
ar
X

iv
:1

60
1.

08
04

6v
1

 [c
s.

O
H

]
29

 J
an

 2
01

6

A Formal Approach to Power Optimization in CPSs with Delay-Workload
Dependence Awareness∗

Hyung-Chan An† Hoeseok Yang‡ Soonhoi Ha§

Abstract

The design of cyber-physical systems (CPSs) faces various new challenges that are unheard of in
the design of classical real-time systems. Power optimization is one of the major design goals that is
witnessing such new challenges. The presence of interaction between the cyber and physical components
of a CPS leads to dependence between the time delay of a computational task and the amount of workload
in the next iteration. We demonstrate that it is essential totake this delay-workload dependence into
consideration in order to achieve low power consumption.

In this paper, we identify this new challenge, and present the first formal and comprehensive model
to enable rigorous investigations on this topic. We proposea simple power management policy, and show
that this policy achieves a best possible notion of optimality. In fact, we show that the optimal power
consumption is attained in a “steady-state” operation and asimple policy of finding and entering this
steady state suffices, which can be quite surprising considering the added complexity of this problem.
Finally, we validated the efficiency of our policy with experiments.

Keywords: cyber-physical systems, power optimization, delay-workload dependence, dynamic voltage and frequency
scaling, real-time

∗An abridged version of this paper is to appear in a Special Issue of IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems [2]; a preliminary version of this workby Yang and Ha [31] was presented at ISLPED 2015.

†
hyung-chan.an@yonsei.ac.kr. Department of Computer Science, Yonsei University. Part of this work was conducted

while the author was with́Ecole Polytechnique Fédérale de Lausanne. Supported in part by ERC Starting Grant 335288-OptApprox.
‡
hyang@ajou.ac.kr. Department of Electrical and Computer Engineering, Ajou University. Supported by ICT R&D

program of MSIP/IITP (B0101-15-0661, the research and development of the self-adaptive software framework for various IoT
devices).

§sha@snu.ac.kr. Department of Computer Science and Engineering, Seoul National University. Supported by Basic Sci-
ence Research Program (NRF-2013R1A2A2A01067907) throughNRF Korea funded by MSIP.

http://arxiv.org/abs/1601.08046v1

1 Introduction

Modern computation is not confined to small silicon dice anymore. Incyber-physical systems(CPSs), com-
puters interact with the physical world: actuators allow computer systems to manipulate the physical world,
while sensors constantly provide the computer systems withoutside information [24, 30]. The resulting
feedback control loop makes the hallmark of CPSs, and poses unique challenges in the design of CPSs that
were unheard of in the design ofclassicalreal-time systems. Among these, this paper focuses in particular
on the new challenges faced in power optimization in CPSs.

The existence of interaction between thecyberandphysicalcomponents of CPSs implies that the phys-
ical world affects not only the particular value of the inputto the computational task but also the amount of
the computational workload. In particular, the time delay of a computational task can change the amount
of workload in the next iteration: a typical example is witnessed when a CPS maintains an internal model
of the physical world, where the model can range from a simplesnapshot of a sensor reading [30] to a
sophisticated model of beliefs about the external world [26, 23]. The longer an iteration goes, the further
this model can drift away from the physical reality; regaining its accuracy in the next iteration incurs extra
computational cost.

One of the tools that are widely used by CPSs is computer vision-based object tracking algorithms. In
a CPS equipped with object tracking capability, itsinternal modelof the physical world will maintain the
coordinate of the tracked object in the image. As the execution delay between two consecutive invocations
of the tracking algorithm becomes longer, the algorithm will be required to search a larger area in order
to reconcile the physical reality with the internal model. It is important to properly address the resulting
delay-workload dependence, since object tracking is frequently used in a variety of CPSs, including, but not
limited to, vision-assisted control of unmanned air vehicles (UAV) [13, 25, 22], surveillance camera tracking
[12, 11], and augmented reality [29, 32]. See [15, 16] for additional examples of vision-based algorithms
whose workload may vary with the execution delay.

Delay-workload dependence manifests itself also in different types of CPSs. Agrawal et al. [1], for
example, study the optimization of pattern matching over event streams, where the queries can be handled
either by small amount (shorter delay, less workload) or in an aggregated manner (longer delay, more work-
load). CPSs whose cyber component exploits temporal coherence bears delay-workload dependence: any
iterative algorithms that can be warm-started can lead to one. Haptic rendering in Human-Computer Inter-
face (HCI) is an example, as it often uses adaptive sampling techniques to deal with the stringent real-time
constraint [6] and the rendering algorithm can be warm-started to exploit the temporal coherence [5].

In order to ensure the responsiveness of a real-time system (and the physical stability of a CPS), real-
time constraints are specified, often in the form of a maximumlatency. Once this constraint is given,
optimizing the microprocessor’s power consumption over the operation frequency is rather straightforward
in a classical real-time system where delay-workload dependence is absent: one can choose the running
frequency of the microprocessor as low as possible without violating the latency constraint, and set the
voltage of the microprocessor to the minimum needed to run atthe chosen frequency [4].

However, the presence of the delay-workload dependence invalidates this straightforward strategy. Run-
ning at an excessively low speed in one iteration would lead to an unfavorable increase in the workload of
the next iteration, thereby requiring the next iteration torun at a high speed; running at an excessively high
speed on the other hand could simply result in suboptimal power consumption. This dilemma creates a new
need for a “smart” power optimization strategy that is awareof the delay-workload dependence.

1

In this paper, we

• identify this newly posed challenge, and present the first formal and comprehensive model which
enables a rigorous analysis;

• propose asimplepower management policy;

• show the optimality of our policy;

• and experimentally evaluate its efficiency.

In developing our results, we aim at formulating a model thatis as general as possible: in fact, we do not
assume any particular data representation on the parameters of our model. Our power management policy
is therefore given as a mathematical characterization rather than an algorithmic procedure. In spite of the
significant added complexity to the problem, our power management policy remains surprisingly simple;
this simplicity enables in many cases an algorithmic reinterpretation of the characterization of our policy.
However, we will adhere to its mathematical characterization throughout this paper, in favor of generality.
This is particularly natural considering that the proposedtechnique is primarily a design-time methodology.

In Section 2, we present our formal model and formulate the problem of power optimization as a concrete
mathematical question. Then, in Section 3, we present our power management policy under a simplifying
assumption that the workload is given as a continuous function of execution delay. Whilst this assumption
is notmathematically necessary, it will simplify the analysis ofour policy and make the underlying intuition
more visible. The proposed model can be further generalizedto be applied to a wide spectrum of poten-
tial applications; this versatility is discussed in Section 6. The analysis in full generality is presented in
Section 5. Section 4 evaluates the practical efficiency of our power management policy. To this end, we
experimentally measured the power consumption characteristics of a mobile computing platform Samsung
Exynos5422 (in Section 4.1), profiled an OpenCV-based object tracking application to quantitatively iden-
tify the delay-workload dependence (Section 4.2), and evaluated the efficiency of our power management
policy (Section 4.3).

1.1 Related Work

There have been some studies to apply multiple operationmodesin CPS design. Jha et al. [21] studied a
system that has different execution modes, each of which is known and modeled as a node in the modeling
automaton. Canedo et al. presented a context-sensitive synthesis of CPS [9]. In order to overcome the
incompleteness of the functional model, they adopt the recycle function that reliably generates the simulation
model based on the context that the previous results caused.A runtime optimization of CPS is proposed by
Cao et al. [10], where the design parameters are adaptively tuned considering the feedback results. While
CPSs are enriched or optimized via multiple operation modesin the above mentioned works, none of them
has taken the execution delay into consideration as a sourceof variance in workload.

There are a handful of literatures that study the relationship between control stablity and system per-
formance in control-centric CPSs. A design guideline for flexible delay constraints in distributed CPS was
proposed by Goswami et al. [17, 18], where some of the samplesare allowed to violate the given delay
deadline. They presented the applicability of the proposedapproach using the FlexRay dynamic segment
as a communication medium. They could improve the resource efficiency or flexibility of CPSs in favor of
the stability. However, this relaxation of design constraints is not always feasible. Zhang et al. [33] took
advantage of the fact that the longer computation delay may lower the gain of the control algorithm in the
control example of inverted pendulums. If the delay becomeslonger, the system can support more inverted

2

pendulums within a given resource at the cost of reduced control stability. Such co-design approaches of
control algorithm and system, though, are still blind to therelation between execution delay and workload
in CPSs, which differentiates the proposed method from them.

An alternative approach to the co-design of algorithm and system is found in the application of anytime
algorithm to control-centric systems [7, 14, 28]. Anytime algorithms are a kind of algorithms that can be
completed arbitrarily at any point and the quality of the algorithm output is proportional to the spent time.
That is, the amount of time invested in the cyber system, in this model, is directly coupled with the stability
of the system. However, how this compromised stability affects the system in ever-present feedback loops
in CPSs is still missing in their models. On the contrary, in the proposed model, the harmed stability due to
the lengthened delay manifest itself in the increased workload at the successive iteration.

2 Problem Formulation

In this section, we present our formal model of the power optimization problem in the presence of delay-
workload dependence. Firstly, we describe our model and introduce the notation to be used throughout this
paper in Section 2.1.

Section 2.2 then introduces a best-possible notion of optimality, calledasymptotic optimality. Finally,
the full formulation of the power optimization problem is formally presented in Section 2.3.

2.1 Model

Units of measurement In order to keep the presentation as succinct as possible, wewill choose the units
of measurement in a careful way. Note that these choices are purely for the sake of notational convenience
and do not inherently change the analysis: our entire resultcan be presented under any arbitrary choice of
units by introducing appropriate conversion factors.

First, we choose the unit of processing speed so that the maximum speed corresponds to one unit. For
instance, if the given CPS is equipped with a microprocessorwith the maximum operating frequency of
2GHz, running it at 1GHz is denoted bys = 0.5.

