
18 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Synergistic HW/SW Approximation Techniques for Ultralow-Power Parallel Computing / Tagliavini,
Giuseppe; Rossi, Davide; Marongiu, Andrea; Benini, Luca. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - ELETTRONICO. - 37:5(2018), pp.
982-995. [10.1109/TCAD.2016.2633474]

Published Version:

Synergistic HW/SW Approximation Techniques for Ultralow-Power Parallel Computing

Published:
DOI: http://doi.org/10.1109/TCAD.2016.2633474

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/653380 since: 2019-08-08

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TCAD.2016.2633474
https://hdl.handle.net/11585/653380

This is the post peer‐review accepted manuscript of:

G. Tagliavini, D. Rossi, A. Marongiu and L. Benini, "Synergistic HW/SW Approximation

Techniques for Ultralow‐Power Parallel Computing," in IEEE Transactions on Computer‐

Aided Design of Integrated Circuits and Systems, vol. 37, no. 5, pp. 982‐995, May 2018.

The published version is available online at:

https://doi.org/10.1109/TCAD.2016.2633474

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 1

Synergistic HW/SW Approximation Techniques
for Ultra-Low-Power Parallel Computing

Giuseppe Tagliavini, Student Member, IEEE, Davide Rossi, Andrea Marongiu, Member, IEEE, and
Luca Benini, Fellow, IEEE

Abstract—Ultra-low-power embedded systems have recently
started the move to multi-core designs. Aggressive voltage scaling
techniques have the potential to reduce the power consump-
tion within the admitted envelope, but memory operations on
standard six-transistor static RAM (6T-SRAM) cells become
unreliable at low voltages. While standard cell memory (SCM)
overcomes this limitation, it has much lower area density than
SRAM, and thus it is too costly. On the other hand, several
applications have inherent tolerance to computation errors, and
executing such workloads with approximation has already proven
a viable way to reduce energy consumption. In this work we pro-
pose a novel HW/SW approach to design energy-efficient ultra-
low-power systems which combine the key ideas of approximate
computing and hybrid memory systems featuring both SCM and
6T-SRAM. We introduce a novel hardware support to split error-
tolerant data so to host most significant bits (MSB) in the SCM
and least significant bits (LSB) in the 6T-SRAM. This allows to
power the memory system at a low voltage while ensuring correct
operation by binding possible (flip-bit) errors to the LSBs only.
In addition, by organizing 6T-SRAM banks into multiple and
independent voltage domains we enable fine-grained, software-
controlled voltage switching policies. At the software level, we
propose language constructs to specify what regions of code
and what variables are tolerant to approximation, plus compiler
support to optimize data placement. Experimental results show
that our proposal can reduce the energy consumption of the
memory system by 47% on average, always complying with the
result accuracy required by practical applications constraints.

Index Terms—Approximation algorithms, Low-power electron-
ics, Memory architecture, Multicore processing, Parallel pro-
gramming

I. INTRODUCTION

Embedded systems targeting ultra-low power (ULP) markets
are mostly implemented with single-core microcontrollers
[1][2][3]. Usually, the computational power delivered by such
systems within the admitted power envelope is sufficient for
satisfying the very low demand of the target applications.
This assumption is less and less valid for today’s deeply
embedded sensing applications [4], whose computation re-
quirements grow to match the complexity of increasingly
sophisticated workloads. To match conflicting requirements for

Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

G. Tagliavini, D. Rossi, A. Marongiu, and L. Benini are with the Depart-
ment of Electrical, Electronic and Information Engineering “Guglielmo Mar-
coni” (DEI), University of Bologna. e-mail: {giuseppe.tagliavini, davide.rossi,
a.marongiu, luca.benini}@unibo.it.

A. Marongiu and L. Benini are also members of the Department of
Information Technology and Electrical Engineering of the Swiss Fed-
eral Institute of Technology Zurich (ETH Zurich). e-mail: {a.marongiu,
luca.benini}@iis.ee.ethz.ch

energy consumption and performance, near-threshold multi-
core systems have been recently proposed [5][6][7] in applica-
tion fields such as industrial automation, wearable consumer
electronics, human-computer interfaces and pervasive video
infrastructures. By joining parallelism with near threshold
computing, these systems are able to provide more than one
order of magnitude increase in energy efficiency [8] preserving
the performance target.

In the context of energy efficient computing platforms
operating in near-threshold, the memory system emerges as
one of the most critical components, burning more than 50%
of the total chip power [9][10]. While standard voltage scaling
techniques can be to some extent applied to reduce energy,
their aggressive use is not possible for memory energy reduc-
tion as operations on standard six-transistor static RAM (6T-
SRAM) cells become unreliable at low voltages due to the lack
of sufficient static noise margin and read/write stability [11].
On these premises, the design must take into account a specific
voltage domain to be kept at higher voltage that includes the
memory system, and energy requirements become even more
memory-dominated. Advanced design techniques have been
proposed to improve the performance of SRAM banks at low
voltage [12][13][14], but overall their adoption is difficult due
to area and cost considerations [15]. A promising solution
consists of adopting a heterogeneous memory architecture
[16][17], which includes both 6T-SRAM and standard-cell
memory (SCM) banks.

The key idea of this approach is that SCM banks and 6T-
SRAM banks can be powered at different voltage levels. At
high voltage both memories operate reliably, but the SCM
consumes significantly less energy. At low voltage, the 6T-
SRAM has an associated probability of error (flip-bit) if it is
read or written, while the SCM remains reliable and more en-
ergy efficient. Effectively managing a hybrid memory system
requires techniques to partition data in a way that minimizes
energy consumption. For example, greedy-allocation heuristics
can be applied at the compiler level to place most frequently
accessed data into the memory that maximizes the metric
of interest, e.g., energy efficiency [18], predictability [19] or
performance [20].

In recent years approximate computing has emerged as a
promising approach to design energy-efficient digital systems
working at unreliable voltage levels, ranging from functional
units [21] to interconnect [22] and memory systems. The
notion of approximate computing [23] refers to a set of
techniques ranging from programming language- to transistor-
level, with a common aim to allow computing systems to save

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 2

Fig. 1. Overview of the related work.

energy to the detriment of the quality of the computed results.
Approximate computing is a promising approach in the ULP
domain when applications exhibit inherent tolerance to errors
[24][25][26].

In this work we propose a novel HW/SW approach to design
energy-efficient ULP systems which combine the key ideas of
hybrid memory designs and approximate computing. At the
architecture level, we design a mechanism to split multi-byte
data that is “tolerant” to approximation into multiple memory
banks. The most significant bits (MSBs) of a word are stored
in the SCM, while the least significant bits (LSBs) are stored
in the 6T-SRAM. Both memories can be safely powered at
the lower voltage level: here the SCM operates reliably, while
the probability of error on the 6T-SRAM is guaranteed to
be tolerated by the computation (i.e., the error is bound to
the LSBs). Our experiments demonstrate that this approach
provides much better precision than just dropping the LSBs.
More specifically, we provide an upper bound to the accepted
error for each application included in the benchmark suite, and
we show that our approach complies with these bounds with
a safety margin.

To expose the hardware extensions at the software level,
we introduce appropriate source code annotations used to
specify what regions of code and what variables are tolerant
to approximation. We choose to extend the OpenMP pro-
gramming model, since this approach enables programmers
to simply handle both parallelism and approximation efforts
by annotating a C program with pragma directives. The anno-
tations are processed by a compiler pass that implements an
allocation heuristic which places data into one of the available
logical memory areas (SCM, 6T-SRAM and split) according to
their tolerance to errors. In addition, since different variables
might be accessed in different program regions, we extend
this heuristic to also take into account live ranges of tolerant
variables. At the hardware level the 6T-SRAM memory is
partitioned into multiple, independent voltage domains (1, 2 or
4), and the heuristic allocates variables with non-overlapping
live ranges into distinct domains to allow for lowering the
voltage when a variable is not accessed in the program.

