
Learning Transfer-based Adaptive Energy
Minimization in Embedded Systems

Rishad A. Shafik, Member, IEEE, Sheng Yang, Member, IEEE, Anup Das, Member, IEEE, Luis A. Maeda-
Nunez, Member, IEEE, Geoff V. Merrett, Member, IEEE & Bashir M. Al-Hashimi, Fellow, IEEE

Abstract—Embedded systems execute applications with vary-
ing performance requirements. These applications exercise the
hardware differently depending on the computation task, generat-
ing varying workloads with time. Energy minimization with such
workload and performance variations within (intra) and across
(inter) applications is particularly challenging. To address this
challenge we propose an online approach, capable of minimizing
energy through adaptation to these variations. At the core of
this approach is a reinforcement learning algorithm that suitably
selects the appropriate voltage/frequency scaling (VFS) based
on workload predictions to meet the applications’ performance
requirements. The adaptation is then facilitated and expedited
through learning transfer, which uses the interaction between
the application, runtime and hardware layers to adjust the VFS.
The proposed approach is implemented as a power governor in
Linux and extensively validated on an ARM Cortex-A8 running
different benchmark applications. We show that with intra-
and inter-application variations, our proposed approach can
effectively minimize energy consumption by up to 33% compared
to the existing approaches. Scaling the approach to multi-core
systems, we also demonstrate that it can minimize energy by up
to 18% with 2X reduction in the learning time when compared
with an existing approach.

Index Terms—Energy-efficiency, dynamic voltage/frequency
scaling, reinforcement learning.

I. INTRODUCTION

Energy minimization is a prime design objective for embed-
ded systems. To enable energy minimization these systems are
equipped with processors with dynamic voltage and frequency
scaling (DVFS) capabilities, controlled by the system firmware;
examples include Linux’s power governors and ARM’s VFS
firmware [1]. The basic principle of DVFS is to reduce the
operating voltage/frequency (V/F) dynamically at runtime,
resulting in a cubic decrease in power consumption [2], [3],
[4].

Energy minimization approach through DVFS can be broadly
classified into two types – offline and online. The offline
approach characterizes the workloads of a given application
exploiting application-specific knowledge. The profiled work-
loads are then used during runtime to adjust the power control

S. Yang, A. Das, L.A. Maeda-Nunez, G.V. Merrett and B.M. Al-Hashimi
are with the School of ECS, University of Southampton, UK e-mail:
{sy2u12,akd1g13,lm15g10,gvm,bmah}@ecs.soton.ac.uk.

R.A. Shafik is affiliated with the School of EEE, Newcastle University, UK
e-mail: rishad.shafik@newcastle.ac.uk.

Manuscript first received on 18 Dec. 2014, revised on 4 April and 14 July,
accepted on 20 August 2015.

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.

levers at regular intervals for achieving energy minimization.
Workload characterization and energy minimization of video
decoders [5], [6] and control-theoretic formulation of energy
consumption of multimedia workloads [7] are typical examples.

Online energy minimization approach has the basic principle
of controlling the hardware power levers based on the processor
workloads [8], [9]. Depending on the control mechanism,
online approach can be reactive or proactive. In the reactive
approach the VFS is controlled based on the history of CPU
workloads. When the CPU workload is higher/lower than a
pre-defined value, an increased/decreased V/F is used, e.g.
Linux’s ondemand power governor [11]. In the proactive
approach predicted workloads are used to manage the hardware
power control levers [10], [12]. The impact of such control
is then observed and adjusted through feedback from the
hardware performance monitors. Jung et al. [13] proposed
one such approach using an initial value problem based
processor workload classification. The workloads are then
predicted and classified to continuously determine V/F for
energy minimization. Ramakrishna et al [14] showed a similar
online approach for task workload classification and VFS
control with the feedback from the performance counters.

Since processor workloads are exercised differently depend-
ing on the application tasks, Siyu et al. [15] and Shen et al. [17]
have proposed online approaches using machine learning
algorithm. Their approaches have shown methods learning the
VFS required for an application to achieve energy minimization
in the presence of performance variations due to application-
generated CPU workloads. However, these approaches do not
consider the variation of application performances, such as
frame rate for video decoders, page loading rate for browsers
etc. Among others, learning-based idle-time manipulation has
been proposed in [18] to reduce energy in multi-core systems.

Modern embedded systems feature workload and perfor-
mance variations both within and across applications [16].
As these variations arise dynamically due to the types of
computation being executed, energy minimization using the
existing approaches is challenging (see Section II). This is
because the online approaches, such as [11], [14], [17] do not
interact with the applications for their changing performance
needs, which leads to either over-performance or failure in
meeting their performance requirements. Moreover, existing
approaches using machine learning [15], [17], [18] use a single
runtime formulation of V/F scaling for a given performance
requirement, which cannot adapt to intra- and inter-application
variations.

To effectively minimize energy consumption in the presence
of such workload and performance variations, this paper makes
the following specific contributions:
• an energy minimization approach to effectively adapt to

the intra- and inter-application variations is proposed,
• fundamental to the approach is a reinforcement learning

(RL) algorithm to suitably control VFS for a given
performance requirement, followed by a learning transfer
(LT) algorithm to adapt to variations, and

• a Linux runtime governor implementation of the approach
is shown for extensive validation using different applica-
tions.

To the best of authors’ knowledge, this is the first work that
shows learning transfer-based adaptive energy minimization and
its implementation on single and multi-core embedded systems.
The remainder of this paper is organized as follows. Section II
motivates the proposed approach, Sections III describes the
approach and its implementation. Sections IV and V reports
the experimental results and overheads analysis, Section VI
demonstrates scaling of the approach to multi-core systems.
Finally, Section VII concludes the paper.

0.E+0

1.E+7

2.E+7

3.E+7

4.E+7

5.E+7

6.E+7

7.E+7

8.E+7

0 8

16 24 32 40 48 56 64 72 80

33
44

33
52

33
60

33
68

33
76

33
84

2

10 18 26 34 42 50

11
58

0 8

16 24 32 40

17
0

17
8

18
6

C
P

U
 W

o
rk

lo
ad

, C
yc

le
s

Frames

MPEG4: 24 fps SVGA MPEG4: 15 fps QVGA FFT: 16 wave fps

(1A): Intra-application
workload variation

(1B): Intra-application
performance variation

(2): Inter-application
variation

Browser: small pages

Fig. 1. Workload and performance variations within and across applications

II. MOTIVATION

Fig. 1 shows an example of workload (in CPU cycles)
and performance variations (in ms per frame) within (intra)
and across (inter) applications, considering three scenarios:
MPEG4 [20] followed by FFT [21] and browser (based
on [22]) rendering small html pages (less than 20kb in size)
from bbench [23]. The CPU workloads were recorded on
a DM3730 SoC from Texas Instruments, integrated on the
BeagleBoard-xM (BBxM) platform [19], which incorporates an
ARM Cortex-A8 CPU core running at 800MHz. The following
two observations are made:
Observation 1: The CPU workloads and performances vary
within an application. For example, MPEG4 decoding at 24
SVGA frames per second (fps) exhibits up to 7x workload
variation, Fig. 1 (1A). Such variations arise due to decoding
of intra-coded (I) SVGA frames with higher computations,
followed by a number of predictive-coded (P) frames with lower
computations [27]. The MPEG4 also experiences a performance
change from 24 SVGA fps to 15 QVGA fps, Fig. 1 (1B).
Observation 2: The CPU workload profiles change when the
system switches between applications. For example, when the

system switches from MPEG4 to FFT, the workload increases
by 3x on average (Fig. 1(2)), since FFT wave frames are
computationally intensive. Also, when the system switches
from FFT to browser, the workload decreases by 2x due to less
computations required. During such switches the performance
requirements also change from 67 ms per MPEG4 frame to 62
ms per FFT wave frame and then to 100 ms per browser page.

Minimizing energy consumption in the presence of the above-
mentioned variations can be particularly challenging as the
processor power control levers will need to be continually
learnt and adjusted. This paper proposes a learning transfer-

RuntimeRuntime

Application Application

Runtime

Hardware Hardware Hardware

(a) (b) (c)

Application

P
er

fo
rm

an
ce

va
ri

at
io

n
s

W
o

rk
lo

ad

va
ri

at
io

n
s

Requirement Energy Avg. Performance Energy Avg. Performance Energy Avg. Performance

SVGA: 41 ms/frame 229 J 35 ms/frame 189 J 37 ms/frame 178 J 40 ms/frame

QVGA: 67 ms/frame 108 J 53 ms/frame 126 J 40 ms/frame 97 J 66 ms/frame

FFT: 62 ms/frame 164 J 50 ms/frame 123 J 67 ms/frame 131 J 61 ms/frame

Browser: 100 ms/page 119 J 79 ms/frame 89 J 112 ms/page 101 J 98 ms/page

Control VFS based on
CPU usage history

Learn VFS control
Learn VFS control and

adapt to variations

API

Linux Ondemand Learning Proposed

Fig. 2. Comparison between energy minimization approaches: (a) Linux’s
ondemand [11], (b) learning-based [17], and (c) proposed

based adaptive energy minimization approach, addressing such
learning and adaptation aspects. To highlight the importance
of such approach, Fig. 2 shows three energy minimization
approaches applied to the application scenarios in Fig. 1:
MPEG4 decoding at 24 SVGA fps (41 ms/frame) and 15
QVGA fps (i.e. 67 ms/frame), FFT processing 16 wave fps
(i.e. 62 ms/frame) and browser rendering at 100 ms/page. The
energy consumption incurred by the applications are measured
using an Agilent DC Power Analyzer (N6705B) (see Section IV
for details).

The learning approach (Fig. 2.(b)) carries out a single
formulation of the VFS controls based on the predicted
workloads using machine learning [17]. However, as the VFS
controls resulting from such learning approach do not adapt to
workload and performance variations across the applications,
it cannot achieve effective energy minimization. For example,
after initially learning VFS controls for the MPEG4 decoding
at 24 fps, the learning approach over-performs and incurs
higher energy consumption for the MPEG4 decoding 15 QVGA
fps. Conversely, in the case of FFT and browser applications
it under-performs and violates the specified performance
requirements (highlighted in red). Due to performance-agnostic
nature of VFS controls the Linux ondemand over-performs for
most of the applications, incurring higher energy consumptions
(Fig. 2.(a)). The proposed approach provides the lowest energy
consumption for all intra- and inter-application variations. This
is because it learns the appropriate VFS controls and adapts
to performance and workload variations across all applications
(Fig. 2.(c)).

