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Abstract—Over the last years, many smart buildings1

applications, such as indoor localization or safety systems, have2

been subject of intense research. Smart environments usually rely3

on several hardware nodes equipped with sensors, actuators, and4

communication functionalities. The high level of heterogeneity5

and the lack of standardization across technologies make design6

of such environments a very challenging task, as each instal-7

lation has to be designed manually and performed ad-hoc for8

the specific building. On the other hand, many different systems9

show common characteristics, like the strict dependency with10

the building floor plan, also sharing similar requirements such11

as a nodes allocation that provides sensing coverage and nodes12

connectivity. This paper provides a computer-aided design appli-13

cation for the design of smart building systems based on the14

installation of hardware nodes across the indoor space. The15

tool provides a site-specific algorithm for cost-effective deploy-16

ment of wireless localization systems, with the aim to maximize17

the localization accuracy. Experimental results from real-world18

environment show that the proposed site-specific model can19

improve the positioning accuracy of general models from the20

state-of-the-art. The tool, available open-source, is modular and21

extensible through plug-ins allowing to model building systems22

with different requirements.23

Index Terms—Indoor localization, Internet of Things,24

performance optimization, smart buildings design automation.25

I. INTRODUCTION26

ON AVERAGE, people spend approximately 70% of their27

time indoors [1], such as in offices, schools, and at28

home. New indoor smart applications are being developed29

at high rate, in both research and commercial areas cover-30

ing a wide range of personal and social scenarios. Smart31

buildings are becoming a reality with the adoption of an under-32

lying monitoring and communication infrastructure composed33

by access points (APs), sensor motes, cameras, and smart34

devices integrated in a building management systems (BMSs).35
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The BMS is a control system that monitors the building state 36

and operates through actuators to increase the comfort and 37

safety of occupants, while managing the energy efficiency at 38

the same time. 39

Many smart buildings applications are based on indoor 40

localization techniques, using location information to optimize 41

the environment and provide context-aware services. Indoor 42

localization systems often require the presence of wireless 43

devices such as APs, in order to let the user identify its position 44

by means of a mobile device. Most smart building applica- 45

tions have been developed in order to achieve sustainability, 46

reducing energy waste related to energy-consuming appliances 47

like heating, ventilation, and air-conditioning (HVAC). Some 48

examples are [2] and [3]. Smart HVAC systems usually rely 49

on a set of ambient sensors able to collect indoor values of 50

temperature and humidity. This allows the control system to 51

build thermal maps of the indoor environment, locate thermal 52

complaint feedbacks coming from the tenants and regulate 53

only the necessary portion of the physical system. Another 54

target feature of complex buildings is safety, characterized by 55

the ability to respond to crisis events limiting damages and 56

victims. These systems are able to detect safety threats, for 57

example from smoke detectors or heat detectors. Also in this 58

scenario, a proper allocation of sensor nodes is essential to 59

detect and locate the threat responsively. 60

The position of each node strongly affects the performance 61

of the system, since a bad allocation could lead to unmonitored 62

areas. The number of nodes employed, besides weighting on 63

the installation cost, also burdens the overall energy consump- 64

tion of the system, a key parameter to consider especially for 65

energy saving systems. The choice of the hardware nodes can 66

get more difficult by the availability on the market of several 67

devices and components that differ in cost, power consumption 68

and maximum range distance. Although the key role of nodes 69

allocation, many smart building systems proposed in literature 70

do not consider nodes amount and positioning problems in 71

environments that differ from the original testbeds. 72

Without a systematic approach the design space is not well 73

explored, which leads to inefficient solutions. In this con- 74

text, the development of tools able to automatize part of the 75

design flow of smart building systems is essential. In order 76

to find a near-optimal allocation of nodes, the knowledge of 77

the floor plan is required. However, for installations performed 78

on existing buildings, administrators can encounter difficulties 79
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TABLE I
COMPARISONAQ2 BETWEEN PROPOSED DEPLOYMENT METHODS AND TOOLS FOR INDOOR WSN AND APS-BASED SYSTEMS

in obtaining the floor plan in an easily-interpretable digital80

format.81

To address these problems, we developed a computer-aided82

design (CAD) tool to assist building designers during the83

design of smart building systems. The application manages84

common requirements like the building floor plan specifica-85

tion. We decided to implement a node allocation algorithm86

for three different indoor localization systems, that searches for87

near-optimal allocations of nodes, from mixed hardware types,88

with the aim of keeping low the total cost. Due to the high level89

of heterogeneity and lack of standardization across systems to90

design, we make the system extensible through plug-ins to let91

new functionalities being integrated into the system. The tool192

is developed within the QCAD2 environment, an open-source93

computer-aided drafting application. The key contributions of94

this paper can be summarized as follows.95

1) A traditional CAD interface to specify both physical96

building floor-plan and functional components of the97

smart environment.98

2) An algorithm for hardware nodes allocation that pro-99

vides to designers a near-optimal placement of devices.100

The algorithm explores combinations of different types101

of nodes to obtain cost-effective solutions.102

3) A site-specific model for wireless indoor localization103

accuracy optimization that keeps into account the actual104

structure of the building.105

4) The integration of the tool within an open-source3 appli-106

cation framework able to extend the system by means107

of JavaScript or C++ plug-ins.108

II. RELATED WORK109

Building information modeling (BIM) is a consolidate110

process to support building constructions and renovations.111

BIM softwares, and in particular CAD for buildings such as112

ArchiCAD [7], focus on the generation and management of113

digital representations of the physical aspects of places. BIM114

tools can coordinate architectural and structural requirements,115

for essential tasks such as collision detection [8]. Materials116

employed for a construction can be represented with extremely117

high levels of accuracy, thanks to the several libraries devel-118

oped in many years, resulting in precise cost estimations [9].119

With the diffusion of integrated smart systems built to increase120

comfort and efficiency, buildings require the design of aspects121

that go beyond the mere physical design. The concept of smart122

1A video demo of the tool has been published at
https://youtu.be/6c6D6wolDBQ.

2QCAD—Open Source CAD System: http://www.qcad.org/.
3The source code of the system is open-source and available at

https://bitbucket.org/necst/box-smartcad.

environment is becoming more and more concrete with the 123

integration of sensors, actuators and computational elements 124

in buildings, while tools able to model smart and interactive 125

functionalities of modern buildings are currently lacking. 126

The problem of the allocation of hardware nodes in a given 127

environment can be compared, on first approximation, by the 128

maximal cover location problem (MCLP), i.e., the problem 129

of covering the maximum amount of demand locations with 130

a given number of facilities. Similarly, the location set cov- 131

ering problem (LSCP) consists in finding the minimum set 132

of facilities that covers all available demand locations. Each 133

facility has the same coverage radius r; a demand point is 134

assumed to be covered if it is within distance r of a facil- 135

ity. Daskin et al. [10], [11] gave a general formulation of the 136

LSCP and reformulated it for network systems and emergency 137

vehicle deployment. 138

The maximum sensing coverage region is a special case 139

of the previous two problems that focuses on the research of 140

an allocation of wireless nodes that guarantees both sensing 141

coverage and network connectivity between nodes [12], [13]. 142

In this scenario, the placement need to take care not only of 143

the sensing range, but also of the communication range of each 144

node. 145

For what concern the allocation in indoor environments, 146

only minimum literature has been published so far to the 147

best of our knowledge. Zhao et al. [4] proposed an AP posi- 148

tioning model based on the differential evolution algorithm, 149

specific for fingerprinting localization techniques. Their model 150

focuses on increasing the diversity of the received signal array 151

along the indoor locations, and thus improving the position- 152

ing accuracy of fingerprinting schemes. However, the model 153

does not take into account the effect of walls or other obsta- 154

cles present in the target environment. He et al. [5] made use 155

of a genetic algorithm for APs deployment model, to study 156

the relationship between positioning error and signal space 157

Euclidean distance. Again, the simulation results show that 158

the error can be reduced increasing the Euclidean distance 159

between the received signal strength (RSS) arrays of differ- 160

ent locations. Fang and Lin [6] proposed a tool for linking 161

the placement of APs and the positioning performance. Their 162

algorithm maximizes signal-to-noise ratio, i.e., maximizes the 163

signal and minimizes the noise simultaneously. However, the 164

system is developed in a real-world environment, and requires 165

measurements with different AP allocations that can be an 166

expensive and time-consuming task. 167

A common limitation of many works described previously is 168

the employment of simple and general models which does not 169

take into account the actual layout and geometry of the build- 170

ing. The free-space path loss propagation model is often used 171

https://youtu.be/6c6D6wolDBQ
http://www.qcad.org/
https://bitbucket.org/necst/box-smartcad


IEE
E P

ro
of

CIRIGLIANO et al.: TOWARD SMART BUILDING DESIGN AUTOMATION: EXTENSIBLE CAD FRAMEWORK 3

Fig. 1. Overview of the application stack. The script interpreter features
standard ECMAScript functionality and on top of that provides additional
classes from the Qt API, QCAD API, and the SmartBuilding module.

despite the presence of fixed obstructing objects like walls. Of172

course, none of the cited works provide a convenient way to173

specify geometric layout of the indoor environment. This leads174

the authors to validate models simply using squared or rectan-175

gular areas to represent the indoor environment, omitting the176

relationship between irregular areas and system coverage. In177

addition, none of the existing solutions takes in consideration178

different hardware characteristics and costs of the nodes to be179

deployed.180

III. PROPOSED APPLICATION FRAMEWORK181

Our system has been developed on top of the QCAD appli-182

cation framework. The QCAD application framework consists183

of programming libraries and resources that provides CAD184

specific functionalities. An example of module provided by185

the QCAD application framework is the Math module that186

implements mathematical concepts such as vectors or matri-187

ces as well as basic geometrical classes like points, lines and188

so on. The QCAD Framework has been enhanced with a189

SmartBuilding module that provides some fundamental func-190

tionalities for the design of smart building systems. The191

module include abstract entities like rooms, walls, sockets,192

sensor nodes and gateways. User interface components are also193

provided in order to create and edit this entities (tools) and to194

specify parameters (widgets). Our module implements a node195

deployment algorithm for three commons indoor localization196

systems, that will be discussed later. The whole application197

rely on Qt, a framework that covers a lot of generic and low-198

level functionality for desktop applications and not directly199

related to CAD.200

The QCAD application framework offers a very complete201

and powerful ECMAScript interface. The SmartBuilding mod-202

ule, as well as the QCAD application framework, is accessible203

through that scripting interface. Through the ECMAScript204

interface developers will be able to extend the whole appli-205

cation in an easy and very efficient way. The choice of a206

popular script language that is easy to learn enables anyone207

with previous programming experience to extend the appli-208

cation. Such extensions can for example be CAD related209

interactive tools like an HVAC layout construction widget, or210

a temperature sensor nodes deployment algorithm.211

Fig. 2. Functional overview of the system components. Drawing tools and
algorithms for systems deployment and simulation are extensible through
ECMAScript or C++ plug-ins.

