
SSDExplorer: a Virtual Platform for

Performance/Reliability-oriented Fine-Grained

Design Space Exploration of Solid State Drives
Lorenzo Zuolo, Cristian Zambelli, Member, IEEE, Rino Micheloni, Senior Member, IEEE,

Marco Indaco, Student, IEEE, Stefano Di Carlo, Senior Member, IEEE, Paolo Prinetto, Senior Member, IEEE,

Davide Bertozzi, Member, IEEE, and Piero Olivo

Abstract—Currently available EDA tools for design space
exploration of Solid State Drives (SSDs) are not able to assess:
i) the device architecture inefficiencies; ii) the architecture
overdesign for a target performance; iii) the performance
degradation caused by the disk usage. These tools feature
either an overly high abstraction modeling strategy or lack the
required flexibility to perform design exploration. To overcome
these problems, this paper proposes SSDExplorer, a tool for
fine-grained yet reasonably fast design space exploration of
different SSD architectures highlighting possible bottlenecks. To
prove its accuracy SSDExplorer has been validated with two real
SSDs. SSDExplorer efficiency has been assessed by evaluating
the impact of the NAND Flash read retry algorithm impact
on the SSD performance as a function of its internal architecture.

Keywords–Solid-State Drive, SSD, Simulation, NAND Flash,
CAD, Design Space Exploration.

I. INTRODUCTION

Solid State Drives (SSDs) are becoming popular, driven by

the restless growth of high performance and cloud computing

[1]. The development of a SSD architecture implies the

analysis of important trade-offs that, if properly understood,

may contribute to tighten the SSD design space, thus reducing

the prototyping effort. Although SSD hardware prototyping

platforms may capture realistic storage system behaviors, they

suffer from an intrinsic lack of flexibility with respect to the

available SSD design choices [2].

To tackle this challenge and to identify optimal design

points meeting target performance goals under given cost

constraints, the SSD research community increasingly relies

on sophisticated software tools that enable modeling and

simulation of SSD platforms. Among them, two categories

of tools have been proposed: disk emulation tools [3] in

virtual environments [4], and pure software simulation tools

[5]. The former category uses functional simulation to obtain

fast performance evaluation of the SSD in a host environment.

This comes at the cost of constrained design space exploration

capabilities due to the use of abstract simulation models. The

Lorenzo Zuolo, Cristian Zambelli, Davide Bertozzi and Piero Olivo are
with the Dipartimento di Ingegneria, Università degli Studi di Ferrara, via G.
Saragat,1 - 44122 Ferrara (Italy).

Marco Indaco, Stefano Di Carlo and Paolo Prinetto are with the Diparti-
mento di Automatica e Informatica, Politecnico di Torino, corso Duca degli
Abruzzi, 24 - 10129 Torino (Italy).

Rino Micheloni is with PMC-Sierra, Via Torri Bianche 1, 20871 Vimer-
cate (Italy).

latter category exploits trace driven simulators obtaining a

steady-state performance analysis of the disk. However, these

tools often overlook the macroscopic performance/reliability

implications of some key component parameters or subtle

microarchitecture-level effects. In fact, microarchitectural de-

tails are typically abstracted, thus preventing the analysis of

the SSD performance with respect to its sub-components and

their interaction efficiency.

In both categories of tools the common underlying assump-

tion is that the SSD microarchitectural details that determine

the disk behavior have been already defined. In these tools,

the modeling framework pursues other goals rather than a

fine-grained design space exploration (FGDSE) of the mi-

croarchitecture, namely performance quantification of a known

architecture, full system simulation, and flash translation layer

(FTL) validation. These approaches are in general unsuitable

to meet the requirements of a SSD designer, whose primary

need is not the capability to perform functional simulation, but

rather to quantify the efficiency of microarchitectural design

choices to cope with long term concerns such as the disk

reliability and wearout-induced performance drop.

Currently there is a gap in the landscape of simulation

frameworks for SSD devices specifically targeting FGDSE.

Bridging this gap is mandatory to avoid the over-design of a

SSD architecture when trying to meet a target I/O performance

requirement, to perform a pure reliability assessment or aiming

at a trade-off between the two.

To achieve this goal in this work we propose SSDExplorer,

a software framework, which complements modeling and

simulation capabilities of state-of-the-art tools targeting the

following main innovations:

• Modeling of all components of the SSD architecture,

thus broadening and easing the design space exploration

capabilities provided by competing tools. Moreover, a

careful choice of the most suitable modeling abstraction

for each SSD component is provided.

• Accounting for the performance implications of the

FTL without requiring its full implementation. This is

achieved, for high-end SSD controllers, by supporting

the Write Amplification Factor (WAF) abstraction [6].

As a consequence, one of the goals of SSDExplorer

is to deliver a fast path for accurate I/O performance

quantification.

• Delivering unprecedented insights into the performance



2

equalization within the SSD architecture. This includes

accurate performance breakdowns and identification of

microarchitectural bottlenecks, or unexploited paral-

lelisms. Analysis of the interaction efficiency among

subcomponents of a SSD is an essential requirement for

microarchitecture design. SSDExplorer enables to search

for resource-aware design points able to meet target I/O

performance requirements, hence reducing the risk of

costly overdesign.

• Accuracy of the simulated SSD architectures providing

results validated with a mature commercial platform (i.e.,

OCZ vertex 120GB [7]) and a state-of-the-art enterprise

platform [8].

• Reliability assessment of several SSD architectures and

evaluation of their performance drop related to NAND

Flash components wearout. The read retry algorithm in

Multi-Level cell NAND Flash is here targeted as a case

study.

These features enable a strategic analysis of the SSDs that

will be demonstrated in this paper. Different disk architectures

can be compared among each other in an attempt to identify

the design point that minimizes resource consumption while

meeting target performance/reliability constraints.

II. RELATED WORKS

Understanding the behavior of SSDs to reproduce their

functionality with dedicated frameworks is a growing chal-

lenge in the research community. Currently, publications

mainly focus on disk emulation [3] and disk trace-driven

simulation software [5], [9], [10], [11], [12], [13], [14].

Yoo et al. [3], propose a disk emulation strategy based on

a reconfigurable framework able to deal with a real SSD. One

of the key contributions of this work is the ability to track the

real performance of a host system through a dynamic manager

built around a QEMU virtual platform [4]. However, to achieve

fast performance estimations, several components (i.e., the

processor, the NAND Flash arrays, etc.) are described at a

high abstraction level. Performance fluctuations experienced

by these blocks are therefore lost, thus strongly reducing the

performance estimation accuracy.

Moving to SSD trace-driven simulation tools, the open-

source frameworks proposed in [5], [9] allow SSD perfor-

mance and power consumption evaluation. Attempts to im-

prove them in order to achieve real performance matching

have also been proposed in [13], [14]. However, these tools

are still highly abstracted, thus providing an insufficient level

of simulation accuracy and realistic components description

to perform real FGDSE. Moreover, since the aforementioned

classes of frameworks do not model all the internal blocks of

a SSD, they are able to accurately track the behavior of a disk

only starting from a set of predefined and statically assigned

timings (i.e., the channel switch delay, the I/O bus latencies,

the command scheduler delay, etc.). An additional attempt to

modify one of those tools in order to incorporate detailed

NAND and ECC timings has been provided in [15]. Although

the accuracy of the obtained results in that particular case study

is high, those tools still lack the possibility to evaluate micro-

architectural effects on the SSD performance like commands

TABLE I
COMPARISON BETWEEN SSDEXPLORER AND OTHER SSD

CHARACTERIZATION APPROACHES.