 Runtime

OS Scheduler Power Governor

 Application

Task performance req. through API

 Hardware
Performance

Monitor
CPU

Voltage/freq. control Perf. Counter

V/F
levers

tasks

t1 t2 t3 t4 t5 ... tn

(a)

Next
decision
epoch?

Predict
current WL

using
EWMA

Map WL &
current perf. to
system states in

Q-table

D
ecisio

n
 ep

o
ch

D
ecisio

n
 ep

o
ch

t1 t2

If exploring?
Explore V/F

scaling in
Q-table

Monitor
performance and
update Q-table

Exploit V/F
scaling from

Q-table

Check WL and
performance

variation

WL/perf.
changed?

Minimal re-
exploration

YES

YES

NO

NO

Step 1: Initial Reinforement Learning

Step 2: Learning Transfer-based Adaptation

(b)

Scale current Q-
values

YES

Update
history of
past WLs

Fig. 3. (a) Proposed adaptive approach showing interactions between layers,
(b) flowchart of the proposed adaptive energy minimization approach

III. PROPOSED ENERGY MINIMIZATION APPROACH

Fig. 3.(a) shows the proposed approach highlighting the
interactions between the application, runtime and hardware
layers. The application layer consists of a series of tasks being
executed at time intervals (referred to as decision epochs).
Each task has a performance requirement, specified through
an application programming interface (API) as

rts.set_perf(41);

where rts is a thread-safe runtime variable (see Appendix A),
set perf sets the performance requirement as 41 ms per decision
epoch. The runtime layer consists of the power governor
implementing the proposed approach. With a given performance
requirement, the governor minimizes energy through suitably
controlling the hardware power levers (i.e. VFS) at regular
decision epochs.

A flowchart of the proposed approach is depicted in Fig. 3.(b),
showing two major steps: reinforcement learning (RL) and
learning transfer (LT) . The RL sets up proactive VFS
controls at each decision epoch through state prediction. When
performance or workload variations are detected, these controls
are adapted through a LT algorithm. These steps are detailed
in the following.

A. Step 1: Reinforcement Learning

The initial learning through RL algorithm evolves in three
phases, as follows.

1) State Prediction and Q-table Formation: State prediction
is a required phase in the RL step to identify the Q-value of the
future system state. In our approach, the same predictor is also
used to classify the expected workload to a system state at the
beginning of each decision epoch, similar to [14], [15], [17].
This predictor estimates the current CPU workload based on
the history of the past workloads and maps the workload to
a system state based on the current performance. The CPU
cycles’ count is preferred as the workload parameter over the
other parameters, such as memory accesses, cache misses and
instruction rate, etc. as it directly defines the CPU activity
when executing instructions of a task. To predict the workload,
an exponential weighted moving average (EWMA) scheme
is used, similar to [5], [8]. Using this scheme, the predicted
workload for the t+ 1th decision epoch, ˆCt+1 is

ˆCt+1 = ωCt +

t−D∑
i=t−2

(1− ω)
i Ci , (1)

where Ct and Ci are the previous observed workloads (in CPU
cycles) at the tth and ith decision epochs, (t−D) ≤ i ≤ (t−1),
ω is the moving average coefficient and D is the window size
of past observed workloads. The ω and D values are chosen
to give higher prediction accuracy for the given application
workloads, similar to [14]. However, the workload prediction
through (1) still undergoes mispredictions during runtime due to
variations in workloads. The impact of such mispredictions on
the corresponding VFS controls is discussed in Section IV-A.

The system state is determined by using the Ĉ through (1)
and the current performance as a pair. The state space S is
comprised of the combinations of average slack ratios (L) and
Ĉ, denoted as S{C,L}. For each state (st), the average slack
ratio at tth decision epoch (Lt) is divided in bins (five, for
example) as

∀st :

Lt > 0.15, Lt ≤ −0.15,

0.05 < Lt ≤ 0.15, −0.15 < Lt ≤ −0.05, &

|Lt| ≤ 0.05

(2)

Similarly, for each state CPU workloads are divided in several
workload bins (six, for example) as:

∀st :

Ct > [Cb + 2∆C] ; higher bin,

(Cb +m∆C) > Ct ≥ [Cb + (m− 1)∆C] ;m = −1 : 2,

Ct < [Cb − 2∆C] ; lower bin.
(3)

where ∆C is the size of the workload bins around a base
workload (Cb). With the given combinations between Lt and
Ĉt+1 in (2) and (3), state entries for the Q-table are set up. Thus,
for each predicted workload (ˆCt+1) and the current performance
(Lt) pair the system state is mapped using (2) and (3).

The state space, and the action space (formed of the VFS
control options, denoted as A{V dd, f}) define the size of Q-
table for the RL step. The size of the Q-table in terms of the
total number of state-action pairs (|A{V dd, f}| × |S{C,L}|)
is important for the RL algorithm as it influences the trade-off
between learning overhead and energy minimization achieved
(see Section III-B and IV for detailed trade-offs). In this
work, the size of Q-table is carefully chosen to ensure a good

trade-off between learning overhead and energy minimization
(see Section V). With the given state prediction and Q-
table formation, the RL algorithm carries out exploration and
evaluation of the VFS control actions as discussed next.

2) Exploration: Exploration is a crucial phase in RL
algorithm as does the actual learning of appropriate VFS actions
based on the system states. Traditionally, it is carried out using
a random action selection strategy from the pool of actions,
each with a uniform probability distribution (UPD). However,
such exploration is inefficient as it does not use the intuitive
relationships that often exist between the state-action pairs [24].
To reflect such relationship during exploration, we use the
following discrete exponential probability distribution (EPD)
function for the selection of action (at)

p(at)at∈A{V dd,f} = λ exp [−λf(a)βL], (4)

where λ is the uniform probability of actions (i.e. λ =
1/|A{V dd, f}|), f(a) is the operating frequency in action
a and β is a constant. According to (4) when L is close to
zero, the exploration probabilities are almost uniform, guided
by λ. However, positive and negative L prioritize selection
of lower and higher frequencies, respectively. The probability
distribution, given by (4), has an advantage in terms of quicker
learning, which can be stated and proven by Lemma I (see
Appendix B). At the beginning of the (t+ 1)

th decision epoch,
the Q-value corresponding to a selected VFS action is updated
as [15]:

Q(st+1, at) = Q(st, at)(1− α) + α[rt + γ max
at

Q(st+1, at)],
(5)

where α is the learning rate, γ is the discount factor to de-
scale the current maximum Q-value in the row (0 ≤ α, γ ≤
1), st is the observed state in the tth decision epoch and
st+1 is the predicted state in the (t+ 1)th decision epoch
determined by estimated workload and current performance
(see Section III-A1). The reward function rt in (5) is computed
as a function of the resulting average slack ratio at the tth

decision epoch (Lt) and it’s change since the last decision
epoch (∆L), i.e.

rt = K1|Lt|+K2∆L , (6)

where K1 and K2 denote constant values, pre-determined to
ensure actions that improve Lt values (through ∆L trends) are
rewarded or vice versa. The ∆L values are estimated by

Lt =
1

N(Tref)

t∑
i=0

(Tref − Ti − TOVH) , (7)

where Tref is the reference execution time, Ti is the application
task execution time, N is the number of decision epochs
elapsed since application started with a given Tref , TOVH

is the total overheads caused by learning and adaptation steps
(see Section V) and ∆Lt is the average slack difference since
the last observation, given as ∆Lt = Lt−1−Lt. The Ti in (7)
can be estimated as the ratio between the observed processor
CPU cycles (Ci) and the operating frequency chosen (fi) at
ith decision epoch as

Ti =
Ci

fi
. (8)

Equations (5) and (6) set up the exploration of VFS control
actions.

3) Exploitation: In this phase, the state-action relationships
learnt are exploited. The transition from the exploration
to exploitation phase is controlled through the exploration
probability (EP), denoted by ε (0 ≤ ε ≤ 1). To accelerate
exploitation εt at the tth decision epoch is updated as

εt = εt−1 exp [−(1− α)] , (9)

where α is the learning factor per decision epoch. Based on the
εt value, the exploration or exploitation is carried out to find
the best policy sub-set (π∗(st, at)) from a set of exploration
policies (Π(st, at), π ∈ Π) as follows:

π∗(st, at) =

{
at : max (Q(st, a)) ; if p > εt,
ak : p(ak) is given by (4)

(10)

where p is a random value uniformly distributed over [0, 1].
As can be seen, when εt value decreases in (9), the probability
of exploitation increases in (10).

TABLE I
THE COMPARISONS BETWEEN SINGLE Q-TABLE [9] AND LEARNING

TRANSFER APPROACHES

|A| ∆C Q-table size: |A|×|S| Q-table size: |A|×|S|
(single Q-table) (learning transfer)

4 1×107 4000 120
4 2×107 2000 120
4 4×107 1000 120
6 1×107 6000 180
6 2×107 3000 180
6 4×107 1500 180

B. Step 2: Learning Transfer-based Adaptation

Using a single Q-table in RL algorithm step for covering the
dynamic ranges of workload and performance variations can
expand the learning space substantially. Table I shows example
illustrations of the impact of using a single Q-table approach,
similar to [9]; column 1 and 2 show the number of actions and
the size of workload bins, while column 3 shows the number
of state-actions pairs considering a workload coverage from 0
to 1010 cycles. As can be seen, for such a dynamic workload
a single Q-table will have 4000 state-action pairs considering
4 actions with workload bin size of 107 each. The size of the
Q-table can expand further to 6000 for 6 actions.