The proposed techniques have been implemented in the
parallel ultra-low-power platform (PULP) [7]. PULP is a
scalable, clustered parallel computing platform that features
a parametric number of processing elements (PE) per clus-
ter, sharing a multi-banked tightly coupled L1 data memory

(TCDM), acting as a scratchpad. At the HW level, our proposal
focuses on energy saving techniques for the TCDM, while
the PEs work at the most energy efficient operating point.
To implement and validate the HW extensions required by
our approach we used cycle-accurate simulation models, back-
annotated with energy and performance numbers taken from a
silicon implementation of the baseline system-on-chip (SoC)
with 28 nm ultra-thin body and buried oxide fully depleted
silicon-on-insulator (UTBB FDSOI) technology. Experimental
results demonstrate that our approach can reduce the energy
consumption of the memory system by 47% on average (for a
set of real-world benchmarks) compared to the baseline SoC.
Focusing on the whole-system energy, our technique allows
on average 27% savings and outperforms other solutions. We
finally show that our approach is fully compliant with a set
of realistic accuracy levels deriving from practical constraints,
which assesses the effective usability of the described tech-
niques in real-life applications.

The rest of the paper is organized as follows. Section III
introduces the baseline architecture, and then describes in
further detail the proposed hardware extensions. Section II
discusses the related work. Section IV describes the software
stack of our framework, including the programming model, the
runtime and the compiler. Section V introduces the framework
setup and reports the experimental results. Finally Section VI
concludes and points out future work directions

II. RELATED WORK

In the past few years approximate computing has been
considered a promising approach in different research areas
[27] [28]. Many studies have also pointed out that approximate
computing is an amenable solution for applications in the ULP
domain [24][25][26], and this facilitates the translation of such
algorithms into energy-efficient hardware implementations.
Figure 1 depicts a comprehensive overview of the related
work. The figure highlights two main categories, that are ap-
proximation techniques and energy-efficient memory systems,
from which we derive a set of related topics categories.

Circuit level [29][30] and architecture level [31][23] tech-
niques have been used to to reduce overall energy consumption
to the detriment of numerical accuracy. However, different
research works observed that most of the energy consumed
by ULP systems is spent on on-chip memory [9][10]. In
addition, memory is the primary source of faults, while logic

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 3

components are typically more robust. Starting from these
considerations, our approach considers the use of two voltage
levels for a set of 6T-SRAM domains, with the aim to achieve
a significant power reduction with a disciplined relaxation to
approximate results. The rest of our architecture is designed
to work safely at low voltage, and this assumption simplifies
the overall model with a minimum loss of generality.

Raising power concerns to the software level enables a range
of energy savings opportunities at OS [32] and application
level [33] [34] [35] [36]. These approaches require approxi-
mate code transformations with the aim to modify the applica-
tion code to support the management of performance/accuracy
tradeoffs. The extensions to the compiler toolchain required
by our framework can be implemented at a higher level of
abstraction w.r.t. the cited approaches. A specific support by
the OS is not required, conversely the requested features can be
provided by a lightweight runtime layer. Moreover, we intro-
duce a minimum set of preprocessor directives to write error-
tolerant parallel programs using an annotation mechanism
that is of immediate use to embedded C/C++ programmers.
Note that our approach could be considered orthogonal to
other approximation techniques, since the programming model
frontend can be decoupled by the approximation support,
which includes the hardware design, the runtime layer and the
compiler support. In this perspective the cited tools could be
extended to leverage our approximation support by providing
additional directives/keywords.

Approaches based on hardware design of approximated
memories can be classified into two main categories, that are
custom [37] and domain-specific [38] [16]. These solutions
are tailored for specific applications or algorithms and achieve
significant energy savings, but overall they lack the hardware
and software support required to implement a general-purpose
application. Using our platform we provide dedicated hard-
ware, runtime features and compiler support to fulfill this goal.

Different approaches have been proposed to improve the
performance of SRAM at low voltage [12] [13] [39]. A
different approach to the problem is to implement low-voltage
memory structures relying on standard-cell memory (SCM)
[14]. All the described approaches cause serious overheads in
terms of area, leakage and dynamic power consumption (at
same supply voltage) with respect to standard 6T-SRAM [15].
Hence, their adoption for the implementation of the whole
memory system is impractical, due to area and cost consid-
erations. Frustaci et al. [40] explore the use of approximate
SRAM banks in the context of error-tolerant applications, at
the cost of the occurrence of read/write errors in the least
significant bits of data. Although this technique is effective,
it requires the design of custom SRAM banks featuring deep
circuit-level optimizations, which leads to a low technology
portability. Our approach leverages standard 6T-SRAM cells
that can be realized with any memory generators provided
by silicon vendors, and SCM that can be implemented with
standard semi-custom design flows relying on industrially
qualified standard-cells for implementation.

Recent works [41] [42] propose statistical techniques to
measure the program response to injected approximation
and derive the behavior of code and data. Compared to a

...

...

...

Fig. 2. The PULP architecture.

programmer-annotated version, these techniques can lead to
significant errors in some use cases, by marking as approx-
imable a variable that is not tolerant for specific execution
paths. Other works propose the adoption of emerging tech-
nologies to realize approximate memory cells, such as RRAM
[43] and memristors [44]. These are promising approaches for
the future, but today their application is limited to specific
domains (e.g., neural networks) and requires a custom design.
The solution proposed in this paper is totally general and can
be directly applied using standard design flows provided by
tool vendors.

III. HARDWARE ARCHITECTURE

ULP systems are largely based on microcontrollers featuring
simple, cache-less cores (e.g., Cortex M0 or M4), coupled
to simple support for power management and a standard
set of peripherals. The parallel processing ultra-low-power
platform (PULP) [10][17] aims at providing a significant boost
to the peak performance that ULP systems can achieve by
coupling the multi-core paradigm to the most advanced FDSOI
design technology and associated techniques for energy effi-
ciency (near-threshold computing, body biasing, etc.) [45]. The
following subsections describe the baseline PULP platform
(Section III-A) and the extensions to the memory system
introduced by our work to support computation approximation
(Section III-B).

A. The PULP Architecture

PULP is a scalable, many-core computing fabric, organized
as a set of clusters. Figure 2 shows the main building blocks
of single-cluster PULP SoC. Multiple clusters can be intercon-
nected at the top level to share L2 memory and peripherals for
off-chip communication. A cluster includes a parametric num-
ber of processing elements (PEs) consisting of an optimized
microarchitecture based on the OpenRISC ISA [46], each
equipped with a private instruction cache. To avoid memory
coherency overhead and increase energy efficiency the PEs
do not have private data caches, but they share a L1 multi-
banked tightly coupled data memory (TCDM). The TCDM is
configured as a shared scratchpad memory, featuring as many

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 4

Fig. 3. Breakdown analysis of the PULP SoC area.

R/W ports as the number of memory banks. This allows con-
current access to memory locations mapped on different banks,
via a one-cycle-latency logarithmic interconnect implementing
word-level interleaving to reduce contention. A lightweight,
multi-channel DMA enables fast and flexible communication
with other clusters, the L2 memory and external peripherals
[47]. The arbitration and protocol adaptation necessary for
the processors to communicate to the TCDM and peripheral
interconnect is implemented by the DEMUX block connected
to the data interface of each PE.

The PULP instance considered in this work consists of
a single cluster featuring 8 PEs and a TCDM composed
by 16 6T-SRAM banks of 4KB each (64KB total) and 16
SCM banks of 1KB each (16KB total), plus 256KB of L2
memory. Each core features 1 Kbyte of I$ implemented with
SCM, hence reliable down to 0.5V. Three voltage domains are
considered: i) the SoC domain includes the L2 memory and
peripherals; ii) the cluster domain includes the PEs the SCM,
the DMA and the cluster interconnect; and iii) the 6T-SRAM
banks. A 28nm UTBB FDSOI (STMicroelectronics technol-
ogy) implementation of the platform in this configuration can
operate at 20MHz @ 0.5V. We extend this baseline platform to
support computation approximation in strict cooperation with
the programming model. Figure 3 shows the contributions of
the hardware components to the total area of a PULP SoC,
that we consider a baseline configuration for this work.

B. TCDM Reliability Extensions
On-chip memory is traditionally implemented with 6T-

SRAM banks working in super-threshold operating region.
When operating close to the threshold voltage, SCM has
demonstrated a better tradeoff between reliability, energy
efficiency, area and portability among technology nodes [14].
In particular, although 6T-SRAM cells provide a much better
storage density than SCM (∼ 3×), SCMs are reliable over all
the operating voltage range of the architecture (0.5V – 0.8V)
[37]. Accessing 6T-SRAM at a voltage lower than 0.8V may
results in a flip-bit error, as shown in Table I. These values
are derived executing the test patterns on PULP’s silicon pro-
totypes at different voltages using an Advantest SoCV93000
tester system. The program performs 1010 memory accesses
on the 6T-SRAM memory area of PULP chips [17], and
probability is computed from the error ratio.

