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Abstract

The design of cyber-physical systems (CPSs) faces variewschallenges that are unheard of in
the design of classical real-time systems. Power optinoizas one of the major design goals that is
witnessing such new challenges. The presence of interdatittveen the cyber and physical components
of a CPS leads to dependence between the time delay of a catiopal task and the amount of workload
in the next iteration. We demonstrate that it is essentighke this delay-workload dependence into
consideration in order to achieve low power consumption.

In this paper, we identify this new challenge, and presenfitist formal and comprehensive model
to enable rigorous investigations on this topic. We progosienple power management policy, and show
that this policy achieves a best possible notion of optitnalin fact, we show that the optimal power
consumption is attained in a “steady-state” operation asuingle policy of finding and entering this
steady state suffices, which can be quite surprising conisgléhe added complexity of this problem.
Finally, we validated the efficiency of our policy with expaents.
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1 Introduction

Modern computation is not confined to small silicon dice aagen Incyber-physical systen{f€PSs), com-
puters interact with the physical world: actuators allownpoiter systems to manipulate the physical world,
while sensors constantly provide the computer systems evithide information([24, 30]. The resulting
feedback control loop makes the hallmark of CPSs, and posgeeaichallenges in the design of CPSs that
were unheard of in the design dissicalreal-time systems. Among these, this paper focuses ircpkati

on the new challenges faced in power optimization in CPSs.

The existence of interaction between thyerandphysicalcomponents of CPSs implies that the phys-
ical world affects not only the particular value of the inpoithe computational task but also the amount of
the computational workload. In particular, the time deldy@omputational task can change the amount
of workload in the next iteration: a typical example is wigsed when a CPS maintains an internal model
of the physical world, where the model can range from a sirspkgpshot of a sensor reading|[30] to a
sophisticated model of beliefs about the external world [23. The longer an iteration goes, the further
this model can drift away from the physical reality; regaits accuracy in the next iteration incurs extra
computational cost.

One of the tools that are widely used by CPSs is computerndsased object tracking algorithms. In
a CPS equipped with object tracking capability,iitternal modelof the physical world will maintain the
coordinate of the tracked object in the image. As the exeoudelay between two consecutive invocations
of the tracking algorithm becomes longer, the algorithml bé required to search a larger area in order
to reconcile the physical reality with the internal moddl.islimportant to properly address the resulting
delay-workload dependence, since object tracking is fatiy used in a variety of CPSs, including, but not
limited to, vision-assisted control of unmanned air vedsqUAV) [13)25] 22], surveillance camera tracking
[12,[11], and augmented reality [29,132]. Skel[15, 16] foritmltbl examples of vision-based algorithms
whose workload may vary with the execution delay.

Delay-workload dependence manifests itself also in dffieitypes of CPSs. Agrawal et al.] [1], for
example, study the optimization of pattern matching ovenegtreams, where the queries can be handled
either by small amount (shorter delay, less workload) oniaggregated manner (longer delay, more work-
load). CPSs whose cyber component exploits temporal coberegears delay-workload dependence: any
iterative algorithms that can be warm-started can lead & éfaptic rendering in Human-Computer Inter-
face (HCI) is an example, as it often uses adaptive sampdicigniques to deal with the stringent real-time
constraint[[6] and the rendering algorithm can be warmketiaio exploit the temporal coherenceé [5].

In order to ensure the responsiveness of a real-time systectie physical stability of a CPS), real-
time constraints are specified, often in the form of a maximatancy. Once this constraint is given,
optimizing the microprocessor’s power consumption overdperation frequency is rather straightforward
in a classical real-time system where delay-workload dépece is absent: one can choose the running
frequency of the microprocessor as low as possible with@latng the latency constraint, and set the
voltage of the microprocessor to the minimum needed to rtineathosen frequencyl[4].

However, the presence of the delay-workload dependenatidates this straightforward strategy. Run-
ning at an excessively low speed in one iteration would leaahtunfavorable increase in the workload of
the next iteration, thereby requiring the next iteratiomun at a high speed; running at an excessively high
speed on the other hand could simply result in suboptimakepa@ensumption. This dilemma creates a new
need for a “smart” power optimization strategy that is awarie delay-workload dependence.



In this paper, we

¢ identify this newly posed challenge, and present the firsh&d and comprehensive model which
enables a rigorous analysis;

e propose aimplepower management policy;
e show the optimality of our policy;
¢ and experimentally evaluate its efficiency.

In developing our results, we aim at formulating a model thass general as possible: in fact, we do not
assume any particular data representation on the paranwéteur model. Our power management policy
is therefore given as a mathematical characterizatiorerdttan an algorithmic procedure. In spite of the
significant added complexity to the problem, our power managnt policy remains surprisingly simple;
this simplicity enables in many cases an algorithmic repretation of the characterization of our policy.
However, we will adhere to its mathematical charactemrathroughout this paper, in favor of generality.
This is particularly natural considering that the propossghnique is primarily a design-time methodology.

In Sectiori 2, we present our formal model and formulate thblpm of power optimization as a concrete
mathematical question. Then, in Sectidn 3, we present onepmanagement policy under a simplifying
assumption that the workload is given as a continuous fonaf execution delay. Whilst this assumption
is not mathematically necessary, it will simplify the analysiaf policy and make the underlying intuition
more visible. The proposed model can be further generatiadm applied to a wide spectrum of poten-
tial applications; this versatility is discussed in Secfh The analysis in full generality is presented in
Sectionb. Sectioh]4 evaluates the practical efficiency ofpauwver management policy. To this end, we
experimentally measured the power consumption charattsriof a mobile computing platform Samsung
Exynos5422 (in Sectidn 4.1), profiled an OpenCV-based oljacking application to quantitatively iden-
tify the delay-workload dependence (Section 4.2), anduatatl the efficiency of our power management
policy (Sectiori 4.B).

1.1 Related Work

There have been some studies to apply multiple operatiodesin CPS design. Jha et al._[21] studied a
system that has different execution modes, each of whichds/k and modeled as a node in the modeling
automaton. Canedo et al. presented a context-sensititbesys of CPS [9]. In order to overcome the
incompleteness of the functional model, they adopt thedledynction that reliably generates the simulation
model based on the context that the previous results cadseohtime optimization of CPS is proposed by
Cao et al. [[10], where the design parameters are adaptivebdtconsidering the feedback results. While
CPSs are enriched or optimized via multiple operation mad#se above mentioned works, none of them
has taken the execution delay into consideration as a sofikaiance in workload.

There are a handful of literatures that study the relatignbletween control stablity and system per-
formance in control-centric CPSs. A design guideline faxiike delay constraints in distributed CPS was
proposed by Goswami et al._[17,]18], where some of the sangpiesllowed to violate the given delay
deadline. They presented the applicability of the propaggatoach using the FlexRay dynamic segment
as a communication medium. They could improve the resoufipéeacy or flexibility of CPSs in favor of
the stability. However, this relaxation of design constisiis not always feasible. Zhang et al. [[33] took
advantage of the fact that the longer computation delay magd the gain of the control algorithm in the
control example of inverted pendulums. If the delay becolmeger, the system can support more inverted
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pendulums within a given resource at the cost of reducedaastability. Such co-design approaches of
control algorithm and system, though, are still blind to tekation between execution delay and workload
in CPSs, which differentiates the proposed method from them

An alternative approach to the co-design of algorithm arstiesy is found in the application of anytime
algorithm to control-centric systems [7,114] 28]. Anytimgaithms are a kind of algorithms that can be
completed arbitrarily at any point and the quality of theasithhm output is proportional to the spent time.
That is, the amount of time invested in the cyber system,igrttodel, is directly coupled with the stability
of the system. However, how this compromised stability@ffehe system in ever-present feedback loops
in CPSs is still missing in their models. On the contraryhi@ proposed model, the harmed stability due to
the lengthened delay manifest itself in the increased waxkit the successive iteration.