To ensure a quicker learning and adaptation to dynamic
workload or performance variations, smaller Q-table is used
in this work together with LT. Columns 5 and 6 show the
motivation of using such LT-based adaptation (Table I). As
expected with a smaller state space of 30, the number of state-
action pairs is 120 for 4 actions, and 180 for 6 actions around
a base workload. With smaller Q-tables the LT also benefits
from quicker convergence and learning of the Q-table. Table II
compares the worst-case convergence times between single Q-
table approach and smaller Q-tables in the LT-based approach
considering both workload and performance variations in the
case of ∆C=107 and |A|=4. Columns 1-3 show the number of
workload variations and the corresponding number of decision
epochs required for full convergence of both approaches. As

can be seen, the single Q-table approach takes invariably
4000 decision epochs despite any workload variations for the
full learning of the Q-table. The LT-based approach takes
significantly lower number of decision epochs for the same
due to smaller Q-tables. The convergence time in this approach,
however, depends on the number of workload variations. As
can be seen, when the number of workload variation increases
from 1 to 8, the the convergence time increases from 160 to
440 decision epochs, which is still significantly lower than the
single Q-table approach.

TABLE II
COMPRATIVE CONVERGENCES OF SINGLE Q-TABLE APPROACH [9] AND

PROPOSED LEARNING TRANSFER-BASED APPROACH

Workload variation Performance variation
No. of Learning convergence No. of Learning convergence
Variations single transfer Variations single transfer
0 4000 120 0 4000 120
1 4000 160 1 8000 160
2 4000 200 2 12000 200
4 4000 280 4 20000 280
8 4000 440 8 36000 440

Table II also compares the worst case convergence times of
both approaches for different performance variations (columns
4-6). As can be seen, the single Q-table approach requires
significantly higher number of decision epochs when per-
formance variations (i.e. change in Tref) are encountered.
This is because the original Q-table can no longer provide
the the optimized VFS scaling options with such variation,
necessitating re-learning from scratch. Unlike the single Q-
table approach, the LT can continue to exploit the previous
learning and converge faster to give the optimized VFS options
for the new system states (Lemma I compares and proves the
convergences times, see Appendix B).

Phase 1: Application initiates
execution with a perf. req., Tref

Phase 2: Explore/exploit V/F
controls & compute avg. WL Cn

Phase 3:
If Cn > (Cb+4ΔC) or

Cn < (Cb-4ΔC)

NO
runtime

runtime

runtime↔HW

ru
n
ti
m
e
↔

ru
n
ti
m
e

Phase 5: Update Cb
& learning transfer

(Algorithm 1)

runtime

YES

Phase 6:
App. switch?

runtime

ru
n
ti
m
e
↔

ru
n
ti
m
e

ap
p
lic
at
io
n
→
ru
n
ti
m
e

Phase 4: Update Cb
& scale Q-values

application

Fig. 4. Learning transfer-based adaptation to workload/performance variations

When the workload profile changes within an application
beyond the current base workload (observation 1), the current
Q-table fails to minimize energy consumption effectively. The

same is also true when the performance requirement changes
within and across applications (observation 2). To enable
adaptation to these variations the proposed approach first detects
these variations through inter-layer interactions (Fig. 4). This
is then followed by a Q-table update through LT algorithm
(Algorithm 1). The detection of workload and performance
variations and their adaptations are further detailed next.

1) Adaptation to Workload Variation: The workload varia-
tion is detected through the interaction between the runtime
and the hardware layers in the following phases, as shown in
Fig. 4. Initially, with a given performance requirement of Tref
per application task (Fig. 3.(a)), the runtime learns VFS control
actions (phases 1-2). During this time the runtime also computes
the short-term average workload, Cn, over the last n decision
epochs (the impact of varying n is studied in Section V). The
mean workload, Cn, is then compared with the current base
workload (Cb) in the Q-table (phase 3). If Cn is confirmed
as beyond the current table limits (i.e. Cn > (Cb + 4∆C) or
Cn < (Cb − 4∆C)), the Q-table states are updated and scaled
with a new base workload (Cb) nearest to Cn (phase 4). The
scaling from the old Q-table is carried out as follows:

∀t : Q(st, at)scaled = Q(st, at)old exp

[
− 1

LρWL

]
, (11)

where ρWL is the scaling ratio proportional to Cbnew

Cbold
. Note

that the Q-value scaling in (11) ensures that the Q-values are
downscaled according to the L states. At higher L values the
Q(st, at)scaled values are less downscaled, while at lower L
values the Q(st, at)scaled values are more downscaled to ensure
that further exploration of VFS control actions can update the
optimal policy π∗ quickly. To minimize such exploration, the
current best policy (π∗(st, at)) in the scaled Q-table is then
updated in the next phase using LT algorithm, as shown in
Algorithm 1 (phase 5).

Algorithm 1 Learning transfer algorithm
Require: ρWL, Q(st, at)scaled, π∗(st, at)old
1: for each st in Q(st, at)new do
2: if st is explored then
3: if L(st) is near-zero (i.e. ±5%) then
4: set: f(π′(st, at)new) = ρWL × f(π∗(st, at)old)
5: else
6: set: f(π′(st, at)new) = f(π∗(st, at)old)
7: end if
8: map: f(π′(st, at)new) to the nearest action a′t in Q(st, at)new

9: for every action in Q(st, at)new do
10: if action is a′t then
11: swap Q(st, a′t)new with Q(st, a∗t)scaled
12: else
13: set: Q(st, at)new = αQ(st, at)scaled
14: end if
15: end for
16: else
17: set: Q(st, at)new = Q(st, at)scaled
18: end if
19: end for
20: return π′(st, at)new and Q(st, at)new

As can be seen, for each already explored state (st) the
chosen frequency in the new policy (f(π′(st, at)new)) is
obtained through scaling by a factor of ρWL (lines 2-6). For
a state with near-zero slack (i.e. ±5%), such scaling requires
multiplying the old chosen frequency by the scaling ratio

(ρWL), while for a state with higher positive or negative
slack the old chosen frequency is retained as the new chosen
frequency. After such scaling of chosen frequencies, their
corresponding actions are mapped in the new Q-table and
the new Q-values are updated through transfer of the scaled Q-
values (lines 9-15). The Q-value of the new chosen action
is set as the Q-value of the old chosen action (line 11),
while the other values retained from the scaled Q-values
through (11). For un-explored or partially explored state (st),
the scaled Q-value is retained in the new Q-table (line 17).
The resulting Q-table (line 20) with transferred learning is then
used with a reduced exploration probability (εt) for accelerated
re-exploration, instead of learning from the scratch.

2) Adaptation to Performance Variation: When the applica-
tion performance requirement changes due to intra- or inter-
application switch, the adaptation is enabled through the API-
based interaction between application and runtime layer (phase
6, Fig. 4). Upon such interaction, the runtime layer learns the
new Tref with the old Cb and carries out Q-value scaling and
LT (phases 4 and 5). Similar to (11), the Q-value scaling is
carried out as

∀t : Q(st, at)scaled = Q(st, at)old exp

[
− 1

LρT

]
, (12)

where ρT is the scaling ratio, proportional to Trefold

Trefnew
. Similar

to (11), Equation (12) also scales Q(st, at)old values based on
the L values. Following the Q-value scaling in (12), the Q-
values are transferred between action pairs using the Algorithm
1 with pWL values replaced by pT . The transferred Q-values
are then used for further minimal explorations (Fig. 3.(b)). The
LT-based adaptation has the advantage of lower number of
re-explorations required when compared with the re-learning
based approach. The reduction of the number of explorations
is described through Proposition I (see Appendix B).

0.E+0

1.E+7

2.E+7

3.E+7

4.E+7

5.E+7

81
5

84
5

87
5

90
5

93
5

96
5

99
5

10
25

10
55

10
85

11
15

11
45

11
75

12
05

12
35

12
65

12
95

13
25

13
55

13
85

14
15

14
45

14
75

44
38

44
68

44
98

45
28

45
58

45
88

46
18

CP
U

 w
or

kl
oa

d,
 c

lo
ck

 C
yc

le
s

Decision epoch

Predicted WL C_n

[C_n > 1.5e7] or [C_n < 1.3e7] TRUE
requiring re-learning at 4423rd decision epoch

(a)

Q-table during exploration in the initial
learning step with base workload,

Cb = 1.5x107 cycles

Q-table after minimal re-exploration in
learning transfer step with base workload,

Cb = 3.0x107 cycles

Q-table after Q-value & action scaling in the
learning transfer step with base workload,

Cb = 3.0x107 cycles

Application 1

Application 2

Exploitation Phase

(b) (c) (d)

(V1,

F1)

(V2,

F2)

(V3,

F3)

(V4,

F4)

Lt > 15% 0 -58 -13 102

15%< Lt<= 5% -703 -102 15.2 -35.6

5%<Lt<= -5% -30.2 58.1 -35 -112.1

-5%<Lt<= 15% -341 126.2 78.1 0

Lt < -15% -32 -117 -137 0

Lt > 15% 0 0 0 -16

15%<Lt<= 5% 0 0 0 0

5%<Lt<= -5% 0 -14 0 0

-5%< Lt<= 15% 0 0 0 0

Lt < -15% -12 -19 0 0

Q-value scaling

(V1,

F1)

(V2,

F2)

(V3,

F3)

(V4,

F4)

Lt > 15% 0 -10.4 -2.3 18.3

15%< Lt<= 5% -5.4 -0.8 0.1 -0.3

5%<Lt<= -5% -0.4 0.7 -0.4 -1.4

-5%<Lt<= 15% -2.6 1.0 0.6 0

Lt < -15% -6.3 -27.1 -38.5 0

Lt > 15% 0 0 0 -2.9

15%<Lt<= 5% 0 0 0 0

5%<Lt<= -5% 0 -2.4 0 0

-5%< Lt<= 15% 0 0 0 0

Lt < -15% -2.1 -2.7 0 0

After Learning Transfer and re-exploration

(V1,

F1)

(V2,

F2)

(V3,

F3)

(V4,

F4)