Reconfigurable SSDExplorer Emulation
Trace-

driven
Hardware

parameters Platform Platforms Platforms Platforms

Real FTL
√ √ √ √

WAF FTL
√

No No No

Host Interface
performance

√ √

No
√

Real workload
√ √

No
√

Different Host
Interfaces

√

No
√

No

Accurate DDR

timings

√

No No No

Multi DRAM
buffer

√

No No No

Configurable

Channel No

√ √ √

No

Configurable
Target No

√ √ √

No

NAND archi-

tecture

√ √ √

No

Accurate

NAND timings

√

No No
√

NAND Relia-

bility

√

No No
√

ECC Model
√

No No
√

Interconnect

model

√

No No
√

Core model
√

No No
√

Real firmware

execution

√

No No
√

Multi Core
√

No No No

Model refine-

ment

√

No No No

Simulation
Speed

Variable High High Fixed

pipelining or suspension or uncommon queuing mechanisms,

which are visible only if a cycle-accuracy paradigm is pursued.

To overcome this weakness, several cycle-accurate SSD

simulators have been developed. Lee et al. [10] exploit a clock

precision simulation for hardware components description.

However, it does not allow a full modeling of all the com-

ponents building a SSD, thus hiding some of the bottlenecks

affecting the architecture. Other methods for fast simulation

have been proposed in [11], [12], but they also suffer from

accuracy loss due to the lack of a complete architectural

modeling.

Hardware platform prototypes have been proposed as well

in [2] and [16]. They enable a precise SSD behavior in-

vestigation, although their fixed architecture severely limits

exploration of different design solutions. To this extent, the

sole internal firmware modification is allowed.

What is really missing in all previous works is a clear

exploration of the performance correlation between the host

interface capabilities and the non-volatile memory subsystem

involving all intermediate architectural blocks. Currently, the

performance equalization of those chained components is

overshadowed. Furthermore, since these modeling approaches

are not oriented in the direction of a reliability projection of

different SSD architectures, their usage is merely limited to a



3

coarse functional simulation that may be strongly unaligned

with the industrial needs.

To summarize, Tab. I shows the main characteristics of

SSDExplorer in the context of previous works in this field,

by comparing relevant features of the available simulation

frameworks. As it can be seen, SSDExplorer introduces

detailed timings and behavioral models of the critical ar-

chitectural blocks (i.e., DRAMs, NAND Flash memories,

ECC sub-system, etc.) that are mandatory for an accurate

performance/reliability evaluation. On the contrary, available

state-of-the-art emulation and trace-driven platforms do not

account for those models. This paper extends the work in

[17] to show a direct comparison between SSDExplorer and

a state-of-the-art emulator [3] proving the accuracy of the

proposed framework considering different SSD architectures

and eventually identifying its fields of application.

III. SSDEXPLORER AT A GLANCE

A. Modeling Strategy

One of the key concepts that drove the development of

SSDExplorer has been the possibility to experience a unified,

reconfigurable and multi-abstraction simulation environment.

To achieve this goal, each block of SSDExplorer has been writ-

ten and integrated using the SystemC modeling and simulation

environment [18]. SystemC allows designers to cover, using a

single description language, several model refinement layers

ranging from the Timed Functional level up to the Register

Transfer Level (RTL). Thanks to this feature, if a specific

block must be thoroughly investigated, a more accurate model

can be easily developed and plugged into the simulation

environment without changing any other component. However,

it is worth highlighting that, since the simulation speed offered

by the SystemC scales inversely to the description level, the

abstraction of each model must be wisely selected depending

on the simulator goals in order to the maximize the simula-

tion efficiency. Although a similar strategy was successfully

described for other applications [19], this approach is devised

for the first time in a FGDSE-dedicated SSD simulation tool.

Therefore, SSDExplorer has been designed in order to:

i) select the most suitable modeling style for each SSD

component to accurately quantify the performance; ii) tolerate

lack of precise implementations of specific HW/SW com-

ponents without affecting the overall accuracy by providing

suitable modeling abstractions. From this perspective, in fact,

a detailed implementation of all SSD components might not

be available when its architecture design space is explored.

As a consequence of these considerations, it has been chosen

to model with a high accuracy all HW/SW components that

logically belong to the SSD control path (i.e., all the blocks

involved in the command manipulation process), whereas com-

ponents belonging to the datapath (i.e., components exploited

during the data transfer phase) have been modeled in terms

of the introduced processing/storage delays. This approach

is successful both in improving the simulation speed while

still capturing subtle micro architectural effects affecting SSD

performance metrics, and in providing a backbone for FTL

functional simulation. Finally, communication among each

Fig. 1. Default architecture template modeled by the simulator.

model domain is provided through tailored wrappers able to

translate logical signals to state variables without impacting

on the simulation framework.

B. Models exploited in SSDExplorer

Fig. 1 shows the SSD architecture template simulated by

SSDExplorer. Three domains can be identified based on the

selected modeling abstraction: Pin-Accurate Cycle-Accurate

(PA-CA), Transaction-Level Cycle-Accurate (TL-CA), and

Parametric Time Delay (PTD) models. We follow the termi-

nology in [20] to specify abstraction layers.

Pin-Accurate Cycle-Accurate models: the key components

that take part to the management of the data flow are the CPU,

the system interconnect, and the channel/target controller. All

these components are involved in the real execution of the SSD

FTL (if available) or of its abstracted behavior. To this extent,

a cycle-accurate design abstraction is used for modeling these

components to accurately capture commands handled by the

SSD and their timings. In such a way, the firmware overhead

in terms of overall performance drop can also be easily and

accurately evaluated.

Cycle-accurate models effectively capture the complete

functionality, structure, communication, and timing of a micro-

architectural block. The communication between components

is modeled in a PA-CA manner: the hardware signals connect-

ing a component to a bus are explicitly modeled, and all the

timing- and protocol-induced delays are captured accurately

for the bus architecture. The components are modeled in

a cycle-accurate manner as well: data processing inside a

component is scheduled on a cycle by cycle basis. Cycle-

accurate models are close in structure to RTL models, but still

benefit from the simulation speed-up provided by a high-level

modeling and simulation language.

In SSD Explorer, the pin- and cycle-accuracy are enforced

for modeling the control path, since subtle effects in command

handling and/or component interactions may cause perfor-

mance deviations that should be highlighted by a FGDSE tool.

Any end user may plug its SystemC models here, reflecting

in-house IP cores. In the early design phases, however, more

relaxed bus functional models can be used, limiting cycle

accuracy to the bus interfaces and to the bus architecture

itself. This option reduces the simulator capability in capturing

FTL execution overhead, yet not limiting the disk performance

estimation using either coarse or abstracted FTL models.



4

1) CPU: SSDExplorer can implement any CPU, including

both custom IP cores and advanced multicore architectures

given the availability of its PA-CA model and of its

proper Instruction Set Simulator. The programming model

of SSDExplorer is built to support the inter-operability with

state-of-the-art processors simulators such as Gem5 [21]

and Open Virtual Platforms [22] in order to enable future

modeling and analysis activities on the processor role in

the SSDs.

2) System Interconnect: SSDExplorer can include the most

relevant communication interfaces used in SSD platforms

such as: AMBA AHB, Multi-Layer AMBA AHB, AMBA

AXI (single address lane, multiple data lanes) and OCP.

Custom system interconnects can also be plugged into the

simulator provided the availability of their PA-CA models.