2 Problem Formulation

In this section, we present our formal model of the powermiziation problem in the presence of delay-
workload dependence. Firstly, we describe our model amddote the notation to be used throughout this
paper in Sectioh 2] 1.

Section 2.P then introduces a best-possible notion of @itiyn calledasymptotic optimality Finally,
the full formulation of the power optimization problem igiieally presented in Sectidn 2.3.

2.1 Model

Units of measurement In order to keep the presentation as succinct as possiblejilehoose the units
of measurement in a careful way. Note that these choicesuaedyfor the sake of notational convenience
and do not inherently change the analysis: our entire resmitbe presented under any arbitrary choice of
units by introducing appropriate conversion factors.

First, we choose the unit of processing speed so that thenmuaxispeed corresponds to one unit. For
instance, if the given CPS is equipped with a microprocesstir the maximum operating frequency of
2GHz, running it at 1GHz is denoted by= 0.5.

We also need to choose a unit of workload; we define one unibokiead as the workload that can be
processed in one unit of time at the full speed=(1). For example, if the system runs at the speedl/af
it will take two units of time to process one unit of workload.

The notation to be defined in this section and Sedflon 3 is sanmed in Tabl&1l.

2.1.1 Power consumption characteristics

Modern microprocessors support dynamic voltage and fremuscaling (DVFS), where the operating volt-
age and frequency can be modulated to optimize the poweungt®n. In describing the power con-
sumption characteristics, our model does not assume ag¥fisg@VFS model; instead, it achieves higher
generality by describing the characteristics with a fumtthat satisfies a small set of natural axioms. This
allows us to use our model when the power consumption is @djwsa mechanisms other than DVFS, such
as processor selection in a heterogeneous multi-procegstam. ForP : [0,1] — R, let P(s) denote
the power consumption when the system is run at speddbte thatP is a function of speed only: if the
power consumption is adjusted via DVFS, the operating geltzan be optimally chosen once the frequency
is fixed, and this choice can be implicitly encoded within dedinition of P.



Table 1: Summary of the notation in Sectidms 2 @nd 3

Notation | Meaning

P power consumption characteristics
W delay-workload relation
w; workload of thei-th iteration
wy initial workload (i.e., workload of the first iteration)

Whase baseline workload (bookkeeping work that is always reql)ire
8; processing speed of thieh iteration
t; execution delay of théth iteration
T real-time constraint (i.e., maximum allowed executioragi!
n time horizon

tmin minimum possible execution delay
8 target speed
T ideal point workload

The axiomatic assumptions we will make &is as follows. First, we assume th&tis nondecreasing,
convex, and continuotls Note that this set of assumptions is general enough to empiar example, the
power consumption characteristics of CMOS circuits: thergrodissipation of CMOS gates is dominated
by cvﬁdf, wherec denotes the load capacitaneg is the operating voltage, anflis the frequency; the
maximum operating frequency is given proportionaldgy — vy, )?/vad, Wherevy, is the threshold voltage.
From these facts, it is easy to see that the resullirig nondecreasing, convex, and continuous. However,
instead of relying on such an idealized formula, our model loa used with actual power consumption
characteristics obtained by measurement or taken from faectower’'s data. We also remark that these
assumptions are far from being minimal: in Sectign 6, we show some of these assumptions can be
dropped without loss of generality.

Our second assumption is that the operating frequency candolelated to any given value i, 1].
This assumption, however, can also be removed to handletigevehere the microprocessor has only a few
predetermined modes of operation. Details can be foundétidBég.

2.1.2 Delay-workload dependence

We model the delay-workload relation as the following fumet Let7 be the maximum execution delay as
set out by the real-time constraints; the delay-worklodatien is specified byt : (0,7] — R, where
W (t) denotes the workload of the iteration that follows an iterabf execution delay. The workload of
the first iteration is denoted hy; . In practice, one can determing andW for the application at hand by
using static analysis or profiling techniques at design time

As was discussed in Sectibh 1, the main difficulty of the powyimization problem lies in the fact that
a longer delay leads to a larger workload in the next itenatie will thus assume thd?” is a nondecreas-
ing function? In every iteration, there would be some basic bookkeepintk wequired regardless of the
previous iteration’s delay. Laty,sc > 0 denote the workload arising from such basic work, and we will
haveW (t) > wpase for all t € (0, 7], andw; > wpage-

This simply amounts to assumitign ;o P(f) = P(0) andlimsy, P(f) = P(1), sinceP is already convex.
2This assumption, though, can be replaced. Details folloSeatior[6.



2.1.3 Execution trace

Suppose that the CPS runs foiterations. We calh thetime horizornof the system, but we will not assume
anya priori knowledge about the time horizon: the system does not kn@aewance when it will be halted
from outside. Letw;, s;, andt; (1 < i < n) be the workload, processing speed, and execution delayof th
i-th iteration, respectively.

We do not allow changing the processing speed within a sitgllation, and this assumption does not
harm the power optimality due to the convexity Bf If the processing speed changes within an iteration,
we can instead fix the speed to the average speed duringdhatiah and we will be able to process the
same amount of work while consuming no more p

For all 4, w; by definition has to be less than or equalste;: as thei-th iteration runs for; units of
time at speed;, at mosts;t; units of workload can be processed by the end of this iteratidereasv;
is defined as the amount of work that needs to be done iin-thdteration. In fact, we can further assume
that they are equal, i.ew; = s;t;, in a power-optimal scenario. Suppose that< s;t; for some iteration.

We can then decreasgto 7 instead,; this will not increase the power consumption ahifeni due to the
monotonicity of P and will not otherwise change the system’s behavior.

An execution tracés defined as a sequence of processing speeds.

Definition 1 (Execution trace) Suppose that a given CPS has run foiterations. We call the sequence
s1,-..,8y Of the processing speeds égecution traceandn the lengthor time horizonof this execution
trace.

An execution trace contains sufficient information to datiee the execution delay and workload of
every iteration given the parameters of the CPS: we have %% andw;,1 = W (t;) for all i. Note that
the real-time constraints demand that 7" for all . We will sometlmes call an execution traceeal-time
feasible execution trade order to emphasize the presence of the real-time contstrai

2.2 Asymptotic Optimality

In this subsection, we show that a “natural” notion of opfipawver management policy is an impossible
goal to achieve, and introdue@symptotic optimalitas the “right” notion of optimality.

Given a system specified by its power consumption charatitP, delay-workload relatiomV, initial
workloadw, and the real-time constraiffit, we could set our goal as designing a power management policy
such that, if the system is halted afteiterations, the resulting execution trace minimizes therage power

consumption
> i tiP(si)
Z?:l ti
Unfortunately, however, this goal is impossible to achieve
Our model does not assume that we “know the future”, so theepavanagement policy needs to work
without knowing when the system is to be halted. This makispbssible for a power management policy

to produce an exactly optimal execution trace, which is destrated by the following toy example: consider
asystem withl’ = 1, wy = 1, W(t) = v/t, andP(s) = s?. The (unique) execution trace of lengttthat

®Suppose that the processing speed changes duringthhigeration. Fors; : [0, ;] —> [0, 1], let s;(t) denote the processing
speed aftet units of time since the beginning of thieh iteration. Lets; := 1 fo :(t)dt. We have that the average power

consumption fO (si(t))dt is greater than or equal #8(5;) from Jensen’s |nequallty (We assume that the integrafg.gxi



minimizes the average power consumption in this systesm s 0.6180, sy ~ 0.8995H Since the power
management policy does not know the time horizon in advaiheguld need to choose; ands, as the
speed in the first two iterations in order to successfully/dpo® an optimal execution trace in case the system
is halted after two iterations. However, if the system igdthhafter three iterations, the resulting execution
trace cannot be optimal, because the optimal executioa tElength3 does not start with the above and
S9.