In some situations extending QCAD through scripts alone 212

may not be possible. This is mostly the case, if the extension 213

is based on an existing C or C++ library. In that case, it is 214

possible to create a C++ plug-in that wraps the existing library 215

and adds the necessary hooks to access library functionality 216

through the script interface. Such a plug-in will be automati- 217

cally loaded by QCAD on start up to add functions and classes 218

to the script interface of QCAD. These script extensions can 219

then be used by a script add-ons to make that functionality 220

available as part of the application interface. 221

IV. NODES DEPLOYMENT FOR 222

INDOOR LOCALIZATION 223

Smart environments always rely on a set of hardware nodes 224

able to collect sensing data and communicate through cabled 225

or wireless technologies. The number of nodes employed and 226

the position of each one strongly affect the overall performance 227

of the system as well as the cost of installation. In this paper, 228

indoor localization systems have been taken as the main case 229

study for the nodes allocation, since occupants localization 230

and monitoring is one of the most common requirements of 231

different smart environments. 232

The way in which the indoor environment must be cov- 233

ered by the nodes depends on the particular technology 234

implemented; however, there can be identified three main 235

manners. 236

1) Single coverage, i.e., to monitor the state of the envi- 237

ronment with a single node for each location inside its 238

radius. This includes for example to detect the presence 239

of a mobile device in a proximity region [14], or to 240

detect an RFID tag within the tags reader range [15]. 241

2) Trilateration, to compute the position of a mobile device. 242

This technique requires the reception of a wireless signal 243

of at least three reference sensors with well-known posi- 244

tions everywhere within the covered area. We define the 245

term k-coverage as the minimum number of sensors (or 246

reference nodes) required in each location by a system. 247

Single coverage systems have k-coverage = 1, while for 248

trilateration k = 3. 249

3) Fingerprinting, where the number and the strength of the 250

received signals is not fixed, but affect the localization 251

accuracy. 252
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Fig. 3. Floor-plan design tool. User can specify the layout of the rooms and a possible set of candidate sites for the node placement.

Trilateration and fingerprinting usually exploit wireless tech-253

nologies as Wi-Fi or Bluetooth to establish a connection254

between mobile and stationary nodes. Sensing regions can255

refer to any type of ambient sensors, such as passive infrared256

sensors [16], remote thermal sensors [17], but also proximity-257

based radio transmitters such as RFID tag readers [18] and258

Bluetooth low energy transmitters (BLE beacons) [19].259

V. PROPOSED DEPLOYMENT TOOL260

As we previously said, smart environments always rely on261

a set of sensor nodes, each one able to communicate through262

cabled or wireless technologies. Also for outdoor WSNs, a key263

challenge is how to achieve coverage of the target monitor-264

ing space and sufficient network connectivity between sensor265

nodes. Usually each sensor mote communicates with the rest266

of the network through technologies like Wi-Fi or ZigBee.267

Additional issues for outdoor WSNs are the limited battery life268

of each node and the power consumption required for packet269

transmissions. Given the availability in most (also “nonsmart”)270

buildings of power outlets, Ethernet sockets and Wi-Fi sig-271

nal, the mentioned limitations of WSNs can be solved in272

indoor application making use of the existing infrastructure.273

Differently from outdoor WSN deployments, where cover-274

age and connectivity are always treated together, our system275

leaves nodes connectivity optional, focusing on providing the276

coverage service to the indoor locations.277

The design process starts with a drafting phase in which the278

user specify the building floor plan as a set of rooms. During279

this phase the designer can restrict the possible sites for nodes280

allocation, selecting a set of candidate points. This can be281

useful when the hardware devices require power supply or282

Ethernet connectivity. The design interface used for both map 283

and candidate sites specification is reported in Fig. 3. 284

In our model, we will refer to L as the entire set of monitor- 285

ing locations to be covered, while J as the set of deployable 286

locations where nodes can be placed. By default, L = J and 287

nodes can be positioned everywhere but as we said the set J 288

can be restricted only to specific candidate points. 289

After the design phase, different parameters are provided by 290

the administrator and used to define a domain in which search 291

for a covering solution. The parameters are as follows. 292

1) The covering technique (single, trilateration, or fin- 293

gerprinting) that will be used to cover the locations 294

in L. 295

2) A cost ct for every type t ∈ T of node available on the 296

market (expressed in dollars). 297

3) A working range rt for every type t of node (expressed 298

in meters). 299

4) A percentage of covered area required, called target (i.e., 300

the minimum percentage of locations l ∈ L to be covered 301

by the solution). 302

The system will return to the designer a set N of nodes njt 303

(possibly with mixed hardware types) and their position on 304

the building map. The outcome will have the lower cost of 305

installation among all the inspected solutions that satisfy the 306

target percentage of covered area. Fig. 4 shows an overview 307

of the process explained so far. 308

A. Covering Techniques 309

Our tool provides three different ways to cover the floor- 310

plan space, each one identified by the technique required by 311

the system that will be installed. 312
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Fig. 4. System process. After the design of the floor plan, different parameters
are used to define the search for an optimal allocation of nodes.

(a) (b) (c)

Fig. 5. Sample floor-plans with a location l covered (a) in single mode,
(b) for trilateration, and (c) for fingerprinting where rssl,1 < rssl,2.

1) Single coverage that guarantees from each position the313

presence of at least one reachable node. This is used for314

example to detect the presence of a mobile device in a315

proximity region. In our model, a location l of the floor-316

plan is considered covered if exists at least one working317

node n of type t within a range rt. An example is shown318

in Fig. 5(a).319

2) Trilateration: This is the process of determining the320

position of a point measuring its distance from three321

reference nodes, exploiting geometric properties of tri-322

angles. Usually, indoor trilateration systems use the323

strength of the signal received from a node to estimate324

its distance. In our model, a location l of the floor-plan325

is covered for trilateration if there exist at least three326

working nodes n1, n2, and n3, each one no more distant327

then its corresponding range rt. A location l served for328

trilateration is shown in Fig. 5(b). Although we refer329

only to trilateration, the same exact result can be used330

also for triangulation, the technique where angles are331

measured instead of distances.332

3) Fingerprinting: This technique is used to estimate the333

position of a mobile device based on its rss vector. Each334

location receives the signal from k nodes, where k is not335

the same for all locations, but depends on how many336

nodes are reachable from that particular location. Each337

one of the k signals reaches the receiving antenna with a338

given power (or rss). For example, the location l shown339

in Fig. 5(c) perceives k = 2 signals so that rssl,1 < rssl,2.340

We denote as rssl,n the signal strength received at loca-341

tion l from a node n. The vector rssl = [rssl,1, . . . , rssl,k]342

of the k signals received at run-time in location l is com-343

pared with a dataset of vectors, each one prelabeled with344

the corresponding position.345

The comparison is usually performed by a classification 346

algorithm using the Euclidean distance of the vectors, since 347

rss vectors with a small Euclidean distance between them are 348

more likely to be close also in the physical space. We have 349

defined as rssl,n the signal strength received at location l from 350

a node n. The Euclidean distance between rssa and rssb, both 351

composed by k received signals, and collected, respectively, 352

in location a and b is defined as 353

E(a, b) =
√(

rssa,1 − rssb,1
)2 + · · · + (

rssa,k − rssb,k
)2

. (1) 354

Consider the vector rssa as the run-time sample, while 355

the vector rssb retrieved from the stored fingerprint. The 356

smaller is the E(a, b), more confident is the localization system 357

approximating current location of a with the stored location 358

of b. 359

It has been demonstrated that maximizing the Euclidean 360

distances of the rss arrays between all sampling points, the 361

positioning accuracy of wireless localization systems can be 362

improved [4], [5]. Fig. 6 is reported a graphical demonstra- 363

tion of the aforementioned statement. Take as an example a 364

dataset (DS1, DS2, DS3, DS4) of stored rss vectors, where 365

each vector is bi-dimensional (K = 2) and coupled with the 366

corresponding physical position. Fig. 6(a) shows each element 367

of the database where the Cartesian coordinates corresponds to 368

components rss1, rss2. Although the plane does not represent 369

the physical area of the floor-plan, database elements that are 370

near between them are more likely to be close also in the phys- 371

ical space. Given a run-time element R, each arrow represents 372

the Euclidean distance E(R, DSi) from the surrounding dataset 373

elements. A localization algorithm can exploit the Nearest 374

Neighbor technique to approximate the position of R with 375

the nearest dataset element. Unfortunately, the run-time rss 376

measurement of R will not be constant over time, but will 377

experience continuous fluctuations due to environmental noise. 378

These fluctuations make the sample R move randomly to the 379

surrounding points. Suppose that DS2 is the nearest points to 380

R in the physical space. Fig. 6(b) shows with a green area the 381

probability to assign R the correct (or more accurate) position, 382

while a red (with line pattern) area represents the probability 383

to get a wrong position from the system. Fig. 6(c) demon- 384

strates how an increase in the rss Euclidean distance between 385

sampling points increase the red area and the accuracy of the 386

localization, while in Fig. 6(d) an Euclidean distance reduction 387

will lead to poorer localizations. 388

The RSS has been estimated using the The WINNER II 389

path loss model [20] 390

PL = A log10(d[m]) + B + C log10

(
fc[GHz]

5.0

)
+ X (2) 391

where PL is the signal path loss (in dB), fc is the frequency 392

in GHz, and d is the distance between the transmitter and 393

the receiver location in meters. Values of coefficients A, B, C, 394

and X change depending on line-of-sight (LOS) or nonline-of- 395

sight (NLOS) propagations, and are reported in Table II. The 396

propagation model has been used in fingerprinting coverage to 397

maximize the Euclidean distance of the rss vectors between a 398

location and its surrounding points, with the aim of improve 399

the localization accuracy of the system. 400
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Fig. 6. (a) Bi-dimensional elements of the localization dataset are represented in Cartesian coordinates corresponding to components rss1 and rss2. A run-time
sample R is shown in (b) where its circular area delineates run-time signal fluctuations. If DS2 is the nearest points to R in the physical space, green area is
proportional to the probability of correct localization, while red dashed area represent wrong localizations. (c) Euclidean distance between sampling points
has been increased, improving the correct localization. (d) Opposite effect.

TABLE II
VALUES OF COEFFICIENTS DEPENDING ON LOS OR NLOS

PROPAGATIONS. VALUES HAVE BEEN TAKEN FROM

THE WINNER II PATH LOSS MODEL [20]

The 2-D space of the floor plan is discretized with a length401

unit (default is 1 m) that is chosen by the user during the map402

specification phase.403

As we have said, in addition to location coverage, also nodes404

connectivity has been modeled. In our model, a sensor node n405

is connected if exist a connected path to the gateway node. To406

ensure the connectivity of the whole network, the following407

equation must hold:408

∀n ∈ N, connected(n, gateway) = true (3)409

where410

connected(n, n′) def= ∣∣(n, n′)
∣∣ ≤ min(h, h′)411

∨ ∃ n1, . . . , ni ∈ N (1 < i)412

|(n, n1)| ≤ min(h, h1)413

∧ |(n1, n2)| ≤ min(h1, h2) ∧ . . .414

∨ ∣∣(ni, n′)
∣∣ ≤ min

(
hi, h′). (4)415

Connected networks are managed by our allocation algo-416

rithm in the same way of nonconnected networks, with the417

following exception.418

1) First, a manual gateway nodes allocation is required.419

2) During nodes allocation, deployable points420

J are restricted to locations j′ such that421

connected(nj′ , gateway) = true.422

3) During deployment optimization, nodes moves are con-423

sidered feasible only within the connected area.424

VI. COVERING LOCATION ALGORITHM425

The covering location algorithm has the purpose of plac-426

ing an optimal set of nodes on the building floor plan.427

TABLE III
NOTATION AND MEANING OF SYMBOLS USED FOR THE MODEL

We have decided to implement a modified version of the 428

multimode covering location problem [21], a generalization 429

of the MCLP. Using a quite general and flexible reformu- 430

lation of the covering problem, we have been able to adapt 431

the algorithm at the different covering techniques described 432

previously. 433

The positioning algorithm is composed by a first Greedy 434

procedure, whose solution is then improved by a variable 435

neighborhood search (VNS) algorithm. The positioning algo- 436

rithm evaluates different solutions using a reward bl, that is 437

defined for each location l and will be earned only for the 438

locations covered in that particular solution. The value of the 439

reward depends on the coverage technique. 440

1) Single Coverage: The reward bl will be earned if there 441

is at least one node that covers l. 442

2) Trilateration: The reward bl will be earned if there are 443

at least three nodes that cover l. 444



IEE
E P

ro
of

CIRIGLIANO et al.: TOWARD SMART BUILDING DESIGN AUTOMATION: EXTENSIBLE CAD FRAMEWORK 7

Fig. 7. Regular grid showing how is computed the mean Euclidean distance
between the received rss vectors in a certain location l, and the surrounding
locations s within a certain distance d.