We also need to choose a unit of workload; we define one unit of workload as the workload that can be
processed in one unit of time at the full speed (s = 1). For example, if the system runs at the speed of1/2,
it will take two units of time to process one unit of workload.

The notation to be defined in this section and Section 3 is summarized in Table 1.

2.1.1 Power consumption characteristics

Modern microprocessors support dynamic voltage and frequency scaling (DVFS), where the operating volt-
age and frequency can be modulated to optimize the power consumption. In describing the power con-
sumption characteristics, our model does not assume any specific DVFS model; instead, it achieves higher
generality by describing the characteristics with a function that satisfies a small set of natural axioms. This
allows us to use our model when the power consumption is adjusted via mechanisms other than DVFS, such
as processor selection in a heterogeneous multi-processorsystem. ForP : [0, 1] → R+, let P (s) denote
the power consumption when the system is run at speeds. Note thatP is a function of speed only: if the
power consumption is adjusted via DVFS, the operating voltage can be optimally chosen once the frequency
is fixed, and this choice can be implicitly encoded within thedefinition ofP .

3

Table 1: Summary of the notation in Sections 2 and 3

Notation Meaning

P power consumption characteristics
W delay-workload relation
wi workload of thei-th iteration
w1 initial workload (i.e., workload of the first iteration)

wbase baseline workload (bookkeeping work that is always required)
si processing speed of thei-th iteration
ti execution delay of thei-th iteration
T real-time constraint (i.e., maximum allowed execution delay)
n time horizon

tmin minimum possible execution delay
ŝ target speed
τ ideal point workload

The axiomatic assumptions we will make onP is as follows. First, we assume thatP is nondecreasing,
convex, and continuous1. Note that this set of assumptions is general enough to embrace, for example, the
power consumption characteristics of CMOS circuits: the power dissipation of CMOS gates is dominated
by cv2ddf , wherec denotes the load capacitance,vdd is the operating voltage, andf is the frequency; the
maximum operating frequency is given proportional to(vdd− vth)

2/vdd, wherevth is the threshold voltage.
From these facts, it is easy to see that the resultingP is nondecreasing, convex, and continuous. However,
instead of relying on such an idealized formula, our model can be used with actual power consumption
characteristics obtained by measurement or taken from manufacturer’s data. We also remark that these
assumptions are far from being minimal: in Section 6, we showhow some of these assumptions can be
dropped without loss of generality.

Our second assumption is that the operating frequency can bemodulated to any given value in[0, 1].
This assumption, however, can also be removed to handle the case where the microprocessor has only a few
predetermined modes of operation. Details can be found in Section 6.

2.1.2 Delay-workload dependence

We model the delay-workload relation as the following function. LetT be the maximum execution delay as
set out by the real-time constraints; the delay-workload relation is specified byW : (0, T] → R+, where
W (t) denotes the workload of the iteration that follows an iteration of execution delayt. The workload of
the first iteration is denoted byw1. In practice, one can determinew1 andW for the application at hand by
using static analysis or profiling techniques at design time.

As was discussed in Section 1, the main difficulty of the poweroptimization problem lies in the fact that
a longer delay leads to a larger workload in the next iteration. We will thus assume thatW is a nondecreas-
ing function.2 In every iteration, there would be some basic bookkeeping work required regardless of the
previous iteration’s delay. Letwbase > 0 denote the workload arising from such basic work, and we will
haveW (t) ≥ wbase for all t ∈ (0, T], andw1 ≥ wbase.

1This simply amounts to assuminglimf↓0 P (f) = P (0) andlimf↑1 P (f) = P (1), sinceP is already convex.
2This assumption, though, can be replaced. Details follow inSection 6.

4

2.1.3 Execution trace

Suppose that the CPS runs forn iterations. We calln thetime horizonof the system, but we will not assume
anya priori knowledge about the time horizon: the system does not know inadvance when it will be halted
from outside. Letwi, si, andti (1 ≤ i ≤ n) be the workload, processing speed, and execution delay of the
i-th iteration, respectively.

We do not allow changing the processing speed within a singleiteration, and this assumption does not
harm the power optimality due to the convexity ofP . If the processing speed changes within an iteration,
we can instead fix the speed to the average speed during that iteration and we will be able to process the
same amount of work while consuming no more power3.

For all i, wi by definition has to be less than or equal tositi: as thei-th iteration runs forti units of
time at speedsi, at mostsiti units of workload can be processed by the end of this iteration, whereaswi

is defined as the amount of work that needs to be done in thei-th iteration. In fact, we can further assume
that they are equal, i.e.,wi = siti, in a power-optimal scenario. Suppose thatwi < siti for some iterationi.
We can then decreasesi to wi

ti
instead; this will not increase the power consumption of iterationi due to the

monotonicity ofP and will not otherwise change the system’s behavior.
An execution traceis defined as a sequence of processing speeds.

Definition 1 (Execution trace). Suppose that a given CPS has run forn iterations. We call the sequence
s1, . . . , sn of the processing speeds itsexecution trace, andn the lengthor time horizonof this execution
trace.

An execution trace contains sufficient information to determine the execution delay and workload of
every iteration given the parameters of the CPS: we haveti :=

wi

si
andwi+1 = W (ti) for all i. Note that

the real-time constraints demand thatti ≤ T for all i. We will sometimes call an execution trace areal-time
feasible execution tracein order to emphasize the presence of the real-time constraints.

2.2 Asymptotic Optimality

In this subsection, we show that a “natural” notion of optimal power management policy is an impossible
goal to achieve, and introduceasymptotic optimalityas the “right” notion of optimality.

Given a system specified by its power consumption characteristicsP , delay-workload relationW , initial
workloadw1, and the real-time constraintT , we could set our goal as designing a power management policy
such that, if the system is halted aftern iterations, the resulting execution trace minimizes the average power
consumption

∑n
i=1 tiP (si)
∑n

i=1 ti
.

Unfortunately, however, this goal is impossible to achieve.
Our model does not assume that we “know the future”, so the power management policy needs to work

without knowing when the system is to be halted. This makes itimpossible for a power management policy
to produce an exactly optimal execution trace, which is demonstrated by the following toy example: consider
a system withT = 1, w1 = 1

2 , W (t) =
√
t, andP (s) = s2. The (unique) execution trace of length2 that

3Suppose that the processing speed changes during thei-th iteration. Forsi : [0, ti] → [0, 1], let si(t) denote the processing
speed aftert units of time since the beginning of thei-th iteration. Lets̄i := 1

ti

∫ ti
0

si(t)dt. We have that the average power

consumption1
ti

∫ ti
0

P (si(t))dt is greater than or equal toP (s̄i) from Jensen’s inequality. (We assume that the integrals exist.)

5

minimizes the average power consumption in this system iss1 ≈ 0.6180, s2 ≈ 0.8995.4 Since the power
management policy does not know the time horizon in advance,it would need to chooses1 ands2 as the
speed in the first two iterations in order to successfully produce an optimal execution trace in case the system
is halted after two iterations. However, if the system is halted after three iterations, the resulting execution
trace cannot be optimal, because the optimal execution trace of length3 does not start with the aboves1 and
s2.

However, as it turns out, it is possible to obtain a power management policy that is near-optimal for any
time horizon:

Definition 2 (Asymptotic optimality). We say a power management policy isasymptotically optimalif
the policy can be halted after an arbitrary number of iterations, and the average power consumption of
the resulting execution trace is asymptotically optimal, i.e., theerror defined as the difference between
the achieved average power consumption and the exact optimum (which can only be calculated with the
knowledge ofn) tends to zero.

In Section 3, we show that an asymptotically optimal power management policy, in fact a very simple
one, does exist under a simplifying assumption thatW is a continuous function.

2.3 Problem Statement

Finally, we restate our goal formulated as a concrete optimization problem:

Given a system specified by its power consumption characteristicsP , delay-workload relation
W , initial workloadw1, and the real-time constraintT , design a power management policy that
is asymptotically optimal, i.e., a power management policy that gives a near-optimal execution
trace for any time horizon.

3 Power Optimization: a Special Case

In this section, we present a provably asymptotically optimal power management policy, focusing on the
special case where the delay-workload relationW is a continuous function. This restriction allows us
to omit the tedious details required to maintain the mathematical rigor under the general delay-workload
relation, leading to a simpler presentation which still exhibits all the key intuition. A proof with the full
generality is deferred to Section 5 for interested readers.

4 Note that the average power consumption is given ast1P (s1)+t2P (s2)
t1+t2

=

1

2

s1
s2
1
+

√

1

2

s1

s2
s2
2

1

2

s1
+

√

1

2

s1

s2

=: p(s1, s2) and thats1 ands2 are

subject to the following constraints:0 ≤ s1, s2 ≤ 1,
1

2

s1
≤ 1, and

√

1

2

s1

s2
≤ 1. The last two constraints are the real-time constraints.

Sincep(s1, s2) =
s1

2
+
√

1

2s1
s2

1

2s1
+ 1

s2

√

1

2s1

is a nondecreasing function ofs2, its minimum is attained whens2 =
√

1
2s1

, making the last

constraint tight. In this case, we havep(s1, s2) =
s1

2
+ 1

2s1

1

2s1
+1

, which in turn is minimized bys1 =
√
5−1
2

≈ 0.6180. Note that
√

1
2s1

=
√√

5+1
4

≈ 0.8995.

6

3.1 Overview

Unless the given system is real-time infeasible (this can happen if the system parameters are such that
its workload will “explode” even if the system is run at the full speed, destined to violate the real-time
constraint), the system has “steady states” where the workload, execution delay, and processing speed all
remain the same across iterations.

Among all the possible steady states, our power management policy finds one that consumes the least
amount of power, and stay in this minimum-power steady state. Intuitively, the convexity of the power
consumption characteristics penalizes fluctuation in the speed; the (asymptotic) optimum can therefore be
achieved by such a steady state.

In presenting the proposed policy, we first show in Section 3.2 how to determine the range of execution
delays that can lead to a steady state and find a minimum-powersteady state. Then, our policy is to quickly
enter this minimum-power steady state and remain there; this policy is drawn in Section 3.3. The formal
proof of its optimality follows in Section 3.4.