SCM can thus operate at the same low voltage of the logic in
a reliable way, with the key benefit of providing much smaller

TABLE I
PROBABILITY OF BIT-FLIP ERRORS IN 6T-SRAM.

Voltage [V] 0.50 0.55 0.6 0.65 0.7 0.75
P(bit-flip) 0.0037 0.0012 0.0003 5.24e-5 4.35e-6 6.16e-8

energy/access (∼ 4×) [48]. Based on these observations and
on the evidence that we cannot afford to build the entire
TCDM with SCM, we propose a hybrid L1 memory design.
We organize the TCDM in two different physical memory
areas, including 16KB of SCM and 64KB of 6T-SRAM. In
this work we consider alternative scenarios which provide
a different number of voltage domains for the 6T-SRAM
area, corresponding to the following memory layouts described
in Table II. Considering this size of the 6T-SRAM region
(64KB), a further partitioning would produce a significant
overhead, since the total area would be heavily dominated by
the periphery and embedded power switches in small memory
cuts.

A set of reliability management units (RMUs) are intro-
duced in the path between the interconnect and the TCDM.
These are simple combinational logic blocks that allow to
remap the physical address range of the TCDM into three
distinct logical memory areas:

• SCM – mapped in the SCM physical memory area
(reliable at any operating point);

• 6T-SRAM – mapped into the 6T-SRAM physical memory
area (reliable at 0.8V), include multiple regions corre-
sponding to distinct voltage domains;

• split – MSBs are mapped in the SCM physical memory
area and LSBs in the 6T-SRAM physical memory area.

Figure 4 shows the new TCDM design and the defined
memory areas for the memory layout including four 6T-
SRAM voltage domains. Level shifters are required at the
boundaries between voltage domains, i.e., when the 6T-SRAM
is operating at 0.8V and the logic at a lower voltage (0.5V).
Considering the power breakdown of each memory bank, the
overhead of the level shifters is < 1%. The impact on critical
path is also negligible, mitigated by the fact that delay is
dominated by SRAM banks when they operate at low-voltage
(0.5V), while the paths toward TCDM is not critical when the
6T-SRAM area operates at high voltage (0.8V).

The RMUs provide access to the split area only at word or
half-word level. In both cases, MSBs (upper 16 or 8 bits) are
placed into SCM cells, while LSBs (lower 16 or 8 bits) are
placed into 6T-SRAM cells. Figure 5 depicts the remapping of
physical addresses when accessing the split area at word level.
This implies that errors can show up only on LSBs at voltage
levels below 0.8V, guaranteeing a correctness threshold for
data when executing approximate code regions. In this design

TABLE II
MEMORY LAYOUT CHANGING THE 6T-SRAM VOLTAGE DOMAINS.

6T-SRAM domains SCM cuts 6t-SRAM cuts
1 64 128× 16 16 2048× 16
2 64 128× 16 32 1024× 16
4 64 128× 16 64 512× 16

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 5

0x0000

0x2000

0x08000

OFFSET

0x2000
+

OFFSET

from interconnect

0x0C000

…

0x14000

…

…

…

…

…

0.8V – 1.0V: RELIABLE

0.5V – 0.8V: NOT RELIABLE

0.8V – 1.0V: RELIABLE

0.5V – 0.8V: MSBs RELIABLE, LSBs NOT RELIABLE

0.5V – 1.0V: RELIABLE

Fig. 4. Hybrid TCDM organization.

6
T
-S

R
A

M
S

C
M

WORD 1 [31:16] WORD 0 [31:16]

WORD 3 [31:16] WORD 2 [31:16]

WORD 1 [15:0] WORD 0 [15:0]

WORD 3 [15:0] WORD 2 [15:0]

WORD 0 [31:0]

WORD 1 [31:0]

WORD 2 [31:0]

BYTE 1BYTE 2BYTE 3

WORD 3 [31:0]

...
...

...

RECONFIGURED

ADDRESS SPACE BYTE 0

Fig. 5. Reconfigured address space for a word level access in the split memory
area.

memory cuts are 16-bit wide. A word operation (32-bit) on
SCM and 6T-RAM logical areas implies an access to two 16
bits banks in the corresponding physical area, while a word
operation on the split logical area produces an access to a 16-
bit bank in the SCM physical area and to a 16-bit bank in the
6T-SRAM physical area. The offset that defines the boundaries
between the three logical memory areas can be configured by
writing into a memory-mapped peripheral, accessible by every
PE. Thus, the memory map can be re-configured on-the-fly by
the software, enabling the optimization of application-specific
policies. This design choice is due to the fact that 32-bit data
types are common when programming ULP microcontrollers.
A 64-bit operation in the split area is not supported, the
compiler discards the tolerant flags related to 64-bits variables
and reports a warning message.

IV. SOFTWARE STACK

A. Programming Model

Many works in literature have shown that a variety of
applications are tolerant to errors [49][50][51]. In most cases,
some code regions of the application are inherently tolerant,
while others must be protected from errors. To exploit the

tolerant region

no access

r/w access (outside a tolerant region)

error tolerant r/w access

r/w access with no tolerance

Region

/

A

T

NT

time

Fig. 6. Evolution of variables in different program regions.

hardware support to reliability management, we propose a
programming model which is based on a small set of an-
notations involving program statements and variables, that is
a common approach in the field of approximate computing
[36][23]. To fully exploit the parallel capabilities of our multi-
core platform with a limited programming effort, we adhere
to the OpenMP specification [52], which provides a model for
parallel programming that is portable across different shared
memory architectures. In the PULP platform the program code
is stored in L2 and accessed via private I$. The latter is
implemented with SCM cuts, and thus is always reliable. The
focus of our techniques in thus only on data, which reside in
the TCDM. The DMA unit introduced in Section III-A can be
used to move data between the L2 and the TCDM. Based on
these premises, we propose an extension to OpenMP including
two constructs:

• #pragma tolerant – a directive applied to a program
statement to assert that the related code is tolerant to
approximation;

• var_list(var1, var2, ...) – a clause coupled
to the tolerant directive to qualify what variables can be
actually approximated.

This model takes into account the full orthogonality between
code and data in terms of approximation behavior. For analyt-
ical purposes the application code can be divided into multiple
regions, each one including one or more statements. Each
#pragma tolerant directive defines a tolerant region,
while the rest of the code is grouped in non-tolerant regions
(function starting/ending points and tolerant regions define
their limits). At execution time, the program counter evolves
through statements belonging to different regions, and each
program variable can be accessed or not in a specific region
(i.e., it is out of scope or not required). When a variable
is accessed inside a tolerant region, it could be not tolerant
to errors due to specific program constraints. Moreover, a
variable can be error tolerant or not at different points of the
execution flow, depending on the specific region it is accessed
in. Figure 6 depicts the status of a set of variables when
executing a use case that includes an alternation of tolerant and
non-tolerant regions. In most practical cases programs start and
end with non-tolerant regions with the precise aim to provide
a consistent view to their execution environment.

Figure 7 shows an example of C code including a tolerant
directive. In sparse matrix computation, matrix indexes can-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

int main (...)

{

int sparse_M[N];

int i = 0, index;

while(func(i))

{

...

index = compute_index ();

#pragma tolerant var_list(sparse_M)

sparse_M[index] = compute_element ();

...

update(i);

}

}

Fig. 7. A sparse matrix computation with a tolerant directive.

not be approximated (a single error implies wrong element
choice), while matrix elements may tolerate approximation.
Thus, we declare the sparse_M array and the element
computation as tolerant, while index and its computation are
not tolerant. Three code regions are highlighted in the code, a
tolerant region and two non-tolerant. Note that error tolerance
is not a property of sparse_M, but of the code region. When
a tolerant variable is copied to a non-tolerant variable, its value
is automatically promoted to non-tolerant state after the read.
Also the opposite copy is permitted, for instance the automatic
variable containing the result of compute_element()
(non-tolerant) is copied to sparse_M (tolerant).

