
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Layered Methodology for the Simulation of Extra-Functional Properties in Smart Systems / Vinco, Sara; Chen, Yukai;
Fummi, Franco; Macii, Enrico; Poncino, Massimo. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - ELETTRONICO. - 36:10(2017), pp. 1702-1715.
[10.1109/TCAD.2017.2650980]

Original

A Layered Methodology for the Simulation of Extra-Functional Properties in Smart Systems

Publisher:

Published
DOI:10.1109/TCAD.2017.2650980

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2669873 since: 2020-02-22T11:33:44Z

IEEE

1

A Layered Methodology for the Simulation of
Extra-Functional Properties in Smart Systems

Sara VincoMember, IEEE, Yukai ChenMember, IEEE, Franco FummiMember, IEEE,
Enrico Macii Fellow, IEEE, Massimo PoncinoSenior Member, IEEE

Abstract—Smart Systems represent a broad class of intelligent,
miniaturized devices incorporating functionality like sensing,
actuation, and control. In order to support these functions, they
must include sophisticated and heterogeneous components,such
as sensors and actuators, multiple power sources and storage
devices, digital signal processing, and wireless connectivity.
The high degree of heterogeneity typical of smart systems has
a heavy impact on their design: the challenges are not in fact
restricted to their functionality, but are also related to a number
of extra-functional properties, including power consumption,
temperature and aging. Current simulation- or model-based
design approaches do not target a smart system as a whole,
but rather single domains (digital, analog, power devices,etc.)
or properties. This paper tries to overcome this limitation by
proposing a framework for the concurrent simulation of both
functionality and such extra-functional properties. The latter are
modeled as different information flows, managed by dedicated
“virtual buses” and formalized through the adoption of IP-
XACT. SystemC, through the support of physical and continuous
time modeling provided by its Analog and Mixed Signal (AMS)
extension, is used to implement both functional and extra-
functional models.
Experimental results show the efficiency, accuracy and modular-
ity of the proposed approach on an example case study, in which
substantial speedups with respect to standard model-baseddesign
tools go along with a very high degree of accuracy (< 10

−5%).
Furthermore, the case study highlights that the proposed frame-
work allows to easily capture at run time the mutual impact of
properties, e.g., in case of power and temperature.

Index Terms—SystemC, System on chip, Simulation, Modeling,
Power modeling and estimation, Extra-functional simulation.

I. I NTRODUCTION

Smart electronic systems include heterogeneous components
such as digital, analog/RF devices, sensors/actuators, and
energy generation/storage devices; even the very simulation
of their functionalityrepresents already a significant challenge,
since these diverse components imply different time scalesand
accuracies, and interactions among very different domains[2],
[4]. However, the assessment of functionality is not the only
dimension to be considered at validation time. Since these
systems combine heterogeneous domains, other metrics must
be considered to ensure their correct operations, such as power

Copyright c© 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

S. Vinco, Y. Chen, E. Macii, M. Poncino are with the Department
of Control and Computer Engineering, Politecnico di Torino, Italy, e-
mail: sara.vinco@polito.it, yukai.chen@polito.it, enrico.macii@polito.it, mas-
simo.poncino@polito.it.

F. Fummi is with the Department of Computer Science, University of
Verona, Italy, e-mail: franco.fummi@univr.it.

consumption, thermal behavior, or reliability. The challenge is
therefore that of monitoring the evolution over time of other
extra-functionalproperties, of which power, temperature, and
reliability are three relevant examples [33].
Modeling and monitoring of these properties in the various
domains in isolation is not a new problem. Power and thermal
analysis, for instance, has been studied since a couple of
decades in digital and analog systems. How to manage the
complex interactions of these properties in heterogeneous
smart systems, however, is still an open problem. Moreover,
these quantities are inter-dependent in complex ways. Power
consumption affects thermal and aging patterns, while temper-
ature affects power consumption (in particular, static power in
digital logic) and it is an essential parameter in any reliability
or aging model. On top of everything, the functional operation
of the system (e.g., the duty cycle) affects all other properties.
Accurately tracking the mutual influence among extra-
functional properties must be doneat runtime; unfortunately,
no current design methodology can simultaneously master
all extra-functional aspects of a smart system. State of the
art approaches either simulate specific properties indepen-
dently with ad hoc simulators [9], adopt time-consuming co-
simulation approaches [6], [33], or support only subsets ofthe
typical smart systems domains [13], [16]. These approaches
are generally not very friendly for “functional” designersused
to specify systems using HDLs like SystemC or SystemVer-
ilog and that have little familiarity with the various extra-
functional properties. Furthermore, the setup of co-simulation
environments requires expertise and deep knowledge of all the
involved tools.
The goal of this work is to fill such a gap by reducing
both functionality and extra-functional propertiesto a sin-
gle modeling and simulation framework. The proposed
approach envisions amulti-layer, bus-centric framework .
Multi-layer because it is structured hierarchically, with each
property corresponding to a simulation layer, and each com-
ponent implemented as a set of property-specific models.
Bus-centricin that each property is simulated by adopting a
specific “virtual bus”, which conveys and elaborates property-
specific information, used to derive property-specific status
of the overall system. This allows reducing all layers to a
common structure, easing synchronization and information
exchange. These two features, coupled with the adoption of a
conventional HDL as specification language and simulation
backbone, ease the adoption of the proposed approach by
functional designers, by providing them with an enhanced
support to the traditional functional design flow. The resulting

2

framework is composed of a number of property-specific
models per component, managed by property-specific buses
and bus managers, in charge of aggregating information and
of applying control policies.
The following are the specific contributions of this work:

• Construction of anovel multi-layer simulation infras-
tructure that allows one to model a range of functional and
extra-functional properties simultaneously andin a single
simulator instance;

• Adoption ofbuses as central componentsfor reproducing
property-specific information flows;

• Adoption of standard functional description languages,
namely, SystemC [18], [19] and IP-XACT [20], to ease
formalization and automation of the proposed framework;

• Formalization ofproperty-specific features, in terms of
signals, semantics and information flows;

• Presentation of existing models and methodologies to
incorporate each extra-functional property;

• Automation of code generation, to enhance and ease the
adoption of the proposed approach.

The application of our approach to an industry-strength smart
system case-study demonstrates its effectiveness with respect
to model-based design tools in modeling the various proper-
ties, both in terms of accuracy (average errors on the order
of 10−6%) and of simulation time (speedups of at least one
order of magnitude).
The paper is organized as follows. Section II reviews state-of-
the-art solutions targeting the design of smart systems. Section
III outlines the proposed approach. Sections IV–VI detail the
languages adopted for framework implementation, and the
code generation flow. Finally, Section VII applies the overall
approach to the industrial smart system case-study.

II. RELATED WORK

Various solutions have been proposed to address the simulation
challenges posed by smart systems heterogeneity.
Co-simulationadopts dedicated simulators and custom models
for each heterogeneous aspect of the system [2], [4]. This
results in a high complexity and in a significant overhead due
to the management of different simulators,e.g., to synchronize
simulation time and event queues. To overcome these limita-
tions, many frameworks have been proposed to standardize
the integration of tools [6], [33], through either unified APIs
[6] or libraries [33]. Even if this simplifies the construction
of the co-simulation environment, the designer is requiredto
have a detailed knowledge not only of the modeled domain
and tools, but also of the underlying integration framework.
Furthermore, the adoption of a centralized solver imposes a
unique time management approach, thus constraining both the
synchronization points and the semantics of the involved tools.
Equation-based approaches, such as Modelica [13], are effec-
tive for the physical part, but they are not suitable for modeling
the “cyber” part (e.g., the software executed by a core) and
the mutual influence of cyber and physical aspects.
Platform-based design approaches, e.g., Metronomy [16],
focus on the interaction of controllers with the environment

to prove temporal properties of the implemented system. To
achieve this result, functionality modeling relies on MetroII
[11], that provides a range of Models of Computation (MoCs),
differing in how time and data are managed. Communication
between different MoCs relies on adapters, which introduce
a significant communication overhead, and on synchronous
events, thus not allowing asynchronous interactions. Moreover,
MoCs are designed for describing HW-SW systems; thus,
they fail at supporting extra-functional properties,e.g., in
case of electrical network models or of power components
(e.g., batteries). Finally, the adoption of custom languages and
formalisms restricts the reuse of existing IPs, and it requires
a deep knowledge of the semantics of the various MoCs.
The heterogeneous rich component(HRC) approach proposes
to separately simulate different system properties by adopting
native tools [9], [22]. Mutual influence of properties is then
modeled by using traces produced by one simulation as input
for the next one, and the resulting information is used to
validate the overall system with extra-functional contracts.
Such an approach does not envision a common simulation
framework or a standard interaction between properties. Fur-
thermore, the result is a sequential adoption of tools, thatis
extremely limited in its ability to capture the runtime dynamics
of the system and the mutual influence of properties [33].
This work builds upon the methodology presented in [43],
where the power bus is used both as a voltage reference and
to reproduce energy flows. However, [43] restricts modeling
to the power domain. In this work we extend the basic bus-
centric idea by formalizing the guidelines for modeling and
concurrently simulating generic extra-functional properties.