Lt > 15% 0 -12.5 14.8 22.0

15%< Lt<= 5% -1.7 -0.9 0.3 -13.2

5%<Lt<= -5% 10.5 -5.2 -6.1 -19.2

-5%<Lt<= 15% 7.4 11.5 -15.5 0

Lt < -15% -29.5 -6.9 -17.0 0

Lt > 15% 0 0 0 -2.9

15%<Lt<= 5% 0 0 0 0

5%<Lt<= -5% 0 -2.4 0 0

-5%< Lt<= 15% 0 0 0 0

Lt < -15% -2.9 -6.9 -12 0

W
L
:
1

.5
x
1

0
7

to
 1

.6
5

x
1

0
7

W
L
:
1

.3
5

x
1

0
7

to
 1

.5
x
1

0
7

W
L
:
3

.0
x
1

0
7

to
 3

.3
x
1

0
7

W
L
:
2

.7
x
1

0
7

to
 3

.0
x
1

0
7

W
L
:
3

.0
x
1

0
7

to
 3

.3
x
1

0
7

W
L
:
2

.7
x
1

0
7

to
 3

.0
x
1

0
7

Fig. 5. Example illustration of learning transfer-based adaptation

3) Example Illustration: To illustrate how the proposed
approach adapts to inter-application switch (from Application 1
to Application 2) as an example, Fig. 5.(a) plots the predicted
(Ĉt) and observed mean workload (Cn) values, with n=300
decision epochs, while Fig. 5.(b)-(d) show Q-tables for ten
states covering two workload bins around the mean workload
and five slack state variations as shown in (eq:statedef1) out of
total 30 states (for demonstration purposes) and four actions
for both applications. As can be seen in Fig. 5.(b), after the
initial learning and exploration the Q-table is populated with
two different kinds of states: explored states and partially
explored or un-explored states. The explored states are more
frequently visited due to workloads exercised by the hardware
due to Application 1. As a result, most of the actions are
evaluated and the best actions are chosen as the highest Q-
value in the table (highlighted in blue). The un-explored or
partially explored states are not visited as often and hence
not all actions are evaluated (un-explored actions are marked
by zero values). After initial exploration and learning of the
controls, the Q-table facilitates exploitation for the Application
1 with a Cb=1.5× 107.

After the 4423rd decision epochs the system switches
from Application 1 to Application 2 with both workload and
performance variations. The workload variation is observed
through the mean workload Cn, while performance variation is
directly communicated by the application to the runtime (Fig. 4).
To adapt to such variations, the proposed approach carries out
LT in two stages. First, the Q-values are scaled through (11)
using the new base Cb=3.0×107 near the current mean workload
(Cn). The resulting scaled Q-values are shown in Fig. 5.(c).
The scaled Q-values are then used to carry out further action
transfer of explored and un-explored states through Algorithm
1. For explored states, the new actions near zero values (±5%)
are further minimally re-explored. The resulting Q-values and
the chosen actions after such exploration are shown in Fig. 5.(d).
It is to be noted that LT requires only 1 out of 10 states to be
explored compared all 10 states in other approaches.

IV. EXPERIMENTAL RESULTS

The proposed adaptive energy minimization approach is im-
plemented as a power governor in Linux kernel revision 3.7.10
(see Appendix A) running on DM3730 SoC, integrated on the
BeagleBoard-xM (BBxM) platform [19]. The platform consists
of, among others, a single-core ARM Cortex-A8 CPU core,
which supports four V/F levels: 300MHz at 0.93V, 600MHz at
1.10V, 800MHz at 1.26V and 1GHz at 1.35V [19]. To evaluate
the effectiveness of the proposed governor, ffmpeg-based
multimedia [20], MiBench benchmark [21] and browser [22]
applications are executed. The energy consumptions of the
ARM Cortex-A8 core are measured through direct observation
of current and voltage using an Agilent DC Power Analyzer
(N6705B). The current was observed by lifting an inductor
off of the board and re-routing the signal through the same
inductor and the power analyzer, while the voltage supplied
across the Cortex-A8 was measured directly across the core
supply. All experiments are carried out using a Q-table size
of (30x4) consisting of 5 slack states and 6 workload states

as such table size gives the best trade-off between energy
minimization and learning overheads as discussed in Section V.

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

5
7

0
4

5
7

0
9

5
7

1
4

5
7

1
9

5
7

2
4

5
7

2
9

5
7

3
4

5
7

3
9

5
7

4
4

5
7

4
9

5
7

5
4

5
7

5
9

5
7

6
4

5
7

6
9

5
7

7
4

5
7

7
9

5
7

8
4

5
7

8
9

5
7

9
4

C
P

U
 w

o
rk

lo
ad

, C
yc

le
s

Frames

Predicted workload

Observed workload

-60

-40

-20

0

20

40

60

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

5
7

0
4

5
7

0
9

5
7

1
4

5
7

1
9

5
7

2
4

5
7

2
9

5
7

3
4

5
7

3
9

5
7

4
4

5
7

4
9

5
7

5
4

5
7

5
9

5
7

6
4

5
7

6
9

5
7

7
4

5
7

7
9

5
7

8
4

5
7

8
9

5
7

9
4

A
ve

ra
ge

 s
la

ck
, %

Frames

The impact of mispredictions during initial stage
and learning is mitigated through average slack

considerations in the Q-table

application switch triggers mispredictions and
under-performance, which is corrected

after D frames in the EWMA algorithm; the impact
mispredictions is mitigated through learning transfer

MPEG4 workloads

Browser workloads-->

(a)

(b)

Fig. 6. (a) CPU workload predictions of MPEG4, followed by FFT, (b) impact
of learning on the average slack ratio (in %)

A. Impact of State Prediction and Exploration

To investigate into the impact of state prediction on learning,
Fig. 6.(a) shows the predicted and observed workloads (in
CPU cycles), while Fig. 6.(b) shows the corresponding average
slack ratios (L) caused by the RL algorithm (Section III-A)
for MPEG4 decoding at 24 SVGA fps, followed by browser
application. As can be seen, the EWMA based workload
prediction (given by (1)) incurs occasional mispredictions:
during the exploration (the first 25 frames) and exploitation
phases (after 90 frames) of MPEG4 and also briefly when
the system switches from MPEG4 to browser (after 5750
frames, Fig. 6.(a)). The highest average misprediction of about
8% on average with respect to the mean observed workload
was observed during the initial 100 frames in the MPEG4
decoding 24 SVGA fps, while the lowest misprediction of only
3% was observed for the following frames. To mitigate the
impact of such mispredictions the RL algorithm (Section III-A)
considers the current performance offset in terms of average
slack ratio (Lt) together with the currently predicted workload
during state mapping of the next state. In the event of
performance offset (showing positive or negative high Lt)
caused by mispredictions, the RL algorithm learns and applies
the appropriate VFS controls to minimize it through the action
rewarding mechanism (see Section III-A2). Similar to MPEG4,
workload misprediction is also observed when the system
switches to the FFT application after the 5754th frame. At
this time the LT and further explorations take place, which
causes under-performance initially for about 45 FFT frames.
However, after further explorations during the next 50 frames,
the under-performance is offset by updating the learning of the
appropriate VFS controls.

To highlight the advantages of the explorations using EPD
during the initial learning step (i.e. RL step), Table III compares
the average number of explorations required by the proposed

TABLE III
COMPARATIVE NUMBER OF EXPLORATIONS DURING THE INITIAL

LEARNING IN THE PROPOSED AND LEARNING APPROACHES

Application No. explorations
(proposed)

No. explorations
(learning [17])

MPEG4 (30 fps) 81 144
H.264 (15 fps) 91 149
mad (22k) 86 149
susan (384x288) 78 135
ispell (largespell) 82 139
FFT (32 fps) 75 119
browser (small) 89 141

approach and the that of the learing-based approach [17].
Column 1 shows the applications with the input sizes used,
while Columns 2 and 3 show the number of explorations
recorded for the proposed and learning-based approaches. As
can be seen, the proposed approach benefits from reduced
number of explorations due to the relationship between current
performance and VFS action in (4) when compared with the
exploration using a UPD in [17] (see Lemma I, Appendix B).
The applications FFT and susan were found to have the
lowest number of explorations as these applications exhibit
less workload variation, i.e. less number of workload states
during the learning step. As a result, the RL algorithm learns
the VFS controls faster. The MPEG4, H.264 and browser
applications showed the highest number of explorations due to
higher workload variations and eventually higher number of
workload states visited during learning.

B. Intra-Application Energy Minimization

A number of experiments are carried out with intra-
application workload and performance variations showing
comparative evaluation of the proposed adaptive approach.

1) Workload Variations: Fig. 7 shows the experimental
results of an H.264 decoder decoding at 24 VGA fps, used as
a case study, highlighting the adaptation to intra-application
workload variations. Fig. 7.(a) shows the predicted workload
together with the observed mean CPU workload over a moving
window of n=200 decision epochs, while Fig. 7.(b)-(d) show
the resulting average slack ratios caused by RL algorithm and
adaptation steps, the Q-table states and the VFS control actions
chosen over the decision epochs (in terms of frames). As can
be seen, initially the governor starts to learn the VFS control
actions (Fig. 7.(d)), which results in performance offset in terms
of L (Fig. 7.(b)). As the governor initiates exploiting some of
these VFS controls, L starts to reduce. During this phase the
Q-table states vary depending on the predicted workloads as
the VFS actions are chosen from the Q-table (Fig. 7.(c)-(d)).