3) Fingerprinting: Since this technique is often considered445

to be a tradeoff (in cost and accuracy) between single446

coverage and trilateration, we decided that the reward447

bl will be earned if there are at least two nodes that448

covers l.449

As we have said, in order to maximize the localization accu-450

racy of the system it is possible to increase the signal space451

Euclidean distance between the target points. Consider the452

mean Euclidean distance between the received rss vector in453

a certain location l, and the surrounding locations s within a454

certain distance d455

1

| Dl |
∑
s∈Dl

E(l, s)456

Dl = {s ∈ L | distance(l, s) ≤ d}. (5)457

The distance d is used to restrict the rss comparison and458

diversification only to the locations that are more likely to be459

erroneously confuse with l by the localization system. Fig. 7460

shows an example of how the Euclidean distance of a location461

is compared to a neighbor location.462

We define the average signal space Euclidean distance z463

z =

∑
l∈L

∑
s∈Dl

E(l, s)

|Dl|
|L| . (6)464

The term z will be used by the Greedy procedure to produce465

a first solution with a reasonable allocation of nodes. Then, the466

value of z should be increased as much as possible to provide467

good localization accuracy to the system. However, maximize468

only the average does not seems fair enough, since a good469

system should provide a certain level of accuracy homoge-470

neously among the target area. So we defined the objective471

function as difference between the term z and the signal space472

Euclidean variance473

Z = z −

√√√√√∑
l∈L

⎛
⎝∑

s∈Dl

E(l, s)

| Dl |

⎞
⎠

2

. (7)474

Maximizing the objective function Z, the intention is to475

provide as many target location as possible with a high sig-476

nal space Euclidean distance with respect to the surrounding477

locations.478

As we have previously introduced, we represent with L the 479

entire set of location to be covered, while with J the set of pos- 480

sible positions where nodes can be placed. By default, L = J 481

and nodes can be positioned everywhere; however, its possi- 482

ble to restrict the J set only to specific candidate points, that 483

represent for example power outlets or Ethernet sockets. The 484

problem of find a near-optimal set N of nodes njt (each one 485

located in j and having a type t) with a coverage rate f (N) that 486

satisfies the target coverage, can be formalized as follows: 487

max Z = z −

√√√√√∑
l∈L

⎛
⎝∑

s∈Dl

E(l, s)

| Dl |

⎞
⎠

2

(8) 488

f (N) ≥ target (9) 489∑
t∈T

xjt ≤ 1 ∀j ∈ J (10) 490

xjt = 1 ⇐⇒ njt ∈ N (11) 491

f (N) = |L|/
∑
l∈L

yl (12) 492

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yl ≤ ∑
j∈J

∑
t∈T

aljtxjt ∀l ∈ L (single)

2 yl ≤ ∑
j∈J

∑
t∈T

aljtxjt ∀l ∈ L (fingerprinting)

3 yl ≤ ∑
j∈J

∑
t∈T

aljtxjt ∀l ∈ L (trilateration).

(13) 493

The decision variable xjt = 1 represents the allocation of 494

a node of type t in location j; aljt is equal to 1 if location l 495

can be reached by a node of type t placed in j, and aljt = 0 496

otherwise. yl = 1 if location l is covered, yl = 0 otherwise. 497

The constraint (10) fixes to one the maximum number of nodes 498

that can be located in each site. 499

A. Greedy Procedure 500

The positioning algorithm starts with a Greedy procedure 501

with the purpose of find a reasonable number of reference 502

nodes, for both coverage and localization accuracy. The pro- 503

cedure generate a first solution N positioning a set of k = |N| 504

nodes, each one with a type t ∈ T . For all three coverage tech- 505

niques, the reward bl is weighted with the cost of the current 506

node n∗ selected for the coverage 507

wl = bl

ct
; {

n∗ = njt ∧ distance(j, l) ≤ rt
}
. (14) 508

The weighted reward wl will be used by the Greedy algorithm 509

so that on equal covered area, the cheapest node type has 510

the priority over the others. We denote as Ljt the subset of 511

locations that are reachable by a reference node n of type t 512

placed at location j. At each iteration, the algorithm places 513

a node n of type t∗ at position j∗ that covers the subset of 514

locations Lj∗t∗ with the maximum reward. The term 515

1 − kl

k − coverage
(15) 516

is used to prioritize the covering of locations with a 517

lower “temporary” k-coverage (called kl) with respect to the 518

k-coverage required by the current techniques. In this way, 519

Greedy procedure tends to avoid the placement of nodes very 520
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Algorithm 1 Greedy(L, J, T, w, target)
N := ∅;
Ljt := {l ∈ L | l is covered by node in j with type t};
while (f (N) < target) ∧ (z < S) do

j∗ := arg max
j∈J

∑
l∈Ljt

wl (1 − kl
k−coverage );

t∗ := arg max
t∈T

∑
l∈Ljt

wl (1 − kl
k−coverage );

N := N ∪ {nj∗t∗};
Ljt := Ljt \ Lj∗t for all j ∈ J;

return N;

close to one other which can lead, especially for trilateration521

systems, to poor localization accuracy. It is important to notice522

that the purpose of the Greedy procedure is to find a reasonable523

number of nodes for the localization service. The starting posi-524

tioning is made on a best-effort basis, that will be improved525

by the successive VNS. After a node allocation, all subsets526

Ljt are updated according to the coverage technique. In trilat-527

eration for example, a location l is removed from Ljt only if528

there exist, other than the current nj∗t∗ , other two nodes that529

are already covering l.530

The Greedy procedure ends when the target coverage is sat-531

isfied, and when the average signal space Euclidean distance532

z reaches the threshold S. In our implementation we set the533

threshold S = 4.5 that has been proven to be the average534

Euclidean distance for which the positioning error is limited535

to 2 m [5]. How we will see in Section VII, the Greedy proce-536

dure is able to provide an average Euclidean distance not so far537

from the final best known. However, thanks to the low com-538

plexity of the Greedy procedure, additional time can be used539

to improve the solution. In addition, the Euclidean distance540

variance will be strongly improved.541

B. Variable Neighborhood Search542

The method called VNS has been used to improve the solu-543

tion coming from the Greedy procedure. The VNS approach544

empowers the classical local search framework with a restart545

mechanism that extends the search after a local optimum546

has been achieved by generating new starting solutions in547

progressively enlarged neighborhoods of the current best548

known solution. The key elements of the VNS (reported in549

Algorithm 2) are a starting solution N with a hierarchy of550

size-increasing neighborhoods, and a local search procedure,551

i.e., the criterion to select the incumbent solution from the552

neighborhood. These components are used to restart the search553

every time that the procedure reaches a local optimum. Fig. 8554

shows an overview of the VNS process. A first local search555

procedure is applied to the solution produced by the Greedy556

procedure. At each iteration, the shaking procedure is used557

to generate a new starting solution, which is then improved558

by the execution of the local search. The shaking procedure559

perturbs s node allocations of the current solution N∗ replac-560

ing them with s unused nodes. The behavior of the shaking561

parameter s, that depends on the result of the local search, is562

explained in Fig. 9. The parameter s starts from a minimum563

Fig. 8. Location algorithm. The solution found by the Greedy algorithm is
improved applying iteratively a Local Search for an optimal solution and a
Shaking procedure that perturbs the current solution.

Fig. 9. Shaking procedure: the parameter s is increased when the solution
does not improve (dashed line) and restarts when a new optimum is found
(continuous line).

value smin (in the example smin = 1) and every time that the 564

local search does not improve the best known solution, s is 565

increased by 1. Differently, when the local search succeeds, 566

the best solution N∗ is updated and s goes back to smin. 567

The purpose of the shaking procedure is to first explore 568

new starting solutions that are more similar to the best known 569

result, so that the search is intensified in a promising neigh- 570

borhood of the entire domain. If these local searches fail, the 571

shaking procedure moves the search from intensification to 572

diversification, generating starting solutions that are more and 573

more different from the incumbent one. Whenever a new best 574

solution is found, the shaking procedure comes back to smin, to 575

intensify the search near the just updated N∗. In principle, the 576

shaking parameter s can be increased until k = |N∗|, changing 577

all the node allocations. However, we experimented running 578

different configurations that excessively moving away from 579

the best known solution can be unproductive, causing a use- 580

less waste of computational time. We have fixed a reasonable 581

value of smax = �(2/3)k�. 582
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Algorithm 2 VNS(L, J, T, w, target, smin, smax, Rmax)

N := Greedy(L, J, T, w, target);
N0 := LocalSearch(L, J, T, w, target);
N∗ := N0;
s := smin;
for r := 1 to Rmax do

N := Shaking(N∗, s, L, J, T, w, target)
N0 := LocalSearch(L, J, T, w, target)
if (Z(N0) > Z(N∗)) then

s := smin;
N∗ := N0;

else
s := s + 1;
if (s > smax) then

s := smin;
return N∗;

The VNS algorithm terminates when the total number of583

restarts reaches a given value Rmax.584

As we have said, the local search is the heuristic that585

proceeds from an initial solution to its neighborhood by a586

sequence of local changes, trying to improve each time the587

value of the objective function until a local optimum is found.588

The neighborhood of the adopted approach is given by cyclic589

sequences of moves, where each move consists in locating a590

new node, removing a node or changing the type of the node.591

A cyclic move is considered feasible only if the new covering592

rate respects the target coverage, and the total cost of the solu-593

tion does not increase. Of course, each site must continue to594

hosts at maximum one node [constraint (10)]. A cyclic move595

can be visualized on a graph G = (N, A), where each node of596

the graph is a possible allocation of a hardware node. Each597

node of the graph is characterized by a location j, and a state598

that indicates if the node is active or inactive. A node njt cur-599

rently allocated in location j, is represented on the graph with600

an active node nj, labeled with its hardware type t. Note that601

index t does not appear because at most one type can be active602

in each node, and the type is specified by the label. Inactive603

nodes are instead left unlabeled. An arc (nj, nk) can represent604

the following.605

1) The allocation of a hardware node in site j, if nj is606

inactive and nk is active.607

2) The removal of a hardware node in site j, if nj is active608

and nk is inactive.609

3) An hardware node nj changing its hardware type, if both610

nodes are active.611

In both 1) and 2), the new node takes the hardware type of612

the head label (t of nk). A cyclic exchange corresponds to613

a directed cycle on the improvement graph, as depicted in614

Fig. 10. Each move, and so each arc (nj, nk), determines a vari-615

ation δZ in the value of the objective function Z. The purpose616

is to represent a group of moves so that a cyclic exchange rep-617

resents an increase in the current objective function. However,618

the total variation δZ is non additive with respect to the619

sequence of δZ values coming from single moves. This is620

caused by the interdependence between different hardware621

Fig. 10. Improvement graph: colored nodes represent current allocations,
while empty nodes are possible allocations. All active nodes are labeled with
their corresponding type. Each arc is a change (move) on the allocations.