3) Channel/Target Controller: to perform read/write

operations on the NAND Flash memory arrays, it is

mandatory to introduce a controller deputed to formatting

commands issued by the CPU with a proper protocol. The

Open NAND Flash Interface (ONFI) [23] standard has

been exploited for the NAND memory arrays. From an

architectural point of view, the channel/target controller

is composed of five macro blocks: a slave program

port on the system interconnect, a Push-Pull DMA

controller, a SRAM cache buffer, an ONFI 2.0 port and

a command translator. The microarchitecture described in

[24] has been chosen to mimic realistic functionalities of

a channel/target controller in industry-relevant designs.

SSDExplorer can be configured with a flexible number of

channels and targets.

Transaction-Level Cycle-Accurate models: the host inter-

face, the DRAM buffers and the NAND Flash memory arrays

have been described by selectively abstracting the modeling

style. The main idea is to avoid modeling all pins of the

communication interface between the data path components, as

well as the signals that constitute the bus and the external sys-

tem interface. Communications instead go through channels,

on top of which read and write transactions are carried out.

At the same time, computation primitives are still scheduled

at each clock cycle. This is to allow both sudden command

requests concurrently with the execution of another transaction

(e.g. erase suspend in NAND Flash memories during garbage

collection) and to preserve timing accuracy in the wrappers

bridging these models with pin- and cycle-accurate ones.

Nevertheless, the burden to preserve this cycle accuracy is

not heavy. In fact, we have memory dominated-components on

the data path, whose performance mainly depends on properly

capturing timing parameters of the memories rather than on

the modeling of complex computation tasks. Moreover, since

NAND Flash memory components could be inactive for long

times, (i.e., for random workloads which do not spread among

all the SSD channels), to increase the simulation efficiency

we spawn the processes used for memory simulation only

on demand. Basically, when the command scheduler detects

that an operation must be issued to one or more NAND

Flash targets belonging to a single channel, it spawns the

corresponding process responsible for the management of the

targets of that channel. If the channel is idle, no process is

created. Upon process spawning, only the finite state machines

of the addressed targets are updated, while the other ones

remain idle. By combining the dynamic process management

with the selective process spawning, we can mitigate the

impact of the memory subsystem on the simulation speed.

1) Host Interface: this component manages the communica-

tion protocol with the host, providing commands and data

to the SSD. Two types of interfaces are implemented

in SSDExplorer: Serial Advanced Technology Attachment

(SATA) and PCI Express (PCIE). Both interfaces include a

command/data trace player, which parses a file containing

the operations to be performed and triggers operations for

the other SSD components accordingly. The features of the

available interfaces are:

• SATA: all SATA protocol layers [25] and operation

timings have been accurately modeled following the

SATA protocol timing directives provided in [26]. Na-

tive Command Queuing support has been implemented

featuring arbitrary queue length up to 32 commands.

• PCIE: this interface allows boosting sequential and ran-

dom operations throughput, and it is currently exploited

in enterprise SSDs [1]. Fast operations are achieved

through the NVMe (Non Volatile Memory Express [27])

protocol that significantly reduces packetization latencies

with respect to standard SATA interfaces [28]. All PCIE

configurations (i.e., from generation 1 up to generation

3 with variable lane numbers) can be modeled, thus

ensuring accurate latency matching.

To ease the interchange between different host interfaces, a

common control architecture based on a fabric interconnect

slave port and an external DMA controller [29] able to

transfer data from the host interface to the data buffers and

vice versa is available in SSDExplorer.

2) DRAM Buffer: this component is used either as a tempo-

rary storage buffer for read/write data or as a buffer [30] for

the address mapping operations given a dedicated firmware

that runs on SSDExplorer. A cycle accurate DRAM model

is required to capture realistic behaviors (i.e., column pre-

charging, refresh operations, detailed command timings,

etc.). The data buffers of SSDExplorer are modeled with a

SystemC customized version of the simulator proposed in

[31]. The number of available buffers in a SSD architecture

is upper bounded by the number of channels served by

the disk controller. In SSDExplorer the user can freely

change this number, as well as the bandwidth of the mem-

ory interface, the DRAM functionality, etc., acting upon

a simple text configuration file, which abstracts internal

modeling details. The DDR, DDR2 and DDR3 protocols

are supported as DRAM interface.

3) NAND flash memory array: the fundamental component

of a SSD is the non-volatile storage memory array. NAND

Flash devices are hierarchically organized in dies, planes,

blocks, and pages. Program and read operations work on

a page basis, whereas the erase operation is performed

blockwise, thus inhibiting the in-place data update. Due



5

to the internal architecture of NAND Flash devices, large

fluctuations in memory timings arise depending on the

chosen operation, thus introducing a significant amount of

performance variability. To accurately take into account all

these effects, a cycle accurate NAND Flash simulator has

been exploited [32]. Furthermore, to take into account the

realistic behavior of the memory, an error injection engine

(i.e., a BER simulator) has been included to reflect the

effects of different error patterns on the other components

of the NAND Flash/ECC subsystems. It is possible to

embody different NAND Flash technologies (i.e., single-,

multi- and triple-level cell) in SSDExplorer.

Parametric Time Delay model: the microarchitectural

blocks related to the Error Correction Codes (ECC) have

been modeled using a parametric time delay abstraction level.

These devices, on the one hand, strictly depend on the design

choices of SSD vendors, on the other hand, their behavior and

impact on SSD I/O performance can be easily abstracted by

means of well-defined quality metrics. [33]. In other words,

the behavior inside PTD models does not need to be scheduled

at every cycle boundary (i.e., to be cycle accurate). Instead,

computation primitives inside a component can be grouped

together and the schedule can be relaxed so that time is

incremented in chunks. As an example, the correction time

of 5 errors in a NAND Flash page corresponds to an effective

wait time of 10 ns that cannot be interrupted by any other

command. This allows a reduction in the detail captured

inside components, with benefits on both modeling time and

simulation speed. At the same time, communication events can

still be scheduled in a cycle accurate manner. However, even if

this choice enables accurate I/O performance characterization,

it prevents functional simulation when such components are

instantiated. Nevertheless, at an early design stage, when the

internal SSD architecture is defined, functional simulation is

actually not required, since priority is given to the delivery of

a target I/O performance with a matched and resource-aware

architecture configuration. At later design stages, PTD models

can be replaced by more refined models, even restoring the

functional simulation capability of SSDExplorer.

SSDExplorer embodies a configurable PTD model of

a Bose-Chaudhuri-Hocquenghem (BCH) ECC engine. This

block is composed of a fixed high-speed encoder and a multi-

machine decoder. The delay of the decoder stage can be

configured to mimic the behavior of a single- or a multi-

threaded version as shown in [33]. To explore different ECC

architectures, the internal parallelism of each machine can be

configured by the user.

Finally, it is worth pointing out that in state-of-the-art SSD

simulators the presence of ECC is usually neglected. However,

an accurate calculation of the SSD performance must take into

account the latency introduced by the encoding and decoding

phases of an ECC especially when performance-reliability

trade-offs related to NAND Flash memories must be analyzed

[34].