After the 1271th frame the workload profile changes within
the application (observation 1, Section II), which is detected
through comparison of the observed mean workload, Cn with
the base workload (Cb) of the Q-table (Fig. 4). Due to such
variation in the workload, the proposed governor carries out
LT from the old Q-table with Cb=2.5× 107 to the new Q-table
with Cb=1.5×107 (Section III-B1). The LT is then followed by
further exploration of the Q-table to update the VFS controls
to achieve near-zero L values. Due to such re-exploration,

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

1

4
9

9
7

14
5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

1
0

0
9

1
0

5
7

1
1

0
5

11
5

3

1
2

0
1

1
2

4
9

1
2

9
7

1
3

4
5

1
3

9
3

1
4

4
1

1
4

8
9

1
5

3
7

1
5

8
5

1
6

3
3

1
6

8
1

1
7

2
9

1
7

7
7

1
8

2
5

1
8

7
3

1
9

2
1

1
9

6
9

W
o

rk
lo

ad
, C

P
U

 C
yc

le
s

Frames

Predicted workload

Observed mean workload, C_n

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

1

49 9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

1
0

0
9

10
5

7

1
1

0
5

1
1

5
3

1
2

0
1

1
2

4
9

1
2

9
7

1
3

4
5

1
3

9
3

1
4

4
1

1
4

8
9

1
5

3
7

1
5

8
5

1
6

3
3

1
6

8
1

1
7

2
9

1
7

7
7

1
8

2
5

1
8

7
3

1
9

2
1

1
9

6
9

A
ve

ra
ge

 s
la

ck
 r

at
io

, %

Frames

0

5

10

15

20

25

30

1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

67
3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

1
0

0
9

1
0

5
7

1
1

0
5

1
1

5
3

1
2

0
1

1
2

4
9

1
2

9
7

1
3

4
5

1
3

9
3

1
4

4
1

1
4

8
9

1
5

3
7

1
5

8
5

1
6

3
3

16
8

1

1
7

2
9

1
7

7
7

1
8

2
5

1
8

7
3

1
9

2
1

1
9

6
9

Q
-t

ab
le

 S
ta

te
 ID

s

Frames

0

1

1

2

2

3

3

4

1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

62
5

6
7

3

7
2

1

7
6

9

81
7

8
6

5

9
1

3

9
6

1

1
0

0
9

1
0

5
7

1
1

0
5

1
1

5
3

1
2

0
1

1
2

4
9

1
2

9
7

1
3

4
5

1
3

9
3

1
4

4
1

1
4

8
9

1
5

3
7

1
5

8
5

16
3

3

1
6

8
1

1
7

2
9

1
7

7
7

18
2

5

1
8

7
3

1
9

2
1

1
9

6
9

V
FS

 a
ct

io
n

 ID

Frames

(a)

(b)

(c)

(d)

Exploration during Initial learning causes
the average slack ratio to vary -- indicating
over-performance or uder-performance

The over-performance or under-performance
is caused by random selection of actions in the Q-table

The exploration in the initial learning causes the
the Q-table states to vary as well

Workload profile change (Cb=2.5e7 to Cb=1.5e7 cycles)
necessitates transfer learning and performance offset

Transfer learning for meeting near nero slack
requires minimal re-exploration with low VFS actions

During transfer learning the over-performance and
workload change causes more Q-table states to be visited

Fig. 7. (a) Predicted and observed mean workloads, (b) average slack ratios
(in %), (c) VFS controls, and (d) corresponding Q-table states of an H.264
decoder

the L values are perturbed again with over-performance at
reduced Cn (Fig. 7.(b)). Since the proposed governor adapts
the VFS controls in the presence of intra-application workload
variations, it can effectively minimize energy, while meeting
the application performance requirement.

Fig. 8 plots the normalized energy and performance values
of the proposed energy minimization approach with different
frame rates and resolutions of H.264, compared with the
existing approaches. Normalization is carried out to give
comparative figures between different approaches covering
the dynamic range of performance and workload variations for
various applications. Figures 8.(a)-(c) show the results of decod-
ing QVGA resolution with 15 fps, 24 fps and 29.97 fps, while
Figures 8.(d)-(f) show the same for decoding SVGA resolutions.
The performance is normalized with respect to the required
performance per frame (Tref) and the energy normalization
is carried out with respect to Oracle, found through offline
determination of optimized VFS controls for the observed CPU
workloads. The normalized energy and performance results
are obtained through averaging the decoder results of three
different video clips (football, flower and foreman) from xiph
video repository (http://media.xiph.org/video/derf/). The results
of the proposed approach are compared with Linux’s onde-
mand governor [11], predictive and learning-based approaches.
Predictive approach is implemented using [14] without any

Predictive
Learning-

based

Ondemand

Proposed
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 0.25 0.5 0.75 1 1.25 1.5 1.75

QVGA - 15 fps (67 ms/frame)

Predictive

Learning-
based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

QVGA - 24 fps (41 ms/frame)

Predictive

Learning-
based

Ondemand

Proposed
0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

QVGA - 29.97 fps (33 ms/frame)

Predictive

Learning-
based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

SVGA - 15 fps (67 ms/frame)

Predictive

Learning-
based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

SVGA - 24 fps (41 ms/frame)

Predictive
Learning-

based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

SVGA - 29.97 fps (33 ms/frame)

(c)

(a)

(b)

(d)

(e)

N
o

rm
al

iz
ed

 E
n

e
rg

y

Normalized Performance->
(f)

Fig. 8. Comparative evaluation of energy minimization of H.264 video decoder
with different performance requirements (normalized performance of 1 means
on par performance, > 1 means under-performance and < 1 means over-
performance; normalized energy of > 1 means higher energy consumption, <
1 means lower energy consumption; ≈1 means effective energy minimization
provided that performance is also on par)

explicit performance information from the application.

0

10

20

30

40

50

60

300 MHz 600 MHz 800 MHz 1 GHz

N
o

 o
f

fr
am

es
 (

%
)

Operating frequency

QVGA 24 fps (41 ms/frame)

Ondemand

Predictive

Learning-based

Proposed

0

10

20

30

40

50

60

300 MHz 600 MHz 800 MHz 1 GHz

N
o

 o
f

fr
am

es
 (

%
)

Operating frequency

SVGA 24 fps (41 ms/frame)

Ondemand

Predictive

Learning-based

Proposed

(a) (b)

Fig. 9. Comparative histogram of operating frequencies applied in H.264
decoding (a) QVGA, and (b) SVGA frame resolutions, 24 fps each

As can be seen, the ondemand governor consistently over-
performs when compared with the other approaches as it is
agnostic of application performance requirements. Hence, it
generates the highest energy consumption among all approaches.
The predictive energy minimization approach is also oblivious
to applications’ performance requirement, and hence it fails
to minimize energy consumption effectively meeting the
applications’ performance requirements. For example, in the
case of QVGA the predictive approach over-performs and
incurs higher energy consumption (Fig. 8(a)-(c)). However, for

SVGA with 24 and 29.97 fps it under-performs, which makes
the energy savings achieved through the predictive approach
ineffective (Fig. 8(e)-(f)). The learning-based approach [17]
performs better as it learns the VFS controls based on the
performance requirements. However, since it uses a single Q-
table formulation it adapts poorly to intra-application workload
variations. Our proposed approach can adapt to such variations
and minimize energy effectively. However, energy reduction
achieved in our approach depends on the number of intra-
application workload variations detected. For example, in the
case of Fig. 8.(c)-(f), the proposed approach does not offer
much of an energy saving when compared to the learning-based
approach [17] due to less workload variations (1, in the case
of decoding SVGA frames at 24 fps). However, in the case
of Fig. 8.(a)-(b), up to 20% energy reduction can be achieved
as the number of workload variations are much higher (4 for
both cases: decoding QVGA frames at 15 and 24 fps).

To give further insight into the energy minimization of
different approaches compared (Fig. 8), Fig. 9 plots the
histograms of H.264 decoding QVGA and SVGA resolutions
at 24 fps each. As can be seen from Fig. 9.(a), for the low
resolution QVGA video, the learning-based, predictive and
proposed approaches execute most of the frames at 300MHz
or 600MHz. The ondemand, however, executes more than
45% of the frames at 1 GHz due to its CPU utilization-based
VFS control. For decoding videos with different workloads
(Fig. 9.(b)), the proposed approach generates a balanced
frequency utilization based on the performance requirement to
ensure effective energy minimization.

Predictive

Learning-
based

Ondemand
Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

H.264(ffmpeg) - VGA 24 -> SVGA 29.97 fps

Predictive Learning-
based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

FFT(MiBench) - 16fps -> 32fps

Predictive

Learning-
based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0 0.25 0.5 0.75 1 1.25 1.5 1.75

MPEG4(ffmpeg) - SVGA 24 -> QVGA 24 fps

Predictive
Learning-

based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

mad(MiBench) - 44k -> 22k

PredictiveLearning-
based

Ondemand
Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

Susan(MiBench) - large-> small pgm

Predictive

Learning-
based

Ondemand Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

ispell(MiBench) - smallspell -> largespell

N
o

rm
al

iz
ed

 E
n

e
rg

y

(a) (d)

(b) (e)

(c) (f)

Normalized Performance->

Fig. 10. Comparative energy and performance trade-offs with intra-application
performance variations for different benchmark applications (performance and
energy consumption values normalized similar to Fig. 8)

2) Performance Variations: Fig. 10 depicts the normalized
energy and performance values (with respect to Oracle) of
different benchmark applications with varied performances
within the applications. Figures 10.(a)-(c) show the variation
from a lower performance to a higher performance for ispell
(MiBench), H.264 (ffmpeg) and FFT (MiBench) applications,
while Figures 10.(d)-(f) show the variation from a higher perfor-
mance to a lower performance for susan (MiBench), MPEG4
(ffmpeg) and mad (MiBench) applications. The normalized
energy and performance results are obtained through averaging
three observations, each with input sequence of 3000 decision
epochs (i.e. frames for MPEG4, H.264, FFT and susan, spelling
task for ispell and audio packet for mad).

As can be seen, when the performance requirement increases
from low to high, both predictive and learning-based approaches
under-perform (Fig. 10.(a)-(c)). On the other hand, when the
performance requirement decreases, these approaches over-
perform and incur higher energy consumptions (Fig. 10.(d)-(f)).
This is because both approaches cannot adapt to performance
variations due to lack of interactions between the layers.
The ondemand governor, however, shows trends of scaling
with the performance requirements, but it consistently over-
performs. The proposed approach can effectively scale with the
variation in the performance requirement and adapt through
LT (Section III-B2). As a result, it shows effective energy
minimization across all experiments saving on average 33%
and 24% when compared with the predictive and learning-
based approaches in the case of MPEG4 performance variation
(Fig. 10.(e)) and 30% when compared with the ondemand
governor in the case of FFT performance variation (Fig. 10.(c)).