nodes with overlapping covering regions, that lead to nonaddi- 622

tive moves. To overcome this drawback, every cycle has been 623

evaluated using an own temporary function Z′ updated step by 624

step from the end of the path to its starting node. In this way, 625

all the cycles with a positive total weight bring improvements 626

on the starting solution. 627

The search for the cyclic exchange with maximum weight 628

is performed with exhaustive breadth-first exploration of the 629

paths of graph G. 630

VII. EXPERIMENTAL RESULTS 631

Presented experimental results are initially focused on the 632

usability of the tool, testing the ability to provide a solution 633

in a reasonable time. Then, the performances of the model 634

have been evaluated, in terms of localization accuracy through 635

realistic indoor environment experiments, and in terms of cost- 636

effectiveness of the suggested deployments. 637

A. Computational Experience 638

The tool has been evaluated running several different config- 639

urations. Every test reported in this section has been executed 640

with a spatial resolution of the floor plan equal to 1 m. A first 641

analysis can be done on the execution times of the proposed 642

solution. Although the execution time can be tuned by the 643

parameter Rmax, which represents the maximum number of 644

restarts of the VNS algorithm, an idea on the order of mag- 645

nitude is given by Fig. 11, where the time is represented as 646

a function of the floor-plan dimension. In the given example, 647

Rmax has been fixed to 20 restarts, the target coverage equals 648

to 95% of the total area, a single node type available with a 649

range of 8 m, covering floor-plans with rectangular areas. The 650

graph shows that for single coverage and fingerprinting the 651

processing time grows approximately linearly with the floor 652

plan area. 653

A numeric comparison of the same tests is reported in 654

Table IV, where execution times are reported in seconds for 655

increasing floor plans. For single coverage, the execution time 656

is low even for areas of 3000 squared meters. For trilatera- 657

tion and fingerprinting, the execution times become high from 658

floor-plan of 2500 m2. However, the tests represent a bad case 659

in which the map dimension is very large while the node range 660

available and the spatial resolution are small (respectively, 661
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Fig. 11. Execution time of the tool with floor plans of different areas, for
each covering technique (Rmax = 20, target = 95%, and rt = 8).

TABLE IV
EXECUTION TIME OF THE TOOL FOR INCREASING FLOOR

PLAN AREAS (Rmax = 20, target = 95%, AND rt = 8)

8 and 1 m). Increasing the range or the resolution, the instance662

of the problem decrease, resulting in faster executions.663

A key aspect that characterizes the goodness of the664

proposed approach is the improvement of the objective func-665

tion achieved by the VNS algorithm with respect to the first666

Greedy configuration. For this test we have run the tool sev-667

eral times with a floor-plan area of 2500 m2 and a node range668

of 12 m. The number of reference nodes allocated is deter-669

mined by the Greedy procedure and increase with S, while670

the number of VNS restarts Rmax has been fixed to 35.671

In Fig. 12, we reported the value of z, i.e., the average signal672

space Euclidean distance obtained with the first Greedy exe-673

cution, compared with the z value after the VNS optimization.674

The graph reports the z values as a function of the threshold S,675

described in Section VI-A as the minimum value of average676

signal space Euclidean distance (z) required during the Greedy677

procedure. The graph shows that moving the threshold within678

Fig. 12. Average signal space Euclidean distance (z) obtained with the
Greedy execution and compared with the z value after the VNS optimization.
z values expressed as a function of the threshold S. Floor-plan area = 2500 m2,
Rmax = 20, target = 100%, and rt = 12.

Fig. 13. Signal space Euclidean distance variance obtained with the Greedy
execution and compared with the z value after the VNS optimization. Values
expressed as a function of the threshold S. Floor-plan area = 2500 m2, Rmax =
20, target = 100%, and rt = 12.

the range (2, 6)dB the VNS is able to improve the z value con- 679

stantly around 2 dB. Although the VNS improvement is not 680

astonishing for what regard the average value, Fig. 13 shows 681

that the variance is strongly improved. This has been achieved 682

moving from the objective function z used in Greedy proce- 683

dure to the Z function of the VNS. The Z objective function 684

has in fact the purpose to provide as many target location as 685

possible with a high signal space Euclidean distance w.r.t. the 686

surrounding locations. 687

B. Experimental Setup and Accuracy Evaluation 688

The proposed tool was evaluated using data collected from 689

a real-world environment, the NECST Lab, located at the 690

basement of DEIB Department at the Politecnico di Milano. 691
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Fig. 14. NECST Laboratory floor-plan, located at the basement of DEIB Department at the Politecnico di Milano. Each allocation corresponds to a BLE
beacon with a range of 7 m. Green crosses indicates allocations provided by our algorithm, gray rhombus represent allocations from [5] while blue triangle
positions have been computed maximizing the coverage [22].

The dimension of the test-bed is 198 squared meters (9×22 m).692

We collected BLE signal data coming from BLE beacons with693

a coverage radius of 7 m. Signal data has been collected694

using a Nexus 5 smartphone running Android 6.0.1. First, the695

NECST Laboratory floor-plan has been designed using our696

tool, obtaining the optimal number of beacons (|N| = 5) and697

their allocation for fingerprinting localization. Rmax has been698

fixed to 20 restarts, the target coverage equals to 100% of the699

total area, a single node type available with a range of 7 m, and700

the threshold S = 4, 5. We collected 40 training samples for701

the localization algorithm using the obtained allocation. Then,702

the test samples were collected at distinct positions changing703

the phone orientation and the way in which user was keeping704

it, for example by hand or in a pocket. For the entire duration705

of training and test phase, the number of occupants and their706

enabled wireless devices has changed, from a minimum of 3 to707

a maximum of 17 people. This variation affects the accuracy708

performances, but at the same time contributes in obtaining709

realistic results. The training and test phase has been repeated710

with two configurations coming from different allocation algo-711

rithms: maximization of the coverage [22] and the allocation712

algorithm proposed by He et al. [5]. For these two algorithms,713

the number of employed nodes has been fixed to 5. KNN with714

K = 3 has been employed as the fingerprinting algorithm.715

A first result is shown in Fig. 15. The cumulative error716

distribution function shows that from 1.5 m our approach per-717

forms better. Under 1.5 m, He et al. [5] approach performs718

better, but the difference in accuracy is marginal.719

Fig. 16 shows the mean positioning accuracy divided into720

different error ranges: (0, 0.5], (0.5, 1], (1, 1.5], (1.5, 2],721

(2, 2.5], (2.5, 3], (3, 3.5], and (3.5, 4]. It is possible to notice722

that the majority of the localization errors appears within the723

(1.5, 2] m. The test-bed floor-plan, composed by three rooms,724

has been reported in Fig. 14. Green crosses indicates allo-725

cations provided by our algorithm, gray rhombus represent726

allocations from [5] while blue triangle positions have been727

computed maximizing the coverage [22].728

Fig. 15. Cumulative error distribution function experienced by our approach
ad compared with two different solutions from the state-of-the-art.

C. Cost-Effectiveness Analysis 729

A feature of our tool interesting for testing is the possibility 730

to obtain solutions from mixed node types, with different char- 731

acteristics and costs. In particular, given two types t1 and t2 732

characterized by two ranges ri, and two costs ci, it is possible 733

to compare the total cost of a homogeneous solution with the 734

cost of a mixed solution. Given a baseline type of node with 735

a range r1 = 8 m and a cost of c1 = 60 $, we can assume 736

the presence on the market of a second type of hardware, with 737

the half of the range distance (r2 = 4 m). The area covered 738

by t1 (≈ 200 m2) is four times bigger than the coverage of t2 739

(≈ 50 m2). In order to obtain a fair test, the cost of t2 should 740

be c2 ≥ c1/4, and so we set c2 = 20 $. This test has been 741

performed with a target coverage of 95% on a rectangular map 742

of 1000 m2. 743

From Table V, it is possible to observe that, although hard- 744

ware nodes of type t2 have a lower convenience in terms of 745
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Fig. 16. Mean positioning accuracy of the proposed allocation algorithm
divided into different error ranges.

TABLE V
COST OF HOMOGENEOUS AND MIXED SOLUTIONS (A = 1000 m2,

target = 95%, r1 = 8 m, r2 = 4 m, c1 = 60 $, AND c2 = 20 $)

(area/price) (t1 outperform t2 in homogeneous solutions), the746

mixed strategy can use the smaller range nodes to reduce the747

total cost. This because less powerful nodes of type t2 are748

employed to cover small portions of the floor-plan, like corners749

or small regions left uncovered by the larger range nodes.750

The amount of saving in the total cost of the mixed solu-751

tion does not depend only on the nodes range and price, but752

also on the irregularity of the floor plan perimeter. A distin-753

guish feature of the proposed tool respect to other works is754

the possibility to cover spaces that are not necessarily rectan-755

gular or squared. The level of irregularity of a floor plan can756

be identified by the minimum number of rectangles that com-757

pose the shape. In Fig. 17 for example, the index of the floor758

plan irregularity is I = 4. We experimented the behavior of759

the tool increasing the level of irregularity, while maintaining760

a constant total area of 1000 m2. The test has been done with761

the same nodes configuration used in Table V (homogeneous762

T = t1, mixed T = t1, t2). The results shown in Table VI763

proven that increasing the floor-plan irregularity, the cost dif-764

ference between homogeneous and mixed solution becomes765

higher. This is caused by the increasing number of corners in766

the map, that can be covered with less powerful nodes.767

In conclusion, experimental results show that for most of768

the problem instances, a solution can be obtained in reason-769

able execution times. Depending on the available hardware770

types, homogeneous solutions could be improved with the771

employment of different type of nodes.772

Fig. 17. Irregularity of the floor-plan perimeter summarized by the minimum
number of rectangles.

TABLE VI
COST DIFFERENCES (IN $) BETWEEN HOMOGENEOUS AND MIXED

SOLUTION INCREASING THE FLOOR PLAN IRREGULARITY

(AREA FIXED TO 1000 m2)

VIII. CONCLUSION 773

In this paper, we tried to explain the challenges faced by 774

designers during the installation of smart building systems that 775

require the positioning of several hardware nodes. A com- 776

mon limitation of existing models is the lack of a convenient 777

way to specify geometric information of the indoor map. This 778

also leads to the employment of less accurate general models 779

for signal propagation, instead of site-specific models. The 780

design phase is made more difficult by the availability on 781

the market of different hardware nodes, with different power 782

transmissions and costs. 783

For these reasons we propose an integrated tool for both 784

floor plan specification and node positioning, developed within 785

an open-source CAD environment extensible through plug-ins. 786

The tool is able to provide a near-optimal solution of node 787

allocations, possibly with mixed types, with the aim to reduce 788

the installation costs. The results suggest that, for most of 789

the problem instances, a solution can be obtained in a rea- 790

sonable execution time. Depending on the available hardware 791

types, total cost of the solution could be improved moving 792

from homogeneous to mixed type allocation. 793

A limitation of the proposed approach resides in the prop- 794

agation model used to compute near-optimal solutions for 795

localization systems. The model implemented is site-specific, 796

and take in consideration walls for LOS and NLOS prop- 797

agations. However, the approach do not consider refraction 798

or diffraction effects. Another limitation is the inability of 799

the system to model the signal propagation between differ- 800

ent floors of the building, managing each level independently. 801

For future work, we plan to improve the system with an 802

indoor signal propagation model able to consider refraction 803

and diffraction effects of the indoor environment like walls 804

and floors. In addition, we will try to apply the model to 805
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3-D designing tools, becoming suitable also for multifloor806

environments.807
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Toward Smart Building Design Automation:
Extensible CAD Framework for Indoor