III. A L AYERED V ISION FORSMART SYSTEM SIMULATION

Two are the distinctive features of the proposed methodology.

Layered approach: The reconciliation of both functional and
extra-functional aspects toa single simulation infrastructure
and languageis achieved by structuring the simulated system
according to different views, calledlayers, each one relative
to one specific property (Figure 1). This approach allows han-
dling information related to each property independently.At
the same time, the proposed approach allows to simultaneously
simulate multiple layersin a single simulator instance, i.e., a
single run. This allows reproducing the mutual interactions
among layers while keeping the overhead low thanks to this
unified approach.
Such a layered paradigm is coupled to the selection of a unique
functional language for all layers; this easies the adoption of
the proposed framework by functional designers because (i)it
allows using a familiar language, and (ii) it does not require
a deep knowledge about the physics behind the properties, or
about the property-specific tools and languages.

Bus-centric modular architecture: Each layer is constrained
to a single underlying “architecture”, whose central element
is the layer-specific bus. Similarly to what happens with
functional simulation, each bus carries information between
components (intra-layer communication).
An important reason for adopting a bus-centric architecture for
all layers is to enforce the legacy with the architecture used

3

Reliability

layer

Layer-
specific

data

Temperature

layer

Power

layer

Functional

layerFunctional BUS +

Manager

CnC1 C2 …

Temperature BUS

+ Manager

C1 C2 Cn

Power BUS +

Manager

C1 C2 Cn…

…

Reliability BUS

+ Manager

C1 C2 Cn

Layer-specific signals

Inter-layer signals

Layer-specific data flow

Inter-layer time converters

Figure 1. Layered Framework for Extra-Functional PropertySimulation.

by functional simulation (theFunctional Layerin Figure 1),
for which (i) the bus-based structure reflects the logical orga-
nization among the blocks by mimicking the actual physical
interconnection, and (ii) whose simulation results are used by
all other layers to evaluate other properties, as shown in the
figure. As any bus-based structure, the proposed bus-centric
architecture is highly scalable, as adding a component at any
layer simply requires sticking to the required interface.

It is worth emphasizing that the layer-specific buses do not
necessary reflect the actual physical buses; they actually carry
the information flow relative to the given property, that is
not per se determined by the topology and the physical
connections.

Figure 1 abstractly represents the system as the interconnec-
tion of components(C1, . . . , Cn) through layer-specific buses.
Each component is associated with a model in each layer,
representing the property-specific evolution of the component.

Each bus is integrated by a layer-specificbus manager,
which aggregates information specific to each component
to determine information flow and overall property-specific
information. Thus, the bus supports not only the information
flow but also its “arbitration” and management,e.g. in the
form of property-specific control policies.

Depending on the actual extra-functional properties modeled
and simulated, layers exchange information representing their
mutual influence. This work focuses on three major extra-
functional properties:power, temperature, and reliability,
which are traditionally considered as the most relevant ones
for electronic systems [33]. It is obviously possible to extend
the framework to support any desired property.

A. Application to Extra-Functional Properties

Each layer is characterized by four main characteristics, cor-
responding to columns of Table I:

Layer-Specific Signals:These are the main property-specific
signals that are tracked by the simulation engine in each layer
(Figure 1). Power behavior is determined by simulating voltage
and current signals; temperature is the defining characteristic
of the temperature layer, while the reliability layer tracks the
failure rate of system components.

Inter-Layer Signals: These signals are used to exchange
information between layers. Since all layers are simulatedin a
single simulation run, each layer will react to changes in those
inter-layer signals instantaneously. This solution provides a
clear advantage with respect to the HRC approach, where
properties are simulated sequentially and the mutual influence
between properties is modeled through explicit traces [9].
Figure 1 exposes these inter-relations among layers: the power
layer requires “workload” information from the functional
layer (e.g., duty cycle, switching activity); the temperature
layer requires both workload and power information, while
at the same time temperature information is fed back to the
power layer to estimate static power. Finally, the reliability
layer is affected by information produced by all other layers.

Role of Bus and Manager: The role of the bus and of
the manager determines thesimulation semanticsof each
layer. For instance, in the temperature layer, the semantics
corresponds to a circuit-level simulation equivalent of the
thermal network [36], while at reliability layer the semantics is
an aggregation function to determine overall failure rate from
local values [23]. The role of the manager is related to (1)
possible “protocols” governing the interconnection amongthe
components (as in functional simulation, where the bus is a
physical component implementing specified rules,e.g., arbitra-
tion), and (2) possible policies that govern the system evolution
(e.g., disabling a component based on some condition).

Layer-Specific Data/Information: These data refer to addi-
tional information essential for the simulation but not involved
with the simulation semantics. As an example, when sim-
ulating temperature we need to know both the floorplan of
the components (to determine heat exchange) and the three-
dimensional geometrical structure of the system.

B. Handling Different Time Scales

As a matter of fact, each layer evolves according to its own
“time constant”, representing a realistic rate of update ofthe
corresponding property. We call this quantity theproperty-
specific time scale. For instance, while functional simulation
could be accurate to the clock cycle or to a transaction (for
Transaction-Level Modeling), temperature updates according
to time scales in the order the tens of milliseconds. Simulating
each property with the most appropriate time scale is not
done just to track as much realistically as possible the true
nature of that property, but also to avoid excessively fine-grain
computations and to speed up simulation. Generally speaking,
the scale of simulation tends to increase from the functional
level upwards.

4

Table I
LAYER-SPECIFICMAPPING OFCONCEPTS ONTOEXTRA-FUNCTIONAL PROPERTIES.

Property
Layer-Specific Inter-Layer Role of Bus & Manager Layer-Specific

Signals Signals Data/Information
POWER Voltage (V)

Current (I)
Workload
(functional layer)
Temperature
(temperature
layer)

The bus models the energy paths among the
components (guaranteeing energy conservation)
and it provides a reference voltage. The manager
monitors the energy flow and it is augmented
with policies (e.g., use the battery or a power
sources to provide energy to the loads).

Environmental data that determine
the behavior of power components,
e.g., irradiance or vibration. These
data are provided either as parame-
ters or as traces.

TEMPERATURE Temperature
(T)

Power
(power layer)
Workload
(functional layer)

The bus is in charge of conveying all techno-
logical and power information to the bus man-
ager. The manager determines the temperature
of each component by solving the electrical
circuit equivalent of the overall system thermal
network.

(1) Geometrical data: i.e., floor-
plan; width, height and thickness of
each component [32]. (2)Technology
data: physical properties like thermal
conductivity and thermal capacitance
per volume [31].

RELIABILITY Failure
rate (λ)

Temperature
(temperature
layer)
Power
(power layer)
Workload
(functional layer)

The bus conveys the failure rates relative to
individual components to the reliability bus man-
ager. The manager determines overall system
failure rate as a function of the local components
failure rates.

(1) Technology data: material-related
quantities [21]. (2)Topology infor-
mation: parallel connection⇒ all
components must fail before the sys-
tem fails; series connection⇒ first
failing component will cause the en-
tire system to fail [23].

Figure 1 shows that each layer receives information from
other layers after a conversion into the appropriate time scale,
applied throughtime converters. When converting signals
towards finer-grain time scale (e.g., in case of the link between
the temperature and the power layer), converters are simply
time “extenders”; the finer-grain time scale is obtained by
repeating a given value multiple times. Conversely, when
converting signal upwards towards coarser-grain time scales,
the converters must aggregate the fine-grain information, to
make it available at the coarser-grain time scale. In case of
quantitative information(e.g., values of power consumption
or of temperature), this is performed by implement a moving
average of the downstream time scale. For instance, for simu-
lating the power layer in a system including a battery (whichis
not sensitive to ns-scale variations), cycle-accurate traces from
functional simulation can be averaged over 1,000 cycles. On
the other hand, the functional layer typically generatesquali-
tative information, such as device state or fetched instruction,
that can not be averaged. In this case, the converters aggregate
the qualitative information, e.g., by deriving statisticslike
the percentage of occurrence of each device state or fetched
instruction. This information is then passed to the coarser-grain
layer, to influence the corresponding evolution.