In principle, approximate algorithms can “absorb” errors
which occur with a probability lower than a given threshold.
To lower this idea in the context of our approach, we need
a rigorous methodology to identify the tolerant regions and
evaluate the impact of flip-bit errors on data accuracy. Even
if an extensive discussion of automatic techniques is out of
scope for this paper, we focus on describing the empirical
process that we followed to derive suitable approximation
thresholds for the various benchmarks. To annotate the ap-
plications described in Section V, we first performed a set
of accuracy tests on a x86 workstation. We simulated the
effects of an unreliable memory by instrumenting variables
with a macro (APPROX) which injects flip-bit errors on the
LSBs with a configurable probability. Different code regions
can be assigned to a specific accuracy level by modifying the
flip-bit probability with runtime calls, which correspond to
voltage switch operations in the final platform. Statistics on the
result accuracy are collected for different configurations, each
one corresponding to a bijective association among program
variables and accuracy levels. The acceptable error threshold
is application specific, and we provide details in Section V-E.

B. Runtime Extensions

The framework described in this paper requires a light-
weight runtime support. The extensions that must be added
to the OpenMP runtime can be summarized as follows:

• an interface to activate the split memory area and set its
actual size;

• an interface to allocate data structures in a specific logical
memory area;

• an interface to modify the voltage supply of 6T-SRAM
domains.

TABLE III
ENERGY CONSUMPTION (PJ) OF A 32-BIT READ/WRITE ACCESS.

6T-SRAM voltage SCM 6T-SRAM SPLIT
0.5V 0.6 / 0.6 - 3.2 / 2.9
0.8V 0.6 / 0.6 13.6 / 12.2 7.1 / 6.4

In addition, the main modification to the OpenMP runtime
involves the allocation of internal data structures. Whenever
an OpenMP construct is present inside a tolerant region, the
data structures describing its behavior are not tolerant to
errors, and they are allocated partly on the stack (e.g., the
bound variables generated to distribute the workload among
processing elements in loop constructs) and partly on the heap
(e.g., the work-share descriptors). The heap area for these data
structures is typically reserved using a dynamic allocator (a
call to a malloc in POSIX API). To handle this aspect of the
runtime environment, we introduced the concept of allocation
control variable. This is an internal control variable, akin to
others defined by the OpenMP standard, that specifies the
logical memory region the runtime must allocate its dynamic
data structures in. The positioning of the stack and the value
of this variable is a further control knob for our architecture,
as described in the next section.

C. Compile-time Optimizations

Our compile time optimizations are based on the analysis of
the application call graph, that is the directed graph represent-
ing calling relationships between functions in the execution
flow. After applying the outlining technique typically used for
OpenMP constructs, each statement annotated by a #pragma
tolerant directive is translated into an equivalent function,
and so it follows that the statement in the program flow is
replaced by a function call. After this source code transforma-
tion, each tolerant region corresponds to a single node in the
call graph, while original nodes represent sets of non-tolerant
regions. As a preliminary step, an extended use-defs analysis
is applied over the call graph to extract statistics about global
and local variables1. For each variable the following attributes
are collected:

• scope – a flag that specifies whether the variable is local
or global;

• dynamic – a flag that specifies whether the variable is
allocated statically (stack or global variable) or dynami-
cally (call to malloc);

• class – the type of the variable (scalar/array/reference);
• use-intervals – live range of the variable within its entire

scope;
• tolerant-use-intervals – live range of the variable re-

stricted to tolerant code regions;
• usedefs – use-defs chains for the variable.
Table III reports the memory consumption (in pJ) of a single

32-bit read/write access to different logical memory regions. It
considers the case of a single 6T-SRAM voltage domain, but

1Static use-defs analysis limits the applicability of the approach to programs
written as a single translation unit. Inter-Procedural Analysis and Link-Time
Optimization approaches can be considered to avoid this limitation.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 7

the trend is similar when the number of domains increases.
Taking into account the high voltage level (0.8V), an access
to SCM costs less than an access to 6T-SRAM, while an
access to the split memory area costs more than an access
to SCM but less than an access to 6T-SRAM; at the low
voltage level (0.5V), the cost of accessing the split memory
area decreases, while 6T-SRAM cannot be accessed any more
due to precision constraints. Accesses to the 6T-SRAM logical
memory area are not allowed below 0.8V. Considering the
reported values, an approach that uses data tiling on the SCM
could be considered the most viable solution to minimize
the energy consumption. By leveraging the knowledge of the
memory access pattern, data tiling exploits spatial locality in
a program by partitioning large data structures into smaller
chunks that are brought in and out of the target memory via
DMA transfers. By reducing the granularity of data tiling it
is theoretically possible to efficiently manage even very small
memories. However, creating smaller tiles implies increasing
the number of transfers required to process a given data struc-
tures, which is subject to increasing impact of DMA latency
and programming overheads. Due to these considerations, the
energy consumption of the whole system is indeed greater
w.r.t. other solutions due to overhead effects, as explained in
further detail in Section V.

Taking into account the usage of both SCM and 6T-SRAM
areas, the problem of allocating variables into logical memory
areas minimizing the energy consumption can be solved using
two general approaches, a formal integer linear programming
(ILP) model or a heuristic algorithm. ILP models of the
memory allocation problem are known in literature [53].
However in this context they cannot be fed with a complete set
of parameters, since experimental evidence shows that access
frequency and data size cannot be exactly determined in all
practical cases by means of a static analysis.

On the basis of the previous considerations, variables are al-
located into different logical memory regions using a heuristic
algorithm based on the following policies:

• tolerant variables are allocated in the split area, since
SCM is a limited resource while using the 6T-SRAM
logical area could miss a voltage switch opportunity;

• non-tolerant variables are allocated in SCM, with the aim
to switch down the voltage of unused 6T-SRAM domains;

• variables accessed inside a non-tolerant region (if not
considered by previous rules) are allocated in a single
6T-SRAM voltage domain;

• variables devoted to SCM and split memory areas are
organized into separate lists, ordered on the basis of the
most-frequent-accessed-first heuristic. The variables that
eventually do no fit the related memory area are allocated
in 6T-SRAM areas, applying (when feasible) the single-
domain-per-area heuristic;

• the allocation control variable in the OpenMP runtime is
set to use SCM (if available), or a previously allocated
6T-SRAM area with free space (in the worst case it
could reference a new 6T-SRAM domain, which cannot
be switched down in the region containing the current
OpenMP directive);

• the voltage levels of unused domains (i.e., domains which

are not used for allocation or contain variables that are
not accessed) are switched down at the beginning of a
region, with the aim to reduce the leakage power of the
related memory banks.

All these transformations involving the source code are
performed at compile time on the current application, but
in any case they do no affect the binary size since program
data are moved but not increased. This algorithm takes into
account all global variables and a subset of local variables,
including: arrays, variables allocated with a malloc request,
and local variables used in var_list clauses. Ultimately,
what is not included are automatic variables that are left
on the program stack. In the most common cases, the stack
is accessed when executing tolerant regions and it typically
contains non-tolerant variables (e.g., indexes and pointers),
so it must be allocated in SCM or in a 6T-SRAM region
kept at high voltage. The previous steps guarantee that the
stack is reduced to a minimal set of scalar variables; since
the experimental evidence shows that stack accesses are still
frequent in tolerant regions after this process, in our solution
the stack is preferably allocated in the SCM area. The size of
the stack can be determined through static analysis in some
cases (e.g., consider the restrictions to the standard C language
imposed by OpenCL for kernels [54]), but this is not true
in the most general case. For most applications included in
our benchmark suite, the aforementioned heuristics enable the
allocation of a limited stack area (512 bytes per core). A check
for stack overflow is provided at hardware level to guarantee
a controlled termination in all the cases that are not properly
managed by the static analysis, and therefore require a manual
stack sizing.

V. EXPERIMENTAL EVALUATION

This section introduces the methodology adopted to validate
our architecture, and then focuses on the implementation of
the software stack and the reference benchmarks. The results
for most relevant metrics are reported and commented (energy
consumption in Section V-C, area compared to energy in
Section V-D and accuracy in Section V-E).