Localization Systems Deployment
Andrea Cirigliano, Roberto Cordone, Alessandro A. Nacci, and

Marco Domenico Santambrogio, Senior Member, IEEE

Abstract—Over the last years, many smart buildings1

applications, such as indoor localization or safety systems, have2

been subject of intense research. Smart environments usually rely3

on several hardware nodes equipped with sensors, actuators, and4

communication functionalities. The high level of heterogeneity5

and the lack of standardization across technologies make design6

of such environments a very challenging task, as each instal-7

lation has to be designed manually and performed ad-hoc for8

the specific building. On the other hand, many different systems9

show common characteristics, like the strict dependency with10

the building floor plan, also sharing similar requirements such11

as a nodes allocation that provides sensing coverage and nodes12

connectivity. This paper provides a computer-aided design appli-13

cation for the design of smart building systems based on the14

installation of hardware nodes across the indoor space. The15

tool provides a site-specific algorithm for cost-effective deploy-16

ment of wireless localization systems, with the aim to maximize17

the localization accuracy. Experimental results from real-world18

environment show that the proposed site-specific model can19

improve the positioning accuracy of general models from the20

state-of-the-art. The tool, available open-source, is modular and21

extensible through plug-ins allowing to model building systems22

with different requirements.23

Index Terms—Indoor localization, Internet of Things,24

performance optimization, smart buildings design automation.25

I. INTRODUCTION26

ON AVERAGE, people spend approximately 70% of their27

time indoors [1], such as in offices, schools, and at28

home. New indoor smart applications are being developed29

at high rate, in both research and commercial areas cover-30

ing a wide range of personal and social scenarios. Smart31

buildings are becoming a reality with the adoption of an under-32

lying monitoring and communication infrastructure composed33

by access points (APs), sensor motes, cameras, and smart34

devices integrated in a building management systems (BMSs).35

Manuscript received September 14, 2016; accepted November 13, 2016.
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The BMS is a control system that monitors the building state 36

and operates through actuators to increase the comfort and 37

safety of occupants, while managing the energy efficiency at 38

the same time. 39

Many smart buildings applications are based on indoor 40

localization techniques, using location information to optimize 41

the environment and provide context-aware services. Indoor 42

localization systems often require the presence of wireless 43

devices such as APs, in order to let the user identify its position 44

by means of a mobile device. Most smart building applica- 45

tions have been developed in order to achieve sustainability, 46

reducing energy waste related to energy-consuming appliances 47

like heating, ventilation, and air-conditioning (HVAC). Some 48

examples are [2] and [3]. Smart HVAC systems usually rely 49

on a set of ambient sensors able to collect indoor values of 50

temperature and humidity. This allows the control system to 51

build thermal maps of the indoor environment, locate thermal 52

complaint feedbacks coming from the tenants and regulate 53

only the necessary portion of the physical system. Another 54

target feature of complex buildings is safety, characterized by 55

the ability to respond to crisis events limiting damages and 56

victims. These systems are able to detect safety threats, for 57

example from smoke detectors or heat detectors. Also in this 58

scenario, a proper allocation of sensor nodes is essential to 59

detect and locate the threat responsively. 60

The position of each node strongly affects the performance 61

of the system, since a bad allocation could lead to unmonitored 62

areas. The number of nodes employed, besides weighting on 63

the installation cost, also burdens the overall energy consump- 64

tion of the system, a key parameter to consider especially for 65

energy saving systems. The choice of the hardware nodes can 66

get more difficult by the availability on the market of several 67

devices and components that differ in cost, power consumption 68

and maximum range distance. Although the key role of nodes 69

allocation, many smart building systems proposed in literature 70

do not consider nodes amount and positioning problems in 71

environments that differ from the original testbeds. 72

Without a systematic approach the design space is not well 73

explored, which leads to inefficient solutions. In this con- 74

text, the development of tools able to automatize part of the 75

design flow of smart building systems is essential. In order 76

to find a near-optimal allocation of nodes, the knowledge of 77

the floor plan is required. However, for installations performed 78

on existing buildings, administrators can encounter difficulties 79

0278-0070 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I
COMPARISONAQ2 BETWEEN PROPOSED DEPLOYMENT METHODS AND TOOLS FOR INDOOR WSN AND APS-BASED SYSTEMS

in obtaining the floor plan in an easily-interpretable digital80

format.81

To address these problems, we developed a computer-aided82

design (CAD) tool to assist building designers during the83

design of smart building systems. The application manages84

common requirements like the building floor plan specifica-85

tion. We decided to implement a node allocation algorithm86

for three different indoor localization systems, that searches for87

near-optimal allocations of nodes, from mixed hardware types,88

with the aim of keeping low the total cost. Due to the high level89

of heterogeneity and lack of standardization across systems to90

design, we make the system extensible through plug-ins to let91

new functionalities being integrated into the system. The tool192

is developed within the QCAD2 environment, an open-source93

computer-aided drafting application. The key contributions of94

this paper can be summarized as follows.95

1) A traditional CAD interface to specify both physical96

building floor-plan and functional components of the97

smart environment.98

2) An algorithm for hardware nodes allocation that pro-99

vides to designers a near-optimal placement of devices.100

The algorithm explores combinations of different types101

of nodes to obtain cost-effective solutions.102

3) A site-specific model for wireless indoor localization103

accuracy optimization that keeps into account the actual104

structure of the building.105

4) The integration of the tool within an open-source3 appli-106

cation framework able to extend the system by means107

of JavaScript or C++ plug-ins.108

II. RELATED WORK109

Building information modeling (BIM) is a consolidate110

process to support building constructions and renovations.111

BIM softwares, and in particular CAD for buildings such as112

ArchiCAD [7], focus on the generation and management of113

digital representations of the physical aspects of places. BIM114

tools can coordinate architectural and structural requirements,115

for essential tasks such as collision detection [8]. Materials116

employed for a construction can be represented with extremely117

high levels of accuracy, thanks to the several libraries devel-118

oped in many years, resulting in precise cost estimations [9].119

With the diffusion of integrated smart systems built to increase120

comfort and efficiency, buildings require the design of aspects121

that go beyond the mere physical design. The concept of smart122

1A video demo of the tool has been published at
https://youtu.be/6c6D6wolDBQ.

2QCAD—Open Source CAD System: http://www.qcad.org/.
3The source code of the system is open-source and available at

https://bitbucket.org/necst/box-smartcad.

environment is becoming more and more concrete with the 123

integration of sensors, actuators and computational elements 124

in buildings, while tools able to model smart and interactive 125

functionalities of modern buildings are currently lacking. 126

The problem of the allocation of hardware nodes in a given 127

environment can be compared, on first approximation, by the 128

maximal cover location problem (MCLP), i.e., the problem 129

of covering the maximum amount of demand locations with 130

a given number of facilities. Similarly, the location set cov- 131

ering problem (LSCP) consists in finding the minimum set 132

of facilities that covers all available demand locations. Each 133

facility has the same coverage radius r; a demand point is 134

assumed to be covered if it is within distance r of a facil- 135

ity. Daskin et al. [10], [11] gave a general formulation of the 136

LSCP and reformulated it for network systems and emergency 137

vehicle deployment. 138

The maximum sensing coverage region is a special case 139

of the previous two problems that focuses on the research of 140

an allocation of wireless nodes that guarantees both sensing 141

coverage and network connectivity between nodes [12], [13]. 142

In this scenario, the placement need to take care not only of 143

the sensing range, but also of the communication range of each 144

node. 145

For what concern the allocation in indoor environments, 146

only minimum literature has been published so far to the 147

best of our knowledge. Zhao et al. [4] proposed an AP posi- 148

tioning model based on the differential evolution algorithm, 149

specific for fingerprinting localization techniques. Their model 150

focuses on increasing the diversity of the received signal array 151

along the indoor locations, and thus improving the position- 152

ing accuracy of fingerprinting schemes. However, the model 153

does not take into account the effect of walls or other obsta- 154

cles present in the target environment. He et al. [5] made use 155

of a genetic algorithm for APs deployment model, to study 156

the relationship between positioning error and signal space 157

Euclidean distance. Again, the simulation results show that 158

the error can be reduced increasing the Euclidean distance 159

between the received signal strength (RSS) arrays of differ- 160

ent locations. Fang and Lin [6] proposed a tool for linking 161

the placement of APs and the positioning performance. Their 162

algorithm maximizes signal-to-noise ratio, i.e., maximizes the 163

signal and minimizes the noise simultaneously. However, the 164

system is developed in a real-world environment, and requires 165

measurements with different AP allocations that can be an 166

expensive and time-consuming task. 167

A common limitation of many works described previously is 168

the employment of simple and general models which does not 169

take into account the actual layout and geometry of the build- 170

ing. The free-space path loss propagation model is often used 171

https://youtu.be/6c6D6wolDBQ
http://www.qcad.org/
https://bitbucket.org/necst/box-smartcad
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Fig. 1. Overview of the application stack. The script interpreter features
standard ECMAScript functionality and on top of that provides additional
classes from the Qt API, QCAD API, and the SmartBuilding module.

despite the presence of fixed obstructing objects like walls. Of172

course, none of the cited works provide a convenient way to173

specify geometric layout of the indoor environment. This leads174

the authors to validate models simply using squared or rectan-175

gular areas to represent the indoor environment, omitting the176

relationship between irregular areas and system coverage. In177

addition, none of the existing solutions takes in consideration178

different hardware characteristics and costs of the nodes to be179

deployed.180

III. PROPOSED APPLICATION FRAMEWORK181

Our system has been developed on top of the QCAD appli-182

cation framework. The QCAD application framework consists183

of programming libraries and resources that provides CAD184

specific functionalities. An example of module provided by185

the QCAD application framework is the Math module that186

implements mathematical concepts such as vectors or matri-187

ces as well as basic geometrical classes like points, lines and188

so on. The QCAD Framework has been enhanced with a189

SmartBuilding module that provides some fundamental func-190

tionalities for the design of smart building systems. The191

module include abstract entities like rooms, walls, sockets,192

sensor nodes and gateways. User interface components are also193

provided in order to create and edit this entities (tools) and to194

specify parameters (widgets). Our module implements a node195

deployment algorithm for three commons indoor localization196

systems, that will be discussed later. The whole application197

rely on Qt, a framework that covers a lot of generic and low-198

level functionality for desktop applications and not directly199

related to CAD.200

The QCAD application framework offers a very complete201

and powerful ECMAScript interface. The SmartBuilding mod-202

ule, as well as the QCAD application framework, is accessible203

through that scripting interface. Through the ECMAScript204

interface developers will be able to extend the whole appli-205

cation in an easy and very efficient way. The choice of a206

popular script language that is easy to learn enables anyone207

with previous programming experience to extend the appli-208

cation. Such extensions can for example be CAD related209

interactive tools like an HVAC layout construction widget, or210

a temperature sensor nodes deployment algorithm.211

Fig. 2. Functional overview of the system components. Drawing tools and
algorithms for systems deployment and simulation are extensible through
ECMAScript or C++ plug-ins.