IV. M ODELING OF LAYER-SPECIFIC INTERFACES

Table II summarizes the component interfaces in the various
layers. ColumnComponent Interfacedepicts the generic in-
terface of the components at each layer, in terms of inter-
layer signals (dashed arrows) and layer-specific ports (solid
arrows). While the former are always inputs to a component
(which “uses” that information), the direction of layer-specific
port depends on the specific property. For the power layer,
Table II shows the most generic interface in which voltage and
current are bidirectional ports; this would be the case, e.g., of
an energy storage devices in which power can be both stored
and extracted. In general, components that consume power
use the signals to “declare” their power demand. Thus, the
(V,I) signals are outputs to the component. On the other hand,

Table II
INTERFACEDEFINITION FOR EXTRA-FUNCTIONAL LAYERS.

Property
Component Design Connections

Interface and Description
POWER

WL

V I

Components are connected to
the power bus, and special
components (calledconvert-
ers) may be needed to main-
tain compatibility of voltage
levels. The IP-XACT design
description reflects this topol-
ogy.

TEMPERATURE

P T

V, I

WL All components are connected
to the temperature bus, as de-
scribed by the IP-XACT de-
sign description. This does not
reflect the physical contigu-
ity between components (i.e.,
the floorplan), that is provided
through a specific configura-
tion file.

RELIABILITY

λ

V, I

T

WL
The IP-XACT design descrip-
tion connects each component
to the reliability bus. A config-
uration file describes the rela-
tionship between components:
whether they are in parallel
(all must fail for the system to
fail) or else in series (failure of
anyone causes overall system
failure) [23].

components generating power receive the power demand of the
remainder of the system, and thus their (V,I) signals have the
opposite direction. Temperature, as will be detailed in Section
V-B, is computed in a centralized fashion by solving an
equivalent electrical network inside the temperature bus;there-
fore components send their power consumption to the bus,
and receive back the computed temperature value. Reliability,
conversely, is estimated by each component autonomously,
and is then aggregated in a cumulative system status by the
reliability bus. Finally, the last column of Table II describes
system connections and necessary auxiliary data.

5

1. <component>

2. <vendor>user</vendor>

3. <library>multilayer</library>

4. <name>core</name>

5. <version>1.0</version>

6. <layer>power</layer>

7. <ports>

8. <port>

9. <name>V</name>

10. <direction> out </direction>

11. <value unit=“volt” prefix=“”>1.0</value>

12. </port>

13. <port>

14. <name>I</name>

15. <direction> out </direction>

16. <value unit=“ampere” prefix= “milli”>0.1</value>

17. </port>

18. </ports>

19. <powerExtension>

20. <componentRole>load</componentRole>

21. </powerExtension>

22. </component>

CORE

V I

Figure 2. Example of IP-XACTcomponent descriptionfor the power layer
of the example system.

A. Basic Technology: IP-XACT

In order to ease formalization and automation of the proposed
framework and to make its applicability as much general
as possible, interfaces are described using IP-XACT [20],
an XML format for describing interfaces of digital IPs and
systems. IP-XACT was chosen because it is the de-facto stan-
dard for functional interface specification and it also provides
mechanisms for its extension, thus allowing to add the support
for extra-functional domains. IP-XACT relies on an explicit
bus-based architectural template, thus reflecting the bus-centric
structure of the layers in our approach.
IP-XACT supports three main description schemas. Acom-
ponent descriptionessentially contains the interface of an IP,
provided as a list of ports. Adesign descriptionrepresents
the instances of components in a system and the interconnec-
tion between them. Adesign configuration descriptionstores
additional configuration information that can be used at later
design stages,e.g., by tool-chains.

B. Modeling Extra-Functional Interfaces with IP-XACT

IP-XACT descriptions are used to model property-specific
component interfaces, intra-layer connection of components,
and layer-specific data. The rest of this section describes the
technical details and the required extensions to the standard.

1) IP-XACT Component Descriptions:Each system compo-
nent is provided with one IP-XACT component description per
layer, describing the layer-specific interface. Figure 2 shows
an excerpt of IP-XACT component description at the power
layer for the core used as our example of a “system”.
Component descriptions use the same identification tags (i.e.,
component name, library, version and vendor, lines 2–5) [20].
An additional custom tag (<layer>, Line 6) specifies the
specific property. After this sort of header, the component
description lists the layer-specific ports of the component(the
solid arrows in the blocks of Table II).
Theseextra-functional portscannot be cast to integers or bit
vectors, as they represent quantities that model a continuous

1. <design>

2. <vendor>user</vendor>

3. <library>multilayer</library>

4. <name>temperature_connections</name>

5. <version>1.0</version>

6. <layer>temperature</layer>

7. <componentInstance>

8. <instanceName> core </instanceName>

9. <componentRef vendor =“multilayer” library=“modules”

name=“core” versione=“1.0”/>

10. </componentInstance>

11. <componentInstance>

12. <instanceName>temperature_bus</instanceName>

13. <componentRef vendor =“multilayer” library=“buses”

name=“temperature_bus” version=“1.0”/>

14. </componentInstance>

15. <adHocConnection>

16. <name>Pcore</name>

17. <portReference component=“core" port=“P”/>

18. <portReference component =“temperature_bus" port =“P”/>

19. </adHocConnection>

20. <adHocConnection>

21. <name>Tcore</name>

22. <portReference component=“core" port=“T”/>

23. <portReference component =“temperature_bus" port =“T”/>

24. </adHocConnection>

25. </design>

CORE

TEMPERATURE
BUS

P T

P T

Pcore Tcore

Figure 3. Example of IP-XACTdesign descriptionfor the temperature layer
of the example system and connection to the temperature bus.

physical evolution. Thus, they integrate standard IP-XACT
tags (e.g., for port name and direction) with the extension
defined for analog and mixed-signal modeling in [1]. Ports
are associated with a default value, that is annotated with the
relative unit of measure (e.g., Volt or Ampere) and a prefix
(e.g., kilo and milli). Lines 7–18 exemplify this for theV and
I ports of the core.
Power layer descriptions require additional tags to specify
the role of each component. This is modeled through the
<powerExtension> tag (lines 17–19) which embeds in
turn the<componentRole> tag. E.g., the core exemplified
in Figure 2 is a component thatconsumespower, which we
can generically call aload.
Furthermore, some components might need to have control
ports (e.g., a “standby” port for power management) and/or
status ports (e.g., to track the state of charge of an energy
storage devices). These ports are listed together with the layer-
specific signals, but they are not listed in Table II, since they
are not featured by all types of power components.
Component descriptions relative to other layers have the
identical structure of the example of Figure 2, only with port
names and the relative units differing. Two tags are however
specific to the power layer: the<powerExtension> one
(only power components have multiple “roles”), and the sta-
tus/control signals.

2) IP-XACT Design Descriptions:The overall system consist
of one IP-XACT design description per layer, defining the
connections between the layer-specific ports of components.
Figure 3 shows an example for the temperature layer. Similar
considerations apply to the other layers.
The connections modeled in the IP-XACT design descriptions
reflect the content of the last column of Table II. In the power
layer, components are not directly connected to the power bus,
as converters may be necessary for voltage compatibility. The

6

design description is thus adherent to the physical connections.
Conversely, temperature and reliability layers are just concep-
tual and not linked to the physical structure of the system. In
such IP-XACT design descriptions, components are directly
connected to the property-specific bus as in Figure 3.
Design descriptions are very similar for any layer; the latter
is identified by<layer> tag (lines 2–6). Each description is
nothing but an instantiation of the various components through
a series of<componentInstance> tags, each pointing to
the corresponding IP-XACT component description. Lines 7–
14 of Figure 3 show the tags necessary to instantiate the core
and the temperature bus in our working example.
The various instances are then bound to ports with the
<adHocConnection> tag, by referencing ports through
their name and the name of the parent component instance.
In the example lines 15–24 represent the binding between the
ports of the core and of the temperature bus: the power ports
(lines 15–19) and the temperature ports (lines 20–24).