Fig. 2. A SSD template architecture used for FTL and WAF algorithms
evaluations

IV. FTL ALGORITHMS ABSTRACTION

The FGDSE of a wide range of SSD architectures has

the drawback of requiring a custom FTL tailored for each

configuration (some examples of custom FTLs are provided in

[35], [36], [37], [38], [39]). This calls for an estimation of the

impact of software management algorithms usually exploited

by a SSD (e.g., Garbage Collection (GC), Wear Leveling

(WL), etc.) without impacting the framework complexity. This

problem has been tackled in [6] by introducing a lightweight

algorithm able to evaluate the blocking time of the GC impact

in terms of WAF, under the assumption that others FTL

functionalities are handled by the CPU without imposing a

significant performance drop. In this work, as discussed in

section III-B, thanks to the standard programming model used

by the CPU, both a realistic algorithm implementation and

its abstraction through a WAF model are supported by the

simulator.

A standard WAF model [6] is able to calculate the number

of additional writes produced by the GC operation with respect

to the actual number of writes issued by a host system starting

from a pool of few parameters such as: the total number of

blocks in the disk, the over-provisioning factor and the GC

activation threshold. In this way, it is possible to quickly

explore the SSD FTL behavior and to assess its efficiency

through the computed WAF value. In fact, as WAF increases,

the computed blocking time of the modeled GC management

procedures increases as well, thus heavily affecting the overall

disk performance.

The effectiveness of the WAF model must be compared

with a real page-level FTL to locate the operative range in

which it can be reliably adopted. To this purpose the template

architecture of Fig. 2 has been used, configured with the values

reported in Tab. II.

The two main actors are the SSD controller (hereafter in-

tended to consider the host interface, the CPU, the interconnect

system and the channel/target controller) whose key parameter

is the CPU frequency, and the NAND memory subsystem.

Since each die and plane of a NAND Flash memory is

composed of a repetitive cluster of pages and blocks, it is

possible to shrink the actual memory size by reducing the



6

TABLE II
SSDEXPLORER CONFIGURATION FOR WAF ACCURACY ASSESSMENT.

Parameter Architecture

Host Interface SATA II

DRAM-Buffer 1

Mock-up DRAM-size 64 kBytes

Channels 4

Targets 2

NAND Flash Dies 4

NAND Flash Planes 2

NAND Flash Blocks 16

NAND Flash Pages 4

NAND Flash Page Size 4096 Bytes

Caching No

FTL-LOG2PHY mapping page-associative

FTL-GC algorithm Greedy

FTL-GC threshold 30%

FTL-GC reserved blocks 1

FTL-WL policy opportunistic

Over-provisioning 20%

effective cluster capacity. In such a way longer processes like

a full disk fill can be easily simulated without impacting

the framework accuracy. The only constraint related to this

mocking up approach is to maintain the memory architecture

in terms of dies and planes because these parameters heavily

modify the memory performance.

Both the FTL and its WAF model have been tested among

different SSD controller frequencies dealing with different

workloads. Fig. 3 shows the performance achieved with a

read workload: since read transactions do not require software

manipulations, the FTL execution time becomes marginal,

therefore not affecting the overall bandwidth. When a write

workload is considered, Fig. 4 shows a discrepancy between

the WAF and the real FTL implementation which vanishes

as the SSD controller frequency increases. The discrepancy at

low frequency is mainly caused by two factors: the first is the

difference in the WAF values computed by the model and by

the FTL, which are 1.20 and 1.16, respectively; the second

is strictly related to a non-negligible additional execution time

spent to execute the GC victim-blocks identification process of

the firmware. By increasing the SSD controller speed, the FTL

components contribution not related to the GC on the SSD

performance become marginal for the overall bandwidth esti-

mation process because the maximum achievable performance

is mainly dominated by NAND Flash memories timings (i.e.,

the CPU is able to dispatch all the FTL functionalities without

a blocking time).

Starting from the above results, the WAF model can be

exploited with a marginal performance misalignment given

the constraint of a relatively high SSD controller frequency.

However, since state-of-the-art SSD controller frequencies are

in the 300 - 600 MHz range [40], a WAF abstraction of the

FTL represents a good simulation speed/accuracy trade-off.

V. SIMULATION RESULTS AND APPLICATIONS

A. Performance comparison with real SSD platforms

Consumer Device: in order to assess the accuracy achieved

by SSDExplorer, a direct comparison between the proposed

framework and an OCZ Vertex 120GB [7], a widely adopted

0

10

20

30

40

50

60

70

80

87MHz 200MHz 500MHz

M
B

/s
 

SSDExplorer-WAF

SSDExplorer-FTL

Fig. 3. Sequential read bandwidth achieved by SSDExplorer using the WAF
abstraction model and a real FTL.

0

10

20

30

40

50

60

70

80

87MHz 200MHz 500MHz

M
B

/s
 

SSDExplorer-WAF

SSDExplorer-FTL

Fig. 4. Sequential write bandwidth achieved by SSDExplorer using the WAF
abstraction model and a real FTL.

0

100

200

300

400

500

600

700

800

SW SR RW RR

M
B

/s
 OCZ VERTEX 120GB

SSDExplorer 120GB

SSDExplorer 16MB

S.O.A emulator 120GB

Fig. 5. Performance comparison between OCZ Vertex 120GB, SSDExplorer
(both mock-up and full disk simulation), and a S.O.A emulator tool [3]
in terms of throughput for Sequential Write (SW), Sequential Read (SR),
Random Write (RW) and Random Read (RR).

device, has been carried out. This device has been chosen to

speed up the validation phase, since it is based on a well-

known and documented controller [41], running at 166 MHz,

that can be easily simulated. The validation methodology

followed in this section makes use of standard synthetic bench-

marks to quantify the I/O performance of SSD devices [42]: a

sequential and a random 100% write and 100% read workloads



7

0

100

200

300

400

500

600

700

800

900

1000

SW SR RR

M
B

/s
 

SSDExplorer 512GB

NVRAM 512GB

Fig. 6. Performance comparison between a 512GB NVRAM card and
SSDExplorer (full disk simulation), in terms of throughput for Sequential
Write (SW), Sequential Read (SR), and Random Read (RR).

with a block size of 4kB are injected inside the simulated disk.

The choice of using synthetic benchmarks rather than realistic

ones [43] is justified by the fact that the latter approach would

introduce a complication in the validation process of the results

since the implications behind their use would require a tailored

FTL matched with the architecture that the simulator is able

to characterize. Moreover, a realistic benchmark could hinder

the behavior of a SSD since the chosen workload may put

it in a favorable working point, thus neglecting worst case

conditions. In all the following analysis, we made use of the

WAF abstraction model both simulating a mock-up version of

the disk (i.e., a 16 MB SSD) and a full disk with addressable

space equal to those of the OCZ device (i.e., 120 GB SSD).

As shown in Fig. 5, for a sequential workload, SSDExplorer

matches the OCZ device performance with an error margin

of about 8% in the write operation and 0.1% for the read

operation. When a random workload is used, the performance

deviation from the OCZ disk amounts to 6% and 2% for writes

and reads, respectively. These deviations are due to the lack of

any information about the write caching algorithm in the WAF

model [6]. By looking at the OCZ Vertex reference manual [7]

it can be found that caching is massively adopted to reduce

the amount of write operations redirected to the non-volatile

memory subsystem and hence simulated write operations

(both sequential and random) show offsets higher than read

operations. In light of this consideration, the results reported in

Fig. 5 confirm the accuracy provided by SSDExplorer. This is

even more relevant if we consider that these low error margins

can be achieved avoiding the real FTL implementation.

To ultimately prove the accuracy of the proposed framework

we performed the same comparison also with a state of the art

emulation tool (S.O.A emulator) [3]. Since this tool embodies

a fully reconfigurable FTL, to achieve a fair comparison we

configured its parameters to provide the same WAF value

used in SSDExplorer. As it can be seen in Fig. 5, the

performance mismatch between the OCZ Vertex and the S.O.A

emulator is 30% and 70% for sequential write and sequential

read, respectively, whereas for random workloads the S.O.A.