Fig. 11. Comparative normalized energy with inter-application variations

C. Inter-Application Energy Minimization

Fig. 11 plots the comparative normalized energy con-
sumptions of energy minimization approaches for six inter-
application scenarios. Fig. 11.(a) and (b) show inter-application
switches from high performance to low performance, Fig. 11.(c)
and (e) show the same for high performance to high per-
formance switch, and finally, Fig. 11.(d) and (f) show inter-
application switches from low performance to high performance.
For each inter-application variation, two different switching
intervals of 1000 and 2000 decision epochs are used. The
energy values are normalized with respect to the proposed
approach.

From Fig. 11 two observations can be made. First observation
is related to inter-application energy minimization for a given
switching interval; as can be seen, for an application switch
from a higher performance to lower performance requirement
the proposed approach saves up to 38% and 22% for switching
interval of 2000 decision epochs compared to the predictive
and learning-based approaches, respectively (Fig. 11.(a)). How-
ever, when the application switches from a lower to higher
performance requirement the proposed approach consumes
more energy, while meeting the new application performance
requirement when compared with the predictive and learning-
based approaches. This is because the proposed adaptive
approach adapts to higher VFS control actions to meet the in-
creased performance requirement. Both predictive and learning-
based approaches fail to meet the application performance
requirement despite their energy savings. Similar adaptations
are also observed for the other inter-application switches. As
expected, the ondemand consistently over-performs compared
to the proposed approach. The second observation is related to
the change of switching interval; as can be seen with higher
switching interval the proposed approach exploits the learning
and adaptation for longer time. This leads to higher energy
savings compared with the other approaches. For example,
for a change of switching interval from 1000 to 2000, the
proposed approach saves up to 6% more energy compared to
the predictive approach.

V. LEARNING OVERHEADS

The learning algorithims in the proposed approach have
the following two impacts: deadline misses and learning
overheads. To demonstrate the impact of learning through real-
time deadline misses and overhead, Fig. 12.(a)-(b) show the
worst-case number of deadline misses for intra-application
scenarios, while Fig. 12.(c)-(d) show the same for inter-
application scenarios using the proposed and learning [17]
approaches, respectively. For all application scenarios, the
worst-case number of deadline misses was recorded from
five consecutive runs using the input sizes specified, each
application with 3000 decision epochs. For the intra-application
scenarios (Fig. 12.(a)-(b)), the following observation can be
made. As can be seen, the number of worst-case deadline
misses depends on the intra-application workload variations
and the initial random explorations. The mad, MPEG4 and
H.264 applications exhibit the highest number of deadline
misses as these applications go through one initial RL and

0

20

40

60

80

100

120

140

160

ispell
(largespell)

susan (small) H.264 (VGA
24 fps)

MPEG4 -
QVGA 15 fps

FFT (32 fps) mad (22k)

N
o

 o
f

d
e

a
d

li
n

e
 m

is
se

s

During initial learning During learning transfer

(a) Intra-application (Proposed)

0

50

100

150

200

250

ispell(small) ->
mad(44k)

MPEG4 (24
fps) -> H.264

(15 fps)

susan(small) ->
FFT(32 fps)

bbench (small)
-> MPEG4 (30

fps)

mad(44k) ->
susan (large)

FFT(16 fps) ->
bbench

(medium)

N
o

 o
f

d
e

a
d

li
n

e
 m

is
se

s

During initial learning During learning transfer

(c) Inter-application (Proposed)

0

100

200

300

400

500

600

ispell
(largespell)

susan (small) H.264 (VGA
24 fps)

MPEG4 -
QVGA 15 fps

FFT (32 fps) mad (22k)

N
o

 o
f

d
e

a
d

li
n

e
 m

is
se

s

Initial+re-learning

(b) Intra-application (Re-learning)

0

100

200

300

400

500

600

700

800

ispell(small) ->
mad(44k)

MPEG4 (24
fps) -> H.264

(15 fps)

susan(small) ->
FFT(32 fps)

bbench (small)
-> MPEG4 (30

fps)

mad(44k) ->
susan (large)

FFT(16 fps) ->
bbench

(medium)

N
o

 o
f

d
e

a
d

li
n

e
 m

is
se

s

Initial+re-learning

(d) Inter-application (Re-learning)

(1RL+2LT)
(1RL+2LT) (1RL+2LT)

(1RL+1LT)

(1RL+1LT)

(1RL)

(3RL)
(3RL)

(3RL)

(2RL)
(2RL)

(1RL)

(1RL+2LT)

(1RL+4LT)

(1RL+2LT)

(1RL+3LT)

(1RL+4LT)
(1RL+3LT)

(3RL)

(5RL)

(3RL)

(4RL)
(5RL)

(4RL)

Fig. 12. Worst-case number of deadline misses for (a) intra-application
variations using the proposed approach, (b) intra-application variations using
the learning approach [17], (c) inter-application variations using the proposed
approach, and (d) inter-application variations using the learning approach [17]

two intermediate LTs each. For the inter-application scenarios
(Fig. 12.(c)-(d)), the worst-case number of deadline misses
depends on the number of variations encountered. Hence, the
inter-application scenarios with MPEG4 (24 fps) to H.264
(15 fps) and browser (small) to MPEG4 (30 fps) incur higher
number of deadline misses, as they go through one initial RL
and four LTs. These deadline misses accounts to only 4.8%
(compared to 18% in [17]) for the intra-application scenarios
and 3.8% (compared to 13% in [17]) for the inter-application
scenarios over 3000 decision epochs.

To demonstrate the impact of learning due to additional
computation and storage, Fig. 13 plots the average learning
overheads of the proposed approach, compared with the existing
approaches: ondemand [11], learning [17] and predictive [14].
The measured time overheads are evaluated by averaging the

0

0.5

1

1.5

2

2.5

Ondemand Proposed Learning Predictive

VFS transition Performance monitor Control decisionD
V

FS
 C

o
n

tr
o

l o
ve

rh
ea

d
s,

 m
s

R
L:

 1
.2

2
 m

s
TL

: 0
.2

3

Fig. 13. Comparative time overheads (TOV H) of different approaches

differences of per frame execution times of a ffmpeg video
decoder decoding three sequences (Tref = 31ms) with and
without energy minimization approaches. The overheads have
the following three components:
1. VFS transition delay is a variable delay due to transition of
CPU frequencies. ARM Cortex A8 has a transition delay of
about 300 µs [30].
2. Performance monitor delay includes the time taken by clock
(depends on the number of accesses) and performance counter
register access (typically ≈20µs per access using C-wrapped

assembly instructions).
3. Control Decision Delay includes the time taken by the
control steps and varies/depends on their complexities.
As expected, the control decision dominates the overheads
as it requires number of computation steps (such as learning
and transfer algorithms with fixed point calculations). The
proposed approach exhibits the highest time overhead of 2.1ms,
with up to 8% deviation due to random explorations during
initial RL and intermediate LTs. Compared with the learning
approach [17], the proposed approach also uses additional
interactions between the layers and LT-based adaptation steps
to minimize energy further in the presence of variations, with
up to 1.22 ms and 0.23 ms, respectively, for the RL and TL
steps. The predictive and ondemand approaches have lower
overheads due to simpler control decisions and less performance
counters’ access. The higher overhead of the proposed approach
highlights one of the limitations of the proposed approach,
which can be minimized by defining the decision epochs as
multiple of frame intervals.

To demonstrate the impact of learning choices made in terms
of size of the Q-tables in the RL algorithm, Fig. 14 plots the
average energy (in %) and time overheads (in ms) for different
Q-table sizes with the following state-action entries: 15 states
and 4 actions (i.e. 15x4), 30 states and 4 actions (i.e. 30x4)
and 40 states and 4 actions (i.e. 40x4). The energy overheads

0

2

4

6

8

10

12

14

(15x4) (30x4) (40x4) (50x4)

En
e

rg
y

o
ve

rh
e

ad
 (

%
)

Q-table size

0

0.5

1

1.5

2

2.5

3

3.5

(15x4) (30x4) (40x4) (50x4)

D
V

FS
 o

ve
rh

e
ad

, m
s

Q-table size

(a) (b)

Fig. 14. (a) Energy, and (b) time overheads for different Q-table sizes

are evaluated by comparing the average energy consumptions
of the proposed approach with offline profile-generated en-
ergy consumption in Oracle for similar performance levels
(Fig. 14.(a)), while time overheads are measured by observing
the CPU times elapsed during learning and VFS action (TOVH)
averaged per decision epoch (Fig. 14.(b)). Both measurements
are obtained through two ffmpeg (H.264 and MPEG4) and four
MiBench (FFT, susan, ispell and mad) benchmark applications,
running over 3000 decision epochs each with the corresponding
input sequences. As can be seen, the energy overheads increase
slightly with the increased Q-table sizes (Fig. 14.(a)) due to
the following two reasons. Firstly, with higher number of
states, the Q-tables now have higher complexity and require
longer exploration times, which results in slower convergence
over time. Secondly, due to increased time overheads, the
effective deadline per decision epoch (Tref −TOV H) reduces,
which requires slightly higher VFS control to be applied to
meet the performance requirements, resulting in higher energy
consumption.

To investigate into the impact workload bin (∆C) and
window sizes of average workload (Cn) computation, Fig. 15(a)
and (b) show the 3D bar plots of the energy and time overheads

(a) (b)

Fig. 15. (a) Energy, and (b) time overheads for varying workload bins (∆C)

incurred by the proposed approach for the following ∆C values:
0.05× Cb, 0.1× Cb, 0.2× Cb and 0.25× Cb. For each ∆C
value, the window size n is varied between 100, 200, 300
and 1000 decision epochs. The energy and time overheads are
evaluated repeating the experiments reported in Fig. 14 with the
Q-table size of (30x4). Fig. 15(a)-(b) demonstrate the energy
consumption and time overhead trade-offs with ∆C values for
a given moving average window size. As can be seen, at the
lower ∆C values, the energy and time overheads are higher as
the workload variations covered by the Q-table is lower. As a
result more workload variations are encountered, which incur
the higher LT overheads, as expected. When the ∆C values are
higher, coarser workload variations are covered by the Q-table,
which gradually reduce the learning time overheads due to
less number of LTs. However, at increased ∆C values, the
normalized energy overhead increases marginally due to loss
of precision of VFS controls.