3) IP-XACT Design Configuration Descriptions: IP-
XACT design configuration descriptions are used to
model layer-specific data. The IP-XACT configuration
description explicitly references the corresponding design
description with the<designRef> tag (similar to the
<componentRef> tag in Figure 3). The layer-specific data,
e.g., material characteristics, are then encapsulated by the
<configurableElementValue> tags and organized as
XML sub-trees.

V. M ODELING OF EXTRA-FUNCTIONAL BEHAVIOR

Different extra-functional properties determine different mod-
els for the components and different policies to be imple-
mented by the property-specific buses. This section provides
an overview of state-of-the-art models (see ColumnModel
Typesof Table III), since understanding their typical character-
istics is essential to determine the actual implementationof the
overall framework. However, note that the focus of this work
is on the feasibility of the proposed framework. Components
may be implemented with the designer’s favorite models; the
only restriction imposed are the property-specific interfaces,
detailed in section IV.
It is worth emphasizing the we do not propose new power,
temperature, or reliability models, but rather how to reconcile
existing state-of-the-art models in the layered, bus-centric
framework of Figure 1. Therefore, the effort in building such
models and collecting necessary technology information isthe
same that is required for their use in any simulation framework
alternative to the proposed one.

A. Power Layer

Power models in this context can be classified intofunctional
and circuit-level models. Functional models implement the
behavior of the component by means of a function (e.g., an
equation, an algorithm, or even a simple waveform over time).
Examples of functional models are, for instance, power state
machines to model power consumption of power-manageable
loads [10], or analytical equations to model the discharge
time of a battery [28]. Conversely, circuit-equivalent models

Table III
MODEL TYPES AND SEMANTICS.

Property Model Types Semantics
POWER Functional models: analytical com-

pact models (e.g., a function [28], or
a power-state machine [10]).Circuit-
level models: equivalent electrical cir-
cuits [27].

TDF (for func-
tional models)
/ ELN (for cir-
cuit models).

TEMPERATURE Models use a RC-circuit equiva-
lent [36]. Temperature is estimated
through a centralized model imple-
mented in the bus manager. Compo-
nents simply forward power informa-
tion to the bus.

ELN for the
RC circuit
models (bus),
TDF for
component
models.

RELIABILITY An expression offailure rate in terms
of stress paramters and of material-
specific parameters [34].

TDF.

emulate the behavior of a component through an equivalent
electrical circuit. In literature, a variety of circuit models exists
for the various elements,e.g., batteries [27], converters [8] and
power sources [3].
The bus manager in this layer implements control policies that
monitor the power production/demand of components, enable
power source and/or energy storage devices, and control the
power state of the loads [43].

B. Temperature Layer

Thermal simulators are typically based onRC circuitssolvers
[7], [36]. An equivalent RC circuit represents the heat flows
across the system (i.e., both heat propagation across all the
multiple package layers and heat flow across adjacent compo-
nents). The temperature of each component is affected not only
by its working conditions (through its power consumption) and
by the technology (i.e., material coefficients [31]), but also by
the spatial arrangement of the components (that can be derived
with high-level floor-planning tools [32]). For this reason,
temperature does not fit as nicely as power and reliability into
the bus-based approach: we can not build separate temperature
models for all components and simply combine their output
at the bus level, as done for other properties. However, it is
possible to accommodate temperature into the conceptual bus-
based template by moving the RC solver computation inside
the bus manager. This explains the direction of ports in Table
II: the temperature model of each component simply forwards
the necessary power demand values to the temperature bus
(output portP), and it receives in input the temperature values,
as computed by the centralized RC circuit (input portT).

C. Reliability Layer

As already discussed, in this work we use a “compact”
measure of reliability (which is a quite general term) and track
the failure rateof a system, usually denoted withλ, defined as
the frequency with which a component (or the whole system)
fails, expressed in failures per unit of time.
Many approaches have been proposed in the literature to
estimate the failure rate (or related quantities such as the
mean time to failure – MTTF) of a system [22], [34]. Most
models have an analytical structure,i.e., the failure rate of the
component is expressed as a function of (i) physical stress

7

aspects (i.e., activity) and (ii) of material-specific coefficients
(available in the literature [21]). [22], [34] showed that reliabil-
ity models can be adopted to estimate instantaneous values for
the failure rate, depending on the runtime system configuration
and on the evolution of other extra-functional properties.This
allows to compare the failure rate under stress conditions with
respect to idle times, and to determine the impact of a number
of factors, including operating voltage, temperature, package
configuration and functional duty cycle. These analyses canbe
used for an effective reliability-aware design space exploration,
even at early stages of the design flow.
Different models target different reliability mechanisms, in-
cluding negative bias temperature instability (NBTI) and time
dependent dielectric breakdown (TDDB). Each component has
a failure rate model for each reliability mechanism of interest,
which are then summed to determine overall failure rate of
the component [34].
The overall system failure rate (or MTTF) depends on the
actual relation among the components. This information is
typically modeled by Reliability Block Diagrams (RBDs), a
graphical representation of how the components of the system
are reliability-wise connected, which may differ from how
the components are physically connected. The reliability bus
receives the failure rates of the individual components and
determines overall system reliability using the information on
system topology provided as an RBD, plus the power, activity,
and temperature information from the downstream layers.

VI. I MPLEMENTATION OF EXTRA-FUNCTIONAL MODELS

The reference language adopted for model implementation is
SystemC-AMS, an extension of SystemC for modeling and
simulation of analog/mixed-signal functional subsystems[19].

A. Basic Technology: SystemC-AMS

SystemC-AMS provides three different MoCs: (1)Timed
Data-Flow (TDF), which models discrete time, statically
scheduled processes, (2)Linear Signal Flow (LSF), which
supports continuous-time, non-conservative behaviors, and (3)
Electrical Linear Network(ELN), which models electrical
networks through the instantiation of predefined primitives,
such as resistors or capacitors.
SystemC-AMS is the reference language for the proposed
framework for a number of reasons. The presence ofmultiple
MoCsallows covering a wide range of domains using a single
language. Thus, models can be implemented with the most
suitable MoC (as shown in ColumnSemanticsof Table III).
SystemC-AMS natively provides converters between MoCs
and a common simulation kernel; it is therefore possible to
simulate different MoCs simultaneously, still guaranteeing
correctness and hiding synchronization details, and to sim-
ulate models with different levels of accuracy in a single
simulation run. SystemC-AMS is alsomodular, in that it
separates the definition of interface and implementation. This
allows to compare different models, even implemented at
different MoCs, and to decouple the MoC adopted for interface
and implementation. Finally, SystemC-AMS is astandard
language, thus easily extensible and free from compatibility
and reuse issues, typical of proprietary tools.

1. SC_MODULE (example_component){
2. public:
3. // functional interface (omitted)
4. sc_in< bool > clk, reset_in;
5. …
6. // power interface
7. sca_tdf::sca_de::sca_out< double > V, I;

8. // temperature interface
9. sca_tdf::sca_de::sca_out< double > P;
10. sca_tdf::sca_de::sca_in< double > T;

11. // reliability interface
12. sca_tdf::sca_de::sca_out< double > lambda;

13. private:
14. // inter-layer signals
15. sca_tdf::sca_signal< int > STATUS_P, STATUS_R;

16. sca_tdf::sca_signal < double > VOLT_T, CURR_T, TEMP_P,
VOLT_R, CURR_R, TEMP_R;

17. functional_model *fm;
18. power_model *pm;
19. temperature_model *tm;
20. reliab_model *rm;

21. public:
22. example_component(sc_core::sc_module_name name_){
23. fm = new functional_model("fm");
24. pm = new power_model("pm");
25. tm = new temperature_model("tm");
26. rm = new reliability_model("rm");

27. // binding to interface ports
28. fm->clk(clk); fm->reset_in(reset_in); ….
29. pm->V(V); pm->I(I);
30. tm->P(P); tm->T(T);
31. pm->lambda(lambda);

32. // binding to inter-layer signals
33. fm->status_p(status_p); fm->status_r(status_r);
34. pm->status_p(status_p); rm->status_r(status_r);

35. pm->volt_t(volt_t); pm->curr_t(curr_t);
36. tm->volt_t(volt_t); tm->curr_t(curr_t);
37. …
38. } };

①

②

③

④

⑤

⑥

Figure 4. SystemC code generated for a component implementing all extra-
functional layers, and including the instantiation of the property-specific
SystemC-AMS modules.