However, as it turns out, it is possible to obtain a power rgangnt policy that is near-optimal for any
time horizon:

Definition 2 (Asymptotic optimality) We say a power management policyasymptotically optimaif

the policy can be halted after an arbitrary number of iteos$, and the average power consumption of
the resulting execution trace is asymptotically optimad,,itheerror defined as the difference between
the achieved average power consumption and the exact apti(mthich can only be calculated with the

knowledge of:) tends to zero.

In Sectior 8, we show that an asymptotically optimal powenaggment policy, in fact a very simple
one, does exist under a simplifying assumption fivais a continuous function.

2.3 Problem Statement

Finally, we restate our goal formulated as a concrete opétian problem:

Given a system specified by its power consumption charatit=riP, delay-workload relation
W, initial workloadw-, and the real-time constraifit, design a power management policy that
is asymptotically optimali.e., a power management policy that gives a near-optixetdigion
trace for any time horizon.

3 Power Optimization: a Special Case

In this section, we present a provably asymptotically optipower management policy, focusing on the
special case where the delay-workload relatidnis a continuous function. This restriction allows us
to omit the tedious details required to maintain the mathealarigor under the general delay-workload
relation, leading to a simpler presentation which stilliekk all the key intuition. A proof with the full
generality is deferred to Sectibh 5 for interested readers.
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3.1 Overview

Unless the given system is real-time infeasible (this campla if the system parameters are such that
its workload will “explode” even if the system is run at thdlfspeed, destined to violate the real-time
constraint), the system has “steady states” where the waklexecution delay, and processing speed all
remain the same across iterations.

Among all the possible steady states, our power managenoéay finds one that consumes the least
amount of power, and stay in this minimum-power steady stateuitively, the convexity of the power
consumption characteristics penalizes fluctuation in geed; the (asymptotic) optimum can therefore be
achieved by such a steady state.

In presenting the proposed policy, we first show in Se¢ti@h®w to determine the range of execution
delays that can lead to a steady state and find a minimum-pie&dy state. Then, our policy is to quickly
enter this minimum-power steady state and remain thers;ptblicy is drawn in Sectioh 3.3. The formal
proof of its optimality follows in Sectioh 314.

3.2 Preliminaries

Bounding execution delays As a preparatory step to describe the proposed power mareagewiicy, we
first bound the range of execution delays. It is relativelyyea see the delay of each iteration is within the
range of{wpase, T']; but here we present a tigf@ower bound on execution delays, given by Definifion 3.

Definition 3 (Minimum delay) The minimum delay,,;,, is defined as the longest delay< w; such that
W (t) is greater than or equal to. That is,t iy := max{t | W(t) > t, 0 <t < w;}.

tmin Safely bounds the execution delay of each iteration froravaehs observed below.
Observation 1. No execution trace has an iteration whose delay is strictialéer thant ;.

Proof. Let sq,...,s, be an arbitrary execution trace with execution delays. . ,t,. We will showt; >
tmin fOr ¢ = 1,...,n by induction.
Basis.We havet; = ‘s”—ll > wi > tmin, Where the last inequality follows from the choicetgf,,.
Inductive step.Now suppose;, > tmin for someiy € {1,...,n — 1}. Thent;,41 > W(t;,) >

W (tmin) > tmin, Where the second inequality follows from the monotonicity?” and the third from the
choice oft ;. O

Observatiom 11 is illustrated in Figl 1 showing hew,, bounds execution delays from below in a typical
case. Geometrically speaking,;, (usually) is the rightmost point of intersection betwaen= ¢ and
w = W (t), restricted to the left of = w;. For a given initial workloadu,, the execution delay never goes
below t.,;, because the workload never goes belgw,, even if the system is run at the fastest possible
speed.

Determining the target speed From the range of execution delays obtained above, now wael#ie
target speef our policy as follows.

Definition 4 (Target speed)Within the specified range of execution delay, the targe¢dpes defined as

the minimum workload-to-delay ratio in a “steady state”.&klis, 5 := min;_, << WT(”

%In fact, Observatiohl1 ialmosttight: see Theoreiil 2 for a complete characterization.
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Figure 1. An example of the lower boung;, on execution delays.

In order to understand the name “steady state”, supposéhthalystem enters an iteration with delay
ti € argmin, . <4<p WT(”; then, as long as the operating speed is sét tite execution delay will remain
the same since ; = 2 — L8
Sustainability One could naturally ask: what if the target spédd out of the valid range, i.e$, > 1? In
fact, such a system is not “sustainable”: it fails to respleetreal-time constrairit’ after a bounded number
of iterations, as shown by Observatidn 2. We will thus asséme1 in what follows. Note that we have
5>0.

Definition 5 (Sustainability) We say a system @ustainabléf, for all n, there exists a real-time feasible
execution trace of length.

Observation 2. If the target speed is not within the valid range, i£> 1, the system is not sustainable. In
particular, there exists a finite bound, such that every execution trace of lengthor longer violates the
real-time constraint.

TIJ + 2. We use a similar argument as in the proof of Observdtion 1. Le

Proof. Chooseng := [log; -~
s1,-..,8, be an arbitrary execution trace of length> ng andt4,...,t, be its execution delays. For all

1> 2, we havet; = W(tifl) = Witz 5 gt > §-t;_1, where the first inequality follows from the

Si ti—1 s = Si

definition of s and the second from; < 1; thus, by induction, we hawg,, > sl > T O

An example of a system that is not sustainable is shown infZigThe curvew = W (¢) is always
above the linav = t, except for the “irrelevant” portion on the right of the rémhe constraint. Therefore,
§ is greater than 1. In this system, starting with the initi@rkoad ofw,, the amount of workload keeps
growing even at the full processing speed, eventually tiftdethe real-time constraint. Fig.[2 shows that,
even though the system is run at the maximum speed, a realetimstraint violation happens at the fourth
iteration, i.e.fy > T.

3.3 Proposed Policy

Our power management policy operates in three simple ph&saing the first phase, the system is fixed
at the full speed, and the phase lasts until the workloadsdbegtow or equal to- := max{t | W(t) =
Sty tmin < t < T}. Intuitively, 7 stands for the workload at the ideal point where the minimuorkioad-
to-delay ratios is achieved. Once the workload drops below this level, weachust the speed of the system
to enter this ideal point. Note that the first phase may be wf length: our policy immediately enters the
second phase ify; < 7. Let w denote the workload at the beginning of the second phasethandthe
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Figure 3: An operation example of the proposed power managepolicy: The first phase runs for three
iterations {1, t2, t3) followed by a single iterationt{) of the second phase. From the fifth iteration on, the
system keeps running at the target speed without furtheufatdn of the speed (the third phase).

second phase consists of a single iteration with speéd Subsequently, the speed is indefinitely fixed at
3, which is the last phase of our policy.

Fig.[3 depicts an example of the execution trace generateztibpower management policy. As the
initial workload is larger thamr, we start with running at the full speed = 1, which is the beginning of
the first phase. As indicated by the dashed lines, the futgesing speed repeatedly reduces the workload
of each iteration, eventually reaching below the ideal puwiarkload = at the fourth iteration, < 7).
Then, the speed is modulated to make the execution delay &ouai.e., we choose, = wy /7. This is
the single iteration that forms the second phase. In foligviierations, the speed is fixed &in a steady
state until the system is halted. In sum, our power managepwity results in an execution trace of
1,1,1,wy/7,8,8,8,- - in this example.



3.4 Analysis

In this subsection, we show that our power management pisliagymptotically optimal. LePOL(wq,n)
denote the average power consumption of our policy whenaun fterations, andPT(w;,n) denote the
infimund average power consumption of the execution traces of lemgtim the rest of this section, we
show the following main theorem.

Theorem 1 (Asymptotic optimality of the proposed policyYhe difference between the “exact optimum”
and the average power consumption of our power managemaaoy pends to zero as the time horizon goes
to infinity. That is, li_>m [POL(wy,n) — OPT(wy,n)] = 0.