A. Simulation Setup and Methodology

The power consumption of the baseline architecture at
different voltage levels has been measured on the first silicon
implementation of PULP, realized with STMicroelectronics
28nm UTBB FDSOI technology [10]. Figure 8 depicts the
layout of this reference chip, highlighting its key subsystems.
The power figures measured from real silicon have been
then partitioned among the key components of the platform
(cores, I$, SRAM banks, SCM banks, interconnect) taking
into account back-annotated simulations performed on the post
place&route netlist of the SoC. Finally, the energy numbers
have been fed into the models of Virtual SoC [55], a SystemC-
based cycle-accurate virtual platform for the simulation of
massively parallel heterogeneous architectures, that is used to
perform a design exploration of the extensions proposed in
this work. Table III reports the dynamic energy required for
each read/write operation. Table V reports the leakage energy

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 8

TABLE IV
CHARACTERIZATION OF THE BENCHMARK SUITE.

Application Description Regions Tol. regions Tolerant data %

Color Tracking A sequence of image processing filters, with the aim to find
the center of mass for objects of a specific color in a video 5 3 100% / 50% / 95%

HOG Histogram of oriented gradients, that is a feature descriptor
used to perform object detection 5 3 50% / 80% / 50%

CNN A convolutional neural network including 6 layers 16 6 50% / 100% / 50% /
100% / 50% / 100%

Health A signal processing algorithm to process ECG data series with
the aim to predict seizures 5 2 50% / 50%

Navi

A navigation support for unmanned vehicles, including the
Djikstra algorithm (to find the shortest path between known
locations) and a heuristic to plan recharging stops (based on

distance and power consumption)
6 2 50% / 25%

Fig. 8. Layout of the PULP chip used for memory reliability and power
characterization.

consumed by the memory cuts for a single clock cycle at
20MHz, that is the operational frequency of our platform. The
size of the memory cuts is the one described in Table II for
alternative setups. This approach couples the advantages of
very accurate power models with the simulation speed of the
SystemC model, that allows to perform a wide exploration
utilizing real-life benchmarks. Compared to a complete RTL
simulation, the virtual platform guarantees a maximum error
on the number of reported cycles that is between 5% and 6%.
This error has a minimum impact on the leakage component
of the total energy.

B. Software Stack and Benchmark Suite

To experimentally validate our framework, we set up a
toolchain based on Clang [56] and LLVM [57]. The compiler
frontend transforms the directives into annotated tokens in

TABLE V
LEAKAGE ENERGY (PJ PER CYCLE) OF SCM AND 6T-SRAM CUTS.

SCM@0.5V 6T-SRAM@0.5V 6T-SRAM@0.8V
1 region 0.002 0.0056 0.021
2 regions 0.002 0.0043 0.013
4 regions 0.002 0.0022 0.0083

its intermediate representation (IR) format. These annotations
are collected and interpreted by the heuristic algorithm de-
scribed in Section IV-C, which is implemented as an IR
optimization pass in the LLVM compiler infrastructure. To
provide programming model and runtime support, we extended
an OpenMP implementation tailored for embedded multicore
systems [58], adding the features discussed in Sections IV-A
and IV-B. The benchmarks are implemented in C using
standard OpenMP directives to split the workload over the
8 available cores. Considering the intrinsic data parallelism
of the computational kernels, for the selected benchmarks we
use a omp parallel for directive with a static chunking
pattern. The data footprint of considered applications does
not entirely fit into the TCDM, so we use the DMA engine
to implement a data tiling technique; in addition, we adopt
double-buffering with the aim to hide the DMA transfer
latency. The applications included in the benchmark suite are
described in Table IV, that also provides more information
on single applications. Regions is the total number of code
regions, while Tol. regions includes only the tolerant regions
(Section IV-C). Tolerant data % reports the percentage of
accessed data which are error tolerant in the corresponding
region. For instance, in the first tolerant region of Color
Tracking all the data are tolerant, in the second one half
data are tolerant and the other half are not.

C. Energy Consumption

In the experiments that follow we take into account five
alternative configurations:

• Default – No optimization is applied, program data are
allocated into TCDM using standard compilation and
linking policies;

• Heuristic – Program data are allocated in TCDM using
a most-accessed-first heuristic;

• Heur+VS – Like Heuristic, but enabling low voltage
operation for SRAM memory areas that are not used
within a target code region;

• Split+VS – Tolerant data is allocated in the split memory
area and the allocation heuristic maximizes low voltage
SRAM memory operation;

• Tiling – All program data is accessed in small chunks
from the SCM only, using DMA transfers to update

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 9

Fig. 9. Normalized energy consumption of the TCDM (average energy reduction is reported in percentage).

continuously its content. SRAM is constantly powered
at low voltage.

We first analyze the behavior of the memory system in isola-
tion. Figure 9 depicts the energy consumption of the TCDM
system, including the memory banks and the RMU logic
block. The figure shows three plots, one for each explored
configuration in terms of SRAM voltage domains: 1 (left),
2 (middle) and 4 (right). Each bar in a group depicts the
energy consumption of a given application (normalized to the
Default configuration), and different groups of bars represent
a different configuration from the list above. The average
energy reduction (% of the Default configuration) is also
reported for each group. Considering a single SRAM voltage
domain, Heuristic, Heur+VS and Split+VS are identical. This
is expected, because unless all data fits in the SCM (which
happens only for Tiling), it is impossible to lower the voltage
of the SRAM without corrupting the correctness of the results.
Increasing the number of voltage domains, the benefits of
Split are more and more evident. With 2 voltage domains,
the energy efficiency is increased by 15% on average by just
enabling voltage switching on idle SRAM banks, and by 36%
by allocating tolerant data on the split memory area. With 4
voltage domains, these values are respectively 31% and 47%.
Tiling is ≈60% more efficient than the Default configuration,
independent of the number of voltage domains (as the SRAM
is constantly powered at a low voltage). This is not surprising,
as SCM accesses are much more energy efficient than SRAM
accesses, as reported in Table III.

However, while every configuration requires DMA transfers
to accommodate larger data structures than the whole TCDM
in chunks, Tiling requires more DMA transfers that any other
configuration. This is because the SCM is only a fraction of the
total TCDM size (one fifth in our architecture), and part of it is
devoted to data that always need to be reliably accessed, such
as the stacks of the threads and the OpenMP runtime metadata.
As a consequence, the main drawback of this configuration
is that it is more sensitive to DMA management overhead

Fig. 10. Normalized components of the energy consumption.

(the finer and more numerous the DMA transfers, the higher
the overhead for their management). Focusing on the whole
system energy consumption in Figure 11 this effect becomes
evident. In this plot, energy numbers are normalized to the
Default configuration and broken down into the contributions
of the TCDM system (what we already showed) and other
SoC components (cores, I$, DMA engine, interconnect and
L2). Again, the figure shows three plots, one for each explored
configuration in terms of SRAM voltage domains: 1 (left), 2
(middle) and 4 (right). The higher energy values reported
for HOG and Navi in the Tiling configuration are due to
the fact that these applications require a bigger stack (768
bytes per core) and a larger footprint of the OpenMP metadata
(due to the use of a higher number of dynamic parallelization
constructs). Compared to other applications, this reduces the
available SCM space to host data tiles, which will eventually
be very small and numerous and ultimately imply a larger
DMA overhead. Table VI reports execution cycles for Tiling
compared to other configurations. The effect of DMA manage-
ment is clearly visible also in terms of execution time, with the
obvious effect on overall energy consumption2. On average,
the Split+VS approach allows a 13% reduction of the total

2The execution time is not affected by the number of voltage domains, as
the performance overhead of a voltage switch is just 2 additional cycles.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 10

Fig. 11. Normalized energy consumption of the full SoC.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 11

TABLE VI
TOTAL NUMBER OF CORE CYCLES (IN MILLIONS).

Others Tiling
Color Tracking 29.48 32.15
HOG 70487.50 134540.00
CNN 77.78 141.66
Health 1460.16 1563.77
Navi 54.12 99.49

SoC energy (up to 28% for the considered applications). The
benefits of Tiling only become visible when the granularity
of the technique is such that DMA management overhead
becomes negligible (see Section V-D). This approach never
allows tangible benefits for the SCM size considered in this
work. It increases the average energy consumption by 27%
(by 54% in the worst case).

Figure 10 shows dynamic and leakage components of the
energy consumption for the Split+VS approach. The reported
values are the averages of all the applications and are nor-
malized to the baseline case of a single voltage domain. Both
leakage and dynamics components of the energy consumption
are reduced by our approach. The leakage energy is reduced
by switching down the voltage of the 6T-SRAM banks that are
not accessed or are part of the split area. The dynamic energy
is reduced accessing the 6T-SRAM banks at low voltage in
the split area and maximizing the access to the SCM area.