3.2 Preliminaries

Bounding execution delays As a preparatory step to describe the proposed power management policy, we
first bound the range of execution delays. It is relatively easy to see the delay of each iteration is within the
range of[wbase, T]; but here we present a tighter5 lower bound on execution delays, given by Definition 3.

Definition 3 (Minimum delay). The minimum delaytmin is defined as the longest delayt ≤ w1 such that
W (t) is greater than or equal tot. That is,tmin := max{t | W (t) ≥ t, 0 < t ≤ w1}.

tmin safely bounds the execution delay of each iteration from below, as observed below.

Observation 1. No execution trace has an iteration whose delay is strictly smaller thantmin.

Proof. Let s1, . . . , sn be an arbitrary execution trace with execution delayst1, . . . , tn. We will show ti ≥
tmin for i = 1, . . . , n by induction.

Basis.We havet1 =
w1
s1

≥ w1 ≥ tmin, where the last inequality follows from the choice oftmin.
Inductive step.Now supposeti0 ≥ tmin for somei0 ∈ {1, . . . , n − 1}. Then ti0+1 ≥ W (ti0) ≥

W (tmin) ≥ tmin, where the second inequality follows from the monotonicityof W and the third from the
choice oftmin.

Observation 1 is illustrated in Fig. 1 showing howtmin bounds execution delays from below in a typical
case. Geometrically speaking,tmin (usually) is the rightmost point of intersection betweenw = t and
w = W (t), restricted to the left oft = w1. For a given initial workloadw1, the execution delay never goes
below tmin because the workload never goes belowtmin, even if the system is run at the fastest possible
speed.

Determining the target speed From the range of execution delays obtained above, now we define the
target speedof our policy as follows.

Definition 4 (Target speed). Within the specified range of execution delay, the target speed ŝ is defined as
the minimum workload-to-delay ratio in a “steady state”. That is, ŝ := mintmin≤t≤T

W (t)
t

.

5In fact, Observation 1 isalmosttight: see Theorem 2 for a complete characterization.

7

Figure 1: An example of the lower boundtmin on execution delays.

In order to understand the name “steady state”, suppose thatthe system enters an iteration with delay
ti ∈ argmintmin≤t≤T

W (t)
t

; then, as long as the operating speed is set atŝ, the execution delay will remain

the same sinceti+1 =
W (ti)

ŝ
= tiŝ

ŝ
.

Sustainability One could naturally ask: what if the target speedŝ is out of the valid range, i.e.,̂s > 1? In
fact, such a system is not “sustainable”: it fails to respectthe real-time constraintT after a bounded number
of iterations, as shown by Observation 2. We will thus assumeŝ ≤ 1 in what follows. Note that we have
ŝ > 0.

Definition 5 (Sustainability). We say a system issustainableif, for all n, there exists a real-time feasible
execution trace of lengthn.

Observation 2. If the target speed is not within the valid range, i.e.,ŝ > 1, the system is not sustainable. In
particular, there exists a finite boundn0 such that every execution trace of lengthn0 or longer violates the
real-time constraint.

Proof. Choosen0 := ⌊logŝ T
w1

⌋ + 2. We use a similar argument as in the proof of Observation 1. Let
s1, . . . , sn be an arbitrary execution trace of lengthn ≥ n0 andt1, . . . , tn be its execution delays. For all
i ≥ 2, we haveti =

W (ti−1)
si

= W (ti−1)
ti−1

ti−1

si
≥ ŝ · ti−1

si
≥ ŝ · ti−1, where the first inequality follows from the

definition of ŝ and the second fromsi ≤ 1; thus, by induction, we havetn0 ≥ ŝn0−1 · w1 > T .

An example of a system that is not sustainable is shown in Fig.2. The curvew = W (t) is always
above the linew = t, except for the “irrelevant” portion on the right of the real-time constraint. Therefore,
ŝ is greater than 1. In this system, starting with the initial workload ofw1, the amount of workload keeps
growing even at the full processing speed, eventually violating the real-time constraintT . Fig. 2 shows that,
even though the system is run at the maximum speed, a real-time constraint violation happens at the fourth
iteration, i.e.,t4 > T .

3.3 Proposed Policy

Our power management policy operates in three simple phases. During the first phase, the system is fixed
at the full speed, and the phase lasts until the workload drops below or equal toτ := max{t | W (t) =
ŝt, tmin ≤ t ≤ T}. Intuitively, τ stands for the workload at the ideal point where the minimum workload-
to-delay ratiôs is achieved. Once the workload drops below this level, we canadjust the speed of the system
to enter this ideal point. Note that the first phase may be of zero length: our policy immediately enters the
second phase ifw1 ≤ τ . Let w̄ denote the workload at the beginning of the second phase, andthen the

8

Figure 2: An unsustainable system.

Figure 3: An operation example of the proposed power management policy: The first phase runs for three
iterations (t1, t2, t3) followed by a single iteration (t4) of the second phase. From the fifth iteration on, the
system keeps running at the target speed without further modulation of the speed (the third phase).

second phase consists of a single iteration with speedw̄/τ . Subsequently, the speed is indefinitely fixed at
ŝ, which is the last phase of our policy.

Fig. 3 depicts an example of the execution trace generated byour power management policy. As the
initial workload is larger thanτ , we start with running at the full speeds1 = 1, which is the beginning of
the first phase. As indicated by the dashed lines, the full processing speed repeatedly reduces the workload
of each iteration, eventually reaching below the ideal point workload τ at the fourth iteration (w4 < τ).
Then, the speed is modulated to make the execution delay equal to τ : i.e., we chooses4 = w4/τ . This is
the single iteration that forms the second phase. In following iterations, the speed is fixed atŝ in a steady
state until the system is halted. In sum, our power management policy results in an execution trace of
1, 1, 1, w4/τ, ŝ, ŝ, ŝ, · · · in this example.

9

3.4 Analysis

In this subsection, we show that our power management policyis asymptotically optimal. LetPOL(w1, n)
denote the average power consumption of our policy when run for n iterations, andOPT(w1, n) denote the
infimum6 average power consumption of the execution traces of lengthn. In the rest of this section, we
show the following main theorem.

Theorem 1 (Asymptotic optimality of the proposed policy). The difference between the “exact optimum”
and the average power consumption of our power management policy tends to zero as the time horizon goes
to infinity. That is, lim

n→∞
[POL(w1, n)− OPT(w1, n)] = 0.

Let s1, . . . , sn denote the execution trace of our policy when run forn iterations; w1, . . . , wn and
t1, . . . , tn respectively denote the corresponding workloads and execution delays.

3.4.1 Asymptotic power consumption of our policy

We first calculate the asymptotic power consumption of our policy.

Lemma 1 (Asymptotic average power consumption of our policy). As the time horizon goes to infinity, the
average power consumption of our power management policy converges to that of the target speedŝ. That
is, lim

n→∞
POL(w1, n) = P (ŝ).

Claim 1 (Bounded length of the first phase). For some constantN that does not depend onn, the first phase
is completed withinN iterations. In addition, the first phase does not violate thereal-time constraint.

Proof. In order to establish the existence ofN , note that it suffices to show that the first phase is completed
within a finite number of iterations: since our algorithm does not assume any knowledge of the time horizon
n, it is obvious thatN does not depend onn as long as the first phase eventually terminates.

There is nothing to prove ifw1 ≤ τ , since the first phase is then of zero length. Note that this embraces
the case wherês = 1: we haveτ ≥ tmin by definition, andtmin = w1 whenŝ = 1 sinceW (w1) ≥ ŝw1.
Suppose from now thatw1 > τ andŝ < 1.

We claim that, for allt′ ∈ [τ, w1], W (t′) < t′. (Proof. Suppose there existst′ ∈ [τ, w1] such that
W (t′) ≥ t′. SinceW (τ) = ŝτ < τ , we havet′ > τ ≥ tmin and this contradicts our choice oftmin.) Let
m := maxτ≤t≤w1

W (t)
t

, and we therefore havem < 1. Intuitively, thism serves as a multiplicative factor
that lower bounds the decrease in the workload during the first phase. Thus, it becomes obvious that the first
phase eventually terminates. What remains is a rather tedious application of mathematical induction.

Now we show by induction that, if the first phase lasted for at leastℓ iterations,wℓ+1 ≤ mℓ · w1. The
proof is straightforward: firstly, the base case (ℓ = 0) is trivial. If the first phase lasted for at leastℓ = ℓ0
iterations forℓ0 ≥ 1, we havewℓ0 > τ andsℓ0 = 1 since theℓ0-th iteration is part of the first phase; on the
other hand,tℓ0 = wℓ0 ≤ mℓ0−1 · w1 holds from the induction hypothesis. This showswℓ0+1 = W (tℓ0) ≤
W (mℓ0−1 · w1) ≤ m ·mℓ0−1 · w1, where the first inequality follows from the monotonicity ofW , and the
second from the definition ofm. Thus, forN := ⌈logm τ

w1
⌉, the first phase does not last for more thanN

iterations.
Note that we havew1 ≤ T , since otherwise it is impossible to meet the real-time constraint in the very

first iteration. For each iterationi in the first phase,ti ≤ mi−1 · w1 ≤ T , i.e., the real-time constraint is
satisfied.

6In fact, the minimum exists if the system is sustainable.

10

Claim 2 (Real-time feasibility and valid choice of processing speed). Suppose that the time horizon is long
enough for the second phase to appear. The processing speed of the second phase is within the valid range,
and both the second and third phase of our policy respect the real-time constraint.

Proof. Let i be the index of the iteration that constitutes the second phase. We havesi = w̄
τ

≤ 1 since
w̄ ≤ τ , andti = w̄

si
= τ ≤ T . The first iteration of the third phase has the workload ofwi+1 = W (τ) = ŝτ ,

and henceti+1 =
wi+1

ŝ
= τ ; repeating this argument shows that the execution delay of every iteration in the

third phase isτ ≤ T .