In some situations extending QCAD through scripts alone 212

may not be possible. This is mostly the case, if the extension 213

is based on an existing C or C++ library. In that case, it is 214

possible to create a C++ plug-in that wraps the existing library 215

and adds the necessary hooks to access library functionality 216

through the script interface. Such a plug-in will be automati- 217

cally loaded by QCAD on start up to add functions and classes 218

to the script interface of QCAD. These script extensions can 219

then be used by a script add-ons to make that functionality 220

available as part of the application interface. 221

IV. NODES DEPLOYMENT FOR 222

INDOOR LOCALIZATION 223

Smart environments always rely on a set of hardware nodes 224

able to collect sensing data and communicate through cabled 225

or wireless technologies. The number of nodes employed and 226

the position of each one strongly affect the overall performance 227

of the system as well as the cost of installation. In this paper, 228

indoor localization systems have been taken as the main case 229

study for the nodes allocation, since occupants localization 230

and monitoring is one of the most common requirements of 231

different smart environments. 232

The way in which the indoor environment must be cov- 233

ered by the nodes depends on the particular technology 234

implemented; however, there can be identified three main 235

manners. 236

1) Single coverage, i.e., to monitor the state of the envi- 237

ronment with a single node for each location inside its 238

radius. This includes for example to detect the presence 239

of a mobile device in a proximity region [14], or to 240

detect an RFID tag within the tags reader range [15]. 241

2) Trilateration, to compute the position of a mobile device. 242

This technique requires the reception of a wireless signal 243

of at least three reference sensors with well-known posi- 244

tions everywhere within the covered area. We define the 245

term k-coverage as the minimum number of sensors (or 246

reference nodes) required in each location by a system. 247

Single coverage systems have k-coverage = 1, while for 248

trilateration k = 3. 249

3) Fingerprinting, where the number and the strength of the 250

received signals is not fixed, but affect the localization 251

accuracy. 252
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Fig. 3. Floor-plan design tool. User can specify the layout of the rooms and a possible set of candidate sites for the node placement.

Trilateration and fingerprinting usually exploit wireless tech-253

nologies as Wi-Fi or Bluetooth to establish a connection254

between mobile and stationary nodes. Sensing regions can255

refer to any type of ambient sensors, such as passive infrared256

sensors [16], remote thermal sensors [17], but also proximity-257

based radio transmitters such as RFID tag readers [18] and258

Bluetooth low energy transmitters (BLE beacons) [19].259

V. PROPOSED DEPLOYMENT TOOL260

As we previously said, smart environments always rely on261

a set of sensor nodes, each one able to communicate through262

cabled or wireless technologies. Also for outdoor WSNs, a key263

challenge is how to achieve coverage of the target monitor-264

ing space and sufficient network connectivity between sensor265

nodes. Usually each sensor mote communicates with the rest266

of the network through technologies like Wi-Fi or ZigBee.267

Additional issues for outdoor WSNs are the limited battery life268

of each node and the power consumption required for packet269

transmissions. Given the availability in most (also “nonsmart”)270

buildings of power outlets, Ethernet sockets and Wi-Fi sig-271

nal, the mentioned limitations of WSNs can be solved in272

indoor application making use of the existing infrastructure.273

Differently from outdoor WSN deployments, where cover-274

age and connectivity are always treated together, our system275

leaves nodes connectivity optional, focusing on providing the276

coverage service to the indoor locations.277

The design process starts with a drafting phase in which the278

user specify the building floor plan as a set of rooms. During279

this phase the designer can restrict the possible sites for nodes280

allocation, selecting a set of candidate points. This can be281

useful when the hardware devices require power supply or282

Ethernet connectivity. The design interface used for both map 283

and candidate sites specification is reported in Fig. 3. 284

In our model, we will refer to L as the entire set of monitor- 285

ing locations to be covered, while J as the set of deployable 286

locations where nodes can be placed. By default, L = J and 287

nodes can be positioned everywhere but as we said the set J 288

can be restricted only to specific candidate points. 289

After the design phase, different parameters are provided by 290

the administrator and used to define a domain in which search 291

for a covering solution. The parameters are as follows. 292

1) The covering technique (single, trilateration, or fin- 293

gerprinting) that will be used to cover the locations 294

in L. 295

2) A cost ct for every type t ∈ T of node available on the 296

market (expressed in dollars). 297

3) A working range rt for every type t of node (expressed 298

in meters). 299

4) A percentage of covered area required, called target (i.e., 300

the minimum percentage of locations l ∈ L to be covered 301

by the solution). 302

The system will return to the designer a set N of nodes njt 303

(possibly with mixed hardware types) and their position on 304

the building map. The outcome will have the lower cost of 305

installation among all the inspected solutions that satisfy the 306

target percentage of covered area. Fig. 4 shows an overview 307

of the process explained so far. 308

A. Covering Techniques 309

Our tool provides three different ways to cover the floor- 310

plan space, each one identified by the technique required by 311

the system that will be installed. 312
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Fig. 4. System process. After the design of the floor plan, different parameters
are used to define the search for an optimal allocation of nodes.

(a) (b) (c)

Fig. 5. Sample floor-plans with a location l covered (a) in single mode,
(b) for trilateration, and (c) for fingerprinting where rssl,1 < rssl,2.

1) Single coverage that guarantees from each position the313

presence of at least one reachable node. This is used for314

example to detect the presence of a mobile device in a315

proximity region. In our model, a location l of the floor-316

plan is considered covered if exists at least one working317

node n of type t within a range rt. An example is shown318

in Fig. 5(a).319

2) Trilateration: This is the process of determining the320

position of a point measuring its distance from three321

reference nodes, exploiting geometric properties of tri-322

angles. Usually, indoor trilateration systems use the323

strength of the signal received from a node to estimate324

its distance. In our model, a location l of the floor-plan325

is covered for trilateration if there exist at least three326

working nodes n1, n2, and n3, each one no more distant327

then its corresponding range rt. A location l served for328

trilateration is shown in Fig. 5(b). Although we refer329

only to trilateration, the same exact result can be used330

also for triangulation, the technique where angles are331

measured instead of distances.332

3) Fingerprinting: This technique is used to estimate the333

position of a mobile device based on its rss vector. Each334

location receives the signal from k nodes, where k is not335

the same for all locations, but depends on how many336

nodes are reachable from that particular location. Each337

one of the k signals reaches the receiving antenna with a338

given power (or rss). For example, the location l shown339

in Fig. 5(c) perceives k = 2 signals so that rssl,1 < rssl,2.340

We denote as rssl,n the signal strength received at loca-341

tion l from a node n. The vector rssl = [rssl,1, . . . , rssl,k]342

of the k signals received at run-time in location l is com-343

pared with a dataset of vectors, each one prelabeled with344

the corresponding position.345

The comparison is usually performed by a classification 346

algorithm using the Euclidean distance of the vectors, since 347

rss vectors with a small Euclidean distance between them are 348

more likely to be close also in the physical space. We have 349

defined as rssl,n the signal strength received at location l from 350

a node n. The Euclidean distance between rssa and rssb, both 351

composed by k received signals, and collected, respectively, 352

in location a and b is defined as 353

E(a, b) =
√(

rssa,1 − rssb,1
)2 + · · · + (

rssa,k − rssb,k
)2

. (1) 354

Consider the vector rssa as the run-time sample, while 355

the vector rssb retrieved from the stored fingerprint. The 356

smaller is the E(a, b), more confident is the localization system 357

approximating current location of a with the stored location 358

of b. 359

It has been demonstrated that maximizing the Euclidean 360

distances of the rss arrays between all sampling points, the 361

positioning accuracy of wireless localization systems can be 362

improved [4], [5]. Fig. 6 is reported a graphical demonstra- 363

tion of the aforementioned statement. Take as an example a 364

dataset (DS1, DS2, DS3, DS4) of stored rss vectors, where 365

each vector is bi-dimensional (K = 2) and coupled with the 366

corresponding physical position. Fig. 6(a) shows each element 367

of the database where the Cartesian coordinates corresponds to 368

components rss1, rss2. Although the plane does not represent 369

the physical area of the floor-plan, database elements that are 370

near between them are more likely to be close also in the phys- 371

ical space. Given a run-time element R, each arrow represents 372

the Euclidean distance E(R, DSi) from the surrounding dataset 373

elements. A localization algorithm can exploit the Nearest 374

Neighbor technique to approximate the position of R with 375

the nearest dataset element. Unfortunately, the run-time rss 376

measurement of R will not be constant over time, but will 377

experience continuous fluctuations due to environmental noise. 378

These fluctuations make the sample R move randomly to the 379

surrounding points. Suppose that DS2 is the nearest points to 380

R in the physical space. Fig. 6(b) shows with a green area the 381

probability to assign R the correct (or more accurate) position, 382

while a red (with line pattern) area represents the probability 383

to get a wrong position from the system. Fig. 6(c) demon- 384

strates how an increase in the rss Euclidean distance between 385

sampling points increase the red area and the accuracy of the 386

localization, while in Fig. 6(d) an Euclidean distance reduction 387

will lead to poorer localizations. 388

The RSS has been estimated using the The WINNER II 389

path loss model [20] 390

PL = A log10(d[m]) + B + C log10

(
fc[GHz]

5.0

)
+ X (2) 391

where PL is the signal path loss (in dB), fc is the frequency 392

in GHz, and d is the distance between the transmitter and 393

the receiver location in meters. Values of coefficients A, B, C, 394

and X change depending on line-of-sight (LOS) or nonline-of- 395

sight (NLOS) propagations, and are reported in Table II. The 396

propagation model has been used in fingerprinting coverage to 397

maximize the Euclidean distance of the rss vectors between a 398

location and its surrounding points, with the aim of improve 399

the localization accuracy of the system. 400
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Fig. 6. (a) Bi-dimensional elements of the localization dataset are represented in Cartesian coordinates corresponding to components rss1 and rss2. A run-time
sample R is shown in (b) where its circular area delineates run-time signal fluctuations. If DS2 is the nearest points to R in the physical space, green area is
proportional to the probability of correct localization, while red dashed area represent wrong localizations. (c) Euclidean distance between sampling points
has been increased, improving the correct localization. (d) Opposite effect.

TABLE II
VALUES OF COEFFICIENTS DEPENDING ON LOS OR NLOS

PROPAGATIONS. VALUES HAVE BEEN TAKEN FROM

THE WINNER II PATH LOSS MODEL [20]

The 2-D space of the floor plan is discretized with a length401

unit (default is 1 m) that is chosen by the user during the map402

specification phase.403

As we have said, in addition to location coverage, also nodes404

connectivity has been modeled. In our model, a sensor node n405

is connected if exist a connected path to the gateway node. To406

ensure the connectivity of the whole network, the following407

equation must hold:408

∀n ∈ N, connected(n, gateway) = true (3)409

where410

connected(n, n′) def= ∣∣(n, n′)
∣∣ ≤ min(h, h′)411

∨ ∃ n1, . . . , ni ∈ N (1 < i)412

|(n, n1)| ≤ min(h, h1)413

∧ |(n1, n2)| ≤ min(h1, h2) ∧ . . .414

∨ ∣∣(ni, n′)
∣∣ ≤ min

(
hi, h′). (4)415

Connected networks are managed by our allocation algo-416

rithm in the same way of nonconnected networks, with the417

following exception.418

1) First, a manual gateway nodes allocation is required.419

2) During nodes allocation, deployable points420

J are restricted to locations j′ such that421

connected(nj′ , gateway) = true.422

3) During deployment optimization, nodes moves are con-423

sidered feasible only within the connected area.424

VI. COVERING LOCATION ALGORITHM425

The covering location algorithm has the purpose of plac-426

ing an optimal set of nodes on the building floor plan.427

TABLE III
NOTATION AND MEANING OF SYMBOLS USED FOR THE MODEL

We have decided to implement a modified version of the 428

multimode covering location problem [21], a generalization 429

of the MCLP. Using a quite general and flexible reformu- 430

lation of the covering problem, we have been able to adapt 431

the algorithm at the different covering techniques described 432

previously. 433

The positioning algorithm is composed by a first Greedy 434

procedure, whose solution is then improved by a variable 435

neighborhood search (VNS) algorithm. The positioning algo- 436

rithm evaluates different solutions using a reward bl, that is 437

defined for each location l and will be earned only for the 438

locations covered in that particular solution. The value of the 439

reward depends on the coverage technique. 440

1) Single Coverage: The reward bl will be earned if there 441

is at least one node that covers l. 442

2) Trilateration: The reward bl will be earned if there are 443

at least three nodes that cover l. 444
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Fig. 7. Regular grid showing how is computed the mean Euclidean distance
between the received rss vectors in a certain location l, and the surrounding
locations s within a certain distance d.