TABLE III
SSD CONFIGURATIONS FOR OPTIMAL DESIGN POINT EXPLORATION.

Configuration SSD architecture

C1 4-DDR-buf;4-CHN;4-TARGET;2-DIE

C2 8-DDR-buf;8-CHN;4-TARGET;2-DIE

C3 8-DDR-buf;8-CHN;8-TARGET;2-DIE

C4 8-DDR-buf;8-CHN;8-TARGET;4-DIE

C5 8-DDR-buf;8-CHN;8-TARGET;8-DIE

C6 16-DDR-buf;16-CHN;8-TARGET;4-DIE

C7 16-DDR-buf;16-CHN;4-TARGET;2-DIE

C8 32-DDR-buf;32-CHN;4-TARGET;2-DIE

C9 32-DDR-buf;32-CHN;1-TARGET;1-DIE

C10 32-DDR-buf;32-CHN;8-TARGET;4-DIE

emulator results are completely out of scale. The roots of these

discrepancies reside in the inability of the S.O.A emulator

to accurately model the host interface command queuing, the

multi-channel interleaving, and the ECC behavior. Therefore,

S.O.A. emulators cannot be used for FGDSE, whose paradigm

is aimed at accurately describing all the components belonging

to a SSD in order to get accurate performance breakdown

curves. It is interesting to point out that the mock-up SSD

simulation results equals the results of a full disk simulation,

thus validating the approach proposed in section IV.

Enterprise Device: in this paragraph we configured

SSDExplorer to track the behavior of a 512 GB NVRAM card

currently exploited in cloud applications [8]. For this compar-

ison we took as reference a disk architecture featuring a 8

channels/4 targets controller, a single 2GB DDR3 (1333MT/s)

DRAM buffer and a PCIE Gen 2 x8 lanes host interface.

Simulated NAND Flash memories have been configured as 2X

enterprise-MLC devices with a page program time t PROG

= 1.8 ms, a page read time t READ = 115 µs and a block

erase time t BERS = 6 ms. The main aim of this comparison

is to demonstrate the flexibility and the accuracy of the

proposed framework in simulating the interaction between the

memory subsystem (NAND Flash and DRAM buffer) and the

host interface even when complex architectures are explored.

Finally, all tests have been pursued with sequential write, se-

quential read, and random read workloads. The specifications

for performing the random write test were not available by the

manufacturer. As shown in Fig.6 the SSDExplorer capabilities

in simulating large state-of-the-art SSDs are demonstrated

by the obtained extremely low performance mismatch: about

0.01% for both read and write operations.

B. Optimal design point exploration

SSDExplorer can be used to find the optimal SSD design

point for a given target performance. The goal is to achieve the

minimum resources allocation, given the host interface band-

width constraint. Table III shows a set of representative design

points used to this purpose. All simulations are performed

using a synthetic workload composed of a sequential write

trace whose payload is fixed to 4kB. Moreover, all data have

been collected using two different DRAM buffer management

policies typically exploited in consumer and enterprise envi-

ronments [44]: write back and write through caching and no

caching [30]. For the former, the SSD controller notifies the



8

1

10

100

1000

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

M
B

/s
 

DDR+FLASH

SSD cache

SSD no cache

SATA ideal

SATA+DDR

Fig. 7. Sequential Write: SATA II host interface. Comparison of the
configurations proposed in Tab. III for the optimal design point exploration.

end of each transaction to the host system when data have been

moved from the host interface to the DRAM buffers. For the

latter policy, the notification is triggered only when all data

have been actually written to the NAND Flash memory. All

experimental results consider a 4X Multi-Level Cell NAND

Flash technology whose main characteristics are t PROG

which ranges from 900 µs to 3 ms, t READ = 60 µs and

t BERS which ranges form 1 ms to 10 ms [45].

Fig. 7 shows how different architectures exploit the perfor-

mance of a SATA II host interface. The SATA ideal curve

refers to the theoretical throughput achievable only by the

host interface. Instead, the SATA+DDR curve shows a more

realistic metric for the host interface performance since it

incorporates the time spent by its internal DMA engines to

transfer data from the host system to the DRAM buffers (i.e.,

the time to process the transactions from the host). Starting

from this consideration, the best design point is the one that

tries to achieve the SATA+DDR bandwidth by maximizing the

bandwidth of the DDR+FLASH curve (i.e., the time spent

by the Flash memory to flush the DRAM buffer and write

the data). The SSD cache/ SSD no cache curves represent

the bandwidth of the entire disk that considers the bandwidth

of the DDR+FLASH contribution and the potential saturation

effect of the host interface indicated by SATA ideal (i.e.,

considering the overall disk performance dependently on the

adopted caching strategy).

When caching is used, the SSD cache bars in Fig. 7,

indicates C6, C8 and C10 as the best candidates since they

reach the target performance and saturate the host interface

bandwidth. However, when the resource cost constraints are

taken into account, it is clear that C6 represents the right

choice since it is the configuration able to reach the host

interface limit with the lowest resources consumption. On the

contrary, when no caching is used, the overall disk perfor-

mance (the SSD no cache contribution) is strongly limited. In

this scenario there is no configuration able to reach the target

performance and so, the search for the optimal design point

falls on C1.

The reason behind the performance flattening with no

caching lies on the SATA interface and, in particular, into

1

10

100

1000

10000

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

M
B

/s
 

DDR+FLASH

SSD cache

SSD no cache

PCIE ideal

PCIE+DDR

Fig. 8. Sequential Write: PCIE host interface. Comparison of the configura-
tions proposed in Tab.III for the optimal design point exploration.

its limited command queue depth. In fact, the SATA protocol

is able to manage only a maximum of 32 commands at once,

thus in a SSD exploiting a no caching policy, the host interface

cannot acquire new commands until the current ones have

been executed by the NAND Flash memories. This implies

that, the internal parallelism provided by the device cannot

be exploited, which becomes clear when checking the SSD

performance indicated in the DDR+FLASH results.

To overcome this limitation and unveil the performance

provided by highly parallel SSD configurations, Fig. 8 shows

the results achieved when a PCIE-Gen2 featuring 8 lanes and

the NVMe protocol is exploited. Due to the high PCIE speed,

the host interface will no longer represent a SSD performance

bottleneck. In fact, even the most parallel configuration (i.e.,

C10) is not able to saturate the interface bandwidth. However,

the major result shown in Fig. 8 can be evidenced by looking

at the SSD no caching contributions. In this case, since the

NVMe protocol can handle up to 64k-commands, the SSD in-

ternal parallelism can be reached and fully exploited. However,

a performance gap between these configurations still exists.

Indeed, the time spent to flush the incoming data to the NAND

Flash memories for SSD cached architectures is hidden. It is

worth to point out that, when a NVMe protocol with a PCIE

interface is exploited, since there are no intrinsic architectural

limitations, the search for the most efficient design point is

driven by the hardware costs. If maximum performance is the

main driver during the design phase of the SSD, C10 is the best

solution. On the other hand, if the performance-cost trade-off

is leveraged, solutions ranging from C3 to C8 are eligible.