Proof of Lemma 1.The lemma immediately follows from Claims 1 and 2.
The first two phases have their total execution delay boundedfrom above by(N+1)T , and their average

power consumption is no greater thanP (1). On the other hand, the average power consumption of the third
phase is exactlyP (ŝ), and each of its iteration has execution delay of at leasttmin > 0. Thus, by choosing
n to be sufficiently large,POL(w1, n) becomes arbitrarily close toP (ŝ).

3.4.2 Asymptotics of the exact optimum

Now we analyze the asymptotics of the exact optimumOPT.

Lemma 2 (Asymptotic optimum). As the time horizon goes to infinity, the exact optimum converges to the
power consumption of the target speedŝ. That is, lim

n→∞
OPT(w1, n) = P (ŝ).

Proof. Let ǫ > 0 be an arbitrary positive number. SinceOPT(w1, n) ≤ POL(w1, n), Lemma 1 implies that
there existsN1 ∈ N such thatOPT(w1, n) ≤ POL(w1, n) < P (ŝ) + ǫ for all n > N1. Hence, it suffices to
show that there existsN2 ∈ N such thatOPT(w1, n) > P (ŝ)− ǫ for all n > N2.

Consider an arbitrary execution traces∗1, . . . , s
∗
n. LetP ∗ denote its average power consumption;w∗

1, . . . , w
∗
n

andt∗1, . . . , t
∗
n denote its workloads and execution delays, respectively. We then have

P ∗ =

∑n
i=1 t

∗
iP (

w∗
i

t∗i
)

∑n
i=1 t

∗
i

≥ P (

∑n
i=1w

∗
i

∑n
i=1 t

∗
i

) = P (
w1 +

∑n−1
i=1 W (t∗i)

∑n
i=1 t

∗
i

) ≥ P (

∑n−1
i=1 W (t∗i)
∑n

i=1 t
∗
i

), (1)

where the first inequality follows from the convexity ofP and the second from monotonicity.
For all i = 1, . . . , n, we havewbase ≤ t∗i ≤ T ; this further impliesW (t∗i) ≤ T for all i = 1, . . . , n− 1.

Rewriting (1), we obtain

P ∗ ≥ P (

∑n−1
i=1 W (t∗i)
∑n

i=1 t
∗
i

)

= P (
(
∑n−1

i=1 W (t∗i)) · [(
∑n

i=1 t
∗
i)− t∗n]

(
∑n

i=1 t
∗
i) · (

∑n−1
i=1 t∗i)

)

= P (
(
∑n−1

i=1 W (t∗i)) · (
∑n

i=1 t
∗
i)

(
∑n

i=1 t
∗
i) · (

∑n−1
i=1 t∗i)

− t∗n(
∑n−1

i=1 W (t∗i))

(
∑n

i=1 t
∗
i)(

∑n−1
i=1 t∗i)

)

= P (

∑n−1
i=1 W (t∗i)
∑n−1

i=1 t∗i
− t∗n

∑n−1
i=1 W (t∗i)

(
∑n

i=1 t
∗
i) · (

∑n−1
i=1 t∗i)

)

≥ P (ŝ− t∗n
∑n−1

i=1 W (t∗i)

(
∑n

i=1 t
∗
i) · (

∑n−1
i=1 t∗i)

),

11

where the first equality follows from
∑n−1

i=1 t∗i = (
∑n

i=1 t
∗
i)−t∗n, and the last inequality from the monotonic-

ity of P and the choice of̂s: note that
∑n−1

i=1 W (t∗i) =
∑n−1

i=1 s∗i t
∗
i ≥ ŝ

∑n−1
i=1 t∗i . Since we havet∗n ≤ T ,

∑n−1
i=1 W (t∗i) ≤ (n− 1)T , andt∗i ≥ wbase for all i, this leads to

P ∗ ≥ P (ŝ− t∗n
∑n−1

i=1 W (t∗i)

(
∑n

i=1 t
∗
i) · (

∑n−1
i=1 t∗i)

)

≥ P (ŝ− T 2

nw2
base

),

again from the monotonicity ofP . Finally, we obtain

OPT(w1, n) ≥ P (ŝ− T 2

nw2
base

),

as the above bound holds for any arbitrary execution trace.
On the other hand, sinceP (s) is continuous ats = ŝ > 0 and nondecreasing, there exists someδ > 0

(andδ ≤ ŝ) such thatP (s) > P (ŝ)− ǫ for all s ∈ (ŝ− δ, 1]. ChoosingN2 :=
T 2

δw2
base

concludes the proof.

Theorem 1 follows from Lemmas 1 and 2.

4 Experiments

In this section, we experimentally evaluate the performance of our power management policy. We perform a
case study on a motion/object tracking application to observe how the delay-workload dependence exhibits
itself in a CPS. We measure this delay-workload dependence,and apply this to our model along with the
power consumption characteristics measured from Exynos5422. We validate the efficiency of our power
management policy via comparisons with other approaches.

4.1 Experimental Setup

We choose Odroid-XU3 [20] as the target cyber platform, which incorporates Exynos5422 with 2GB main
memory running Linux operating system (Ubuntu 14.10). Exynos5422 System-on-a-Chip is a big.LITTLE
Octa-core system with 4 big (Cortex-A15) and 4 little cores (Cortex-A9), each of which can be individually
and dynamically modulated in operating frequency.

Note that our model does not assume any specific DVFS model andis flexible about the power con-
sumption characteristics used. Thus, rather than resorting to a theoretically derived model of DVFS, we
experimentally measure the actual power dissipation of a big core in Exynos5422. In order for this, we pick
up a benchmarkblowfish, which is known to impose a high degree of computational overhead on a CPU
[19], and run it on a big core of Exynos5422 repeatedly with different operating frequencies. For precise
measurement, we instruct the Linux governor to force the other cores off, and obtain 20 data points as shown
in Fig. 4. We applied the techniques introduced in Section 6.1 in order to cope with the finite number of
operation modes. The resulting power characteristics function P is depicted together in Fig. 4.

12

Frequency [MHz]
0 500 1000 1500 2000

P
ow

er
 D

is
si

pa
tio

n
[W

]

0

0.5

1

1.5

2

2.5 Measured points
Power Characteristics Function P

Figure 4: Power consumption measurements of a big core in Exynos5422 running blowfish benchmark.

4.2 Delay-Workload Dependence

In this subsection, we observe and quantify the delay-workload dependence that emerges in CPS. Motion
tracking, or object tracking, is widely used in CPSs [13, 25,22, 12, 11, 29, 32] to reflect the changes in
the physical world into the internal model that the cyber system maintains, and it is one of the typical
sources of delay-workload dependence. We profile the performance of Lucas-Kanade method [8], using the
implementation provided in OpenCV Library [27].

Consider the following scenario in an object tracking CPS, in which the sensor (camera), takes images
from the physical world, and the actuator moves the orientation of the camera to enable it to track an
object. At the beginning, it is known that the object of interest is located near the center of the scene. As
an initial cost, the cyber system takes an image from the physical world through the camera, and selects
features to track. This task is done by calling OpenCV APIscvCvtColor(), cvGoodFeaturesToTrack(), and
cvFindCornerSubPix(). The initial workloadw1 corresponds to the work done by these function calls.
Later, the system iteratively tracks the target object by repeatedly invoking OpenCV APIscvCvtColor()and
cvCalcOpticalFlowPyrLK().

Usinga priori knowledge on the maximum possible speed of the object, we cancalculate the maximum
distance that the object could have moved between two iterations. This maximum distance, which is given
as an increasing function of the iteration delay, enables usto deduce a bounding box to which the optical
flow calculation can safely be limited. In this experiment, we assume that the object speed never exceeds
10 pixels per millisecond; the minimum search area is given as a box of125 × 125 pixels. If an iteration
takest milliseconds for instance, the search area for the next iteration is given as a square with the side
length of(10 · 2 · t+ 125) pixels.

We use(1000 × 1000)-pixel images to run Lucas-Kanade method and measure the workload incurred.
We fix the operating frequency of the big core to the maximum (2GHz), and only one core is activated as the
algorithm is single-threaded. We individually measured the workload for search areas of sizes125 × 125,
145 × 145, . . ., 785× 785. This provides us with the delay-workload dependence profile shown in Fig. 5.

A piecewise linear, nondecreasing functionW is derived from these 34 measurements, as highlighted
by the blue curve. We plot a straight line,w = t, to provide a visual reference. This line represents the
maximum amount of work that can be done by the microprocessorrunning at the full speed (s = 1). We

13

Delay [ms]
0 5 10 15 20 25 30

W
or

kl
oa

d
[m

s]

0

5

10

15

20

25

30 Delay-workload dependence function W
w = t
Real-time constraint T

Figure 5: Delay-workload dependence observed in Lucas-Kanade method.

also highlight the real-time constraintT = 25ms as a vertical dashed line.

4.3 Power Management Policy

In this subsection, we validate the optimality of the proposed power management policy. We conduct power
simulations of Lucas-Kanade algorithm considering the delay-workload dependence provided in Fig. 5 with
the DVFS modes characterized in Fig. 4. The real-time constraint is set to25ms, as shown in Fig. 5.

In order to facilitate comparative investigation, we evaluated four other policies. The first policy is
ALAP (see [4] for an example of the ALAP approach), where the speed is chosen as the slowest possible
while satisfying the real-time constraint. The second policy is ASAP, the other extreme: under this policy,
we fix the processing speed to the maximum. The last set of policies, denoted as Heuristic 1 and Heuristic 2,
are described in Section 4.4.

We simulate the five power management policies, i.e., ASAP, ALAP, Heuristic 1, Heuristic 2, and the
proposed policy, for six different time horizons: 10, 100, 1000, 10000, 100000, 1000000. The only excep-
tion is Heuristic 2, which violates the real-time constraint at the 67th iteration and therefore is prematurely
halted for the last five cases. We also remark that none of these policies, of course, did not know in advance
when they would be terminated.