3) Fingerprinting: Since this technique is often considered445

to be a tradeoff (in cost and accuracy) between single446

coverage and trilateration, we decided that the reward447

bl will be earned if there are at least two nodes that448

covers l.449

As we have said, in order to maximize the localization accu-450

racy of the system it is possible to increase the signal space451

Euclidean distance between the target points. Consider the452

mean Euclidean distance between the received rss vector in453

a certain location l, and the surrounding locations s within a454

certain distance d455

1

| Dl |
∑
s∈Dl

E(l, s)456

Dl = {s ∈ L | distance(l, s) ≤ d}. (5)457

The distance d is used to restrict the rss comparison and458

diversification only to the locations that are more likely to be459

erroneously confuse with l by the localization system. Fig. 7460

shows an example of how the Euclidean distance of a location461

is compared to a neighbor location.462

We define the average signal space Euclidean distance z463

z =

∑
l∈L

∑
s∈Dl

E(l, s)

|Dl|
|L| . (6)464

The term z will be used by the Greedy procedure to produce465

a first solution with a reasonable allocation of nodes. Then, the466

value of z should be increased as much as possible to provide467

good localization accuracy to the system. However, maximize468

only the average does not seems fair enough, since a good469

system should provide a certain level of accuracy homoge-470

neously among the target area. So we defined the objective471

function as difference between the term z and the signal space472

Euclidean variance473

Z = z −

√√√√√∑
l∈L

⎛
⎝∑

s∈Dl

E(l, s)

| Dl |

⎞
⎠

2

. (7)474

Maximizing the objective function Z, the intention is to475

provide as many target location as possible with a high sig-476

nal space Euclidean distance with respect to the surrounding477

locations.478

As we have previously introduced, we represent with L the 479

entire set of location to be covered, while with J the set of pos- 480

sible positions where nodes can be placed. By default, L = J 481

and nodes can be positioned everywhere; however, its possi- 482

ble to restrict the J set only to specific candidate points, that 483

represent for example power outlets or Ethernet sockets. The 484

problem of find a near-optimal set N of nodes njt (each one 485

located in j and having a type t) with a coverage rate f (N) that 486

satisfies the target coverage, can be formalized as follows: 487

max Z = z −

√√√√√∑
l∈L

⎛
⎝∑

s∈Dl

E(l, s)

| Dl |

⎞
⎠

2

(8) 488

f (N) ≥ target (9) 489∑
t∈T

xjt ≤ 1 ∀j ∈ J (10) 490

xjt = 1 ⇐⇒ njt ∈ N (11) 491

f (N) = |L|/
∑
l∈L

yl (12) 492

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yl ≤ ∑
j∈J

∑
t∈T

aljtxjt ∀l ∈ L (single)

2 yl ≤ ∑
j∈J

∑
t∈T

aljtxjt ∀l ∈ L (fingerprinting)

3 yl ≤ ∑
j∈J

∑
t∈T

aljtxjt ∀l ∈ L (trilateration).

(13) 493

The decision variable xjt = 1 represents the allocation of 494

a node of type t in location j; aljt is equal to 1 if location l 495

can be reached by a node of type t placed in j, and aljt = 0 496

otherwise. yl = 1 if location l is covered, yl = 0 otherwise. 497

The constraint (10) fixes to one the maximum number of nodes 498

that can be located in each site. 499

A. Greedy Procedure 500

The positioning algorithm starts with a Greedy procedure 501

with the purpose of find a reasonable number of reference 502

nodes, for both coverage and localization accuracy. The pro- 503

cedure generate a first solution N positioning a set of k = |N| 504

nodes, each one with a type t ∈ T . For all three coverage tech- 505

niques, the reward bl is weighted with the cost of the current 506

node n∗ selected for the coverage 507

wl = bl

ct
; {

n∗ = njt ∧ distance(j, l) ≤ rt
}
. (14) 508

The weighted reward wl will be used by the Greedy algorithm 509

so that on equal covered area, the cheapest node type has 510

the priority over the others. We denote as Ljt the subset of 511

locations that are reachable by a reference node n of type t 512

placed at location j. At each iteration, the algorithm places 513

a node n of type t∗ at position j∗ that covers the subset of 514

locations Lj∗t∗ with the maximum reward. The term 515

1 − kl

k − coverage
(15) 516

is used to prioritize the covering of locations with a 517

lower “temporary” k-coverage (called kl) with respect to the 518

k-coverage required by the current techniques. In this way, 519

Greedy procedure tends to avoid the placement of nodes very 520
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Algorithm 1 Greedy(L, J, T, w, target)
N := ∅;
Ljt := {l ∈ L | l is covered by node in j with type t};
while (f (N) < target) ∧ (z < S) do

j∗ := arg max
j∈J

∑
l∈Ljt

wl (1 − kl
k−coverage );

t∗ := arg max
t∈T

∑
l∈Ljt

wl (1 − kl
k−coverage );

N := N ∪ {nj∗t∗};
Ljt := Ljt \ Lj∗t for all j ∈ J;

return N;

close to one other which can lead, especially for trilateration521

systems, to poor localization accuracy. It is important to notice522

that the purpose of the Greedy procedure is to find a reasonable523

number of nodes for the localization service. The starting posi-524

tioning is made on a best-effort basis, that will be improved525

by the successive VNS. After a node allocation, all subsets526

Ljt are updated according to the coverage technique. In trilat-527

eration for example, a location l is removed from Ljt only if528

there exist, other than the current nj∗t∗ , other two nodes that529

are already covering l.530

The Greedy procedure ends when the target coverage is sat-531

isfied, and when the average signal space Euclidean distance532

z reaches the threshold S. In our implementation we set the533

threshold S = 4.5 that has been proven to be the average534

Euclidean distance for which the positioning error is limited535

to 2 m [5]. How we will see in Section VII, the Greedy proce-536

dure is able to provide an average Euclidean distance not so far537

from the final best known. However, thanks to the low com-538

plexity of the Greedy procedure, additional time can be used539

to improve the solution. In addition, the Euclidean distance540

variance will be strongly improved.541

B. Variable Neighborhood Search542

The method called VNS has been used to improve the solu-543

tion coming from the Greedy procedure. The VNS approach544

empowers the classical local search framework with a restart545

mechanism that extends the search after a local optimum546

has been achieved by generating new starting solutions in547

progressively enlarged neighborhoods of the current best548

known solution. The key elements of the VNS (reported in549

Algorithm 2) are a starting solution N with a hierarchy of550

size-increasing neighborhoods, and a local search procedure,551

i.e., the criterion to select the incumbent solution from the552

neighborhood. These components are used to restart the search553

every time that the procedure reaches a local optimum. Fig. 8554

shows an overview of the VNS process. A first local search555

procedure is applied to the solution produced by the Greedy556

procedure. At each iteration, the shaking procedure is used557

to generate a new starting solution, which is then improved558

by the execution of the local search. The shaking procedure559

perturbs s node allocations of the current solution N∗ replac-560

ing them with s unused nodes. The behavior of the shaking561

parameter s, that depends on the result of the local search, is562

explained in Fig. 9. The parameter s starts from a minimum563

Fig. 8. Location algorithm. The solution found by the Greedy algorithm is
improved applying iteratively a Local Search for an optimal solution and a
Shaking procedure that perturbs the current solution.

Fig. 9. Shaking procedure: the parameter s is increased when the solution
does not improve (dashed line) and restarts when a new optimum is found
(continuous line).

value smin (in the example smin = 1) and every time that the 564

local search does not improve the best known solution, s is 565

increased by 1. Differently, when the local search succeeds, 566

the best solution N∗ is updated and s goes back to smin. 567

The purpose of the shaking procedure is to first explore 568

new starting solutions that are more similar to the best known 569

result, so that the search is intensified in a promising neigh- 570

borhood of the entire domain. If these local searches fail, the 571

shaking procedure moves the search from intensification to 572

diversification, generating starting solutions that are more and 573

more different from the incumbent one. Whenever a new best 574

solution is found, the shaking procedure comes back to smin, to 575

intensify the search near the just updated N∗. In principle, the 576

shaking parameter s can be increased until k = |N∗|, changing 577

all the node allocations. However, we experimented running 578

different configurations that excessively moving away from 579

the best known solution can be unproductive, causing a use- 580

less waste of computational time. We have fixed a reasonable 581

value of smax = �(2/3)k�. 582
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Algorithm 2 VNS(L, J, T, w, target, smin, smax, Rmax)

N := Greedy(L, J, T, w, target);
N0 := LocalSearch(L, J, T, w, target);
N∗ := N0;
s := smin;
for r := 1 to Rmax do

N := Shaking(N∗, s, L, J, T, w, target)
N0 := LocalSearch(L, J, T, w, target)
if (Z(N0) > Z(N∗)) then

s := smin;
N∗ := N0;

else
s := s + 1;
if (s > smax) then

s := smin;
return N∗;

The VNS algorithm terminates when the total number of583

restarts reaches a given value Rmax.584

As we have said, the local search is the heuristic that585

proceeds from an initial solution to its neighborhood by a586

sequence of local changes, trying to improve each time the587

value of the objective function until a local optimum is found.588

The neighborhood of the adopted approach is given by cyclic589

sequences of moves, where each move consists in locating a590

new node, removing a node or changing the type of the node.591

A cyclic move is considered feasible only if the new covering592

rate respects the target coverage, and the total cost of the solu-593

tion does not increase. Of course, each site must continue to594

hosts at maximum one node [constraint (10)]. A cyclic move595

can be visualized on a graph G = (N, A), where each node of596

the graph is a possible allocation of a hardware node. Each597

node of the graph is characterized by a location j, and a state598

that indicates if the node is active or inactive. A node njt cur-599

rently allocated in location j, is represented on the graph with600

an active node nj, labeled with its hardware type t. Note that601

index t does not appear because at most one type can be active602

in each node, and the type is specified by the label. Inactive603

nodes are instead left unlabeled. An arc (nj, nk) can represent604

the following.605

1) The allocation of a hardware node in site j, if nj is606

inactive and nk is active.607

2) The removal of a hardware node in site j, if nj is active608

and nk is inactive.609

3) An hardware node nj changing its hardware type, if both610

nodes are active.611

In both 1) and 2), the new node takes the hardware type of612

the head label (t of nk). A cyclic exchange corresponds to613

a directed cycle on the improvement graph, as depicted in614

Fig. 10. Each move, and so each arc (nj, nk), determines a vari-615

ation δZ in the value of the objective function Z. The purpose616

is to represent a group of moves so that a cyclic exchange rep-617

resents an increase in the current objective function. However,618

the total variation δZ is non additive with respect to the619

sequence of δZ values coming from single moves. This is620

caused by the interdependence between different hardware621

Fig. 10. Improvement graph: colored nodes represent current allocations,
while empty nodes are possible allocations. All active nodes are labeled with
their corresponding type. Each arc is a change (move) on the allocations.