B. SystemC-AMS code organization

The flexibility of SystemC-AMS allows one to encapsulate all
property-specific models of a component in a single SystemC-
AMS module: the interface collects all the property-specific
interfaces of the component, while the body includes the im-
plementation of the property-specific models. This is realized
by declaring each module as a SystemCSC_MODULE, with-
out resorting to a specific SystemC-AMS MoC. This leaves
maximum flexibility in the choice of the suitable MoC for the
implementation, thus capturing different properties withthe
most suitable MoC and allowing to separate different concerns.
Figure 4 shows an example of a component implementation,
that is used in the remainder of this section as a reference.

1) Interface construction:The interface of each component is
built by collecting all the functional and extra-functional ports
from its IP-XACT component descriptions (blocks1© and
2©). The interface, all system connections and the simulation

backbone are implemented by adopting theTDF MoC. Indeed,
the execution semantics of TDF accelerates simulation by
defining a static schedule, and thus enforces an efficient
interaction between components. This is realized by declaring

8

1. SCA_TDF_MODULE (temperature_model){
2. public:
3. // temperature interface
4. sca_tdf::sca_de::sca_out< double > P;
5. sca_tdf::sca_de::sca_in< double > T;

6. // ports for inter-layer communication
7. sca_tdf::sca_de::sca_in< double > volt_t, curr_t;
8. sca_tdf::sca_de::sca_out< double > temp_p, temp_r;
9.
10. temperature_model(sc_core::sc_module_name name_){}
11. private:
12. void set_attributes();
13. void processing();
14. double accumulate, temperature;
15. int counter;
16. double estimate_power(double, double);
17. };

①

②

18. #include «temperature_model.h"
19. void temperature_model::set_attributes(){
20. P.set_timestep(TEMPERATURE_TIMESCALE);
21. volt_t.set_rate(TEMPERATURE_TS/POWER_TS);
22. curr_t.set_rate(TEMPERATURE_TS/POWER_TS);
23. }

24. void temperature_model::processing(){
25. temperature = T.read();
26. P.write(estimate_power(volt_t.read(), curr_t.read()));

27. accumulate += temperature;
28. temp_p .write(temperature);
29. counter ++;
30. if(counter == ratio_r){
31. temp_r.write(accumulate/ratio_r);
32. counter = 0; accumulate = 0.0;
33. }
34. }
35. double estimate_power(double voltage, double curr){…}

temperature_model.h

temperature_model.cpp

③

④

⑤

Figure 5. Example of SystemC-AMS module implementing the temperature
module for component in Figure 4. The code includes model implementation
and the timescale conversion with respect to the power and reliability layers.

ports as TDF ports (block2©), and signals as TDF signals
(block 3©).

2) Body implementation:Layer-specific models of each com-
ponent are implemented as separate SystemC modules, to
encapsulate each property and to enable the execution of each
model at its specific property-specific execution rate. Figure 5
outlines the implementation of a simple temperature module,
used as reference in the remainder of this section.
The interface of layer-specific modules consists of the layer-
specific ports, bound to the external interface of the com-
ponent, plus extra ports used for inter-layer communication.
In Figure 5, the temperature-specific ports (i.e., P and T,
block 1©) are integrated by the inter-layer portsvolt_t
andcurr_t, feeding the corresponding information from the
power layer, andtemp_p and temp_r, used to propagate
the calculated temperature to the power and reliability layers,
respectively (block2©).
As anticipated in the previous section, TDF is used whenever
possible. However, the kind of instantiated SystemC module
and the MoC adopted for the implementation of the behavior
strictly depends on the underlying property-specific model.
Functional and analytical modelsof extra-functional proper-
ties are implemented as TDF modules (SCA_TDF_MODULE),
to exploit the efficient scheduling of TDF. This is
the case of Figure 5. Component evolution is han-
dled by the processing() function, that encapsulates
the C++ implementation of the model (block4©). The

set_attributes() primitive of TDF is then used to as-
sociate a suitable timestep to the output ports (block3©). This
allows associating each layer-specific module to a timestep
that is appropriate for the layer (line 20).
Circuit-equivalent modelsare implemented as standard Sys-
temC modules (SC_MODULE) encapsulating the instantiation
of ELN primitives, used to map the circuit elements. Native
ELN-to-TDF converters are used to convert signals between
the ELN MoC and the TDF interface.
Functional behavioris handled as in traditional functional
simulation. Functionality fits nicely to the TDF MoC, where
the timescale corresponds to the length of the clock period.
However, this is convenient only in case of components
defined from scratch. Things change whenever the functional
implementation is already available in any HDL. Adapting
a HDL functional description to TDF would indeed require
a massive modification of the starting model and in the
scheduling strategy, as it would be necessary to build a static
scheduling version of the component functionality [42]. To
avoid this effort, the functional model is implemented as a
standard SystemC module, obtained through automatic code
generation and implemented at the desired abstraction level
(i.e., RTL or TLM) [5], [12], [15]. To allow seamless inte-
gration of the functionality, also functional ports are mapped
to standard SystemC ports, and conversion to TDF occurs via
native converters of SystemC-AMS (block1© of Figure 4).
Note that functionality processes may be sensitive also to inter-
layer ports, thus enhancing the functionality with sensitivity
with respect to extra-functional properties.
Note that the complexity of the adopted models does not
interfere with the underlying simulation semantics, thanks to
the cycle-based semantics of SystemC-AMS [40]. Adopting
more complex models impacts on the simulation time (i.e.,
how long it takes to simulate one time step), but it does
not interfere with the management of simulated time nor it
introduces time misalignments.

3) Timescale management:Inter-layer communication is nat-
urally enabled by the encapsulation of all property-specific
modules in a single SystemC module. Inter-layer signals are
implemented as internal TDF signals, binding the inter-layer
ports of the property-specific modules (block2© in Figure 5).
The conversion between different time scalesis implemented
in the property-specific module by updating each signal. Con-
version towards a finer-grain scale is straightforward: signals
preserve their value until explicitly updated. Thus, the value is
preserved for all the finer-grain ticks. This happens,e.g., with
signaltemp_p, that propagates the estimated temperature to
the power layer, that is activated more frequently (line 28 of
Figure 5). On the other hand, conversion towards a coarser-
grain timescale must be explicitly implemented, by either
accumulating the value assumed over time and implement-
ing a moving average (for quantitative information), or by
deriving a probabilistic measure (for qualitative information).
An example of moving average is implemented in block5©

for the inter-layer signaltemp_r, propagating the estimated
temperature to the reliability layer.
Whenever a module receives data originated by a finer-grain

9

Functional layer

Computes: Plasma CPU

Model: OpenCores implementation [29]

Abstraction Level: SystemC RTL

Timescale: 100ns (clock period)

Functional

BUS

Core

Temperature

BUS

Power

BUS

Core

Reliability

BUS

Core

Core

λ

P, T

I, V

Power layer

Computes: [V, I](STATE, TEMPERATURE)

Model: Instruction-level PSM [39]

Abstraction Level: TDF

Timescale: 1ms

Reliability layer

Computes: λ(STATE, VOLTAGE,

CURRENT, TEMPERATURE)

Model: RAMP [35]

Abstraction Level: TDF

Timescale: 1s

Temperature layer

Computes: P(VOLTAGE, CURRENT)

Model: Functional

Abstraction Level: TDF

Timescale: 10ms

STATE

VOLTAGE
CURRENT

TEMPERATURE

CORE
COMPONENT

(Figure 5)

Figure 6. The Multi-Layer Approach Applied to a Single Core Example.

scale, it is necessary to explicit the time-scale ratio to ensure
correct scheduling of the TDF modules. This happens in lines
21–22, where the ratio is made explicit for the inter-layer
signalsvolt_t andcurr_t, originated by the power layer.

C. A View of the Framework on the Working Example

Figure 6 pictorially summarizes the technical details of the
methodology on our working example consisting of a single
processor core. The left-hand side of Figure 6 highlights that
the core supports all functional and extra-functional layers,
together with the necessary inter-layer signals. The right-hand
side details the implemented property-specific behavior, in
terms of reference models [29], [35], [39] and of characteris-
tics of the SystemC/SystemC-AMS implementation. Note that
each extra-functional model corresponds to a SystemC-AMS
module implemented as in Figure 5, while the functionality
module is generated via automatic code generation from an
existing VHDL implementation by adopting [12]. The vertical
box encapsulates all modules of the core, and it corresponds
to an instance of the SystemC code outlined in Figure 4.