Table 2 shows the average power consumption achieved by the five power management policies. Our
policy starts outperforming all other approaches whenn ≥ 100. In the case of a short time horizon on the
other hand (n = 10), ALAP showed the best average power consumption.

In ASAP, the speed is always set to the maximum, thus the delayconverges totmin = 1.94222ms (see
Definition 3). In other words, ASAP is the most responsive policy. ALAP, on the contrary, sacrifices the
responsiveness in favor of power efficiency; it enters a steady state whose execution delay is exactly equal
to the real-time constraint to achieve an asymptotic power consumption of1.52927W. Note that, however,
the power efficiency of ALAP is inferior to the proposed policy since it fails to find the better steady state
that the proposed policy uses.

The target speed of the proposed policy is identified asŝ = 0.56085. We can observe that, as the
time horizon gets longer, the average power consumption gets smaller, converging toP (ŝ) = 0.68087. As
mentioned above, Heuristic 1 was prematurely halted due to real-time constraint violation; Heuristic 2, on

14

Table 2: Comparison of average power consumptions

n
Policy

ASAP ALAP Heuristic 1 Heuristic 2 Proposed

10 2.50325 1.51550 2.33322 2.36455 1.72204
100 2.50325 1.52789 1.12819∗ 1.47065 0.82071

1000 2.50325 1.52913 1.12819∗ 1.19146 0.69535
10000 2.50325 1.52925 1.12819∗ 1.15731 0.68232

100000 2.50325 1.52926 1.12819∗ 1.15465 0.68102
1000000 2.50325 1.52927 1.12819∗ 1.15434 0.68088

∗Prematurely halted due to the real-time constraint violation.

the other hand, did not violate the real-time constraint andits average power consumption appears to stay
around∼ 1.15. See Section 4.4 for further discussion on these heuristics.

4.4 Heuristics

In this subsection, we explore the possibilities of extracting some key ideas that underlie our power man-
agement policy, and applying it to devise heuristics that can be used in varied settings. In particular, we will
consider a setting in which the power management policy is deprived of its access to the model parameters
including the power consumption characteristicsP and the delay-workload relationW . In fact, the only
parameter we assume that the heuristics will be aware of is the real-time constraintT . We present a simple
heuristic that is inspired by the present power management policy, and works under this limited setting.

Our power management policy, in one line, is to “find a steady-state pointt that minimizesW (t)
t

”. Even
though heuristics under the limited setting does not have access toW , it can “retrospectively” estimate it:
once an iteration, say thei-th iteration, completes, we can estimateW (ti−1) = wi = siti by measuring the
execution delayti. Based on this, we can devise the following simple heuristic.

Let σ(t) := W (t)
t

. Recall that our “objective” is to minimizeσ(t). With this in mind, our heuristic

estimatesσi := σ(ti) by σi =
W (ti)
ti

=
si+1ti+1

ti
. Thus, at the end of iterationi, the lastσ we can estimate is

σi−1.
The heuristic is quite simple: we start with the full speed (si = 1). At any point of the execution, the

heuristic has its internal “intention” about whether it wants to increase or decrease the processing speed.
Initially, this intention is set todecreasingsince it is the only choice. When a new iteration begins, we
reassess the intention. We compare the last two estimates ofσ to see if we are “happy”, i.e.,σ is decreasing,
or “unhappy”, i.e.,σ is increasing. If we are happy, we do nothing; if unhappy, we flip our “intention”. A
final piece of adjustment is that we perform this reassessment every three iterations, in order to avoid noisy
behaviors resulting from the heuristic being too sensitive.

Fig. 6 shows the performance of this heuristic, called Heuristic 1, where we increase or decrease the
processing speed by0.01 at each iteration. As can be seen from the figure, Heuristic 1 rapidly decreases the
processing speed to approach the “true optimum”. However, it unfortunately overshoots the optimum and
tries to recover from the 55th iteration, but eventually fails in the 67th iteration as it violates the real-time
constraint. Taking a closer look, we can see that the policy increases the processing speed until the 58th
iteration, at which point it falsely attributes the deterioratingσ to its intention and flips it; even though the
policy again starts increasing the processing speed at the 64th iteration, the workload has already grown
too large by this point and the policy thereby fails to recover. This failure is largely due to the limitation

15

Iterations [1]
10 20 30 40 50 60S

pe
ed

 s
ca

le
 |

 E
st

im
at

ed
 W

(t
)/

t

0.4

0.5

0.6

0.7

0.8

0.9

1
Speed

Iterations [1]
10 20 30 40 50 60

D
el

ay
 |

W
or

kl
oa

d
[m

s]

0

10

20

30

40
Delay
Workload

Figure 6: Trajectory of speed, estimatedσ, delay, and workload in the execution of Heuristic 1.

imposed by the lack of information: without the complete view of the system parameters, the heuristic fails
to timely and properly act to recover when it overshoots the optimum.

In order to fix this issue of the belated action, we modify Heuristic 1 by making the increase/decrease in
the processing speed asymmetric: when the modified heuristic decreases the processing speed, it decreases
it by 0.01, but when it increases, it does so by0.1. This compensates for the belated action by favoring
“escaping out of overload” over “making maximum use of low speed”. Fig. 7 shows the performance of this
modified heuristic, called Heuristic 2, when it is run for 600iterations until halted from outside. We can see
that now the real-time constraint is respected during the entire test run.

5 Power Optimization: the General Case

5.1 Introduction

In Section 3, we presented a power management policy and its analysis under the simplifying assumption
thatW is continuous. In this section, we present our results for the general case. This generalization is
a key enabler for the application of the proposed policy to the multi-media application domain, where the
workload changes in the unit of block in a discrete manner.

Another important use of this generalized policy is as a lightweight substitution of the continuous-case
policy of Section 3. Obtaining an accurate delay-workload relation is a costly operation even though it
needs to be performed only once at design time. In order to save this effort, one can profile the given system
only for a few data points to obtain a “safe upper bound” of thetrue delay-workload relation. Since this
upper bound needs to be conservative, a reasonable approachwould be to extend these data points into a
discontinuous staircase function. Section 5.8 illustrates the operation of our generalized policy in the context
of this usage.

16

Iterations [1]
50 100 150 200 250 300 350 400 450 500 550 600S

pe
ed

 s
ca

le
 |

 E
st

im
at

ed
 W

(t
)/

t

0.4

0.5

0.6

0.7

0.8

0.9

1
Speed

Iterations [1]
50 100 150 200 250 300 350 400 450 500 550 600

D
el

ay
 |

W
or

kl
oa

d
[m

s]

0

5

10

15

20

25
Delay
Workload

Figure 7: Trajectory of speed, estimatedσ, delay, and workload in the execution of Heuristic 2.

The overall organization of this section is quite similar tothat of Section 3; in fact, we can draw an almost
one-to-one correspondence between the two sections. Recall that the analysis of our policy in Section 3
started with bounding the range of execution delays (Observation 1); this section starts with the same,
except that it is slightly generalized to cope with discontinuity (Theorem 2). Corollary 1 in the present
section shows that the first and second phase still have a bounded length, generalizing Claim 1 of Section 3.
The target speed̂s is again very similarly chosen, but one technicality that exists only in this general case
is that the minimum may not exist. If only the infimum exists, instead of choosing a single target speed,
we choose a converging sequence of target execution delays.(Speeds are replaced with delays for technical
reasons; see Definition 8.) Then, the generalized policy is basically the same as Section 3: we run at the
full speed until we reach the target execution delays. Sincethe target is now defined as an infinite sequence
of execution delays, this may not be a steady-state in general, but the analysis shows that they lead to a
“near-steady” state, achieving asymptotic optimality.

5.2 Reachability

We first need to revise our characterization of execution delays that can appear on execution traces: this
subsection presents the strengthened counterparts of Definition 3 and Observation 1.

Definition 6 (Reachability). We say an execution delayt is reachableif there exists a real-time feasible
execution traces1, . . . , sn with execution delayst1, . . . , tn such thattj = t for somej.

Now we give a characterization of the reachable delays. LetRo := {t | 0 < t < w1 and∀t′ ∈
(t, T] W (t′) > t} andRc := {t | 0 < t ≤ w1 and∀t′ ∈ [t, T] W (t′) ≥ t}. Note that both are nonempty.
LetR := (∩t∈Ro(t, T])∩(∩t∈Rc [t, T]). The following theorem shows thatR is the desired characterization.

17

Theorem 2(Characterization of reachable delays). t̃ is reachable if and only if̃t ∈ R.

Proof. (⇒, every reachable delay is inR.) Consider an arbitrarỹt /∈ R (t̃ ≤ T). This implies that either
there existst ∈ Ro such thatt ≥ t̃ or there existst ∈ Rc such thatt > t̃ (or both). Lets1, . . . , sn and
t1, . . . , tn be the processing speeds and delays of anarbitrary real-time feasible execution trace.

Case 1.∃t ∈ Ro t ≥ t̃. We will show by induction thatti ∈ (t, T] for all i, which implies that̃t is not
reachable. The base case is easy, sincet1 ∈ [w1, T] ⊂ (t, T]. Assuming the claim holds fori = i0, we have
ti0+1 ≥ wi0+1 = W (ti0) > t as desired.

Case 2. ∃t ∈ Rc t > t̃. We use a similar argument: in this case we showti ∈ [t, T] for all i.
The base case again is easy to see fromt1 ∈ [w1, T] ⊂ [t, T]. If the claim holds fori = i0, we have
ti0+1 ≥ wi0+1 = W (ti0) ≥ t.

(⇐, every delay inR is reachable.) Consider an arbitraryt̃ ∈ R. Let R̄ be the set of reachable execution
delays, and we will show that̃t ∈ R̄. Observe thatt ∈ R̄ impliest′ ∈ R̄ for all t′ ∈ [t, T]: since there exists
an execution trace withtj = t for somej, scalingsj by a multiplicative factor oft/t′ and truncating the
trace at the end of iterationj yield a feasible execution trace withtj = t′. Moreover,W (R̄) ∩ (0, T] ⊂ R̄.
(Proof. Suppose that, for somet ∈ R̄, W (t) ∈ (0, T]. Sincet ∈ R̄, there exists an execution trace that
reachest. Truncate this execution trace right after the iteration with delayt, and add one more iteration with
speed1. Note that this new iteration has the execution delay ofW (t).) Finally, R̄ 6= ∅ since[w1, T] ⊂ R̄.
Suppose towards contradiction thatt̃ /∈ R̄.

