 30 39

CPU time 39s 2200s 270s 17s
speedup — — — 3.2x

error — 3.98% 3.24% 1.24%

TABLE III. CPU TIMES AND ERRORS OF PERIODIC STEADY-STATE
SIMULATIONS FOR THE MIXER (SMALL SIGNAL)

Periodic steady full model standard NORM [7] TNMORstate projection [5], [6]
size 93 52 30 39

CPU time 67s 4900s 410s 21s
speedup — — — 3.2x

error — 0.93% 0.71% 0.38%

functions and Jacobian matrices, while (27) and (29) are used
for the tensor-based model. The CP in TNMOR is computed
by the CPOPT algorithm provided in the MATLAB Tensor
Toolbox [11], [12], [19].

A. A double-balanced mixer
First, we study a double-balanced mixer circuit in

Fig. 4 [20], where Vrf(= Vrf+ − Vrf-) and Vlo(= Vlo+ − Vlo-)
are the RF and local oscillator (LO) inputs, respectively. We
assume Vrf and Vlo are both sinusoidal and their frequencies

are 2GHz and 200MHz, respectively. Vif+ and Vif- are the
intermediate-frequency (IF) outputs. The size n of the original
system is 93. Firstly, we assume a relatively small Vlo swing so
that the nonlinear system can be approximated by its 3rd-order
Taylor expansion

d

dt
[C1x] +G1x+G2x

2⃝ +G3x
3⃝ = Bu, (30)

where the numbers of nonzero elements in G2 and G3 are 16
and 30, respectively.

Then, the standard projection approach, NORM and TN-
MOR are applied to (30). It should be noticed that all methods
are expanded at the frequencies 2GHz and 200MHz. The size
of the ROM, the order of the moments ki matched in each
subsystem, and the CPU times for each MOR method are listed
in Table I. It can be noticed that due to the curse of dimension-
ality, the standard projection approach generates a larger (and
denser) ROM but fewer orders of moments are persevered.
TNMOR takes 1.3s to optimize a best rank-6 (rg,2 = 6)
approximation of G2 with the error ∥G̃2−G2∥F

∥G2∥F
= 4.2 × 10−4,

and 3.1s for a best rank-9 (rg,3 = 9) approximation of G3 with
an error 1.2× 10−4.

A transient simulation from 0 to T = 25ns with a
∆t = 5ps step size is performed on each ROM. The run-
times and overall errors of different methods are summa-
rized in Table II. The overall error is defined as the relative
error between the vector of Vif+ at subsequent timesteps
V = [Vif+(0), Vif+(∆t), . . . , Vif+(T )]

T of the ROM and the
corresponding vector computed with the full model, i.e.,
∥V−Vfull∥2

∥Vfull∥2
. The first 7.5ns of the transient waveforms of Vif+

and their relative errors are plotted in Figs. 5(a) and 5(b),
respectively.

Next, the periodic steady-state analyses of different models
are achieved by a shooting Newton method-based periodic
steady-state simulator. The CPU times and the overall errors
of the frequency responses between 0 to 4GHz are listed in
Table III. The relative errors of the frequency responses are
plotted in Fig. 5(c).

It is shown in Tables II and III that although TNMOR
generates a larger ROM than NORM (39 versus 30), its
transient and periodic steady-state analyses are faster due to
the efficient algorithm of function and Jacobian evaluations.
In contrast, simulations of the dense ROMs generated by
NORM and the standard projection approach are much slower
than the original large but sparse system, indicating that these
methods are impractical for strongly nonlinear systems (3rd-
order nonlinearity in this example). This is mainly because
though both (26) and (28) have been used in the simulations,
the Kronecker powers in (26) and (28) of the original system
never have to be explicitly computed due to the sparsity of the
original Gi and Ci matrices. Moreover, comparing to NORM,
the proposed method provides a competitive accuracy as can
be seen in Fig. 5.