D. Automatic SystemC-AMS Code Generation

Our framework is enhanced by two tools that implement a
semi-automatic generation of the SystemC-AMS code for the
overall system.
The System Architecture Builderis based on the XML parser
of [41] and, based on the IP-XACT component descriptions of
each component, builds a SystemC module for each compo-
nent, together with the corresponding layer-specific modules
(as presented in Section VI-B). The layer-specific IP-XACT
design descriptions are then used to generate a top-level file,
that instantiates all components and that binds their portsby
reflecting the IP-XACT connections. Finally, IP-XACT design

configuration files are used to populate buses and components
with layer-specific data, declared as constants.
The System Implementation Builderpopulates the SystemC-
AMS skeletons with property-specific models. This step is
currently performed semi-manually by the designer, by im-
plementing available suitable models in SystemC-AMS. Note
that automatic generation approaches can be used whenever
possible to automatically generate the SystemC-AMS im-
plementation of models [7], [27]. It is worth emphasizing
that the flow supports the concept of amodel library, that
includes property-specific models built from scratch or already
developed. The only constraint for library models is to stick
to the interfaces specified for the various components.

VII. E XPERIMENTAL RESULTS

In this section we demonstrate the effectiveness of the pro-
posed framework on an example industry-strength smart sys-
tem [14], which includes the digital core used as a working
example in Section VI-C, a 256KB SRAM memory, and a
bidirectional MEMS accelerometer. Information is exchanged
with the surrounding environment through a Radio Frequency
(RF) transceiver and a UART interface [24]. All components
are connected by an AMBA APB bus. The system is powered
by a hybrid power supply consisting of a 700µAh rechargeable
thin-film EFL700A39 battery by STMicroelectronics [37] and
a Panasonic 0.33F double-layer capacitor [25], each one con-
nected to the power bus through individual DC-DC converters,
namely the STLQ015 by STMicroelectronics [38].
The system alternates data acquisition from the accelerometer,
processing of these data, and their transmission. Specifically,
the core reads acceleration values and it transmits the least sig-
nificant byte to the UART module, and the acceleration value
to the RF Transceiver for packet generation and transmission.
It operates with a 66% duty cycle (1/3 idle, 2/3 active).

A. System Organization and IP-XACT descriptions

Figure 7 outlines the smart system in terms of components,
modeled layers and connections. All properties are supported,
including functionality, power, temperature and reliability.
Note that the power layer includes all functional components,
together with the power suppliers (i.e., battery and superca-
pacitor) and the DC-DC converters. On the other hand, the
temperature and reliability layers include only the core, the
SRAM memory, and the UART and RF transceivers, which
can be consistently simulated.
All extra-functional interfaces have been modeled through
IP-XACT. Table IV reports the number of lines of XML
code necessary for each layer, broken down into lines re-
quired for component descriptions, design descriptions and
design configuration descriptions, respectively. The IP-XACT
descriptions are then used to generate the SystemC simulation
skeleton. Code generation took 6.81s.

B. Adopted Layer-Specific Models

Functional Layer: Functional models of the core, the SRAM
memory, the accelerometer, and the transceivers (RF and

10

CORE
(Figure 7)

DC DCDC-DCDC-DC DC-DC DC-DC DC-DC

Batt SCRF TrCore Mem UART Accel

Functional layer

RF TrCore Mem

Temperature BUS + Arbiter

I, V

Power layer

Reliability layer

Temperature layer

UART Accel

Functional BUS + Arbiter

I, V I, V I, V I, V I, V I, V

Power BUS + Arbiter

Core Mem UARTRF Tr

Reliability BUS + Arbiter

Core Mem UARTRF Tr

I, V I, V I, V I, V I, V I, V I, V

P, T P, T P, T P, T

λ λ λ λ

Layer-specific ports

Inter-layer signals

TDF module

ELN module

SystemC module

TDF ports

SystemC ports

Timescale: 1s

Timescale: 10ms

Timescale: 1ms

Timescale: 100ns

Figure 7. Layered view of the smart system adopted as case study.

Table IV
CHARACTERISTICS OF THEIP-XACT DESCRIPTIONS GENERATED FOR

THE SMART SYSTEM ADOPTED AS CASE STUDY.

Layer
IP-XACT description

Component Design Configuration
(#) (overall loc) (loc) (loc)

Power 15 1,210 743 83

Temperature 5 611 625 177

Reliability 5 126 625 143

UART), were initially available in Verilog or VHDL, and thus
required a conversion to SystemC RTL through automatic tools
[12]. The functional bus is implemented as a SystemC RTL
AMBA APB bus that performs data arbitration.

Power layer: The battery and the capacitor are represented
with circuit models [27], [30]. The various DC-DC converters
are modeled by expressing their conversion efficiency as a
function of the difference between input voltage and output
voltage, which is reasonable for LDO converters [26].
The other (functional) components are modeled through power
state machines (PSMs) generated as proposed in [10] and
characterized by a strict dependence on the functionality:

• the core implements an instruction-level model similar
to [39]: load/store instructions require 2mW, arithmetic
instructions 1mW, branches 0.4mW and NOPs 0.1mW;

• the SRAM memory consumes 50µW when idle, and
1.5mW when reading or writing;

• the UART power consumesi.e., 9.98µW when idle and
1.43mW when transmitting or receiving;

• the accelerometer has a constant demand of 0.26mW;

RF

UART

CORE SRAMSRAMRF
UART

CORE

Figure 8. Floorplan (left) and RBD (right) adopted for the functional
components,i.e., digital processor, SRAM memory, and transceivers.

• the power consumption of the RF transceiver is low in
standby mode (0.1mW), and it increases when transmitting
or receiving (10 mW).

The above values are referred to an ambient temperature of
300K, and are based on data for a similar implementation
[44]. Power models include the dependence of static power
on temperature using the model of [17].
The power bus has a reference voltage of 1.3V. The bus
manager handles the energy flows by implementing a simple
threshold-based policy: current demands higher than 0.23mA
are serviced by the supercapacitor, while lower demands are
supplied by the battery. This policy allows to meet the energy
demand of the functional components, both in terms of power
density and of response to high demand peaks.

Temperature Layer: The heart of the temperature layer is
the bus manager, that computes components temperatures by
solving an RC-equivalent of the thermal network. Notice that
only “electronic” components are considered for this analysis
(i.e., core, SRAM, and transceivers). A single-chip implemen-
tation is assumed, and data about floorplan and technology
implementation are taken from [44]. The resulting floorplanis
shown on the left-hand side of Figure 8. The SystemC-AMS
implementation of the RC-circuit is generated automatically as
presented in [7], and it uses the provided layer-specific data.
Models implemented by the components other than the bus
consists of a simple wrapper that forwards power consumption
values from the power layer to the power layer, and receives
updated temperature values from the temperature bus.

Reliability Layer: The reliability models used here rely on
RAMP [34], and are implemented by adopting the open
source library available at [35]. We currently consider two
reliability mechanisms,i.e., NBTI and TDDB. Since RAMP
models depend on various parameters relative to workload
(e.g., duty cycle), temperature and power consumption, the
reliability layer represents a case in which the methodology
fully exercises the inter-dependencies among layers.
As for temperature, only the electronic components are con-
sidered for this analysis. We assume the components to form
a topology described by the RBD on the right-hand side of
Figure 8: the RF transceiver and the UART form a parallel
connection (i.e., the system fails only if both fail) that is
connected in series with the other components.

Inter-layer signals: Dashed lines in Figure 7 represent the
inter-layer communication flows. Inter-layer signals are used
for all functional components, to represent the mutual effect
of functionality and extra-functional properties.
The adopted inter-layer signals reflect the ones adopted for
the core as shown in Figure 6 and extend them to all other

11

Figure 9. Excerpt of 1.4s of multi-layer simulation for the core. From top to bottom: functional state, current, temperature, and MTTF.

components. Voltage and current, estimated at power layer,
are necessary parameters for temperature estimation and for
reliability modeling. Temperature affects both the reliability
models and the power models [17]. Finally, functional stateis
shared with the power layer (as it determines the evolution of
the PSMs) and with the reliability layer, whose models take
into account the component duty cycle. Since functional state
is a qualitative information, it is passed to the other layers as
a percentage of occurrence of each functional state over one
time step of the coarser-grain layers.