The moving average window size for Cn also demonstrates
energy and time overheads trade-offs (Fig. 15(a)-(b)). At
lower window size, the proposed approach experiences higher
workload variations in the short-term, causing an increase in
the LTs needed to adapt to workload variations. This causes the
energy and time overheads to increase slightly. As the window
size is gradually increased, the number of intra-application
variations decrease, reducing the energy and time overheads.
However, when the window size is too large, it causes higher
energy and time overheads due to loss of control precisionand
higher computation and storage overheads. Such increased time
overheads, in turn, reduces the opportunity to reduce energy
effectively as demonstrated by the highest energy overheads
(≈ 10%) for a given ∆C value of 0.05×Cb (Fig. 15(a)). The
best trade-off between energy and time overheads is obtained
at ∆C value=0.1× Cb and Cn window size of 200.

VI. SCALING TO MULTI-CORE SYSTEMS

The proposed approach is also implemented and validated
in multi-core systems, through simple modifications to the
approach in Section III. First, the predicted workload per core
is normalized with respect to the total system workload as

Cjt+1 =
Ĉjt+1∑J
j Ĉ

j
t+1

, (13)

where Ĉjt+1 is the predicted workload in CPU cycles and Cjt+1

is the normalized workload for the j-th processor core (j=1

to J , J is the total number of cores in the system). With
the given normalized workload (Cjt+1) and the average slack
ratio (Lt) bins a number of Q-table states are defined and
organized in rows (similar to (2) and (3)). For each state, the
available VFS control options are used in the action space
organized in the columns to form the Q-table. This Q-table is
then shared among the processor cores to allow RL through
one core action update per decision epoch (controlled in a
round robin fashion). Such VFS control per decision epoch has
two distinct advantages: (a) automatic LT between cores when
similar workload is predicted (due to normalization of workload
in (13)), and (b) Q-table complexity is reduced significantly
as opposed to controlling multiple cores per decision epoch,
which requires combinations of VFS controls of all cores in
the Q-table [29].

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1 Core 2 Cores 4 Cores

N
o

rm
al

iz
ed

 E
n

er
gy

Multi-core Learning

Ondemand

Proposed

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1 Core 2 Cores 4 Cores

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce Multi-core Learning

Ondemand

Proposed

(a) (b)

Fig. 16. Comparative (a) normalized performance, and (b) normalized energy
consumptions of different approaches for varying number of processor cores

To validate the effectiveness of the approach in multi-core
systems, further experiments are carried out on the following:
a Xilinx Zync ZC702 SoC [26] with two ARM Cortex-A9
cores, and a Hardekernel Odroid-XU SoC [28] with four
ARM cores. The Zync SoC supports three VFS control points:
666MHz at 1V, 333MHz at 0.8V and 222MHz at 0.75V and
the Odroid-XU SoC has six VFS control points: 1.6GHz
at 1.2V, 1.0GHz at 1V, 600MHz at 0.8V and 300MHz at
.75V. An H.264 based video decoder application is executed
with a football sequence of approximately 3000 frames using
the following three approaches: multi-core DVFS control
approach [29], Linux ondemand governor per core [11] and
the proposed approach. The approach [29] was chosen for
comparison as it is the closest match using RL-based DVFS
controls in multiprocessor systems. However, for equivalence
and comparability between [29] and our approach the thermal
constraint was removed. Fig. 16.(a) and (b) show the normalized
performance and energy consumptions of the approaches.
Similar to Fig. 8, the performance is normalized with respect
to Tref and the energy normalization of the Oracle.

As can be seen, the proposed approach continues to provide
energy reduction compared to the existing approaches. The
multi-core learning [29] and ondemand [11] approaches over-
perform due to poor adaptation to variations, resulting in up
to 18% higher energy (Fig. 16.(b)). Using LT-based approach
to multi-core systems has the added advantage of controlled
learning overheads as shown in Fig. 17. As the learning of
each core can be exploited by the other cores, it shows quicker
convergence.

0

50

100

150

200

250

2 Cores 4 Cores

W
o

rs
t-

ca
se

 le
ar

n
in

g
ti

m
e

(i
n

 d
ec

is
io

n
 e

p
o

ch
s)

Multi-core Learning

Proposed

Fig. 17. Comparative worst-case learning overheads for multi-core systems

VII. CONCLUSIONS

An adaptive energy minimization approach for embedded
systems has been proposed, capable of adjusting to workload
and performance variations within and across applications.
The energy minimization is enabled through RL algorithm
for identifying the suitable VFS controls based on predicted
workloads for a given application performance requirement. To
ensure VFS controls are adjusted to workload or performance
variations learning transfer-based adaptation is carried out,
guided by the feedback from the CPU performance counters.
The proposed approach is implemented as a power governor in
Linux OS and extensively validated through experiments using
different benchmark applications and number of cores. The
approach is expected to provide effective energy savings for
embedded systems that typically execute multiple applications.

ACKNOWLEDGMENT

The authors would like to thank the EPSRC-UK for funding
this work under PRiME project, grant number EP/K034448/1.
Experimental data used in this paper can be found at DOI
http://dx.doi.org/10.5258/SOTON/383899.

REFERENCES

[1] D. Flynn. An ARM Perspective on Addressing Low-power Energy-efficient
SoC Designs. in Proc. of the 2012 ACM/IEEE International Symposium
on Low Power Electronics and Design (ISLPED’12), pp.73–78, 2012.

[2] Y. Tan, W. Liu, and Q. Qiu. Adaptive power management using
reinforcement learning. in Proc. of Intl. Conference on Computer-Aided
Design, ICCAD, New York, NY, USA: ACM, 2009, pp.461–467.

[3] J. Pouwelse, K. Langendoen and H.J. Sips. Application-directed voltage
scaling. in IEEE Trans. Very Large Scale Integration Systems (TVLSI),
vol.11, no.5, pp.812–826, Oct. 2003.

[4] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques
for system-level dynamic power management,” in IEEE TVLSI, vol.8, no.3,
pp.299–316, June. 2000.

[5] K. Choi, W.-C. Cheng, and M. Pedram. Frame-based dynamic voltage and
frequency scaling for an MPEG Player. Journal of Low Power Electronics,
vol. 1, no. 1, pp.27–43, Apr. 2005.

[6] W. Yuan and K. Nahrstedt. Practical voltage scaling for mobile multimedia
devices. in Proc. of the 12th Annual ACM International Conference on
Multimedia, ACM, pp.924–931, NY, USA, 2004.

[7] Y. Gu and S. Chakraborty. Control theory-based DVS for interactive 3D
games. in Proc. of the 45th Annual Conference on Design Automation
(DAC), New York, USA: ACM Press, 2008, pp.740–745.

[8] S. Sinha, J. Suh, B. Bakkaloglu and Y. Cao. Workload-aware neuromorphic
design of the power controller. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 1, no. 3, pp.381–390, Sep. 2011.

[9] G. Dhiman and T.S. Rosing. System-level power management using online
learning. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 28, no. 5, pp.676–689, May. 2009.

[10] M. Pedram. Power optimization and management in embedded systems.
in Proc. of the Asia and South Pacific Design Automation Conference,
ASP-DAC’01, ACM, pp.239–244, Yokohama, Japan, 2001.

[11] V. Pallipadi and A. Starikovskiy. The Ondemand governor. in Proc. of
the Linux Symposium, 2006.

[12] R. Jejurikar and R. Gupta. Dynamic voltage scaling for systemwide
energy minimization in real-Time embedded systems Proc. of ISLPED’04,
pp.78–81, August, 2004.

[13] H. Jung and M. Pedram. Continuous frequency adjustment technique
based on dynamic workload prediction. in 21st IEEE Intl. Conference on
VLSI Design, VLSID, IEEE, 2008, pp.249–254.

[14] K. Choi, R. Soma and M. Pedram. Dynamic voltage and frequency
scaling based on workload decomposition. in Proc. of ISLPED’04, 2004,
pp.174–179.

[15] S. Yue, D. Zhu, Y. Wang, and M. Pedram. Reinforcement learning based
dynamic power management with a hybrid power supply. in IEEE 30th
Intl. Conference on Computer Design (ICCD), 2012, pp.81–86.

[16] A.K. Das, R.A. Shafik, G.V. Merrett, B.M. Al-Hashimi, A. Kumar and
B. Veeravalli. Reinforcement learning-based inter-and intra-application
thermal optimization for lifetime improvement of multicore systems. in
Proc. of DAC’14, pp.1–6, June, 2014.

[17] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu. Achieving autonomous
power management using reinforcement learning. ACM Trans. Des. Autom.
Electron. Syst., vol. 18, no. 2, pp.24:1–24:32, Apr. 2013.

[18] R. Ye, Q. Xu. Learning-based power management for multi-core
processors via idle period manipulation. In IEEE TCAD, vol.33, no.7,
pp.1043–1055, 2014.

[19] BeagleBoard. BeagleBoard-xM Rev C System Reference Manual, 2010.
[Online]. Available: http://beagleboard.org

[20] FFmpeg A complete, cross-platform solution to record, convert and
stream audio and video. [Online]. Available: https://www.ffmpeg.org/

[21] M.R. Guthaus, M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin,
T. Mudge, and R.B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. in IEEE International Workshop on Workload
Characterization (WWC), IEEE, pp.3–14, Dec., 2001. [Online]. Available:
http://www.eecs.umich.edu/mibench/

[22] FFmpeg Open-source Mozilla Firefox browser. [Online]. Available:
https://www.mozilla.org/

[23] BBench Browser benchmarking tool. [Online]. Available: http://bbench.
eecs.umich.edu/

[24] T. Jiang, D. Grace and P.D. Mitchell Efficient exploration in reinforcement
learning-based cognitive radio spectrum sharing IET Communications,
vol. 5, Iss. 10, pp. 1309–1317, 2010.

[25] O.S. Unsal, and I. Koren. System-level power-aware design techniques
in real-time systems in Proc. of the IEEE, vol.91, no.7, pp.1055–1069,
July, 2003.