Let s1,...,s, denote the execution trace of our policy when run foiterations; w1, ..., w, and
t1,...,t, respectively denote the corresponding workloads and #iexecdelays.

3.4.1 Asymptotic power consumption of our policy

We first calculate the asymptotic power consumption of olicpo

Lemma 1 (Asymptotic average power consumption of our policgs the time horizon goes to infinity, the
average power consumption of our power management policyetrges to that of the target spe&dThat
is, li_>m POL(wy,n) = P(8).

Claim 1 (Bounded length of the first phaséjor some constan¥ that does not depend ar) the first phase
is completed withinV iterations. In addition, the first phase does not violate réned-time constraint.

Proof. In order to establish the existence®f note that it suffices to show that the first phase is completed
within a finite number of iterations: since our algorithm do®t assume any knowledge of the time horizon
n, it is obvious thatV does not depend amas long as the first phase eventually terminates.

There is nothing to prove if); < 7, since the first phase is then of zero length. Note that thizraoes
the case wheré = 1: we haver > t,,;, by definition, and,,;;, = w; whens = 1 sinceW (wy) > $ws.
Suppose from now that; > 7 ands§ < 1.

We claim that, for allt’ € [r,w1], W(t') < t’. (Proof. Suppose there exist$ € [r,w;] such that
W(t') > t'. SinceW (r) = §t < 7, we havet’ > 7 > t.,;, and this contradicts our choice tf;,.) Let
m = MaXr<t<w, WT“) and we therefore have < 1. Intuitively, thism serves as a multiplicative factor
that lower bounds the decrease in the workload during theptigse. Thus, it becomes obvious that the first
phase eventually terminates. What remains is a ratherugdipplication of mathematical induction.

Now we show by induction that, if the first phase lasted foreast/ iterations,w,; < m! - w;. The
proof is straightforward: firstly, the base cage= 0) is trivial. If the first phase lasted for at least= ¢
iterations for¢, > 1, we havew,, > 7 ands,, = 1 since the/y-th iteration is part of the first phase; on the
other handty, = wy, < m®~! - w; holds from the induction hypothesis. This showg; = W (t,,) <
W (mb=1 . w;) < m-mb~1 . w, where the first inequality follows from the monotonicity 16f, and the
second from the definition of.. Thus, forV := [log,, -1, the first phase does not last for more tén
iterations.

Note that we havev; < T, since otherwise it is impossible to meet the real-time taird in the very
first iteration. For each iterationin the first phaset; < m'~! - w; < T, i.e., the real-time constraint is
satisfied. O

8In fact, the minimum exists if the system is sustainable.
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Claim 2 (Real-time feasibility and valid choice of processing she&uppose that the time horizon is long
enough for the second phase to appear. The processing spteglsecond phase is within the valid range,
and both the second and third phase of our policy respectdhktime constraint.

Proof. Let i be the index of the iteration that constitutes the secondgh&Ve haves; = % < 1 since
w < T1,andt; = s@ = 7 < T. The firstiteration of the third phase has the workloadpf; = W (1) = sr,
and hence;,; = “’igl = 7; repeating this argument shows that the execution delayesf/dteration in the

third phase iss < T. O

Proof of Lemmall.The lemma immediately follows from Clairhs 1 dnd 2.

The first two phases have their total execution delay boufrdedabove by NV +1)7", and their average
power consumption is no greater th&1). On the other hand, the average power consumption of the thir
phase is exactly’(s), and each of its iteration has execution delay of at legst > 0. Thus, by choosing
n to be sufficiently largePOL (w;,n) becomes arbitrarily close tB(s). O

3.4.2 Asymptotics of the exact optimum

Now we analyze the asymptotics of the exact optimDIRiT.

Lemma 2 (Asymptotic optimum) As the time horizon goes to infinity, the exact optimum cgegeto the
power consumption of the target speedrhat is, lim OPT(wq,n) = P(8).
n—o0

Proof. Lete > 0 be an arbitrary positive number. SinO®T (w;,n) < POL(wi,n), Lemmdl implies that
there existgV; € N such thaOPT(w;,n) < POL(w1,n) < P(s) + e for all n > N;. Hence, it suffices to
show that there exist¥» € N such thalOPT (wy,n) > P(8) — e forall n > Nj.

Consider an arbitrary execution trage. . . , s;,. Let P* denote its average power consumptiofj; . . . , w;,
andty, ..., t; denote its workloads and execution delays, respective¢yti&h have

P — 2iz B P( t ) > P(Zi:l w; wy+ 3o W(E) > i W)

) = P( ) > P( ) 1)

> i1ty 21t 21t 21t
where the first inequality follows from the convexity Bfand the second from monotonicity.
Foralli =1,...,n, we havewp,se < tf < T’ this further impliesi¥ (¢}) < T'foralli =1,...,n — 1.

Rewriting (1), we obtain

Ptz PG )
i W) - [(0r ) — 8]
P( n * n—1 ;% )
(Zizl ti) . (Zi:l ti)
| pSEW) oy 605S W)
iy (0t (O (X )
_ p ) aSEWE)
n—1 ,x n * n—1 ,x
St (Tt (0 )
(Cr ) - (o)

v
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where the first equality follows frof "=} t* = (37, t¥)—t*, and the last inequality from the monotonic-

ity of P and the choice of: note thaty "7~ W (t;) = SO0, sty > §3°77 ] t. Since we have), < T,
S W () < (n — 1)T, andt? > wyase for all i, this leads to

th S W)

P* > P(§— — Py *)
(Zi:l tz) ' (Zi:l tz)
T2
> P(§ - 2 )a
NWiase

again from the monotonicity aP. Finally, we obtain

T2
NWhase
as the above bound holds for any arbitrary execution trace.
On the other hand, sinc@(s) is continuous at = s > 0 and nondecreasing, there exists same 0

(andd < 3) such thatP(s) > P(s) — e forall s € (§ — 0, 1]. ChoosingN, := MEQ concludes the proof.
base
U

Theoreni 1L follows from Lemmaéasg 1 ahtl 2.

4 Experiments

In this section, we experimentally evaluate the perforreasfour power management policy. We perform a
case study on a motion/object tracking application to olesbow the delay-workload dependence exhibits
itself in a CPS. We measure this delay-workload dependeart apply this to our model along with the
power consumption characteristics measured from Exyr&&5%/e validate the efficiency of our power
management policy via comparisons with other approaches.

4.1 Experimental Setup

We choose Odroid-XU3 [20] as the target cyber platform, Whincorporates Exynos5422 with 2GB main
memory running Linux operating system (Ubuntu 14.10). Bef#22 System-on-a-Chip is a big.LITTLE
Octa-core system with 4 big (Cortex-A15) and 4 little cor€srfex-A9), each of which can be individually
and dynamically modulated in operating frequency.

Note that our model does not assume any specific DVFS modelsditakible about the power con-
sumption characteristics used. Thus, rather than regottira theoretically derived model of DVFS, we
experimentally measure the actual power dissipation of@bie in Exynos5422. In order for this, we pick
up a benchmarklowfish which is known to impose a high degree of computational leead on a CPU
[19], and run it on a big core of Exynos5422 repeatedly wiffedént operating frequencies. For precise
measurement, we instruct the Linux governor to force theratbres off, and obtain 20 data points as shown
in Fig.[4. We applied the techniques introduced in Sedtidhi.order to cope with the finite number of
operation modes. The resulting power characteristicstiumé is depicted together in Figl 4.

12
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Figure 4: Power consumption measurements of a big core in&8422 running blowfish benchmark.

4.2 Delay-Workload Dependence

In this subsection, we observe and quantify the delay-waikldependence that emerges in CPS. Motion
tracking, or object tracking, is widely used in CPSs|[13,25,12,11] 29, 32] to reflect the changes in
the physical world into the internal model that the cybeneys maintains, and it is one of the typical
sources of delay-workload dependence. We profile the paéioce of Lucas-Kanade methad [8], using the
implementation provided in OpenCV Library [27].