Note that the Split+VS approach can work in synergy with
other approximation techniques, for instance arithmetic units
[29] or interconnects [22], with the aim to increase the energy
saving of the full system. In this perspective, our programming
model can be also extended to support additional knobs.

D. SoC Area

Table VII reports the area increase to implement our
Split+VS technique when considering 2 and 4 SRAM voltage
domains. The table also reports average and max energy
savings enabled by the technique. Normalized energy and
Normalized area are referred to the baseline SoC (with a
single SRAM voltage domain). Looking at energy alone, 4
SRAM voltage domains are better than 2 only. If we consider
a combined energy×area metric the difference is no longer
visible (for both the average and the best case).

Another approach to use additional design area would
obviously be that of increasing the size of the SCM. As we
discussed earlier, this would have a beneficial effect on the
Tiling approach, as it would allow to amortize the overhead
of DMA programming. Figure 12 compares the effectiveness
of Split and Tiling approaches at using additional chip area.

TABLE VII
AREA AND ENERGY/AREA VALUES.

1 domain 2 domains 4 domains
Average Best Average Best

Area (µm2) 2943648 2968768 3062400
Normalized energy 1.00 0.91 0.80 0.88 0.72

Normalized area 1.00 1.01 1.04
Norm en. × area 1.00 0.92 0.81 0.92 0.81

0 2 4 6 8 10 12 14 16 18 20

Area increase (%) wrt cluster size

0 1 2 3 4 5 6 7 8 9 10

Area increase (%) wrt SoC size

N
o

rm
a

liz
ed

 e
n

er
g

y
(t

o
 b

a
se

lin
e

cl
u

st
er

)

Fig. 12. Normalized energy consumption for two solutions (SCM with tiling
VS hybrid memory with our approach).

Specifically, the X-axis reports the area increase (% of the
original design; for the whole SoC on top and for the cluster
only on bottom) and the Y-axis reports normalized energy
(compared to the Default allocation). The plot shows that
Tiling is capable of amortizing DMA overheads when the
SCM size is increased to 24KB, which corresponds to 16% of
the original cluster area. Split makes better use of additional
chip area when the number of voltage domains is increased
to up to 4. Beyond this number we reach a plateau in the
energy saving curve. Further partitioning the 6T-SRAM into
additional voltage domains, the total area would be dominated
by the periphery and embedded power switches. The area
between the two curves represent the design space where Split
is more energy/area-efficient than Tiling.

E. Application accuracy

To assess the benefits of our approach, we compared the
use of unreliable LSBs with a more drastic alternative, that
is not computing them at all. To make the two solutions
fully comparable, we used the same algorithms and data
types, but in the second case we forced the LSBs to zero.
Practically, the zeroing case represents an upper bound to
the LSB error, since it totally discards the LSB part. All
computations are performed on the integer range (32 bit
words), and the values reported in the flip-bit column are
the worst cases over 1000 executions. To be conservative, we
used the highest flip-bit probability considered by our platform
(0.0037, as reported in Table I). Table VIII reports the value of
the mean squared error (MSE) for both approaches, compared
to a maximum accepted value. The maximum accepted MSE
is not an inherent property of the algorithms, nevertheless it is
a requirement of the application context. To derive meaningful
values for our benchmarks, we made some hypotheses based
on practical use cases. Most works on approximate computing
use a similar approach, first checking a wide but yet limited
subset of the output and then assuming that it is representative.
These approaches have been shown to produce average errors
that are acceptable for the considered use cases, but they
cannot take corrective actions when large errors occur. Recent
works [59][60] tackle the result quality problem applying

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 12

TABLE VIII
MEAN SQUARED ERROR FOR ZEROING AND FLIP-BIT ERROR.

Benchmark Zeroing Flip-bit Max MSE
Color Tracking 676 64 225
HOG 2.12E+13 58564 2814663
CNN 17114769 26244 36864
Health 6867734 378 25000
Navi 1681 36 100

runtime checks; a lightweight application-specific metric could
be used to derive a quality check of the result, with the
aim to adapt the application behavior to an unacceptable
quality loss. While this research topic is really promising, its
discussion is beyond the scope of this paper. However, runtime
techniques to support advanced quality management can be
straightforwardly implemented on top of our framework.
Color Tracking computes a point centered on the ob-

ject of a specified color in the input image, and the error
metric is based on the Chebyshev distance. Considering an
industrial application with a 640×480 image source and a
minimum object size of 60 pixels enforced by fixed camera
positioning, a maximum error of 15 pixels guarantees that the
midline between the center of mass and the object border is
not exceeded by the approximated value. From these premises,
the maximum MSE is 225. HOG computes a feature descriptor
that counts discretized occurrences of gradient orientations
in different regions of an input image. For human detection
applications, the miss rate of HOG-based solutions is around
0.5. We verified that a 0.01% error rate on the computed
descriptor does not affect this recognition rate. Using the
difference between the binary checksums of feature descriptors
as an error metric, this corresponds to a maximum MSE of
2814663 in our experimental setup. CNN computes a set of
binary features filtered by multiple neural layers. Applied
to face recognition, a CNN can achieve a 98% recognition
rate. Using the same error metric of the previous benchmark,
also in this case we verified that a 0.01% error rate does
not affect the expected results. This error rate corresponds
to a maximum MSE of 36864 in our experimental setup.
Health computes the energy levels associated to its final
wavelet transform. Considering the typical dynamics of energy
levels in our experimental setup, an absolute error of 25 on
a single energy level does not compromise the results. Using
the average of the differences of energy levels to measure the
error, this corresponds to a maximum MSE of 2500. Navi
computes the travel plan and the required recharging stops
of a unmanned vehicle. We consider the total travel time as a
key metric to evaluate errors, and then we consider 10 minutes
as an upper bound for the maximum delay acceptable by an
impatient human being. Finally the maximum MSE is 100.

F. Comparison with other approaches

In this section we compare energy and area of our solu-
tion to several alternative approaches: (i) 6T uses 6T-SRAM
without applying voltage scaling; (ii) 6T+VS is the solution
adopted by EnerJ [36], using 6T-SRAM and voltage scaling;
(iii) 8T/6T+VS and 10T/6T+VS implement a hybrid memory

8.79
7.47

2.0
1.71

0.54

} }
} }
}

SPLIT+VS reference

Area

Fig. 13. Energy consumption and area compared to Split-VS.

TABLE IX
NORMALIZED ENERGY-AREA PRODUCT (NEAP).

Our 6T 6T+VS 8T/6T+VS 10T/6T+VS SCM
Memory 1.00 4.50 3.83 1.48 1.41 1.58
Cluster 1.00 1.74 1.58 1.03 1.03 1.80

system, using respectively 8T-SRAM [15] and 10T-SRAM
[12]; (iv) SCM uses SCM cuts to implement the full SRAM.
For each of the proposed approaches we configure our sim-
ulation infrastructure (introduced in Section V-A) based on
energy numbers reported in the literature and we collect the
results running the benchmarks previously described.

Since our technique is explicitly aimed at reducing energy
spent in the memory, we first focus on energy and area
numbers for the memory subsystem only. Results are shown
in Figure 13 (bars represent memory energy and the dashed
line represents memory subsystem area). Energy/area numbers
for each approach are normalized to energy/area numbers
for our technique (numbers below one are better than our
solution, numbers above one are worse than our solution). The
numbers on top of each group of bars show average normalized
energy for each benchmark. On average, EnerJ consumes 8.9×
higher energy than our solution. From the comparison with
8T/6T+VS and 10T/6T+VS architectures it is also evident that
hybrid memory enables major energy savings.

Since from these results there is an obvious trade-off be-
tween energy-consumption and area, we also show results for
a combined metric – normalized energy-area product (NEAP).
We show NEAP for the memory part only (like in Figure 13)
and for the whole cluster (the benefits of our approach are less
evident). NEAP for these two configurations is shown in Table
IX. Focusing on the memory part only, our solution always
provides the best NEAP. When considering also the rest of
the cluster components, the benefits are reduced, as expected.
However, although the techniques 8T/6T+VS and 10T/6T+VS
reach very close NEAP to ours, they never perform better.