C. A strategic SSDExplorer application: the Read Retry im-

plications on the SSD endurance

One main limitation of current SSDs is their reliability,

which is dependent upon the non-volatile NAND flash memo-

ries used as the storage medium. This reliability progressively

decreases because of their intrinsic wear-out [1]. A direct

indication of this phenomenon is an increase in the Raw Bit

Error Rate (RBER) in a NAND flash memory. The RBER is

the percentage of bits in error after a single read operation

[46]. Such an increase translates into the inability to correct



9

10
−4

10
−3

100

150

200

250

300

350

400

450

RBER

R
ea

d 
B

an
dw

id
th

 [M
B

/s
]

Fig. 9. SSD read bandwidth vs. RBER.

data after a number of Program/Erase operations or after long

retention times.

To deal with increasing RBERs, NAND vendors have in-

troduced new read techniques, such as the Read Retry (RR)

algorithms, bridging the gap between the internal memory

algorithms and the ECC. If, during a read operation, the

errors in a page exceeds the ECC’s correction capability, the

operation is repeated with modified read parameters with the

aim of reducing the number of read errors [47]. RR algorithms

are needed to improve the NAND flash reliability. However,

they impact on the performance and architecture of a SSD

[34]. The main issues related to the RR application are:

• the occurrence of an uncorrectable page event (that is

the reading of a page that results as uncorrectable if the

RR technique is not applied) cannot be predicted and

therefore the RR intervention cannot be forecasted;

• the increase in read latency may reduce the SSD band-

width below acceptable values unless designed for at the

architecture level.

From a previous characterization of a 2X MLC NAND

Flash technology, the RBER values, the read latencies of

the memory, and the uncorrectable page event statistics have

been calculated and back annotated into SSDExplorer. Starting

from a RBER value exhibited by the NAND Flash, the

corresponding number of errors is extracted and then fed

to the modeled ECC engine in order to extract the exact

delay incurred by the decoder. Fig. 9 shows the SSD read

bandwidth as a function of the RBER. Since the real SSD

behavior depends on a combination of Program/Erase cycles

and retention times, the use of RBER as a reference metric

allows us to ignore the actual degradation mechanism while

generalizing the performance evaluations.

The performance degradation is caused by uncorrectable

NAND Flash pages requiring the RR activation and it is related

to the sum of the memory latency and of the ECC correction

time, this latter resulting as negligible in normal reading

conditions. This implies that the ECC engine is the module

to address to try reducing the read bandwidth degradation.

To this purpose we have repeated the analysis by modifying

TABLE IV
SSD ARCHITECTURES CONSIDERED IN READ RETRY SIMULATIONS.

Configurations C1 C2 C3 C4

Channels 1 2 4 8

NAND Flash Targets
per Channel 16 8 4 2

ECC 1 x Channel

10
−4

10
−3

300

350

400

450

500

550

600

650

700

RBER
R

ea
d 

B
an

dw
id

th
 [M

B
/s

]
 

 

C1
C2
C3
C4

Fig. 10. SSD read bandwidth vs. RBER for the four architectures described
in Table IV. Curves are shown up to a 10% performance degradation with
respect to the beginning of life.

the number of channels and, therefore, the number of ECC

engines. Fig. 10 shows the read bandwidth behavior as a

function of RBER, up to the point corresponding to a 10%

degradation with respect to the beginning of SSD lifetime, for

the four channels/NAND Flash targets configurations analyzed

(see Table IV).

As expected, by increasing the number of channels (in par-

ticular architectures C3 and C4) it is possible to achieve higher

bandwidths. The RBER corresponding to a 10% degradation,

however, is in the same order of magnitude for the four cases.

So merely increasing the architectural resources, without con-

sidering the interaction of the host interface requirements, does

not seem to solve the problem of the RR impact on the SSD

performance.

Another strategic activity that could benefit from

SSDExplorer is the qualification of a SSD architecture.

The qualification process using the standards JESD-218A and

JESD-219 [48], [49] requires to determine the relationship

between host writes and endured NAND Flash cycles.

Operating multiple SSD architectures or SSDs with different

NAND design to the desired number of Total Bytes Written

(TBW) is often impractical because the time required would

be excessive, then the relationship between NAND cycles and

host writes could be extrapolated through CAD simulations.

Let us consider an SSD containing only one type of NAND

(i.e., 2X eMLC) and no features of the drive design that would

make the WAF change over the lifetime of the drive, and

suppose further that the design of the WL method is expected

to result in the most heavily-cycled SSD block receiving twice

the average number of cycles. In that case, WAF would be a



10

0 3 6 9 12 15 18 21
10

−3

10
−2

10
−1

10
0

10
1

10
2

Total Bytes Written [x10 15]

S
S

D
 U

nc
or

re
ct

ab
le

 P
ag

es
 [%

]

 

 

ECC Only
ECC+RR

DISK
FAIL

AREA

DISK
FAIL

AREA

Fig. 11. SSD endurance rating for two designs: without Read Retry (i.e.,
ECC correction only), and with Read Retry. The disk fail area starts where
the SSD’s uncorrectable pages percentage is greater than zero.

constant (for a given workload), and then the estimated SSD

endurance rating f(TBW ) is calculated with the following

formula [48]:

f(TBW ) =
(TBW ∗ 2 ∗WAF )

C
(1)

where C is the SSD capacity. An example of this extrapolation

is provided in Fig. 11, where two SSD designs are bench-

marked: one including the ECC+RR correction strategy for

NAND Flash and the other one using only the ECC. The

results of the simulations show that by considering a disk

capacity of 512 GB, and a WAF value of 2.5 (i.e., typical

value for the enterprise architecture simulated in section V)

it is possible to rate the SSD endurance at 5x1015 TBW

and 16x1015 TBW for the ECC only and ECC+RR strategy,

respectively. The rating is considered at the point where the

SSD’s uncorrectable pages percentage becomes greater than

zero. If it is considered a SSD application scenario that

performs 10 disk fill operations per day it is possible to rate the

disk endurance (only related to the NAND Flash subsystem)

in years: 2.67 and 8.56 for the ECC only and ECC+RR case,

respectively.

VI. SIMULATION SPEED

SSDExplorer is totally written in SystemC, then its capa-

bility to be accurate is traded with simulation time. Since

SSDExplorer includes PA-CA and TL-CA models, the num-

ber of kilo-Cycles per Second (kCPS) represents the only

metric to be adopted to evaluate speed features, whereas the

performance of emulation/simulation tools, mainly based on

behavioral models, are measured in elapsed CPU time, thus

making impossible any direct comparison. Fig. 12 shows the

kCPS achieved by SSDExplorer for 9 different SSD architec-

tures (see Tab. V for details) on an Intel Xeon CPU E5520

clocked at 2.27GHz with 12GB of RAM, which runs a Redhat

x86-64 Linux operating system. The considered workload is a

sequential 4kB write that distributes among all the simulated

0

20

40

60

80

100

120

140

C1 C2 C3 C4 C5 C6 C1 C7 C8 C9

k
C

P
S

 

Fig. 12. SSDExplorer simulation speed with different SSD configurations
using the WAF abstraction model.

NAND Flash targets, and the FTL abstraction through the

WAF model is exploited.

TABLE V
SSD CONFIGURATIONS EXPLOITED TO EVALUATE THE SIMULATION

SPEED.

Configuration SSD architecture

C1 1-CHN;1-TARGET

C2 2-CHN;1-TARGET

C3 4-CHN;1-TARGET

C4 8-CHN;1-TARGET

C5 16-CHN;1-TARGET

C6 32-CHN;1-TARGET

C7 1-CHN;2-TARGET

C8 1-CHN;4-TARGET

C9 1-CHN;8-TARGET

In Fig. 12, the first set of results (configuration C1 - C6)

shows the simulation speed dependency on the number of

instantiated channels, whereas the second set of results (C1,

C7 - C9) shows the dependency on the number of NAND

Flash targets. If the simulations are performed with the same

configurations, but using a real FTL instead of its abstraction,

the SSDExplorer’s simulation speed drops averagely by a

factor three.