nodes with overlapping covering regions, that lead to nonaddi- 622

tive moves. To overcome this drawback, every cycle has been 623

evaluated using an own temporary function Z′ updated step by 624

step from the end of the path to its starting node. In this way, 625

all the cycles with a positive total weight bring improvements 626

on the starting solution. 627

The search for the cyclic exchange with maximum weight 628

is performed with exhaustive breadth-first exploration of the 629

paths of graph G. 630

VII. EXPERIMENTAL RESULTS 631

Presented experimental results are initially focused on the 632

usability of the tool, testing the ability to provide a solution 633

in a reasonable time. Then, the performances of the model 634

have been evaluated, in terms of localization accuracy through 635

realistic indoor environment experiments, and in terms of cost- 636

effectiveness of the suggested deployments. 637

A. Computational Experience 638

The tool has been evaluated running several different config- 639

urations. Every test reported in this section has been executed 640

with a spatial resolution of the floor plan equal to 1 m. A first 641

analysis can be done on the execution times of the proposed 642

solution. Although the execution time can be tuned by the 643

parameter Rmax, which represents the maximum number of 644

restarts of the VNS algorithm, an idea on the order of mag- 645

nitude is given by Fig. 11, where the time is represented as 646

a function of the floor-plan dimension. In the given example, 647

Rmax has been fixed to 20 restarts, the target coverage equals 648

to 95% of the total area, a single node type available with a 649

range of 8 m, covering floor-plans with rectangular areas. The 650

graph shows that for single coverage and fingerprinting the 651

processing time grows approximately linearly with the floor 652

plan area. 653

A numeric comparison of the same tests is reported in 654

Table IV, where execution times are reported in seconds for 655

increasing floor plans. For single coverage, the execution time 656

is low even for areas of 3000 squared meters. For trilatera- 657

tion and fingerprinting, the execution times become high from 658

floor-plan of 2500 m2. However, the tests represent a bad case 659

in which the map dimension is very large while the node range 660

available and the spatial resolution are small (respectively, 661
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Fig. 11. Execution time of the tool with floor plans of different areas, for
each covering technique (Rmax = 20, target = 95%, and rt = 8).

TABLE IV
EXECUTION TIME OF THE TOOL FOR INCREASING FLOOR

PLAN AREAS (Rmax = 20, target = 95%, AND rt = 8)

8 and 1 m). Increasing the range or the resolution, the instance662

of the problem decrease, resulting in faster executions.663

A key aspect that characterizes the goodness of the664

proposed approach is the improvement of the objective func-665

tion achieved by the VNS algorithm with respect to the first666

Greedy configuration. For this test we have run the tool sev-667

eral times with a floor-plan area of 2500 m2 and a node range668

of 12 m. The number of reference nodes allocated is deter-669

mined by the Greedy procedure and increase with S, while670

the number of VNS restarts Rmax has been fixed to 35.671

In Fig. 12, we reported the value of z, i.e., the average signal672

space Euclidean distance obtained with the first Greedy exe-673

cution, compared with the z value after the VNS optimization.674

The graph reports the z values as a function of the threshold S,675

described in Section VI-A as the minimum value of average676

signal space Euclidean distance (z) required during the Greedy677

procedure. The graph shows that moving the threshold within678

Fig. 12. Average signal space Euclidean distance (z) obtained with the
Greedy execution and compared with the z value after the VNS optimization.
z values expressed as a function of the threshold S. Floor-plan area = 2500 m2,
Rmax = 20, target = 100%, and rt = 12.

Fig. 13. Signal space Euclidean distance variance obtained with the Greedy
execution and compared with the z value after the VNS optimization. Values
expressed as a function of the threshold S. Floor-plan area = 2500 m2, Rmax =
20, target = 100%, and rt = 12.

the range (2, 6)dB the VNS is able to improve the z value con- 679

stantly around 2 dB. Although the VNS improvement is not 680

astonishing for what regard the average value, Fig. 13 shows 681

that the variance is strongly improved. This has been achieved 682

moving from the objective function z used in Greedy proce- 683

dure to the Z function of the VNS. The Z objective function 684

has in fact the purpose to provide as many target location as 685

possible with a high signal space Euclidean distance w.r.t. the 686

surrounding locations. 687

B. Experimental Setup and Accuracy Evaluation 688

The proposed tool was evaluated using data collected from 689

a real-world environment, the NECST Lab, located at the 690

basement of DEIB Department at the Politecnico di Milano. 691
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Fig. 14. NECST Laboratory floor-plan, located at the basement of DEIB Department at the Politecnico di Milano. Each allocation corresponds to a BLE
beacon with a range of 7 m. Green crosses indicates allocations provided by our algorithm, gray rhombus represent allocations from [5] while blue triangle
positions have been computed maximizing the coverage [22].

The dimension of the test-bed is 198 squared meters (9×22 m).692

We collected BLE signal data coming from BLE beacons with693

a coverage radius of 7 m. Signal data has been collected694

using a Nexus 5 smartphone running Android 6.0.1. First, the695

NECST Laboratory floor-plan has been designed using our696

tool, obtaining the optimal number of beacons (|N| = 5) and697

their allocation for fingerprinting localization. Rmax has been698

fixed to 20 restarts, the target coverage equals to 100% of the699

total area, a single node type available with a range of 7 m, and700

the threshold S = 4, 5. We collected 40 training samples for701

the localization algorithm using the obtained allocation. Then,702

the test samples were collected at distinct positions changing703

the phone orientation and the way in which user was keeping704

it, for example by hand or in a pocket. For the entire duration705

of training and test phase, the number of occupants and their706

enabled wireless devices has changed, from a minimum of 3 to707

a maximum of 17 people. This variation affects the accuracy708

performances, but at the same time contributes in obtaining709

realistic results. The training and test phase has been repeated710

with two configurations coming from different allocation algo-711

rithms: maximization of the coverage [22] and the allocation712

algorithm proposed by He et al. [5]. For these two algorithms,713

the number of employed nodes has been fixed to 5. KNN with714

K = 3 has been employed as the fingerprinting algorithm.715

A first result is shown in Fig. 15. The cumulative error716

distribution function shows that from 1.5 m our approach per-717

forms better. Under 1.5 m, He et al. [5] approach performs718

better, but the difference in accuracy is marginal.719

Fig. 16 shows the mean positioning accuracy divided into720

different error ranges: (0, 0.5], (0.5, 1], (1, 1.5], (1.5, 2],721

(2, 2.5], (2.5, 3], (3, 3.5], and (3.5, 4]. It is possible to notice722

that the majority of the localization errors appears within the723

(1.5, 2] m. The test-bed floor-plan, composed by three rooms,724

has been reported in Fig. 14. Green crosses indicates allo-725

cations provided by our algorithm, gray rhombus represent726

allocations from [5] while blue triangle positions have been727

computed maximizing the coverage [22].728

Fig. 15. Cumulative error distribution function experienced by our approach
ad compared with two different solutions from the state-of-the-art.

C. Cost-Effectiveness Analysis 729

A feature of our tool interesting for testing is the possibility 730

to obtain solutions from mixed node types, with different char- 731

acteristics and costs. In particular, given two types t1 and t2 732

characterized by two ranges ri, and two costs ci, it is possible 733

to compare the total cost of a homogeneous solution with the 734

cost of a mixed solution. Given a baseline type of node with 735

a range r1 = 8 m and a cost of c1 = 60 $, we can assume 736

the presence on the market of a second type of hardware, with 737

the half of the range distance (r2 = 4 m). The area covered 738

by t1 (≈ 200 m2) is four times bigger than the coverage of t2 739

(≈ 50 m2). In order to obtain a fair test, the cost of t2 should 740

be c2 ≥ c1/4, and so we set c2 = 20 $. This test has been 741

performed with a target coverage of 95% on a rectangular map 742

of 1000 m2. 743

From Table V, it is possible to observe that, although hard- 744

ware nodes of type t2 have a lower convenience in terms of 745
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Fig. 16. Mean positioning accuracy of the proposed allocation algorithm
divided into different error ranges.

TABLE V
COST OF HOMOGENEOUS AND MIXED SOLUTIONS (A = 1000 m2,

target = 95%, r1 = 8 m, r2 = 4 m, c1 = 60 $, AND c2 = 20 $)

(area/price) (t1 outperform t2 in homogeneous solutions), the746

mixed strategy can use the smaller range nodes to reduce the747

total cost. This because less powerful nodes of type t2 are748

employed to cover small portions of the floor-plan, like corners749

or small regions left uncovered by the larger range nodes.750

The amount of saving in the total cost of the mixed solu-751

tion does not depend only on the nodes range and price, but752

also on the irregularity of the floor plan perimeter. A distin-753

guish feature of the proposed tool respect to other works is754

the possibility to cover spaces that are not necessarily rectan-755

gular or squared. The level of irregularity of a floor plan can756

be identified by the minimum number of rectangles that com-757

pose the shape. In Fig. 17 for example, the index of the floor758

plan irregularity is I = 4. We experimented the behavior of759

the tool increasing the level of irregularity, while maintaining760

a constant total area of 1000 m2. The test has been done with761

the same nodes configuration used in Table V (homogeneous762

T = t1, mixed T = t1, t2). The results shown in Table VI763

proven that increasing the floor-plan irregularity, the cost dif-764

ference between homogeneous and mixed solution becomes765

higher. This is caused by the increasing number of corners in766

the map, that can be covered with less powerful nodes.767

In conclusion, experimental results show that for most of768

the problem instances, a solution can be obtained in reason-769

able execution times. Depending on the available hardware770

types, homogeneous solutions could be improved with the771

employment of different type of nodes.772

Fig. 17. Irregularity of the floor-plan perimeter summarized by the minimum
number of rectangles.

TABLE VI
COST DIFFERENCES (IN $) BETWEEN HOMOGENEOUS AND MIXED

SOLUTION INCREASING THE FLOOR PLAN IRREGULARITY

(AREA FIXED TO 1000 m2)

VIII. CONCLUSION 773

In this paper, we tried to explain the challenges faced by 774

designers during the installation of smart building systems that 775

require the positioning of several hardware nodes. A com- 776

mon limitation of existing models is the lack of a convenient 777

way to specify geometric information of the indoor map. This 778

also leads to the employment of less accurate general models 779

for signal propagation, instead of site-specific models. The 780

design phase is made more difficult by the availability on 781

the market of different hardware nodes, with different power 782

transmissions and costs. 783

For these reasons we propose an integrated tool for both 784

floor plan specification and node positioning, developed within 785

an open-source CAD environment extensible through plug-ins. 786

The tool is able to provide a near-optimal solution of node 787

allocations, possibly with mixed types, with the aim to reduce 788

the installation costs. The results suggest that, for most of 789

the problem instances, a solution can be obtained in a rea- 790

sonable execution time. Depending on the available hardware 791

types, total cost of the solution could be improved moving 792

from homogeneous to mixed type allocation. 793

A limitation of the proposed approach resides in the prop- 794

agation model used to compute near-optimal solutions for 795

localization systems. The model implemented is site-specific, 796

and take in consideration walls for LOS and NLOS prop- 797

agations. However, the approach do not consider refraction 798

or diffraction effects. Another limitation is the inability of 799

the system to model the signal propagation between differ- 800

ent floors of the building, managing each level independently. 801

For future work, we plan to improve the system with an 802

indoor signal propagation model able to consider refraction 803

and diffraction effects of the indoor environment like walls 804

and floors. In addition, we will try to apply the model to 805
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3-D designing tools, becoming suitable also for multifloor806

environments.807
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