Practically, mixers are often modeled by periodic time-
varying systems due to the existence of large Vlo signals [5]–
[7], [21]. Fortunately, TNMOR can be easily extended to
periodic time-varying systems as well. Following [5]–[7],
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Fig. 5. (a) Transient waveforms of the full model and ROMs. (b) Relative
errors of the transient simulations. (c) Relative errors of the periodic steady-
state simulations. (SP is the acronym for “standard projection” [5], [6].)

suppose all higher order Ci = 0, all the system matrices in (19)
become Tlo-periodic where Tlo is the period of Vlo. Next, a
uniform backward-Euler discretization over sampling points
[t1, t2, . . . , tM ] where ti = i

M Tlo is applied on each linear
time-varying system in (19), resulting a set of LTV systems
with transfer functions Ĥi(s)

[Ĵ1 + sĈ1]Ĥi(s) = B̂i, (31)

where

Ĥi(s) =
[
HT

i (t1, s) H
T
i (t2, s) . . . HT

i (tM , s)
]T

,

B̂1 =
[
BT (t1) B

T (t2) . . . BT (tM )
]T

,

Ĝ1 =


G1(t1)

G1(t2)
. . .

G1(tM )

 , (32)
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Fig. 6. IM3 of the full model and ROMs. (SP is the acronym for “standard
projection” [5], [6].)

TABLE IV. ROM SIZES AND CPU TIMES OF MOR FOR THE MIXER
(LARGE SIGNAL)

Method k1 k2 k3 CPU time size of ROM
standard projection [5], [6] 1 1 — 0.53s 46

NORM-mp [7] 2 1 0 1.2s 28
TNMOR 2 2 0 28s 78

TABLE V. CPU TIMES OF IM3 TESTS FOR THE MIXER
(LARGE SIGNAL)

Transient full model standard NORM [7] TNMORprojection [5], [6]
size 930 46 28 78

CPU time 146 ± 8s 120 ± 12s 22 ± 2s 15 ± 2s
speedup — 1.2x 6.6x 9.7x

Ĉ1 =


C1(t1)

C1(t2)
. . .

C1(tM )

 ,

∆ =
M

Tlo


I −I
−I I

. . . . . .
−I I

 ,

Ĵ1 = Ĝ1 +∆Ĉ1 (33)

and

B̂i = −Ĝ
(1)
i =−


G

(1)
i (t1)

G
(1)
i (t2)

. . .
G

(1)
i (tM )

 ,

i ≥ 2. (34)

We omit the detailed derivation as it is straightforward. Simi-
larly, the projector is obtained by collocating the moments of
each order subsystem in (31). It should be noticed that the
factor matrices at each sampling point can be computed indi-
vidually via CP decompositions. Therefore the computational
complexity is proportional to M .

Next, we reformulate the mixer by a 3rd-order nonlinear
time-varying system under a large signal Vlo. The 930-variable
system is expanded around M = 10 operating points. This
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TABLE VI. ROM SIZES AND CPU TIMES OF MOR FOR THE
BIOCHEMICAL SYSTEM

Method k1 k2 k3 CPU time size of ROM
standard projection [5], [6] 1 0 — 0.02s 39

NORM [7] 2 1 0 1.2s 45
TNMOR 2 2 0 11s 39

time, TNMOR, multi-point NORM (NORM-mp) and the stan-
dard projection method are expanded at 2GHz. The sizes of
ROMs and CPU times are listed in Table IV. The CPU time
of TNMOR is mainly spent on sequential CP decompositions,
which could be further reduced if multi-core parallelization is
enabled.

These ROMs are simulated for 3rd-order intermodulation
tests. The LO and RF frequencies are fixed while we sweep
the amplitude of the sinusoidal RF input from 1mV to 10mV.
Fig. 6 shows the 3rd-order intermodulation product (IM3)
results of the original system and ROMs. The CPU times are
summarized in Table V, where they are written as a±b where
a is the average value and b is the sample standard deviation.
From Fig. 6, good agreement can be observed for the ROMs
generated by NORM-mp and TNMOR. NORM-mp achieves a
smaller size because it only preserves the values of nonlinear
transfer functions at specific points, which is particularly useful
for matching high-order distortions. Meanwhile, TNMOR still
demonstrates comparable accuracy and better efficiency due to
the benefit of the tensor framework.