VI. CONCLUSION

In this work we propose a novel HW/SW approach to design
energy-efficient ULP architectures which combine approxi-
mate computing and hybrid memory systems featuring both
SCM and 6T-SRAM. At the hardware level, we introduce a
support to split error-tolerant data so to host most significant
bits (MSB) in the SCM and least significant bits (LSB) in the
6T-SRAM. This allows to power the TCDM system at a low

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 13

voltage while ensuring correct operation by binding potential
flip-bit errors to the LSBs only. In addition, by organizing 6T-
SRAM banks into multiple and independent voltage domains
we enable fine-grained, software-controlled voltage switching
policies. At the software level, we propose language constructs
to specify what regions of code and what variables are tolerant
to approximation. A compiler pass implements a heuristic
algorithm which allocates data into available memory regions
and leverages hardware knobs to maximize energy savings.
Experimental results show that our hybrid memory architecture
can reduce by 47% the energy consumption of the TCDM
memory. Focusing on the whole-system, our technique allows
on average 27% savings and outperforms other solutions. At
the same time we can guarantee the exact level of accuracy
required by real-life applications, since the MSE of our
approach is always below a maximum reference value when a
proper approximation policy is applied. Overall, these results
encourage further research activities in the field of hybrid
memory architectures, as these solutions represent a promising
opportunity for the design of future ULP systems.

ACKNOWLEDGMENT

This work is supported by the European FP7 ERC Advanced
project MULTITHERMAN (g.a. 291125) and by IcySoC and
YINS RTD projects, evaluated by the Swiss NSF and funded
by Nano-Tera.ch with Swiss Confederation financing.

REFERENCES

[1] “STM32L4 ultra-low-power MCUs,” http://www.st.com/ stm32l4.
[2] “Texas Instruments MSP Microcontrollers,” http://www.ti.com/lsds/ti/

microcontrollers 16-bit 32-bit/msp/overview.page.
[3] “Ambiq Apollo,” http://ambiqmicro.com/low-power-microcontroller.
[4] A. Y. Dogan, J. Constantin, D. Atienza, A. Burg, and L. Benini, “Low-

power processor architecture exploration for online biomedical signal
analysis,” IET Circuits, Devices Systems, vol. 6, no. 5, pp. 279–286,
Sept 2012.

[5] E. Krimer, R. Pawlowski, M. Erez, and P. Chiang, “Synctium: a Near-
Threshold Stream Processor for Energy-Constrained Parallel Applica-
tions,” IEEE Computer Architecture Letters, vol. 9, no. 1, pp. 21–24,
Jan 2010.

[6] D. Fick, R. G. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik,
S. Satpathy, Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. Chen,
T. Mudge, D. Sylvester, and D. Blaauw, “Centip3De: A 3930DMIPS/W
configurable near-threshold 3D stacked system with 64 ARM Cortex-
M3 cores,” in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2012 IEEE International, Feb 2012, pp. 190–192.

[7] D. Rossi, I. Loi, F. Conti, G. Tagliavini, A. Pullini, and A. Marongiu,
“Energy efficient parallel computing on the PULP platform with support
for OpenMP,” in Electrical Electronics Engineers in Israel (IEEEI),
2014 IEEE 28th Convention of, Dec 2014, pp. 1–5.

[8] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-Threshold Computing: Reclaiming Moore’s Law
Through Energy Efficient Integrated Circuits,” Proceedings of the IEEE,
vol. 98, no. 2, pp. 253–266, Feb 2010.

[9] D. Bol, J. De Vos, C. Hocquet, F. Botman, F. Durvaux, S. Boyd,
D. Flandre, and J.-D. Legat, “A 25MHz 7µW/MHz ultra-low-voltage
microcontroller SoC in 65nm LP/GP CMOS for low-carbon wireless
sensor nodes,” in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2012 IEEE International. IEEE, 2012, pp. 490–492.

[10] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak, A. Bartolini,
P. Flatresse, and L. Benini, “A 60 GOPS/W,- 1.8 V to 0.9 V body
bias ULP cluster in 28nm UTBB FD-SOI technology,” Solid-State
Electronics, vol. 117, pp. 170–184, 2016.

[11] B. H. Calhoun and A. Chandrakasan, “Analyzing static noise margin
for sub-threshold SRAM in 65nm CMOS,” in Solid-State Circuits
Conference, 2005. ESSCIRC 2005. Proceedings of the 31st European,
Sept 2005, pp. 363–366.

[12] M. E. Sinangil, N. Verma, and A. P. Chandrakasan, “A Reconfigurable
8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS,”
IEEE Journal of Solid-State Circuits, vol. 44, no. 11, pp. 3163–3173,
Nov 2009.

[13] B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm Sub-threshold
SRAM Design for Ultra-Low-Voltage Operation,” IEEE Journal of
Solid-State Circuits, vol. 42, no. 3, pp. 680–688, March 2007.

[14] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg, “Power,
Area, and Performance Optimization of Standard Cell Memory Arrays
through Controlled Placement,” in ACM Transactions on Design Au-
tomation of Electronic Systems, 2016.

[15] P. Meinerzhagen, S. M. Y. Sherazi, A. Burg, and J. N. Rodrigues,
“Benchmarking of Standard-Cell Based Memories in the Sub-VT Do-
main in 65-nm CMOS Technology,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 1, no. 2, pp. 173–182,
June 2011.

[16] D. Bortolotti, A. Bartolini, C. Weis, D. Rossi, and L. Benini, “Hybrid
memory architecture for voltage scaling in ultra-low power multi-core
biomedical processors,” in Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2014, March 2014, pp. 1–6.

[17] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gurkaynak, A. Te-
man, J. Constantin, A. Burg, I. M. Panades, E. Beign, F. Clermidy,
F. Abouzeid, P. Flatresse, and L. Benini, “193 MOPS/mW 162 MOPS,
0.32V to 1.15V Voltage Range Multi-Core Accelerator for Energy-
Efficient Parallel and Sequential Digital Processing,” in Cool Chips XIX,
2016.

[18] G. Tagliavini, D. Rossi, A. Marongiu, and L. Benini, “Synergistic Archi-
tecture and Programming Model Support for Approximate Micropower
Computing,” in VLSI (ISVLSI), 2015 IEEE Computer Society Annual
Symposium on, July 2015, pp. 280–285.

[19] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “WCET centric
data allocation to scratchpad memory,” in 26th IEEE International Real-
Time Systems Symposium, Dec 2005, pp. 10 pp.–232.

[20] J. Hu, C. J. Xue, Q. Zhuge, W. C. Tseng, and E. H. M. Sha, “Towards
energy efficient hybrid on-chip Scratch Pad Memory with non-volatile
memory,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, March 2011, pp. 1–6.

[21] M. Gautschi, M. Schaffner, F. K. Grkaynak, and L. Benini, “A 65nm
CMOS 6.4-to-29.2pJ/FLOP@0.8V shared logarithmic floating point unit
for acceleration of nonlinear function kernels in a tightly coupled proces-
sor cluster,” in 2016 IEEE International Solid-State Circuits Conference
(ISSCC), Jan 2016, pp. 82–83.

[22] A. Mineo, M. Palesi, G. Ascia, P. Pande, and V. Catania, “On-Chip
Communication Energy Reduction through Reliability Aware Adaptive
Voltage Swing Scaling,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. PP, no. 99, pp. 1–1, 2016.

[23] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ACM SIGPLAN
Notices, vol. 47, no. 4. ACM, 2012, pp. 301–312.

[24] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,
and J. T. Ludwig, “Approximate signal processing,” Journal of VLSI
signal processing systems for signal, image and video technology,
vol. 15, no. 1-2, pp. 177–200, 1997.

[25] J. T. Ludwig, S. H. Nawab, and A. P. Chandrakasan, “Low-power digital
filtering using approximate processing,” IEEE Journal of Solid-State
Circuits, vol. 31, no. 3, pp. 395–400, Mar 1996.

[26] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in International Symposium on Low Power
Electronics and Design, Aug 1999, pp. 30–35.

[27] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate Computing: A
Survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[28] S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016.

[29] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-Power Dig-
ital Signal Processing Using Approximate Adders,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, Jan 2013.