Consider the following scenario in an object tracking CPSwyhich the sensor (camera), takes images
from the physical world, and the actuator moves the orieniadf the camera to enable it to track an
object. At the beginning, it is known that the object of imtgris located near the center of the scene. As
an initial cost, the cyber system takes an image from theipalys/orld through the camera, and selects
features to track. This task is done by calling OpenCV ARGvtColor() cvGoodFeaturesToTrack(and
cvFindCornerSubPix() The initial workloadw, corresponds to the work done by these function calls.
Later, the system iteratively tracks the target object Ipgatedly invoking OpenCV APIs/CvtColor()and
cvCalcOpticalFlowPyrLK()

Usinga priori knowledge on the maximum possible speed of the object, wealanlate the maximum
distance that the object could have moved between twoitbesat This maximum distance, which is given
as an increasing function of the iteration delay, enable® uleduce a bounding box to which the optical
flow calculation can safely be limited. In this experimeng assume that the object speed never exceeds
10 pixels per millisecond; the minimum search area is giveen Box of125 x 125 pixels. If an iteration
takest milliseconds for instance, the search area for the nextitar is given as a square with the side
length of (10 - 2 - ¢ + 125) pixels.

We use(1000 x 1000)-pixel images to run Lucas-Kanade method and measure thdoadrincurred.
We fix the operating frequency of the big core to the maximu@®H2), and only one core is activated as the
algorithm is single-threaded. We individually measureelworkload for search areas of sizZex x 125,

145 x 145, ..., 785 x 785. This provides us with the delay-workload dependence prefibwn in Figlb.

A piecewise linear, nondecreasing functidnis derived from these 34 measurements, as highlighted
by the blue curve. We plot a straight line, = t, to provide a visual reference. This line represents the
maximum amount of work that can be done by the microproceassuring at the full speeds(= 1). We
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Figure 5: Delay-workload dependence observed in Lucassfi@amethod.

also highlight the real-time constraifit= 25ms as a vertical dashed line.

4.3 Power Management Policy

In this subsection, we validate the optimality of the pra@bpower management policy. We conduct power
simulations of Lucas-Kanade algorithm considering thayl@orkload dependence provided in Fig. 5 with
the DVFS modes characterized in Hi§. 4. The real-time caimitis set t®25ms, as shown in Fid.]5.

In order to facilitate comparative investigation, we eedhd four other policies. The first policy is
ALAP (see [4] for an example of the ALAP approach), where theesl is chosen as the slowest possible
while satisfying the real-time constraint. The secondqyois ASAP, the other extreme: under this policy,
we fix the processing speed to the maximum. The last set afipslidenoted as Heuristic 1 and Heuristic 2,
are described in Section 4.4.

We simulate the five power management policies, i.e., ASARAR Heuristic 1, Heuristic 2, and the
proposed policy, for six different time horizons: 10, 1000@, 10000, 100000, 1000000. The only excep-
tion is Heuristic 2, which violates the real-time consttaihthe 67th iteration and therefore is prematurely
halted for the last five cases. We also remark that none oé gheltcies, of course, did not know in advance
when they would be terminated.

Table[2 shows the average power consumption achieved bythediver management policies. Our
policy starts outperforming all other approaches when 100. In the case of a short time horizon on the
other hand#{ = 10), ALAP showed the best average power consumption.

In ASAP, the speed is always set to the maximum, thus the adelayerges t@,,;, = 1.94222ms (see
Definition[3). In other words, ASAP is the most responsiveigyol ALAP, on the contrary, sacrifices the
responsiveness in favor of power efficiency; it enters adstasate whose execution delay is exactly equal
to the real-time constraint to achieve an asymptotic powasgmption ofl.52927W. Note that, however,
the power efficiency of ALAP is inferior to the proposed pwlgince it fails to find the better steady state
that the proposed policy uses.

The target speed of the proposed policy is identified as 0.56085. We can observe that, as the
time horizon gets longer, the average power consumptiansyesller, converging t&(s) = 0.68087. As
mentioned above, Heuristic 1 was prematurely halted duedbtime constraint violation; Heuristic 2, on
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Table 2: Comparison of average power consumptions

Policy ASAP ALAP  Heuristic1l Heuristic 2 Proposed

10 | 2.50325 1.51550 2.33322 2.36455 1.72204

100 | 2.50325 1.52789 1.12819 147065 0.82071
1000| 2.50325 1.52913 1.12819 1.19146  0.69535
10000| 2.50325 1.52925 1.12819 1.15731 0.68232
100000 2.50325 1.52926 1.12819 1.15465 0.68102
1000000| 2.50325 1.52927 1.12819 1.15434  0.68088

*Prematurely halted due to the real-time constraint viotati

the other hand, did not violate the real-time constraint imdverage power consumption appears to stay
around~ 1.15. See Sectioh 414 for further discussion on these heuristics

4.4 Heuristics

In this subsection, we explore the possibilities of exirgcsome key ideas that underlie our power man-
agement policy, and applying it to devise heuristics thatlmmused in varied settings. In particular, we will
consider a setting in which the power management policy gsided of its access to the model parameters
including the power consumption characteristiesand the delay-workload relatioi’. In fact, the only
parameter we assume that the heuristics will be aware oéisgl-time constrainf’. We present a simple
heuristic that is inspired by the present power managenwitypand works under this limited setting.

Our power management policy, in one line, is to “find a stestdye point that minimizesWT(t)”. Even
though heuristics under the limited setting does not hagessctolV/, it can “retrospectively” estimate it:
once an iteration, say theth iteration, completes, we can estimdgt;_;) = w; = s;t; by measuring the
execution delay;. Based on this, we can devise the following simple heuristic

Leto(t) := WT@ Recall that our “objective” is to minimize(¢). With this in mind, our heuristic
estimatesr; := o(¢;) by o; = @ = S*iﬁ Thus, at the end of iteratiof) the lasts we can estimate is

0;—1-

The heuristic is quite simple: we start with the full speed=£ 1). At any point of the execution, the
heuristic has its internal “intention” about whether it w&to increase or decrease the processing speed.
Initially, this intention is set talecreasingsince it is the only choice. When a new iteration begins, we
reassess the intention. We compare the last two estimatetoafee if we are “happy”, i.eg, is decreasing,
or “unhappy”, i.e.,o is increasing. If we are happy, we do nothing; if unhappy, wedur “intention”. A
final piece of adjustment is that we perform this reassessaveny three iterations, in order to avoid noisy
behaviors resulting from the heuristic being too sensitive

Fig.[6 shows the performance of this heuristic, called Hsiaril, where we increase or decrease the
processing speed lty01 at each iteration. As can be seen from the figure, Heuristapitly decreases the
processing speed to approach the “true optimum”. Howevenfortunately overshoots the optimum and
tries to recover from the 55th iteration, but eventuallysfan the 67th iteration as it violates the real-time
constraint. Taking a closer look, we can see that the policyeiases the processing speed until the 58th
iteration, at which point it falsely attributes the deteaiting o to its intention and flips it; even though the
policy again starts increasing the processing speed at4tieit@ration, the workload has already grown
too large by this point and the policy thereby fails to regovehis failure is largely due to the limitation
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Figure 6: Trajectory of speed, estimateddelay, and workload in the execution of Heuristic 1.

imposed by the lack of information: without the completewiaf the system parameters, the heuristic fails
to timely and properly act to recover when it overshoots fbtnoum.

In order to fix this issue of the belated action, we modify Hio 1 by making the increase/decrease in
the processing speed asymmetric: when the modified heudistreases the processing speed, it decreases
it by 0.01, but when it increases, it does so byl. This compensates for the belated action by favoring
“escaping out of overload” over “making maximum use of lovesq’. Fig[ T shows the performance of this
modified heuristic, called Heuristic 2, when it is run for @@ations until halted from outside. We can see
that now the real-time constraint is respected during thiesstest run.