B. A biochemical reaction system
The second example is a sparse biochemical reaction system

model adapted from [22]. The system is generated by a random
2nd-order polynomial system with a 1

1+x function

d

dt
x+G1x+G2x

2⃝ + e1
10

1 + x1
= Bu, (35)

where G1 ∈ R200×200, G2 ∈ R200×2002 , B ∈ R200×3 and
e1 ∈ R200×1 = [1, 0, . . . , 0]T . It should be noticed that both
G1 and B are dense random matrices and the eigenvalues of
G1 are randomly distributed on (0, 3] so that the nonlinear
system is stable at the origin. G2 is a sparse random matrix
with 48 nonzero entries. 1

1+x1
is expended by the Taylor series

1
1+x1

≈ 1−x1+x2
1−x3

1 and we control the inputs to guarantee
|x| < 1 during the simulations.

The three NMOR approaches are applied on the 3rd-order
polynomial system to generate the ROMs. We match the
moments at the origin in all approaches. The sizes of the
ROMs, the orders of the moments in each subsystem and the
CPU times for the MOR have been listed in Table VI. TNMOR
optimizes a rank-20 (rg,2 = 20) approximation of G2 in 11s
with a relative error 0.03. The unique nonzero element in G3

is −10x3
1, therefore its CP can be obtained immediately with

the rank rg,3 = 1.
We feed these ROMs by 10 sets of sinusoidal inputs

for transient simulations with the same time period and the
same step size. These sinusoidal inputs are under different
frequencies. The CPU times and errors have been summarized

TABLE VII. CPU TIMES AND ERRORS OF TRANSIENT SIMULATIONS
FOR THE BIOCHEMICAL SYSTEM

Transient full model standard NORM [7] TNMORprojection [5], [6]
size 200 39 45 39

CPU time 280 ± 51s 144 ± 22s 247 ± 69s 3.1 ± 0.9s
speedup — 1.9x 1.1x 90x

error (%) — 18 ± 12 3.2 ± 1.0 3.1 ± 1.2

u1 u2

(a)

C(Vi,j) C(Vi+1,j)
rg

R
... ...

... ...

... ...

R

rg

LL
Vi,j Vi+1,j

ii+1,j
(x)ii,j

(x)
ii+2,j

(x)

ii,j
(y)

ii+1,j
(y)

ii,j+1
(y) ii+1,j+1

(y)

(b)

Fig. 7. (a) A nonlinear transmission line. (b) Model of the nonlinear
transmission line.

in Table VII. The CPU times further confirm that for sparse
systems, TNMOR can utilize the sparsity while the structure
cannot be kept in NORM or the standard projection approach.

C. A 2-D pulse-narrowing transmission line
It is reported in [23] that linear lossy transmission line would

cause the wave dispersion effect of the input pulse which could
be avoided if certain nonlinear capacitors are introduced. We
consider a nonlinear pulse-narrowing transmission line shown
in Fig. 7(a) [23], [24]. There are two pulse inputs injected at the
two corners of the transmission line. We are interested in the
voltage at the center of the shaded edge. The length and width
of the transmission line are 20cm and 10cm, respectively. It
is uniformly partitioned into a 20 × 10 grid, with each node
shown by the lumped circuit in Fig. 7(b). The nodes at the
shaded edge of the transmission line are characterized by the
nonlinear state equation C0V̇i,j = (i

(x)
i,j +i

(y)
i,j −i

(x)
i+1,j−i

(y)
i,j+1−

Vi,j/rg)(1 +
∑∞

N=1(bVi,j)
N ) where C0 = 1µF, rg = 10KΩ

and b = −0.9, while the nonlinear coefficient b = 0 elsewhere.
In Fig. 7(b), L = 1µH and R = 0.1Ω.