Case 1. R̄ = [min R̄, T]. We then havẽt < min R̄ since t̃ /∈ R̄. On the other hand, we have
W (R̄) ⊂ [min R̄,∞) and thereforemin R̄ ∈ Rc by definition (note thatmin R̄ ≤ w1). This gives̃t /∈ R.

Case 2.R̄ = (inf R̄, T]. In this casẽt ≤ inf R̄. SinceW (R̄) ⊂ (inf R̄,∞), we haveinf R̄ ∈ Ro which
in turn impliest̃ /∈ R.

So far we have not used the monotonicity ofW ; we will however use it in what follows in order to
devise a clean algorithmic way to reacht ∈ R.

Before we do this, we make some useful observations first. Given a real-time feasible execution trace,
increasing its speeds preserves feasibility since it does not increase any execution delays:

Observation 3 (Closedness of feasibility with respect to speed increase). Let s1, . . . , sn be a real-time
feasible execution trace with delayst1, . . . , tn. Suppose we change some ofsi’s to 1, obtaining a new
execution traces′1, . . . , s

′
n with delayst′1, . . . , t

′
n. We havet′i ≤ ti for all i (and therefore the new trace also

is real-time feasible).

Proof. Trivial from the monotonicity ofW .

Theorem 2 along with this observation gives an algorithmic procedure to reach an arbitrary reachable
delay t̃ ∈ R: fix the system at the full speed until the iteration whose workloadwi drops below or equal to
t̃; choosesi :=

wi

t̃
so that the delayti becomes exactlỹt.

Corollary 1 (Algorithmic reachability). The above procedure produces a real-time feasible execution trace
that reaches̃t in the last iteration.

Proof. Consider an arbitrary real-time feasible execution trace that witnesses̃t. Such a trace is guaranteed
to exist by Theorem 2. Now, setting all the speeds to 1 yields an execution trace that is real-time feasible
and has an iteration whose delay is at mostt̃ (see Observation 3). Truncate this execution trace right after
first such iteration, and decrease the speed of this last iteration so that its delay becomes exactlyt̃. Note that
this decrease does not harm feasibility, and that this exactly corresponds to the execution trace produced by
the above procedure.

18

5.3 Target Speed

Now the definition of the target speed (corresponding to Definition 4 of the continuous case) is generalized
as follows:

Definition 7 (Target speed). Within the reachable range of execution delays, the target speedŝ is defined as
the infimum workload-to-delay ratio. That is,ŝ := inft∈R

W (t)
t

.

Observation 2 extends to this new generalized definition ofŝ: the system is not sustainable ifŝ > 1.
Hence, we will assumês ≤ 1 in what follows. Note that̂s > 0 sincewbase > 0.

Before we present our power management policy generalized for arbitrary nondecreasing workload func-
tions, it may be helpful to review the continuous variant in aslightly different presentation. Recall that, in
the continuous variant, the execution delays of the third phase formed a constant sequenceτ, τ, · · · , and this
achieved the desired power consumptionP (ŝ). The first two phases were simply to initiate this steady state.
Our generalized policy works in basically the same way: the only subtlety comes from the fact that there
may be no execution delayτ whose steady state achievesŝ, i.e.,mint∈R

W (t)
t

may be undefined. Thus, our
new generalized policy will use an infinite sequence that converges to the target speed in lieu ofτ, τ, · · · .

Definition 8 (Target delay sequence). Let ǫs, ǫt > 0 be two positive parameters to be chosen later. We say
an infinite sequence(τi)i∈Z≥0

is a target delay sequenceif the following hold:

1. τi ∈ R for all i;

2. W (τi)
τi

< ŝ+ ǫs for all i, and
(

W (τi)
τi

)

i∈Z≥0

converges tôs;

3. there exists somêτ ∈ cl(R) such that|τi − τ̂ | < ǫt for all i and(τi)i∈Z≥0
converges tôτ .

While, at first glance, this definition might look more complicated than it actually is, identifying a target
delay sequence is in fact very simple for most conceivable applications. For example, ifmint∈R

W (t)
t

exists,

we can simply take an infiniteconstantsequence ofmint∈R
W (t)
t

, which is exactly what we did in the
continuous case. IfW is discontinuous but piecewise continuous, a target delay sequence can be given as
either an infinite constant sequence or a sequence converging to one of the discontinuities, where any such
sequence will be admissible as long as the first term starts sufficiently close toτ̂ .

5.4 Proposed Policy

Let s1, s2, . . . be the infinite sequence whose prefix of lengthn corresponds to the execution trace of our
policy when it is run forn iterations. Likewise, lett1, t2, . . . denote the infinite sequence of its execution
delays.

Whenŝ = 1, our policy is simply fixing the system at its full speed:si = 1 for all i.
Whenŝ < 1, for some target delay sequence(τi)i∈Z≥0

where we chooseǫs := 1−ŝ
3 andǫt := ǫswbase,

our policy first invokes Corollary 1 to reachτ0. This corresponds to the first two phases of the continuous
counterpart. Letη denote the index of the iteration we reachτ0: tη = τ0. The processing speeds of the
following iterations (corresponding to the third phase) are chosen so that the execution delays from then
form prefixes of the target delay sequence, i.e.,sη+i :=

W (τi−1)
τi

for all i = 1, 2, · · · .

19

5.5 Feasibility

Let us verify the feasibility of our policy. Firstly, consider the case when̂s = 1. Our policy produces a real-
time feasible execution trace as long as there exists one, ascan be seen from Observation 3. In the interest
of completeness, we also provide the following characterization by which we can determine the system’s
sustainability.

Lemma 3 (Sustainability). A given system is sustainable if and only if

• there existst ∈ [w1, T] such thatW (t) ≤ t, or

• there existst ∈ (w1, T] such thatW (t′) < t for all t′ ∈ [w1, t).

The proof of this lemma uses a similar argument as Theorem 2 and is deferred to the end of this section.
Now we will focus on the case wherês < 1. To begin with, the following lemma shows that a target

delay sequence is guaranteed to exist. Its proof is given at the end of this section.

Lemma 4 (Existence of a target delay sequence). There always exists a target delay sequence.

Finally, it remains to verify that the processing speeds arevalidly chosen.

Lemma 5 (Validity of the proposed policy). Processing speeds chosen by our policy are all valid. That is,
si ∈ (0, 1] for all i.

Proof. It suffices to verify the claim for eachi > η from Corollary 1. For alli = 1, 2, · · · , we have

sη+i :=
W (τi−1)

τi
=

W (τi−1)

τi−1
· τi−1

τi
< (ŝ+ ǫs) ·

τ̂ + ǫt
τ̂ − ǫt

,

where the last inequality follows from Definition 8. Sincemin cl(R) ≥ wbase, we haveǫt ≤ ǫsτ̂ ; thus,

sη+i < (ŝ+
1− ŝ

3
) · 1 +

1−ŝ
3

1− 1−ŝ
3

=
(1 + 2ŝ)(4− ŝ)

3(2 + ŝ)
≤ 1,

where the last inequality is verified as follows: letf : [0, 1] → R be a function such thatf(s) = (1+2s)(4−s)
3(2+s) .

Sincef ′(s) = 2(1−s)(5+s)
3(2+s)2

, f is nondecreasing; on the other hand,f(1) = 1.

5.6 Asymptotic Power Optimality

We show that the proposed policy is asymptotically power-optimal, this time for generalW . LetPOL(w1, n)
denote the average power consumption of our policy when run for n iterations, andOPT(w1, n) denote the
infimum average power consumption of the real-time feasibleexecution traces of lengthn. In the rest of this
section, we will show the following theorem, which is the generalized counterpart of Theorem 1.

Theorem 3 (Asymptotic optimality of the proposed policy). The difference between the infimum average
power consumption and the average power consumption of our power management policy tends to zero as
the time horizon goes to infinity. That is,lim

n→∞
[POL(w1, n)− OPT(w1, n)] = 0.

We again begin with calculatinglimn→∞ POL(w1, n).

20

Lemma 6 (Asymptotic power consumption of the proposed policy). As the time horizon goes to infinity, the
average power consumption of our power management policy converges to that of the target speedŝ. That
is, lim

n→∞
POL(w1, n) = P (ŝ).

Proof. We claim that lim
n→∞

P (si) = P (ŝ). (Proof. Note that lim
n→∞

si = lim
i→∞

W (τi−1)

τi
= lim

i→∞

W (τi−1)

τi−1
·

τi−1

τi
= ŝ · τ̂

τ̂
= ŝ. Now the claim holds sinceP is continuous.) Recall thatPOL(w1, n) =

∑n
i=1 tiP (si)∑n

i=1 ti
,

where we haveti ∈ R for all i with inf R > 0 andsupR ≤ T , andP (si) ≤ P (1). Thus, for anyǫ > 0,
there existsN ∈ N such that|POL(w1, n)− P (ŝ)| < ǫ for all n > N .

Finally, we can determinelimn→∞OPT(w1, n) by following the proof of Lemma 2 verbatim. The proof
is thereby omitted.

Lemma 7 (Asymptotic infimum). As the time horizon goes to infinity, the infimum average powerconsump-
tion converges to that of the target speedŝ. That is, lim

n→∞
OPT(w1, n) = P (ŝ).

Theorem 3 follows from Lemmas 6 and 7. We conclude this section with the deferred proofs.

5.7 Deferred Proofs

Proof of Lemma 3.(⇐) Let n ≥ 1 be an arbitrary integer. Consider an execution trace of length n where
the speed is fixed at the full speed. Letti be the execution delay of thei-th iteration.