5 Power Optimization: the General Case

5.1 Introduction

In Section B, we presented a power management policy andatgsas under the simplifying assumption
that W is continuous. In this section, we present our results fergéneral case. This generalization is
a key enabler for the application of the proposed policy torttulti-media application domain, where the
workload changes in the unit of block in a discrete manner.

Another important use of this generalized policy is as atligiight substitution of the continuous-case
policy of Section B. Obtaining an accurate delay-workloakhtion is a costly operation even though it
needs to be performed only once at design time. In order ®tkés effort, one can profile the given system
only for a few data points to obtain a “safe upper bound” of titue delay-workload relation. Since this
upper bound needs to be conservative, a reasonable approadth be to extend these data points into a
discontinuous staircase function. Secfion 5.8 illusg#ite operation of our generalized policy in the context
of this usage.
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Figure 7: Trajectory of speed, estimateddelay, and workload in the execution of Heuristic 2.

The overall organization of this section is quite similatttat of Sectiofn3; in fact, we can draw an almost
one-to-one correspondence between the two sections. |Reaathe analysis of our policy in Sectigh 3
started with bounding the range of execution delays (Olbserv(1); this section starts with the same,
except that it is slightly generalized to cope with discounily (TheoreniR). Corollaril1 in the present
section shows that the first and second phase still have albduangth, generalizing Claimh 1 of Sectldn 3.
The target speed is again very similarly chosen, but one technicality thastsxonly in this general case
is that the minimum may not exist. If only the infimum existsstead of choosing a single target speed,
we choose a converging sequence of target execution déyseds are replaced with delays for technical
reasons; see Definitidd 8.) Then, the generalized policyaschlly the same as Sectioh 3: we run at the
full speed until we reach the target execution delays. Simedarget is now defined as an infinite sequence
of execution delays, this may not be a steady-state in germrathe analysis shows that they lead to a
“near-steady” state, achieving asymptotic optimality.

5.2 Reachability

We first need to revise our characterization of executiomydethat can appear on execution traces: this
subsection presents the strengthened counterparts ofitideff8 and Observation] 1.

Definition 6 (Reachability) We say an execution delayis reachabldf there exists a real-time feasible
execution tracey, . . ., s, with execution delays, . . ., ¢, such that; = t for somey.

Now we give a characterization of the reachable delays. Ret= {t | 0 < ¢t < w; andvt’ €
t,TIW({') >t}andR. :={t | 0 < t < wyandVt’ € [t,T] W(¢') > t}. Note that both are nonempty.
LetR := (Nier, (t, T]) N (Ner.[t, T]). The following theorem shows thétis the desired characterization.
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Theorem 2 (Characterization of reachable delays)s reachable if and only if ¢ R.

Proof. (=, every reachable delay is iR.) Consider an arbitrary ¢ R (t < T). This implies that either
there existg € R, such thatt > ¢ or there exists € R, such thatt > ¢ (or both). Letsq,...,s, and
t1,...,t, be the processing speeds and delays araitrary real-time feasible execution trace.

Case 1.3t € R, t > t. We will show by induction that; € (¢, T] for all i, which implies that is not
reachable. The base case is easy, sinee|w,T| C (¢,T]. Assuming the claim holds far= i, we have
tig+1 > Wip+1 = W (t;,) > t as desired.

Case 2.3t € R.t > t. We use a similar argument: in this case we shgwe [t,T] for all i.
The base case again is easy to see fton& [w;,T] C [t,T]. If the claim holds fori = iy, we have
tig+1 = wig+1 = W (tiy) = L. i _

(«=, every delay inR is reachable.) Consider an arbitrarg R. Let R be the set of reachable execution
delays, and we will show thate R. Observe that € R impliest’ € R for allt' € [¢, T]: since there exists
an execution trace with; = ¢ for somej, scalings; by a multiplicative factor ot/t" and truncating the
trace at the end of iterationyield a feasible execution trace with = . Moreover,W (R) N (0,7] C R.
(Proof. Suppose that, for somee R, W(t) € (0,7]. Sincet € R, there exists an execution trace that
reachesg. Truncate this execution trace right after the iteratiothwlielayt, and add one more iteration with
speedl. Note that this new iteration has the execution delayidf).) Finally, R # 0 since[w;,T] C R.
Suppose towards contradiction that R.

Case 1. R = [minR,T]. We then haveg < min R sincet ¢ R. On the other hand, we have
W(R) C [min R, oo) and thereforenin R € R, by definition (note thatnin R < w,). This givest ¢ R.

Case 2.R = (inf R, T). In this casé < inf R. SinceW (R) C (inf R, c0), we haveinf R € R, which
in turn impliest ¢ R. O

So far we have not used the monotonicity 16f, we will however use it in what follows in order to
devise a clean algorithmic way to reachk R.

Before we do this, we make some useful observations firsterGavreal-time feasible execution trace,
increasing its speeds preserves feasibility since it doesiarease any execution delays:

Observation 3 (Closedness of feasibility with respect to speed increake) s, ..., s, be a real-time
feasible execution trace with delays,...,t,. Suppose we change somesg§ to 1, obtaining a new
execution trace’, ..., s, with delayst/, ..., t,,. We have!, < ¢; for all 7 (and therefore the new trace also

is real-time feasible).

Proof. Trivial from the monotonicity ofiV. O

Theoren P along with this observation gives an algorithnmmcpdure to reach an arbitrary reachable
delayt € R: fix the system at the full speed until the iteration whosekbazd w; drops below or equal to
t; chooses; := % so that the delay; becomes exactly.

Corollary 1 (Algorithmic reachability) The above procedure produces a real-time feasible exetctrace
that reacheg in the last iteration.

Proof. Consider an arbitrary real-time feasible execution trheg Wwitnesses. Such a trace is guaranteed
to exist by Theorerh]2. Now, setting all the speeds to 1 yietdsexa@cution trace that is real-time feasible
and has an iteration whose delay is at mogee Observation] 3). Truncate this execution trace right af
first such iteration, and decrease the speed of this laatiierso that its delay becomes exactljNote that
this decrease does not harm feasibility, and that this Bxaotresponds to the execution trace produced by
the above procedure. O
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5.3 Target Speed

Now the definition of the target speed (corresponding to x&firl4l of the continuous case) is generalized
as follows:

Definition 7 (Target speed)Within the reachable range of execution delays, the tangeéds is defined as
the infimum workload-to-delay ratio. That ;= inf;cr (t)

Observatioi 2 extends to this new generalized definitioé: dhe system is not sustainablesif> 1.
Hence, we will assumé < 1 in what follows. Note that > 0 sincewpag. > 0.

Before we present our power management policy generalieatlbitrary nondecreasing workload func-
tions, it may be helpful to review the continuous variant iglightly different presentation. Recall that, in
the continuous variant, the execution delays of the thilmsplformed a constant sequence, - - -, and this
achieved the desired power consumptifs). The first two phases were simply to initiate this steadyestat
Our generalized policy works in basically the same way: thig subtlety comes from the fact that there
may be no execution delaywhose steady state achievigs.e., minsc g W( ) may be undefined. Thus, our
new generalized policy will use an infinite sequence thaveages to the target speed in lieurofr, - -

Definition 8 (Target delay sequencelete,, ¢, > 0 be two positive parameters to be chosen later. We say
an infinite sequencer;);cz., is atarget delay sequendthe following hold:

1. 7, € Rforall 7

W)

converges tac;
Ti >’iEZZO 9

2. W < 34 ¢ forall i, and(

3. there exists somee cl(R) such thalr; — 7| < ¢ for all i and (7;) ez, converges ta-.

While, at first glance, this definition might look more congplied than it actually is, identifying a target
delay sequence is in fact very simple for most conceivalydications. For example, thingcr () exists,

we can simply take an infiniteonstantsequence ofningcr W() , which is exactly what we did in the
continuous case. i/ is discontinuous but piecewise contlnuous, a target dadgyence can be given as
either an infinite constant sequence or a sequence congermgone of the discontinuities, where any such
sequence will be admissible as long as the first term staffisiently close to7.