[26] Xilinx Inc. Zynq-7000 All Programmable SoC: ZC702 Evaluation Kit
and Video and Imaging Kit (ISE Design Suite 14.2) 2012.

[27] W. Yuan, K. Nahrstedt, S. Adve, D.L. Jones and R.H. Kravets. Design and
evaluation of a cross-layer adaptation framework for mobile multimedia
systems. in Proc. SPIE 5019, Multimedia Computing and Networking,
pp.1–13, Jan, 2003.

[28] Hardkernel. Odroid-XU by Hardkernel. [Online]. Available:
http://www.hardkernel.com. Last Accessed 10 Dec. 2014.

[29] Y. Ge and Q. Qiu. Dynamic Thermal Management for Multimedia
Applications Using Machine Learning. in Proc. of the 48th Design
Automation Conference (DAC), New York, USA, pp.95–100, 2011.

[30] S. Sangyoung, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram and
N. Chang. Accurate Modeling of the Delay and Energy Overhead of
Dynamic Voltage and Frequency Scaling in Modern Microprocessors. in
IEEE TCAD, vol.32, no.5, pp.695–708, May, 2013.

[31] ARM. Cortex-A8 Technical Reference Manual. [Online]. Available:
http://www.arm.com. Last Accessed 7 April 2015.

APPENDIX A: LINUX GOVERNOR IMPLEMENTATION

Fig. 18 shows the block diagram of the Linux power governor
implementation consisting of the following interfaces:

A. Kernel-level Library Interfaces

These interfaces comprise of the scheduler, CPUfreq and
SYSFS interfaces. The scheduler interface (block A) defines
the CPU IDs, system timer and functions to establish gov-
ernor control of a specific CPU. The CPUfreq interface

Governor Settings
curQtable[][], prevQtable[][],

currentC_b, slack_states, action_states

HW Interface Functions
uint32 predict_WL(uint32 cur_avg) [Section 3.1]

uint32 observe_WL(void) [Section 3.1]
void lbg_set_cpufreq(..) [Section 3.2]
void start/stop_counter(counter_id*)

RL Functions
float calculate_reward(slack_ratio, prev_slack_ratio) [Section 3.2]

float calculate_slack(prev_slack_ratio) [Section 3.2]
void map_state(curWL, slack_ratio) [Section 3.2]

void update_Qtable(state_id, action_id) [Section 3.2]

D E

F

GH

Application Programming Interface
void set/get_appid(AppID) [Section 3.3]

int set/get_perf(void *app()) [Section 3.3]

Transfer-Learning-based Adaptation
unsigned int mean_WL(cur_WL) [Section 3.3]
int check_mean_WL(cur_mean) [Section 3.3]

Void transferQtable(..) [Section 3.3]

Governor Library Interfaces

OS Scheduler Interfaces
(CPU ID, timer, scheduler)

CPUfreq Interface
(Up/down thresholds and differentials)

SYSFS Interface
(Kernel System File System variables)

A

BC

Kernel-level Library Interface

Fig. 18. Implementation of the proposed approach showing different interfaces

(block B) retrieves information related to processor frequency
steps. The SYSFS interface (block C) defines file system
variables/constants.

B. Governor Library Interfaces

These interfaces include the following:
1) Governor settings (block D): define the Q-tables

(curQTable and prevQTable), each with its base workload Cb,
performance requirement Tref and the state-action pairs.

2) Application programming interface (block E): sets up
the inter-layer interactions between the application and runtime
layers, implemented through a thread-safe handshake signal
(called rts→handshake), and a SYSFS variable for storing the
Tref . The kernel initially starts a notification process with the
rts→handshake signal, which is acknowledged by set perf(..)
function to set the Tref .

3) Hardware interface (block H): defines the interaction and
control between the runtime and hardware layers. It processes
the necessary prediction and feedback from the CPU perfor-
mance counters through predict WL(..) and observe WL(..)
functions. During observation of the workload, start counter(..)/
stop counter(..) IO functions are used to start/stop the CPU
performance counters using the ioctl interface in Linux. The
frequency is set for the system using lbg set cpufreq(..)
function.

4) RL functions (block F): set up the learning functions
in the Q-table (Section III-A2). Based on the predicted
workload, map state(..) maps the system’s current state, calcu-
late reward(..) calculates reward of a selected VFS action. The
calculated reward is then updated through update Qtable(..)
function using the Q-values given by (5).

5) Learning transfer-based adaptation (block G): is imple-
mented through a set of functions. For detecting workload
variations, the short-term mean workload is calculated using
mean WL(..) and for performance variations are communicated
through API. When a variation is detected, the Q-table is
updated and learning is transferred with a new base workload
value (Cb) using transferQtable(..).

Since floating point calculations are limited in kernel-level,
appropriate scaling was applied to different variables and

constants (in Section III). The governor is applied through
the Linux command-line as

cpufreq_set --cpu 0 --governor ltbg

The cpufreq set is a command to administer the governor
settings; the –cpu option is followed by the CPU ID (.e.g ’0’)
and the –governor option specifies the governor name, (e.g.
’ltbg’: learning transfer-based governor).

APPENDIX B

LEMMA I: For exploration of all |S| states in a Q-table,
each with |A| actions, the minimum number of explorations
required by an EPD-based exploration is given by:

(
3
5 |S||A|

)
,

which is less than that required by an UPD-based exploration:
(|S||A|).

Proof: The exploration of the states with near-zero (i.e. ±5%)
slack values constitute 1

5 th of |S| and require exploration of
all |A| actions in the Q-table due to (4). The total number of
explorations required by these states amounts to

(
1
5 |S||A|

)
.

The remaining states constitute 4
5 -th of |S| and minimally

require explorations of only half of the |A| actions in the
Q-table due to relationship between their slacks and actions
given by (4). Hence, the total number of explorations required
by these states sums up to

(
4
5
1
2 |S||A|

)
=
(
2
5 |S||A|

)
. The total

number of minimum explorations required for |S| states by
an EPD-based exploration is:

(
3
5 |S||A|

)
. This proves the first

part.
The exploration of |S| states using UPD does not exploit

the state-action relationships described in (4). As a result, all
slack state-action pairs need to be explored, requiring a total
of (|S||A|) explorations. This is 40% less than EPD-based
explorations. This proves the second part.

PROPOSITION I: If x% of the higher slack states (i.e.
15% > |Lt| > 5%) retain their relationships with the chosen
actions, the learning transfer algorithm (Algorithm 1) will
require minimum

[(
1
5 |S||A|

)
+
(
2
5 (1− x%)|S||A|

)]
further

explorations.
Proof: From Lemma I, the minimum number of explorations

required for the lower slack states (i.e. ±5% slack values)
is given by

(
1
5 |S||A|

)
. When x% of the higher slack states

retain their relationships with the scaled actions, the minimum
number of explorations required by the LT algorithm is
given by the fraction of remaining higher slack states by
half of the total number of possible actions (due to intrinsic
state-action relationships), i.e.

(
2
5 (1− x%) |S||A|

)
(Lemma

I). For all slack states, the LT algorithm (Algorithm 1)
requires minimum

[(
1
5 |S||A|

)
+
(
2
5 (1− x%)|S||A|

)]
further

explorations to expedite learning. This proves the proposition.

Rishad A. Shafik (M’09-) is a lecturer in Electronic
Systems at Newcastle University, UK. Dr. Rishad
received his Ph.D., and M.Sc. (with distinction)
from the University of Southampton in 2010, and
2005; and B.Sc. in Electronic Engineering (with
distinction) from the IUT, Bangladesh in 2001. He
is one of the editors of the book ”Energy-efficient
Fault-tolerant Systems,” published by Springer USA,
and author/co-author of 70+ IEEE/ACM journal and
conference articles. His research interests include
energy-efficiency and reliability aspects of embedded

systems.

Sheng Yang received his B.Eng. in Electronic
Engineering from the University of Southampton, UK,
in 2008, and Ph.D. degree in Electronic Engineering
from the same in 2013. In 2007 he worked as an NXP
intern for modelling a data hub using SystemC. In
2011 he held an internship with ARM investigating
data integrity of flip-flops within microprocessors.
Currently, he is working as a research fellow at the
University of Southampton. His research interests in-
clude low power and fault tolerant design techniques
for embedded systems.

Anup Das received B.Eng. degree in Electronics
and Telecommunication Engineering from Jadavpur
University, India, in 2004, and Ph.D. degree in
computer engineering from the National University of
Singapore, in 2014. He is currently a post-doctoral
research fellow at the University of Southampton.
From 2004 to 2007, he was with STMicroelectronics
Ltd. as an IC design engineer and from 2007 to
2011, he was with LSI Corporation as design-for-
test engineer of storage SoCs. His research interests
include and reliable design and runtime management

of multiprocessor systems.

Luis A. Maeda-Nunez is a research student from
Mexico. He studied his Bachelor in Electronics
Engineering back at ITESM, Mexico. He did his MSc
in Microelectronics Systems Design at the University
of Southampton where graduated with Distinction
in 2011. He started and is currently studying for
his PhD on Power Management for Multi-core
Processors. His research interests include multi-core
architectures, power and thermal management, and
Machine Learning.

Geoff Merrett (GSM’06-M’09) received the BEng
degree (Hons) in Electronic Engineering and the
PhD degree from the University of Southampton,
UK, in 2004 and 2009. He is currently an Associate
Professor in electronic systems at the University
of Southampton. His research interests include low-
power and energy harvesting aspects of embedded
systems, and has published over 90 articles in
journals/conferences in these areas. Dr Merrett is
a Fellow of the HEA and he was the General Chair
of the Energy Neutral Sensing Systems (ENSsys)

workshop from 2013 to 2015.

Bashir M. Al-Hashimi (M’99-SM’01-F’09) is a
Professor of Computer Engineering and Dean of
the Faculty of Physical Sciences and Engineering
at University of Southampton, UK. He is an ARM
Professor of Computer Engineering and Co-Director
of the ARM- ECS research centre. His research
interests include methods, algorithms and design
automation tools for low-power design and test of
embedded computing systems. He has published over
300 technical papers, authored or co-authored 5 books

and has graduated 31 PhD students.