If there existst ∈ [w1, T] such thatW (t) ≤ t, it is easy to show by induction thatti ≤ t for all i.
Likewise, if there existst ∈ (w1, T] such thatW (t′) < t for all t′ ∈ [w1, t), we can showti < t for all i.

(⇒) Suppose that the system is sustainable; Observation 3 implies that the execution delay of lengthn
in which the speed is fixed at the full speed is real-time feasible. Also note that the execution delay of the
i-th iteration under an execution trace fixed to the full speeddoes not depend on the time horizon. Letti be
this delay, and we obtain an infinite sequencet1, t2, · · · .

Case 1.∃i tsup = ti. We haveW (ti) ≤ ti, since otherwiseti+1 = W (ti) > ti. Note thattsup ∈ [w1, T].
Case 2. ∄i tsup = ti. Sincet1 = w1, we havetsup > w1. We will prove by contradiction that

W (t′) < tsup for all t′ ∈ [w1, tsup). Suppose there existst′ ∈ [w1, tsup) such thatW (t′) ≥ tsup. From
the choice oftsup, there existsj such thattj ∈ (t′, tsup). We then havetj+1 = W (tj) ≥ W (t′) ≥ tsup,
reaching contradiction.

Proof of Lemma 4.Sinceŝ := inft∈R
W (t)
t

, we can choose a sequence(ti)i∈Z≥0
so thatti ∈ R for all i and

(

W (ti)
ti

)

i∈Z≥0

converges tôs. For sufficiently largeN , (ti)i≥N yields a sequence that satisfies Properties 1

and 2 of Definition 8. From (the one-dimensional case of) Bolzano–Weierstrass theorem (see e.g. [3, pp. 54–
56]), there exists a subsequence of(ti)i≥N which converges, say, tôτ . We can then choose a subsequence
of this subsequence to achieve Property 3 as well. Note that we did not lose Property 1 or 2 during this
construction.

5.8 Experiments

In this subsection, we experimentally illustrate the operation of our proposed policy under a discontinuous
delay-workload relation.

21

Table 3: Comparison of average power consumptions (with a staircase delay-workload relation)

n
Policy

ASAP ALAP Heuristic 1 Heuristic 2 Proposed

10 2.50325 1.42631 2.33322 2.36455 1.58071
100 2.50325 1.44927 1.12819∗ 1.47065 0.82424

1000 2.50325 1.43451 1.12819∗ 1.19146 0.73150
10000 2.50325 1.43061 1.12819∗ 1.15731 0.72222

100000 2.50325 1.43215 1.12819∗ 1.15465 0.72129
1000000 2.50325 1.43233 1.12819∗ 1.15434 0.72120

∗Prematurely halted due to the real-time constraint violation.

5.8.1 Setup

As was discussed in Section 5.1, we use a staircase delay-workload relation obtained from a few data points,
which can be an inexpensive substitute of the exact delay-workload relation. Experimental setup is identical
to the experiment in Section 4; the only difference is that weuse only 11 profiling data points in this
experiment. These 11 data points are 3ms apart, i.e., we use the profiling results for execution delays of 0,
3ms, 6ms,. . ., and 30ms.

The conservative staircase boundW is formally defined as follows: givenk data points(t̄1, w1), . . . ,
(t̄k, wk), letW (t) := mini:t≤t̄i w̄

i. Our staircase delay-workload relation is depicted in Fig.8; this function
is presented as the delay-workload relation to each simulated policy (the two heuristics, of course, do not get
any information on the delay-workload relation). These policies therefore work with a conservative bound
of the workload, but our simulation uses the true delay-workload relation shown in Fig. 5 to calculate the
actual execution delays.

5.8.2 Results

Table 3 shows the average power consumption of each policy, where each policy is terminated after 10, 100,
1000, 10000, 100000, and 1000000 iterations. The two heuristic does not assume any knowledge onW
and therefore behaves identical to the first experiment (recall that our simulation relied on the true delay-
workload relation). Since ASAP simply fixes the processing speed tos = 1, its result is identical to the
first experiment as well. ALAP, on the other hand, behaves differently because what the policy thinks is the
slowest possible processing speed subject to the real-timeconstraint actually is faster than the true value.
We can observe that its average power consumption fluctuates, approximately around 1.43. Our policy,
finally, converges to the target speed ofŝ = 0.58107 (the target delay sequence can be chosen as a constant
sequence in this case, seew = ŝ · t in Fig. 8.) and its average power consumption tends toP (ŝ) = 0.72119.

6 Generalizing to Weaker Sets of Assumptions

Our model proves quite versatile as the set of assumptions made by our model is not minimal: depending
on the application at hand, we can drop and/or modify some of these assumptions without loss of generality
in order to arrive at a more general model. We discuss these generalizations in this section. It is worth
mentioning that they greatly improve the applicability of the proposed policy to a wide variety of underlying
hardware platforms.

22

Delay [ms]
0 5 10 15 20 25 30

W
or

kl
oa

d
[m

s]

0

5

10

15

20

25

30 Delay-workload dependence function W
w = t

Real-time constraint T

Figure 8: Staircase delay-workload dependence in Lucas-Kanade method.

Sections 6.1 and 6.2 show how the assumptions on the power consumption characteristicsP can be re-
laxed. In particular, Section 6.1 explains how to drop the monotonicity and convexity assumptions, whereas
Section 6.2 discuss how to generalize our model to cope with discrete speed modes. Finally, Section 6.3
explains how the monotonicity assumption on the delay-workload dependence can also be lifted.

6.1 Dropping the Monotonicity & Convexity Assumptions onP

Recall that our model assumes thatP is nondecreasing, convex, and continuous. In what follows,we show
that our model can be generalized to include any continuousP .

6.1.1 Dropping monotonicity

First we show that the monotonicity assumption can be dropped. Dropping the monotonicity would imply
that reducing the speed could cause even bigger power consumption. Intuitively, it is quite clear what we
would do in this case: if there are two speed modess1 ands2 such thats1 is both more power-consuming
(P (s1) > P (s2)) and slower (s1 < s2), we will never uses1 and simply replace withs2. The resulting
“new power consumption characteristics” is denoted byP̄ below. We will conclude with a formal argument.

WhenP is convex and continuous, we show that we can assume without loss of generality thatP is
nondecreasing. LetP : [0, 1] → R+ be an arbitrary convex and continuous function andP̄ : [0, 1] → R+

be a function defined bȳP (s) := mins≤s′≤1 P (s′). It is easy to see that̄P is continuous and nondecreasing.
Moreover,P̄ is convex7.

Now we can run the power optimization policy usingP̄ in lieu ofP , and if the policy says that iteration
i is to be run at speedsi whereP (si) > P̄ (si) = P (s′i) for somes′i > si, we run the iteration at speed
s′i instead. Note that this allows a strictly larger amount of work to be done during the iteration, whereas
the power consumption is kept at̄P (si). This shows that any power management policy can be used in

7 Consider arbitrarys1, s2, s, λ ∈ [0, 1] such thats = λs1+(1−λ)s2. For somes′1 ≥ s1 ands′2 ≥ s2, we haveP̄ (s1) = P (s′1)
andP̄ (s2) = P (s′2). Observe that̄P (s) ≤ P (λs′1 + (1− λ)s′2) ≤ λP (s′1) + (1− λ)P (s′2) = λP̄ (s1) + (1− λ)P̄ (s2).

23

conjunction with a power consumption characteristicsP that is convex and continuous but not necessarily
nondecreasing.

6.1.2 Dropping convexity

It remains to show that the convexity assumption can furtherbe dropped. In order to see the intuition first,
suppose that three speed modess1 < s2 < s3 exhibit non-convex power consumption characteristics.
Instead of using modes2, we may interleaves1 ands3 properly, resulting in the same delay as usings2.
This allows us to regain the convexity assumption. Again, a formal argument follows below.

Let P : [0, 1] → R+ be an arbitrary continuous function. We defineP̄ : [0, 1] → R+ as

P̄ (s) := min
sA,sB,λ∈[0,1],λsA+(1−λ)sB=s

λP (sA) + (1− λ)P (sB);

and we can easily verify that̄P is convex and continuous.
Similarly to above, we run the power optimization policy using P̄ in lieu of P . Suppose that the policy

chose speedsi at iterationi, whereP (si) > P̄ (si) = λP (sA) + (1 − λ)P (sB) for somesA, sB , λ ∈ [0, 1]
such thatλsA + (1 − λ)sB = s. Running this iteration at speedsA for λwi

si
units of time and atsB for

(1−λ)wi

si
ensures that the same amount work can be done while the power consumption is kept at̄P (si).

6.2 Discrete Speed Modes

The arguments we used above in order to drop the convexity assumption can in fact be extended to let our
model handle the cases where there are a finite number of speedmodes. This, for example, covers the
case where a microprocessor supports only a predetermined set of frequency-voltage configurations. The
underlying intuition is basically the same: again, we emulate an imaginary speed mode by interleaving two
existing speed modes.

For a finite setS ⊂ [0, 1] with 0, 1 ∈ S, let s1, . . . , s|S| denote the elements inS. When the power
consumption characteristics is given byP : S → R+, definingP̄ : [0, 1] → R+ as

P̄ (s) := min
∑|S|

i=1 λisi=s,
∑|S|

i=1 λi=1,λi∈[0,1] for all i

|S|
∑

i=1

λiP (si)

yields a convex and continuous function̄P .
Similarly to the previous argument, we can run the power management policy in conjunction with̄P in

lieu ofP without loss of generality: running at speeds whereP̄ (s) < P (s) will now be interpreted as using
a convex combination of the finitely many (as opposed to two) modes.

6.3 Replacing the Monotonicity Assumption onW

Instead of assuming thatW is nondecreasing, we can assume thatW is continuous. A non-monotone
delay-workload relation means that reducing a delay may lead to a larger workload. In this case, we would
naturally just spend more time in this iteration to avoid this anomaly. This is modeled by the new “imagi-
nary” delay-workload relation̄W in what follows.