5.4 Proposed Policy

Let s1, s9, ... be the infinite sequence whose prefix of lengtborresponds to the execution trace of our
policy when it is run forn iterations. Likewise, letq,to, ... denote the infinite sequence of its execution
delays.

Whens = 1, our policy is simply fixing the system at its full speed:= 1 for all i.

Whens < 1, for some target delay sequen@e);cz., where we choose; := % ande; = €;Whase,
our policy first invokes Corollar]1 to reaely. This corresponds to the first two phases of the continuous
counterpart. Let) denote the index of the iteration we reagh ¢, = 7. The processing speeds of the
following iterations (corresponding to the third phase) ahosen so that the execution delays from then

form prefixes of the target delay sequence, kgy,; := M foralli =1,2,-
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5.5 Feasibility

Let us verify the feasibility of our policy. Firstly, congdthe case whefi= 1. Our policy produces a real-
time feasible execution trace as long as there exists oregrabe seen from Observatigh 3. In the interest
of completeness, we also provide the following characinn by which we can determine the system’s
sustainability.

Lemma 3 (Sustainability) A given system is sustainable if and only if
o there exists € [wy, T] such thatiV (¢) < ¢, or
e there exists € (wq, T such thatW (¢') < ¢ forall ¢’ € [wy, ).

The proof of this lemma uses a similar argument as Thebfend Zateferred to the end of this section.
Now we will focus on the case whefe< 1. To begin with, the following lemma shows that a target
delay sequence is guaranteed to exist. Its proof is givemeagnd of this section.

Lemma 4 (Existence of a target delay sequencEhere always exists a target delay sequence.
Finally, it remains to verify that the processing speedsvalielly chosen.

Lemma 5 (Validity of the proposed policy) Processing speeds chosen by our policy are all valid. That is
s; € (0,1] for all 4.

Proof. It suffices to verify the claim for each> n from Corollary(1. For alt = 1,2, - - -, we have
Wir;_ Wir;_ Ti— T+e€
Sy 1= (ri-1) _ (21).zl<(§+68)_A+t’
Ti Ti—1 Ti T — €&

where the last inequality follows from Definitidnh 8. Sineén cl(R) > wyase, We haver; < e,7; thus,

-3 1+5%  (1425)(4—3)

877+i<(3+ 3 ) 1_%_ 3(2+§) >~ 1,
where the last inequality is verified as follows: Jet [0,1] — R be a function such that(s) = %
Sincef’(s) = % f is nondecreasing; on the other hafid]) = 1. O

5.6 Asymptotic Power Optimality

We show that the proposed policy is asymptotically poweiragl, this time for generdlV’. LetPOL(wy,n)
denote the average power consumption of our policy whenaun fterations, andPT (wy,n) denote the
infimum average power consumption of the real-time feagkézution traces of length. In the rest of this
section, we will show the following theorem, which is the gmalized counterpart of Theorér 1.

Theorem 3 (Asymptotic optimality of the proposed policyhe difference between the infimum average
power consumption and the average power consumption of@muepmanagement policy tends to zero as
the time horizon goes to infinity. That iﬁ_@ [POL(wy,n) — OPT(wy,n)] = 0.

We again begin with calculatingm,, ,,, POL (w1, n).
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Lemma 6 (Asymptotic power consumption of the proposed policks the time horizon goes to infinity, the
average power consumption of our power management policyetrges to that of the target spe&dThat
is, li_>m POL(wy,n) = P(8).

Proof. We claim thatlim P(s;) = P(3). (Proof. Note that lim s; = lim W) _ lim Wiri1)
n—o00 n— o0 1—00 Ti 12— 00 Ti—1
= §-— = 5. Now the claim holds sinc@ is continuous.) Recall th&OL(w;,n) = Zrb#}z(s)
T T =1
where we have; € R for all ¢ with inf R > 0 andsup R < 7', andP(s;) < P(1). Thus, for anye > 0,

there existsV € N such thaPOL(w;,n) — P(s)| < eforalln > N. O

Ti—1

| -

Finally, we can determiném,,_,, OPT (w1, n) by following the proof of Lemma&l2 verbatim. The proof
is thereby omitted.

Lemma 7 (Asymptotic infimum) As the time horizon goes to infinity, the infimum average poaesump-
tion converges to that of the target speed hat is, li_)m OPT(w1,n) = P(3).

Theoreni B follows from Lemmas 6 aht 7. We conclude this seatith the deferred proofs.

5.7 Deferred Proofs

Proof of Lemmal3 (<) Letn > 1 be an arbitrary integer. Consider an execution trace ofttengvhere
the speed is fixed at the full speed. ltebe the execution delay of thieth iteration.

If there existst € [wy,T] such thatiW (t) < ¢, it is easy to show by induction that < ¢ for all i.
Likewise, if there exists € (wq, T such thatV/ (¢') < ¢ for all ¢’ € [wy,t), we can show; < ¢ for all i.

(=) Suppose that the system is sustainable; Observation $sriplat the execution delay of length
in which the speed is fixed at the full speed is real-time fdasiAlso note that the execution delay of the
i-th iteration under an execution trace fixed to the full spegees not depend on the time horizon. Lebbe
this delay, and we obtain an infinite sequengcés, - - - .

Case 13i tsyp, = t;. We havelV (t;) < t;, since otherwise; ., = W(t;) > t;. Note thatts,, € w1, T].

Case 2. #i tsup = ti. Sincet; = wi, we havetg,, > w;. We will prove by contradiction that
W (t') < tsup forall t' € [wy,tsyp). Suppose there exists € [wy, tsyp) Such thatW (') > tg,p. From
the choice ofty,,, there existsj such thatt; € (¢, ts,p). We then have; 1, = W(t;) > W(t') > teup,
reaching contradiction.

]

Proof of Lemmal4 Sinces := inf,c g WT(” we can choose a sequen¢g);cz., so thatt; € R for all i and

t;
and2 of Definitiod 8. From (the one-dimensional case of) Bote-Weierstrass theorem (see é.9. [3, pp. 54—
56]), there exists a subsequence®%j;>n which converges, say, toa We can then choose a subsequence
of this subsequence to achieve Propéity 3 as well. Note tkeadid/not lose Propertyl 1 &f 2 during this
construction. O

(M) - converges taé. For sufficiently largeV, (¢;);>~ yields a sequence that satisfies Propeffies 1
1€2L>0 -

5.8 Experiments

In this subsection, we experimentally illustrate the operaof our proposed policy under a discontinuous
delay-workload relation.
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Table 3: Comparison of average power consumptions (withiecase delay-workload relation)

Policy ASAP ALAP  Heuristic1l Heuristic 2 Proposed

10 | 2.50325 1.42631 2.33322 2.36455 1.58071

100 | 2.50325 1.44927 1.12819 1.47065 0.82424
1000 | 2.50325 1.43451 1.12819 1.19146  0.73150
10000| 2.50325 1.43061 1.12819 1.15731 0.72222
100000 2.50325 1.43215 1.12819 1.15465 0.72129
1000000| 2.50325 1.43233 1.12819 1.15434  0.72120

*Prematurely halted due to the real-time constraint viotati

5.8.1 Setup

As was discussed in Sectibnb.1, we use a staircase deldyeadmelation obtained from a few data points,
which can be an inexpensive substitute of the exact delaydoad relation. Experimental setup is identical
to the experiment in Sectidd 4; the only difference is thatuse only 11 profiling data points in this
experiment. These 11 data points are 3ms apart, i.e., wdeag@dfiling results for execution delays of 0,
3ms, 6ms, .., and 30ms.