C. SystemC-AMS Implementation Details

The color of each block in Figure 7 determines the MoC
adopted for its implementation. White blocks are for TDF, the
most used MoC across all layers. Functionality is implemented
as SystemC blocks (slanted), while circuit models (solid)
require an ELN implementation (i.e., battery and supercapac-
itor models as well as the RC circuit implemented by the
temperature bus).
Connectors show the bindings between components in the
final system. Solid lines represent connections between layer-
specific ports. Connector ends highlight theport type: round
for TDF ports (mostly used), squared for SystemC ones (used
to ease integration of the functionality).
Dashed lines representinter-layer signals, which introduce
additional ports on the interface of the involved modules.
The arrow-shaped ends of dashed lines indicate the direction
of information flows,i.e., the producer and the consumer(s)
of each signal. Note that the timescale converters are not
made explicit, since they are embedded inside of the producer
module (as explained in Section VI-B3).

D. Choice of Layer-Dependent Timescales

The timescale for the functional layer is dictated by the clock
cycle, which is set to 100ns in our design. The timescales for
the extra-functional layers reflect the “time constants” ofthe
modeled property and their choice is driven by common sense.
We chose 1ms for power, 10ms for temperature and 1s for
reliability. For the latter, a timestep of 1s is probably toofine-
grain for practical uses; however, it is generally not convenient
to use too coarse timescales due to the characteristics of the
TDF MoC, as it will be described in Section VII-H.

E. Simulation Results

Experiments have been run on a 64-bit server with 8 3.40 GHz
cores and 16GB of RAM, and running Kubuntu 14.04 Linux
OS. The SystemC versions are SystemC 2.3.1 and SystemC-
AMS 2.0 (alpha1) [18], [19].
Using the above described workload with 66% duty cycle, we
concurrently simulated functionality and the extra-functional
properties. The estimated system lifetime (i.e., availability
of charge in the battery and the supercap) is 34,140s (9.5
hours); temperature simulation yields a maximum tempera-
ture of 346.24K, with no overheating occurring. Finally, the
reliability models estimate that an overall MTTF is 112,684,
corresponding to 12.86 years of operations without faults.
Figure 9 pictorially shows how the framework allows tracing
the evolution of functional and extra-functional quantities in a
single simulation run. The figure exemplifies the simulationof
about 1s for the core in isolation; for the sake of illustration,
we have assumed a 100% utilization of the processor in the
interval considered. The core is activated at time 40.0s (top
curve); the execution results in a current demand (second curve
from top) with some fluctuations due to the different current
consumption of different instructions.
The increase in the power demand determines a corresponding
change in temperature (third curve from top); it leaves the
stable value reached when the core was idle and tends to
increase asymptotically reflecting the power trace. Given the
short timescale, temperature variations are very small, affect-
ing only the second decimal digit.
The modified operating conditions of the core determine alsoa
decrease of the MTTF (bottom curve), since higher utilization,
temperatures, and power consumption decrease component
reliability. As for temperature, MTTF also exhibits a very
small variation during this short interval.
The line styles used in the plot highlight also the different
timescales in the various layers; even if they are simulated
simultaneously, each layer works at a different “rate”. In the
functional and power layer the lines appears as solid, but this
is due to the fine granularity of the timescale. Conversely, for
temperature and MTTF markers (i.e., the activation points of
the corresponding models) are clearly visible. As an example,
the reliability model is updated only after each second in
response to the evolution of the other properties: at time 40,

12

Table V
VALIDATION OF POWER SIMULATION VS. MATLAB /SIMULINK .

Tool Samples (#) Lifetime (s) Avg. error Speed up
SIMULINK 34,140,008 34,140.5 - -
SC-AMS 34,140,002 34,140.2 6.0E-6% 28.4X

Figure 10. Power Simulation: Comparison against Simulink.

the core is still idle; then at time 41 the model is recomputed
and the MTTF is adjusted to reflect the new power, functional
and thermal conditions.

F. Validation of Results

Since no existing framework allows the simultaneous simu-
lation of all layers, we validated the power and temperature
layers individually using state-of-the-art simulators.

Power validation: For the validation of the power layer, we re-
produced the power models used in our work and the informa-
tion exchange in Matlab/Simulink. For a fair comparison,i.e.,
to avoid including the overhead of inter-layer dependencies,
SystemC-AMS simulation is restricted only to the power layer;
information from other layers like temperature and workload
is provided as pre-calculated waveforms. Simulations use the
same time step of 1 ms. Table V compares the two power sim-
ulations; it can be notice that the proposed approach accurately
tracks the consumed power and the estimated system lifetime,
virtually with no approximation. In order to get a sample
measure of the error, we used battery and capacitor voltages;
the average error (measured as the absolute difference between
the Simulink and SystemC-AMS waveforms) is smaller than
0.0001% (6.0E-6%, with maximum error below 8E-5%). This
confirms the visual fidelity resulting from Figure 10, where
the Matlab/Simulink and SystemC-AMS curves are totally
overlapped. Such a good accuracy is achieved with speedup
of simulation time of about 28.4X, due to the fact that the
Matlab/Simulink internal solver is heavier than the efficient
SystemC-AMS implementation of TDF and ELN [43].

Temperature Validation: The reference for validating thermal
simulation is the widely used Hotspot simulator [36]. As
for power, SystemC-AMS simulation is now restricted to the
temperature layer and power data are provided as a pre-
calculated 2000ms waveform. Simulations use the same time
step of 1 ms, that is the default time step for Hotspot.
Table VI shows that both RC thermal networks instantiate the
same number of elements (nodes, resistors and capacitors),
and confirms the accuracy of the SystemC-AMS simulation by
reporting a negligible error (calculated as the average sample-
by-sample difference). Figure 11 shows an excerpt of the

Table VI
VALIDATION OF TEMPERATURE SIMULATION VS. HOTSPOT.

Tool Nodes Resistors Capacitors Avg. Speed
(#) (#) (#) error up

HOTSPOT 28 64 28 - -
SC-AMS 28 64 28 0.034% 14.57x

345.1510

345.1508

345.1506

345.1504

345.1502

Figure 11. Temperature Simulation: Comparison against Hotspot.

simulation, from which it can be noticed how the HotSpot
curves and the SystemC-AMS ones are barely distinguishable.
SystemC-AMS simulation proved to be 14.5X faster than
Hotspot, thanks to the lighter circuit solvers used by the
SystemC-AMS simulation kernel (i.e., Euler and trapezoidal)
compared to those of HotSpot (i.e., adaptive Runge-Kutta).

Reliability validation: Since the reliability models use with
no modifications the RAMP library available at [35], validation
is immaterial; our results simply replicate those of RAMP
without any approximation.

G. Impact of inter-layer signals

The simultaneous simulation of all properties of a system in
a single simulation run allows to capture their mutual impact
and to track them more accurately. Figure 12 that exemplifies
this feature for power and temperature.
A time slot of high activity of the core determines a larger
current demand for a prolonged time (top plot); this causes
an increase of temperature in correspondence to the next time
step (arrow 1©). Eventually, when current demand decreases,
temperature decreases accordingly (arrow2©). Moreover, since
temperature affects static power consumption, in the next idle
interval of the core (time 637, arrow3©), the resulting idle
power appears to be increased from 0.1mW to 0.1005mW.
Such a run-time tracking of the mutual influence of two
simulated quantities could not be simulated by trace-based
approaches, which need to force a pre-determined order and
dependence between properties.
Moreover, this cyclic dependence does not lead to system
instability. Both intra- and inter-layer signals are SystemC
signals, whose value is updated after a delta of simulation time,
rather than instantaneously. This makes the updated values
for current and temperature available at the next activation of
the models: as an example, the current value updated by the
power layer at time 626ms (arrow2©) is made available to the
temperature layer at the next timestep (at time 630ms).

H. Extra-functional impact on simulation

One last experiment concerns the impact of the choice
of the timescales on accuracy and simulation time. Due

13

0.1mW 0.1005mW

① ② ③

Figure 12. Excerpt of the evolution of the power model and of the temperature
model of the core.

to space constraints, in our exploration we preserve
the ratios between the three extra-functional time scales
(power:temperature:reliability = 1:10:1,000) and vary only
the ratio between the functional timescale (i.e., the clock
cycle) and the power timescale. We express this ratio by the
quantity TR =

Timescalepower

Tclock
. The experiments reported in

the previous section use a value ofTR = 10
4.