[30] A. Rahimi, A. Marongiu, R. K. Gupta, and L. Benini, “A variability-
aware OpenMP environment for efficient execution of accuracy-con-
figurable computation on shared-FPU processor clusters,” in Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2013
International Conference on, Sept 2013, pp. 1–10.

[31] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar, “Scalable effort hardware design: Exploiting algorithmic
resilience for energy efficiency,” in Design Automation Conference
(DAC), 2010 47th ACM/IEEE, June 2010, pp. 555–560.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 14

[32] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “ECOSystem:
Managing Energy As a First Class Operating System Resource,” in Pro-
ceedings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS X.
ACM, 2002, pp. 123–132.

[33] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and H. Hoffmann,
“Using code perforation to improve performance, reduce energy con-
sumption, and respond to failures,” in MIT CSAIL Tech. Reports, 2009.

[34] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Ama-
rasinghe, “Language and compiler support for auto-tuning variable-
accuracy algorithms,” in 9th IEEE/ACM International Symposium on
Code Generation and Optimization, April 2011, pp. 85–96.

[35] W. Baek and T. Chilimbi, “Green: A system for supporting energy-
conscious programming using principled approximation,” TR-2009-089,
Microsoft Research, Tech. Rep., 2009.

[36] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate Data Types for Safe and General
Low-power Computation,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’11. ACM, 2011, pp. 164–174.

[37] I. J. Chang, D. Mohapatra, and K. Roy, “A Priority-Based 6T/8T
Hybrid SRAM Architecture for Aggressive Voltage Scaling in Video
Applications,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 21, no. 2, pp. 101–112, Feb 2011.

[38] M. Cho, J. Schlessman, W. Wolf, and S. Mukhopadhyay, “Reconfig-
urable SRAM Architecture With Spatial Voltage Scaling for Low Power
Mobile Multimedia Applications,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 19, no. 1, pp. 161–165, Jan 2011.

[39] N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8T Subthreshold
SRAM Employing Sense-Amplifier Redundancy,” IEEE Journal of
Solid-State Circuits, vol. 43, no. 1, pp. 141–149, Jan 2008.

[40] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto,
“SRAM for Error-Tolerant Applications With Dynamic Energy-Quality
Management in 28 nm CMOS,” IEEE Journal of Solid-State Circuits,
vol. 50, no. 5, pp. 1310–1323, May 2015.

[41] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approxi-
mate computing,” in Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, May 2013, pp. 1–9.

[42] P. Roy, R. Ray, C. Wang, and W. F. Wong, “ASAC: Automatic Sensitivity
Analysis for Approximate Computing,” in Proceedings of the 2014
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems, ser. LCTES ’14. ACM, 2014, pp. 95–104.

[43] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “RRAM-Based
Analog Approximate Computing,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 12, pp.
1905–1917, Dec 2015.

[44] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang, “Memristor-
based approximated computation,” in Proceedings of the 2013 Interna-
tional Symposium on Low Power Electronics and Design, ser. ISLPED
’13. IEEE Press, 2013, pp. 242–247.

[45] N. Planes, O. Weber, V. Barral, S. Haendler, D. Noblet, D. Croain,
M. Bocat, P. O. Sassoulas, X. Federspiel, A. Cros, A. Bajolet, E. Richard,
B. Dumont, P. Perreau, D. Petit, D. Golanski, C. Fenouillet-Branger,
N. Guillot, M. Rafik, V. Huard, S. Puget, X. Montagner, M. A. Jaud,
O. Rozeau, O. Saxod, F. Wacquant, F. Monsieur, D. Barge, L. Pinzelli,
M. Mellier, F. Boeuf, F. Arnaud, and M. Haond, “28nm FDSOI technol-
ogy platform for high-speed low-voltage digital applications,” in VLSI
Technology (VLSIT), 2012 Symposium on, June 2012, pp. 133–134.

[46] “OpenRISC project,” http://www.opencores.org/or1k/.
[47] D. Rossi, I. Loi, G. Haugou, and L. Benini, “Ultra-low-latency light-

weight DMA for tightly coupled multi-core clusters,” in Proceedings of
the 11th ACM Conference on Computing Frontiers, 2014, p. 15.

[48] P. Meinerzhagen, S. M. Y. Sherazi, A. Burg, and J. N. Rodrigues,
“Benchmarking of standard-cell based memories in the sub-domain in
65-nm CMOS technology,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 1, no. 2, pp. 173–182, June 2011.

[49] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
Resilient System Architecture for probabilistic applications,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2010, March
2010, pp. 1560–1565.

[50] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving
DRAM refresh-power through critical data partitioning,” SIGPLAN Not.,
vol. 46, no. 3, pp. 213–224, Mar. 2011.

[51] V. Wong and M. Horowitz, “Soft error resilience of probabilistic
inference applications,” in In Proceedings of the Workshop on System
Effects of Logic Soft Errors. SELSE, 2006.

[52] “OpenMP 4.0 Specification,”
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[53] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel, “Assigning
program and data objects to scratchpad for energy reduction,” in Design,
Automation and Test in Europe Conference and Exhibition, 2002.
Proceedings, 2002, pp. 409–415.

[54] “OpenCL 2.1 Specification,” https://www.khronos.org/registry/cl/specs
/opencl-2.1.pdf.

[55] D. Bortolotti, C. Pinto, A. Marongiu, M. Ruggiero, and L. Benini,
“VirtualSoC: A Full-System Simulation Environment for Massively
Parallel Heterogeneous System-on-Chip,” in Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE
27th International, May 2013, pp. 2182–2187.

[56] “clang: a C language family frontend for LLVM ,” http://clang.llvm.org/.
[57] C. Lattner and V. Adve, “LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization. IEEE
Computer Society, 2004, pp. 75–86.

[58] A. Marongiu and L. Benini, “An OpenMP Compiler for Efficient Use
of Distributed Scratchpad Memory in MPSoCs,” IEEE Transactions on
Computers, vol. 61, no. 2, pp. 222–236, Feb 2012.

[59] B. Grigorian and G. Reinman, “Dynamically adaptive and reliable
approximate computing using light-weight error analysis,” in Adaptive
Hardware and Systems (AHS), 2014 NASA/ESA Conference on, July
2014, pp. 248–255.

[60] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An
Online Quality Management System for Approximate Computing,” in
Proceedings of the 42Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’15. ACM, 2015, pp. 554–566.

Giuseppe Tagliavini received his MS degree in
Computer Engineering from the University of Bo-
logna, Italy, in 2010. He is currently a PhD student
at the Department of Electrical, Electronic and In-
formation Engineering (DEI) at the University of
Bologna. His research interests include program-
ming models and run-time optimization for many-
core embedded accelerators, software design for
high-performance embedded systems and compiler
support for emerging computing architectures.

Davide Rossi received the PhD degree from the
University of Bologna, Italy, in 2012. He currently
holds an Assistant Professor position at the De-
partment of Electrical, Electronic and Information
Engineering (DEI) at the University of Bologna. His
research interests focus on energy efficient digital
architectures in the domain of heterogeneous and
reconfigurable multi and many-core systems on a
chip. He has published more than 30 paper in peer-
reviewed international journals and conferences.

Andrea Marongiu received the PhD degree in Elec-
tronic Engineering from the University of Bologna,
Italy, in 2010. He currently is a postdoc researcher
at the Swiss Federal Institute of Technology, Zurich
(ETHZ). He also holds a postdoc position at the Uni-
versity of Bologna. His research interests concern
parallel programming model and architecture de-
sign in the single-chip multiprocessors domain, with
special emphasis on compilation for heterogeneous
architectures, efficient usage of on-chip memory
hierarchies and SoC virtualization. He has published

more than 50 papers in peer-reviewed international journals and conferences.
Luca Benini is the chair of Digital Circuits and
Systems at ETHZ and a Full Professor at the
University of Bologna.He has served as Chief Ar-
chitect for the Platform2012/STHORM project in
STMicroelectronics, Grenoble. He has held visiting
and consulting researcher positions at EPFL, IMEC,
HewlettPackard Laboratories, Stanford University.
Dr. Beninis research interests are in energy-efficient
system design and Multi-core SoC design. He is also
active in the area of energy-efficient smart sensors
and sensor networks for biomedical and ambient

intelligence applications. He has published more than 700 papers in peer-
reviewed international journals and conferences, four books and several book
chapters. He is a fellow of the IEEE and a member of the Academia Europaea.