The conservative staircase bould is formally defined as follows: giveh data points(t!, w!),. ..,
(%, wk), let W (t) := min,,, w'. Our staircase delay-workload relation is depicted inBjghis function
is presented as the delay-workload relation to each sieulifalicy (the two heuristics, of course, do not get
any information on the delay-workload relation). Thesdqies$ therefore work with a conservative bound
of the workload, but our simulation uses the true delay-\oat relation shown in Fid.]5 to calculate the
actual execution delays.

5.8.2 Results

Table[3 shows the average power consumption of each polileteneach policy is terminated after 10, 100,
1000, 10000, 100000, and 1000000 iterations. The two h&udees not assume any knowledge iéh

and therefore behaves identical to the first experimentlrétat our simulation relied on the true delay-
workload relation). Since ASAP simply fixes the processipgesl tos = 1, its result is identical to the

first experiment as well. ALAP, on the other hand, behavderdiftly because what the policy thinks is the
slowest possible processing speed subject to the realeimstraint actually is faster than the true value.
We can observe that its average power consumption fluciuapgsoximately around 1.43. Our policy,
finally, converges to the target speedscf 0.58107 (the target delay sequence can be chosen as a constant
sequence in this case, see= § -t in Fig.[8.) and its average power consumption tendB(t®) = 0.72119.

6 Generalizing to Weaker Sets of Assumptions

Our model proves quite versatile as the set of assumptiomne tova our model is not minimal: depending
on the application at hand, we can drop and/or modify somkesfd assumptions without loss of generality
in order to arrive at a more general model. We discuss thesergiezations in this section. It is worth
mentioning that they greatly improve the applicability o {proposed policy to a wide variety of underlying
hardware platforms.
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Figure 8: Staircase delay-workload dependence in Lucas#&method.

Section$ 6]1 and 6.2 show how the assumptions on the powsuamtion characteristicB can be re-
laxed. In particular, Sectidn 6.1 explains how to drop thenatonicity and convexity assumptions, whereas
Section 6.2 discuss how to generalize our model to cope visttrete speed modes. Finally, Section 6.3
explains how the monotonicity assumption on the delay-waitk dependence can also be lifted.

6.1 Dropping the Monotonicity & Convexity Assumptions on P

Recall that our model assumes ttiats nondecreasing, convex, and continuous. In what follevesshow
that our model can be generalized to include any contindtus

6.1.1 Dropping monotonicity

First we show that the monotonicity assumption can be drppeopping the monotonicity would imply
that reducing the speed could cause even bigger power cgtismm Intuitively, it is quite clear what we
would do in this case: if there are two speed mosleands2 such thats1 is both more power-consuming
(P(s1) > P(s2)) and slower £1 < s2), we will never uses; and simply replace withs. The resulting
“new power consumption characteristics” is denoted?dyelow. We will conclude with a formal argument.

When P is convex and continuous, we show that we can assume withesitdf generality thaP is
nondecreasing. LeP : [0,1] — R, be an arbitrary convex and continuous function &d[0,1] — R
be a function defined by (s) := mins<y<1 P(s'). Itis easy to see that is continuous and nondecreasing.
Moreover, P is conveK.

Now we can run the power optimization policy usifign lieu of P, and if the policy says that iteration
i is to be run at spees; where P(s;) > P(s;) = P(s}) for somes, > s;, we run the iteration at speed
s, instead. Note that this allows a strictly larger amount ofkvo be done during the iteration, whereas
the power consumption is kept &t(s;). This shows that any power management policy can be used in

7 Consider arbitrarg:, s2, s, A € [0, 1] such tha = As1+(1—\)s2. For somes; > s; andsh > s2, we haveP(s1) = P(s})
andP(sz) = P(sh). Observe thaP(s) < P(As] + (1 — A)sh) < AP(s1) + (1 — \)P(sh) = AP(s1) + (1 — ) P(s2).
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conjunction with a power consumption characteristitthat is convex and continuous but not necessarily
nondecreasing.

6.1.2 Dropping convexity

It remains to show that the convexity assumption can furtieedropped. In order to see the intuition first,
suppose that three speed modés< s2 < s3 exhibit non-convex power consumption characteristics.
Instead of using mode2, we may interleaves1 and s3 properly, resulting in the same delay as usig
This allows us to regain the convexity assumption. Agaimrenfll argument follows below.

Let P : [0,1] — R, be an arbitrary continuous function. We defife [0,1] — R, as

Pls):= S5m0 AsA+(1—-N)sp—s AP(s4) + (1= A)Plsp);

and we can easily verify that is convex and continuous.

Similarly to above, we run the power optimization policyngP in lieu of P. Suppose that the policy
chose speed; at iterationi, whereP(s;) > P(s;) = AP(sa) + (1 — \)P(sp) for somes4, sp, A € [0, 1]
such that\s4 + (1 — A\)sp = s. Running this iteration at speed, for A“’L units of time and atp for

A=Nw; A)wz ensures that the same amount work can be done while the powmmptlon is kept aP(s;).

6.2 Discrete Speed Modes

The arguments we used above in order to drop the convexityrgstioon can in fact be extended to let our
model handle the cases where there are a finite number of speeées. This, for example, covers the
case where a microprocessor supports only a predetermitesf §equency-voltage configurations. The
underlying intuition is basically the same: again, we erauém imaginary speed mode by interleaving two
existing speed modes.

For a finite setS C [0,1] with 0,1 € S, letsi,...,sg denote the elements isl. When the power
consumption characteristics is given By S — R, definingP : [0,1] — R, as

S|
P(s) := min AiP(si)
S Nisi=s, 5018 Ai=1,2,€[0,1] for aui; o
yields a convex and continuous functiéh
Similarly to the previous argument, we can run the power rgameent policy in conjunction witt® in
lieu of P without loss of generality: running at speedhereP(s) < P(s) will now be interpreted as using
a convex combination of the finitely many (as opposed to twojles.

6.3 Replacing the Monotonicity Assumption oni//

Instead of assuming that” is nondecreasing, we can assume thatis continuous. A non-monotone
delay-workload relation means that reducing a delay may tea larger workload. In this case, we would
naturally just spend more time in this iteration to avoidstAnomaly. This is modeled by the new “imagi-
nary” delay-workload relatiod in what follows.

DefineW : (0, 7] — R4 asW (t) := min<y <7 W (¥'), and we can easily verify tha¥’ is nondecreas-
ing. Now we can run the power management policy udifignstead ofi¥’; when W(sh) > W(““) =
W (t') for somet’ > f; we introducel’ — %% additional units of intentional delay domg nothing. Thiglw
increase the delay of theth iteration tot’, assurmg thatv; , | becomedV’ (35).
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7 Conclusion and Future Work

We identified a new challenge in the design of CPSs that wasgusy unheard of in the design of classi-
cal real-time systems. The interaction between the cybgpagsical components of CPSs induces delay-
workload dependence, creating the unique challenge of poptimization with delay-workload depen-
dence awareness. We presented the first formal and comprel@model, enabling rigorous investigation
of this problem. We proposed a very simple power managenwittypand proved this policy is asymptot-
ically optimal. We also experimentally validated the e#fraty of our policy.

Our model requires the delay-workload dependence to bemdigied at design-time using profiling or
static analysis. While a complete characterization of \Woa#t is necessaryn the design of a real-time
system due to the stringent nature of the real-time comstridis rather unfortunate that both profiling and
static analysis are operations that can be expensive. Ift eesbtime system, on the other hand, the real-
time constraint is allowed to be violated “every once in ale/hand therefore a complete characterization
is not an absolute necessity. It would be an interestingréudiirection to distill ideas from our result to
devise a power management policy that operates under ampiete workload characterization, where the
characterization can be obtained at run-time for exampleaasdone by the heuristics we briefly consid-
ered in Sectiol_414. Another interesting future directioould be in incorporating randomness into our
framework. In addition to the possible use of randomized matations, CPSs in particular has multiple
other sources of randomness, including the physical wdrlicbrder to exploit the full potential of power
optimization especially under soft real-time settingsyatlld be useful to allow the parameters of our model
to be stochastically specified or adaptively changed.
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