Using MNA, we end up with a system with 570 state
variables. First, we approximate the original system by the 3rd-
order Taylor expansion, i.e., up to G3. There are 78 nonzero
elements in each order Gi, i = 1, 2, . . . In this case, all the
moments are matched at the origin as well. Again, the sizes
of the ROMs, the orders of the moments in each subsystem
and the CPU times for the MOR are listed in Table VIII.
Due to the exponential growth of the size of the projector, to
get a ROM fewer than 60 states, only the 0th-order moments
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TABLE VIII. SIZES OF ROM AND CPU TIMES OF MOR FOR THE
TRANSMISSION LINE

Method k1 k2 k3 CPU time size of ROM
standard projection [5], [6] 2 0 — 2.6s 40

NORM [7] 4 2 2 139s 42
TNMOR 4 2 2 7.6s 46

TABLE IX. CPU TIMES AND ERRORS OF TRANSIENT SIMULATIONS
FOR THE TRANSMISSION LINE

Transient full model standard NORM [7] TNMORprojection [5], [6]
size 570 40 42 46

CPU time 58s 440s 149s 8.5s
speedup — — — 6.8x

error — 45.3% 0.15% 0.012%

(DC term) of the 2nd-order subsystem and none of the 3rd-
order could be matched when using the standard projection
approach. TNMOR takes 2.8s and 3.5s to optimize the best
rank-16 (rg,2 = rg,3 = 16) matches of G2 and G3, respectively.
In this case, the CP decompositions are exact and the errors
of CP are 0.

Then, a transient analysis with the pulse inputs shown in
Fig. 8(a) is tested on each ROM. The step size ∆t is chosen
to be 1ms. The CPU times for ROMs and the overall errors
are summarized in Table IX with the resulting waveforms and
the relative errors plotted in Figs. 8(b) and 8(c), respectively.
It can be seen that to achieve a good accuracy (error < 0.1%),
the standard projection approach and NORM may result in a
ROM which is even slower than the original one. On the other
hand, TNMOR can reduce the order while still preserving the
sparsity.

Finally, we raise the order of the Taylor expansion to C5
and G5 to match the highly nonlinear behavior. The standard
projection approach and NORM would result in a dense matrix
G̃5 with q6 elements where q is the size of the reduced
system. The ROM is usually impractical to use if an acceptable
accuracy is desired. MATLAB failed to construct the matrices
G̃4 and G̃5 even if the projector up to the 3rd-order subsystem is
used while the moments of the 4th- and 5th-order subsystems
are ignored. Meanwhile, it takes 16s (rg,4 = rg,5 = 16) in total
for TNMOR to obtain a 52-state ROM and another 21s for the
transient simulation of the ROM. The transient waveforms of
the 5th-order full model and the ROM are shown in Fig. 8(d),
contrasting with the one of the 3rd-order full model.

VII. CONCLUSION

In this paper, a tensor-based nonlinear model order reduction
scheme called TNMOR is proposed. The high-order nonlin-
earities in the system are characterized by high dimensional
tensors such that these nonlinearities can be represented by
just a few vectors obtained from the canonical tensor de-
composition. Projection-based MOR is employed on these
vectors to generate a compact reduced-order model (ROM)
under the tensor framework. The key feature of TNMOR
is that it preserves the inherent sparsity through low-rank
tensors, thereby easing memory requirement and speeding up
computation via exploitation of data structures. Examples have
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Fig. 8. (a) Pulse inputs to the transmission line. (b) Transient waveforms of
the full model and ROMs. (c) Relative errors of the transient simulations. (d)
Transient waveforms of the 5th-order model and the 3rd-order model. (SP is
the acronym for “standard projection” [5], [6].)

been shown to demonstrate the efficiency of TNMOR over
existing nonlinear MOR algorithms.
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