It is worth to point out that, even for resource-hungry

configurations, the simulation speed is in the order of 100

kCPS which is an optimal reference value for PC-CA EDA

tools [50].

VII. CONCLUSIONS

In this work we presented SSDExplorer, a virtual platform

for fine-grained design space exploration of solid state drives.

The proposed tool provides a ready to use framework able to

deliver accurate performance breakdown curves of all internal

SSD’s components. Thanks to this feature, a SSD designer can

efficiently optimize the disk architecture starting from a given

target while forecasting the reliability-induced performance

degradation. Moreover, the flexibility of this virtual platform

allows either real or abstract FTL development, execution, and

debugging over different SSD architectures. SSDExplorer has



11

been thoroughly validated against real devices and thanks to

the wise engineering of its modeling strategy used to describe

its modules, a reasonable simulation speed is still guaranteed.

VIII. ACKNOWLEDGEMENT

This research has been partly supported by the 7th Frame-

work Program of the European Union through the vIrtical

Project, under Grant Agreement 288574 and the CLERECO

Project, under Grant Agreement 611404.

REFERENCES

[1] R. Micheloni, A. Marelli, and K. Eshghi, Inside Solid State Drives

(SSDs). Springer London, 2012.

[2] “The OpenSSD Project.” [Online]. Available: http://www.
openssd-project.org/wiki/The OpenSSD Project

[3] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choi, S. Yoon, and J. Cha,
“Vssim: Virtual machine based ssd simulator,” in IEEE Symposium on
Mass Storage Systems and Technologies (MSST), 2013, pp. 1–14.

[4] “QEMU: open source processor emulator.” [Online]. Available:
http://wiki.qemu.org/Main Page

[5] “The DiskSim simulation environment version 4.0,” 2008.
[Online]. Available: http://www.pdl.cmu.edu/PDL-FTP/DriveChar/
CMU-PDL-08-101.pdf

[6] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” in Proceedings
of SYSTOR, 2009, pp. 10:1–10:9.

[7] “Ocz vertex series 120GB SSD.” [Online]. Available: http://ocz.com/
consumer

[8] “FLASHTEC NVRAM Drives.” [Online]. Available: http://pmcs.com/
products/storage/flashtec nvram drives/

[9] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A simulator
for nand flash-based solid-state drives,” in International Conference on

Advances in System Simulation (SIMUL), 2009, pp. 125–131.

[10] J. Lee, E. Byun, H. Park, J. Choi, D. Lee, and S. H. Noh, “Cps-sim:
configurable and accurate clock precision solid state drive simulator,” in
Proceedings of the ACM symposium on Applied Computing, 2009, pp.
318–325.

[11] H. Jung, S. Jung, and Y. H. Song, “Architecture exploration of flash
memory storage controller through a cycle accurate profiling,” IEEE
Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1756–1764,
2011.

[12] E.-Y. Chung, “A Solid-State Disk Simulator for Quantitative Perfor-
mance Analysis and Optimization,” in NVRAMOS, 2009.

[13] C. Dirik and B. Jacob, “The performance of pc solid-state disks (ssds)
as a function of bandwidth, concurrency, device architecture, and system
organization,” in International Symposium on Computer Architecture
(ISCA), 2009, pp. 279–289.

[14] S. Zertal and W. Dron, “Quantitative study of solid state disks for
mass storage,” in International Symposium on Performance Evaluation

of Computer and Telecommunication Systems (SPECTS), 2010, pp. 149–
155.

[15] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang, “Ldpc-
in-ssd: Making advanced error correction codes work effectively in solid
state drives,” in Presented as part of the 11th USENIX Conference on

File and Storage Technologies (FAST 13), 2013, pp. 243–256.

[16] S. Lee, K. Fleming, J. Park, K. Ha, A. M. Caulfield, S. Swanson, Arvind,
and J. Kim, “Bluessd: An open platform for cross-layer experiments for
nand flash-based ssds,” in The 5th Workshop on Architectural Research
Prototyping, 2010.

[17] L. Zuolo, C. Zambelli, R. Micheloni, S. Galfano, M. Indaco, S. D. Carlo,
P. Prinetto, P. Olivo, and D. Bertozzi, “SSDExplorer: a Virtual Platform
for Fine-Grained Design Space Exploration of Solid State Drives,” in
Design, Automation Test in Europe (DATE), 2014, pp. 1–6.

[18] “Systemc 2.0.1 language reference manual,” 2002. [Online]. Available:
http://www.systemc.org

[19] S. Hong, S. Yoo, S. Lee, S. Lee, H. J. Nam, B.-S. Yoo, J. Hwang,
D. Song, J. Kim, J. Kim, H. Jin, K.-M. Choi, J.-T. Kong, and S. Eo,
“Creation and utilization of a virtual platform for embedded software
optimization:: an industrial case study,” in Proceedings of the Interna-
tional Conference Hardware/Software Codesign and System Synthesis

(CODES+ISSS), Oct 2006, pp. 235–240.

[20] S. Pasrich and N. Dutt, On-Chip Communication Architectures: System

on Chip Interconnect. Morgan Kaufmann, 2008.

[21] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[22] “Open Virtual Platforms - the source of Fast Processor Models
and PlatformsOpen Virtual Platforms.” [Online]. Available: http:
//www.ovpworld.org

[23] “Open Nand Flash Interface (ONFI).” [Online]. Available: http:
//www.onfi.org

[24] “Evatronix NAND Flash controller ip-core.” [Online]. Available: http:
//www.evatronix-ip.com/ip-cores/memory-controllers/nand-flash.html

[25] SATA revision 3.0 specifications, Serial ATA International Organization.
[Online]. Available: www.sata-io.org

[26] “SATA-IP host reference design on SP605 manual,” Accessed, Apr 2013.

[27] “NVM Express,” 2013. [Online]. Available: http://www.nvmexpress.org/

[28] “Nvm express 1.1 specification,” 2013. [Online]. Available: http:
//nvmexpress.org/wp-content/uploads/2013/05/NVM Express 1 1.pdf

[29] Open-Silicon, “SATA device controller - product brief,” 2013. [Online].
Available: http://www.open-silicon.com/ip-technology/open-silicon-ip/
io-controllers/sata-device-controller/

[30] “Intel X18-M X25-M SATA Solid State Drive. Enterprise Server/Storage
Applications.” [Online]. Available: http://cache-www.intel.com/cd/00/
00/42/52/425265 425265.pdf

[31] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle ac-
curate memory system simulator,” IEEE Computer Architecture Letters,
vol. 10, no. 1, pp. 16–19, 2011.

[32] M. Jung, E. Wilson, D. Donofrio, J. Shalf, and M. Kandemir, “Nand-
flashsim: Intrinsic latency variation aware nand flash memory system
modeling and simulation at microarchitecture level,” in IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST), 2012,
pp. 1–12.

[33] Y. Lee, H. Yoo, I. Yoo, and I.-C. Park, “6.4gb/s multi-threaded bch
encoder and decoder for multi-channel ssd controllers,” in IEEE In-

ternational Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), Feb 2012, pp. 426–428.