DefineW̄ : (0, T] → R+ asW̄ (t) := mint≤t′≤T W (t′), and we can easily verify that̄W is nondecreas-
ing. Now we can run the power management policy usingW̄ instead ofW ; whenW (wi

si
) > W̄ (wi

si
) =

W (t′) for somet′ > wi

si
, we introducet′ − wi

si
additional units of intentional delay doing nothing. This will

increase the delay of thei-th iteration tot′, assuring thatwi+1 becomesW̄ (wi

si
).

24

7 Conclusion and Future Work

We identified a new challenge in the design of CPSs that was previously unheard of in the design of classi-
cal real-time systems. The interaction between the cyber and physical components of CPSs induces delay-
workload dependence, creating the unique challenge of power optimization with delay-workload depen-
dence awareness. We presented the first formal and comprehensive model, enabling rigorous investigation
of this problem. We proposed a very simple power management policy, and proved this policy is asymptot-
ically optimal. We also experimentally validated the efficiency of our policy.

Our model requires the delay-workload dependence to be determined at design-time using profiling or
static analysis. While a complete characterization of workload isnecessaryin the design of a real-time
system due to the stringent nature of the real-time constraint, it is rather unfortunate that both profiling and
static analysis are operations that can be expensive. In a soft real-time system, on the other hand, the real-
time constraint is allowed to be violated “every once in a while” and therefore a complete characterization
is not an absolute necessity. It would be an interesting future direction to distill ideas from our result to
devise a power management policy that operates under an incomplete workload characterization, where the
characterization can be obtained at run-time for example aswas done by the heuristics we briefly consid-
ered in Section 4.4. Another interesting future direction would be in incorporating randomness into our
framework. In addition to the possible use of randomized computations, CPSs in particular has multiple
other sources of randomness, including the physical world.In order to exploit the full potential of power
optimization especially under soft real-time settings, itwould be useful to allow the parameters of our model
to be stochastically specified or adaptively changed.

Acknowledgment

The authors would like to thank the anonymous reviewers of versions of this paper [31, 2] for their helpful
comments, and Prof. Seokhee Jeon, Prof. Yong Seok Heo, and Prof. Young-Dae Hong for helpful discus-
sions.

References

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 147–160. ACM, 2008.

[2] H.-C. An, H. Yang, and S. Ha. A formal approach to power optimization in CPSs with delay-workload
dependence awareness.Computer-Aided Design of Integrated Circuits and Systems,IEEE Transac-
tions on. To appear.

[3] T. M. Apostol. Mathematical Analysis. Addison-Wesley Publishing Company, 2 edition, 1974.

[4] H. Aydin, R. Melhem, D. Mossé, and P. Mej́ıa-Alvarez. Power-aware scheduling for periodic real-time
tasks.Computers, IEEE Transactions on, 53(5):584–600, 2004.

[5] J. Barbic and D. James. Six-dof haptic rendering of contact between geometrically complex reduced
deformable models.Haptics, IEEE Transactions on, 1(1):39–52, Jan 2008.

25

[6] J. Barbič and D. James. Time-critical distributed contact for 6-dof haptic rendering of adaptively
sampled reduced deformable models. InProceedings of the 2007 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’07, pages 171–180, 2007.

[7] R. Bhattacharya and G. J. Balas. Anytime control algorithm: Model reduction approach.Journal of
Guidance, Control, and Dynamics, 27(5):767–776, 2004.

[8] J.-Y. Bouguet. Pyramidal implementation of the lucas kanade feature tracker: Description of the
algorithm. Technical report, OpenCV Document, Microprocessor Research Labs, Intel Corporation,
2000.

[9] A. Canedo, E. Schwarzenbach, and M. A. Al Faruque. Context-sensitive synthesis of executable func-
tional models of cyber-physical systems. InCyber-Physical Systems (ICCPS), 2013 ACM/IEEE Inter-
national Conference on, pages 99–108. IEEE, 2013.

[10] X. Cao, P. Cheng, J. Chen, and Y. Sun. An online optimization approach for control and communi-
cation codesign in networked cyber-physical systems.Industrial Informatics, IEEE Transactions on,
9(1):439–450, 2013.

[11] J. Chen, R. Tan, G. Xing, X. Wang, and X. Fu. Fidelity-aware utilization control for cyber-physical
surveillance systems.Parallel and Distributed Systems, IEEE Transactions on, 23(9):1739–1751, Sept
2012.

[12] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. A real-time computer vision system for vehicle
tracking and traffic surveillance.Transportation Research Part C: Emerging Technologies, 6(4):271–
288, 1998.

[13] V. Dobrokhodov, I. Kaminer, K. Jones, and R. Ghabcheloo. Vision-based tracking and motion estima-
tion for moving targets using small uavs. InAmerican Control Conference, 2006, pages 6 pp.–, June
2006.

[14] D. Fontanelli, L. Greco, and A. Bicchi. Anytime controlalgorithms for embedded real-time systems.
In Hybrid Systems: computation and control, pages 158–171. Springer, 2008.

[15] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real time motion capture using a single time-of-
flight camera. InComputer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
755–762. IEEE, 2010.

[16] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real-time human pose tracking from range data.
In Proceedings of the 12th European Conference on Computer Vision - Volume Part VI, ECCV’12,
pages 738–751, Berlin, Heidelberg, 2012. Springer-Verlag.

[17] D. Goswami, R. Schneider, and S. Chakraborty. Co-design of cyber-physical systems via controllers
with flexible delay constraints. InProceedings of the 16th Asia and South Pacific Design Automation
Conference, pages 225–230. IEEE Press, 2011.

[18] D. Goswami, R. Schneider, and S. Chakraborty. Relaxingsignal delay constraints in distributed em-
bedded controllers.Control Systems Technology, IEEE Transactions on, 22(6):2337–2345, 2014.

26

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. Mibench: A
free, commercially representative embedded benchmark suite. In Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop on, pages 3–14. IEEE, 2001.

[20] Hardkernel. Odroid-XU3.http://www.hardkernel.com, 2014.

[21] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Synthesizing switching logic for safety and dwell-
time requirements. InProceedings of the 1st ACM/IEEE International Conference on Cyber-Physical
Systems, pages 22–31. ACM, 2010.

[22] T. Kanade, O. Amidi, and Q. Ke. Real-time and 3d vision for autonomous small and micro air vehicles.
In Decision and control, 2004. CDC. 43rd IEEE conference on, volume 2, pages 1655–1662. IEEE,
2004.

[23] N. Kubota and K. Nishida. Cooperative perceptual systems for partner robots based on sensor network.
International Journal of Computer Science and Network Security, 6(11):19–28, 2006.

[24] E. Lee et al. Cyber physical systems: Design challenges. In Object Oriented Real-Time Distributed
Computing (ISORC), 2008 11th IEEE International Symposiumon, pages 363–369. IEEE, 2008.

[25] I. Mondragon, P. Campoy, C. Martinez, and M. Olivares-Mendez. 3D pose estimation based on pla-
nar object tracking for UAVs control. InRobotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 35–41, May 2010.

[26] S. Oh, L. Schenato, P. Chen, and S. Sastry. Tracking and coordination of multiple agents using sensor
networks: system design, algorithms and experiments.Proceedings of the IEEE, 95(1):234–254, 2007.

[27] OpenCV. OpenCV Library.http://opencv.org, 2015.

[28] D. E. Quevedo and V. Gupta. Sequence-based anytime control. Automatic Control, IEEE Transactions
on, 58(2):377–390, 2013.

[29] D. Sonntag, S. Zillner, C. Schulz, M. Weber, and T. Toyama. Towards medical cyber-physical systems:
Multimodal augmented reality for doctors and knowledge discovery about patients. InDesign, User
Experience, and Usability. User Experience in Novel Technological Environments, pages 401–410.
Springer, 2013.

[30] F.-J. Wu, Y.-F. Kao, and Y.-C. Tseng. From wireless sensor networks towards cyber physical systems.
Pervasive and Mobile Computing, 7(4):397–413, 2011.

[31] H. Yang and S. Ha. Modeling and power optimization of cyber-physical systems with energy-workload
tradeoff. In2015 IEEE International Symposium on Low Power Electronicsand Design (ISLPED).
IEEE, 2015.

[32] S. You and U. Neumann. Fusion of vision and gyro trackingfor robust augmented reality registration.
In Virtual Reality, 2001. Proceedings. IEEE, pages 71–78. IEEE, 2001.

[33] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney. Task scheduling for control oriented require-
ments for cyber-physical systems. InReal-Time Systems Symposium, 2008, pages 47–56. IEEE, 2008.

27

http://www.hardkernel.com
http://opencv.org

	1 Introduction
	1.1 Related Work

	2 Problem Formulation
	2.1 Model
	2.1.1 Power consumption characteristics
	2.1.2 Delay-workload dependence
	2.1.3 Execution trace

	2.2 Asymptotic Optimality
	2.3 Problem Statement

	3 Power Optimization: a Special Case
	3.1 Overview
	3.2 Preliminaries
	3.3 Proposed Policy
	3.4 Analysis
	3.4.1 Asymptotic power consumption of our policy
	3.4.2 Asymptotics of the exact optimum

	4 Experiments
	4.1 Experimental Setup
	4.2 Delay-Workload Dependence
	4.3 Power Management Policy
	4.4 Heuristics

	5 Power Optimization: the General Case
	5.1 Introduction
	5.2 Reachability
	5.3 Target Speed
	5.4 Proposed Policy
	5.5 Feasibility
	5.6 Asymptotic Power Optimality
	5.7 Deferred Proofs
	5.8 Experiments
	5.8.1 Setup
	5.8.2 Results

	6 Generalizing to Weaker Sets of Assumptions
	6.1 Dropping the Monotonicity & Convexity Assumptions on P
	6.1.1 Dropping monotonicity
	6.1.2 Dropping convexity

	6.2 Discrete Speed Modes
	6.3 Replacing the Monotonicity Assumption on W

	7 Conclusion and Future Work