[34] L. Zuolo, C. Zambelli, R. Micheloni, D. Bertozzi, and P. Olivo, “Anal-
ysis of reliability/performance trade-off in solid state drives,” in IEEE

International Reliability Physics Symposium, June 2014, pp. 4B.3.1–
4B.3.5.

[35] D. Liu, Y. Wang, Z. Qin, Z. Shao, and Y. Guan, “A space reuse strategy
for flash translation layers in slc nand flash memory storage systems,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 20, no. 6, pp. 1094–1107, June 2012.

[36] T. Wang, D. Liu, Y. Wang, and Z. Shao, “Ftl2: A hybrid flash translation
layer with logging for write reduction in flash memory,” SIGPLAN Not.,
vol. 48, no. 5, pp. 91–100, Jun. 2013.

[37] D. Liu, Y. Wang, Z. Qin, Z. Shao, and Y. Guan, “A space reuse strategy
for flash translation layers in slc nand flash memory storage systems,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 20, no. 6, pp. 1094–1107, June 2012.

[38] Y.-H. Chang, P.-C. Huang, P.-H. Hsu, L.-J. Lee, T.-W. Kuo, and D.-
C. Du, “Reliability enhancement of flash-memory storage systems:
An efficient version-based design,” Computers, IEEE Transactions on,
vol. 62, no. 12, pp. 2503–2515, Dec 2013.

[39] T. Wang, D. Liu, Y. Wang, and Z. Shao, “Ftl2: A hybrid flash translation
layer with logging for write reduction in flash memory,” SIGPLAN Not.,
vol. 48, no. 5, pp. 91–100, Jun. 2013.

[40] “Intel Shows PAX Attendees SSD Overclock-
ing.” [Online]. Available: http://www.legitreviews.com/
intel-shows-pax-attendees-ssd-overclocking 122557

[41] “Indilix barefoot controller.” [Online]. Available: http://www.indilinx.
com/solutions/barefoot.html

[42] “IOzone Filesystem Benchmark.” [Online]. Available: http://www.
iozone.org/

[43] “UMassTraceRepository.” [Online]. Available: http://traces.cs.umass.
edu/index.php/Storage/Storage

[44] “An Overview of SSD Write Caching.” [Online]. Avail-
able: http://community.spiceworks.com/attachments/post/0013/5918/
ssd write caching tech brief lo.pdf

[45] “Samsung NAND Flash memory K9XXG08UXM series.” [On-
line]. Available: http://www.arm9board.net/download/fl6410/datasheet/
k9g8g08.pdf

[46] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. Nevill, “Bit error rate in NAND Flash



12

memories,” in IEEE International Reliability Physics Symposium (IRPS),
2008, pp. 9–19.

[47] S. M. Jeff Yang, “High-Efficiency SSD for Reliable Data Storage
Systems,” in Flash Memory Summit, 2012.

[48] “Standard JESD218A, Solid-State Drive (SSD) Requirements and En-
durance Test Method,” 2011.

[49] “Standard JESD219, Solid-State Drive (SSD) Endurance Workloads,”
2010.

[50] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M.Olivieri,
“Mparm: Exploring the multi-processor soc design space with systemc,”
Journal of VLSI SIgnal Processing, vol. 41, pp. 169–182, 2005.

Lorenzo Zuolo received the Laurea Magistrale de-
gree (M.Sc.) in Technology for Telecommunications
and Electronic Engineering from Universitá degli
Studi di Ferrara in 2012. Currently, he is a Ph.D stu-
dent in the Dipartimento di Ingegneria of the same
institution. His main research interests are focused
on architectural/physical simulation of Solid State
Disks (SSD) and emerging non-volatile memories.

Cristian Zambelli received the M.Sc. and Ph.D.
(Hons.) degrees in electronic engineering from the
University of Ferrara, Ferrara, Italy, in 2008 and
2012, respectively. He has held a Research Assistant
(post-doctoral) position with the Department of En-
gineering, University of Ferrara, since 2012, where
he is currently an Assistant Professor. His current re-
search interests include the characterization, physics,
and modeling of nonvolatile memories reliability and
solid state drives reliability.

Rino Micheloni is Senior Principal Engineer at
PMC-Sierra. Before PMC-Sierra, he was Lead Flash
Technologist at IDT (Integrated Device Technology),
Senior Principal for Flash and Director of Qimonda’s
design center in Italy, developing 36 nm and 48
nm NAND memories. From 2001 to 2006 he man-
aged the Napoli design center of STMicroelectronics
focusing on the development of 90 nm and 60
nm MLC NAND Flash. Before that, he led the
development of MLC NOR Flash.

Marco Indaco is an assistant researcher of De-
partment of Control and Computer Engineering at
Politecnico di Torino. He got his Master degree
in Computer Engineering from the Universit degli
Studi di Napoli Federico II (Naples, Italy) and con-
cluded in 2014 his Ph.D in Information and System
Engineering at Politecnico di Torino (Turin, Italy)
under the supervision of Prof. Prinetto. He has been
selected for a special Ph.D program called Scuola
Interpolitecnica funded by Politecnico di Milano,
Politecnico di Torino and Politecnico di Bari. His

research interests are mainly focused on memory reliability with particular
emphasis on Solid State Drives and emerging memories. He is the recipient
of different national and european awards.

Stefano Di Carlo received the MS degree in com-
puter engineering and the PhD degree in information
technologies from the Politecnico di Torino, Italy,
where he has been an assistant professor in the
Department of Control and Computer Engineering
from 2008 till 2014 and he is currently an Associate
Professor in the same department. His research inter-
ests include DFT, BIST, and dependability. He is a
golden core member of the IEEE Computer Society
and a senior member of the IEEE.

Paolo Prinetto is full professor of Computer Engi-
neering at the Dipartimento di Automatica e Infor-
matica of the Politecnico di Torino, Torino (Italy),
and Adjoin Professor of the University of Illinois
at Chicago, IL (USA). His research activity mainly
focus on Digital Systems Design & Test, System
Dependability, FPGA-based Reconfigurable System
Design, Assistive Technologies and ICT for Deaf
people. He is also president of CINI: Consorzio In-
teruniversitario Nazionale per lInformatica, member
of the Scientific Committee of the French “Centre

National de la Recherche Scientifique” (C.N.R.S.) and Vice-Chair of the IFIP
Technical Committee TC 10 - Computer Systems Technology.

Davide Bertozzi got his PhD in Electrical Engi-
neering from University of Bologna (Italy) in 2003.
Since 2005 he is Assistant Professor at University of
Ferrara (Italy), where he leads the Research group on
Multi-Processor Systems-on-Chip, with Networks-
on-Chip as the main focus. He has been visiting re-
searcher at international academic institutions (Stan-
ford University) and large semiconductor companies
(NEC America Labs, USA; NXP Semiconductors,
Holland; STMicroelectronics, Italy; Samsung Elec-
tronics, South Korea). Bertozzi was Program Chair

of the Int. Symposium on Networks-on-Chip (2008) and of the NoC track
at DATE (2010-2012) conference. He is member of the Editorial Board of
the IET-CDT, Springer DAEM and ACM TODAES journals. Bertozzi is a
member of the Hipeac NoE and was/is involved in many Italy- and EU-funded
initiatives (Photonica, Galaxy, NaNoC, vIrtical).

Piero Olivo received the Ph.D. in electronic engi-
neering from the University of Bologna, Bologna,
Italy, in 1987. He has been a Full Professor of
Electronics with the University of Ferrara, Ferrara,
Italy, since 1994. His research interests include the
physics, the reliability and the experimental char-
acterization of innovative non-volatile memory cells
and architectures.