Figure 13 shows the result of this analysis, by plotting the per-
centage overhead required for simulating the extra-functional
layers with respect to the functional simulation time vs.TR.
For the later we considered both a SystemC RTL (left plot)
and a C++ implementation [12] (right plot).

Figure 13. Extra-functional Simulation Overhead vs.TR.

The figure clearly shows that the simulation of extra-functional
properties results in an extremely low overhead on functional
simulation (solid lines). Given the same implementation and
TR, the overhead is slightly higher when the functionality is
implemented in C++ (avg., 2.69%) than for RTL (avg., 0.73%),
as a result of the higher level of detail of RTL.
As expected, the figure clearly shows that for both C++ and
RTL the overhead decreases for increasing values ofTR. For
instance, executing the power models every 10 clock cycles
(TR = 10

1) provides about a 6x reduction of the overhead
with respect toTR = 1, i.e., invoking the power model at
each clock cycle. The overhead tends to stabilize for valuesof
TR in the range102 − 10

4), in which the overhead is about
0.3% vs. C++ and 1% vs. RTL.
Interestingly, for larger values ofTR, the overhead tends to
slowly increase. This behavior can be explained by considering
that any SystemC-AMS execution is divided into initializa-
tion and simulation. AsTR increases, the power models

are computed less frequently, thus lowering the impact of
simulation (dashed lines); on the other hand, larger time scales
affect the construction of the TDF schedule, performed in
the initialization phase (dotted lines). As a matter of fact,
for TR > 10

6, SystemC runs out of memory when building
the entire TDF schedule. We can notice how the chosen set
of timescales (TR = 10

4) falls in the flat region where the
overhead is minimum.

VIII. C ONCLUSIONS

This work targeted the high degree of heterogeneity of smart
systems by proposing a methodology for comprehensive sim-
ulation of both functional and extra-functional properties. The
methodology is bus centric, to separate information flows and
management of the specific properties, and highly modular,
to allow easy extension to further components and properties.
The effectiveness of the proposed approach is proved on a
smart system case-study, featuring functionality, power,tem-
perature and reliability. The methodology proved to be correct
and efficient in the modeling of single properties with respect
to state of the art frameworks, with substantial speedup and
average errors lower than 0.1%. Furthermore, the methodology
allowed to reproduce all properties in a single simulation run,
thus capturing at run time the mutual impact of properties and
overcoming the limitations of state of the art tools.

REFERENCES

[1] Accellera. Recommended Vendor Extensions to IEEE 1685-2009 (IP-
XACT), 2013. www.accellera.org.

[2] A. Al-Hammouri. A comprehensive co-simulation platform for cyber-
physical systems.Comput. Commun., 36(1):8–19, 2012.

[3] A. Bauer, J. Hanisch, and E. Ahlswede. An Effective Single Solar Cell
Equivalent Circuit Model for Two or More Solar Cells Connected in
Series.IEEE PHOT, 4(1):340–347, Jan 2014.

[4] B. Beckmann, Y. Eckert, M. Arora, S. Gurumurthi, S. Reinhardt, and
V. Sridharan. A comprehensive timing, power, thermal, and reliability
model for exascale node architectures. InMODSIM, 2013.

[5] N. Bombieri, F. Fummi, and G. Pravadelli. Automatic abstraction of
RTL IPs into equivalent TLM descriptions.IEEE TCOMP, 60(12):1730–
1743, 2011.

[6] D. Broman, C. Brooks, L. Greenberg, E. Lee, M. Masin, S. Tripakis,
and M. Wetter. Determinate composition of FMUs for co-simulation.
In ACM EMSOFT, pages 2:1–2:12, 2013.

[7] Y. Chen, S. Vinco, E. Macii, and M. Poncino. Fast thermal simulation
using SystemC-AMS. InProc. of ACM GLSVLSI, pages 427–432, 2016.

[8] Y. Choi, N. Chang, and T. Kim. DC-DC Converter-Aware Power Man-
agement for Low-Power Embedded Systems.IEEE TCAD, 26(8):1367–
1381, 2007.

[9] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
contract-based component specifications for virtual integration testing
and architecture design. InACM/IEEE DATE, page 16, 2011.

[10] A. Danese, G. Pravadelli, and I. Zandonà. Automatic generation of
power state machines through dynamic mining of temporal assertions.
In Proc. of IEEE/ACM DATE, pages 606–611, 2016.

[11] A. Davare, D. Densmore, T. Meyerowitz, R. Pinto, A. Sangiovanni-
vincentelli, G. Yang, H. Zeng, and Q. Zhu. A next generation design
framework for platform-based design. InAccellera DVCon, 2007.

[12] EDALab. HIFSuite - EDA Software Tools for HDL and Virtual
Platforms, 2016. www.hifsuite.com.

[13] A. Elsheikh, E. Widl, and P. Palensky. Simulating complex energy
systems with Modelica: A primary evaluation. InIEEE DEST, pages
1–6, 2012.

[14] F. Fummi, M. Lora, F. Stefanni, D. Trachanis, J. Vanhese, and S. Vinco.
Moving from co-simulation to simulation for effective smart systems
design. InIEEE/ACM DATE, pages 1–4, 2014.

14

[15] L. D. Guglielmo, F. Fummi, G. Pravadelli, F. Stefanni, and S. Vinco.
UNIVERCM: The UNIversal VERsatile computational model forhet-
erogeneous embedded system design. InIEEE HLDVT, pages 33–40,
2011.

[16] L. Guo, Q. Zhu, P. Nuzzo, R. Passerone, A. Sangiovanni-Vincentelli, and
E. A. Lee. Metronomy: A function-architecture co-simulation frame-
work for timing verification of cyber-physical systems. InIEEE/ACM
CODES+ISSS, pages 1–10, 2014.

[17] H. Huang, G. Quan, and J. Fan. Leakage temperature dependency
modeling in system level analysis. InProc. of IEEE ISQED, pages
447–452, 2010.

[18] IEEE Standard. Standard SystemC language reference manual. IEEE
Std 1666-2011, pages 1–638, 2012.

[19] IEEE Standard. Standard SystemC analog/mixed-signalextensions
language reference manual.IEEE Std 1666.1-2016, pages 1–236, 2016.

[20] IEEE/IEC Standard. IP-XACT, standard structure for packaging, in-
tegrating, and reusing ip within tool flows.IEC 62014-4 IEEE Std
1685-2009, pages 1–373, 2015.

[21] JEDEC solid state technology association.Failure Mechanisms and
Models for Semiconductor Devices, 2006. JEP122C.

[22] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Multi-mechanism
reliability modeling and management in dynamic systems.IEEE TVLSI,
16(4):476–487, 2008.

[23] I. Koren and C. Krishna.Fault-Tolerant Systems. Morgan Kaufmann
Publishers Inc., 2007.

[24] Maxim Integrated. MAX3108 SPI/I2C UART, 2015.
www.maximintegrated.com.

[25] Panasonic.EECS0HD334 Electric Double Layer Capacitors Datasheet,
2015. industrial.panasonic.com/ww/products/capacitors/edlc.

[26] S. Park, Y. Wang, Y. Kim, N. Chang, and M. Pedram. BatteryMan-
agement for Grid-connected PV Systems with a Battery. InACM/IEEE
ISLPED, pages 115–120, 2012.

[27] M. Petricca, D. Shin, A. Bocca, A. Macii, E. Macii, and M.Poncino. An
automated framework for generating variable-accuracy battery models
from datasheet information. InACM/IEEE ISLPED, pages 365–370,
2013.

[28] W. Peukert. Über die Abhängigkeit der Kapazität von der Entlade-
stromstärke bei Bleiakkumulatoren. InElektrotechnische Zeitschrift,
page 20, 1897.

[29] S. Rhoads. Plasma CPU Core, 2001. opencores.org.
[30] M. A. Sakka, H. Gualous, N. Omar, and J. V. Mierlo.Batteries and

Supercapacitors for Electric Vehicles, pages 135–164. InTech, 2012.
[31] K. Skadron, M. Stan, W. Huang, S. Velusamy, et al. Temperature-aware

microarchitecture. InProc. of ACM ISCA, pages 2–13, 2003.
[32] K. Skadrony, M. Stanz, M. Barcellaz, A. Dwarkaz, et al. Hotspot:

Techniques for modeling thermal effects at the processor-architecture
level. In Proc. of THERMINIC, pages 1–4, 2002.

[33] W. J. Song, S. Mukhopadhyay, and S. Yalamanchili. KitFox: Multi-
physics libraries for integrated power, thermal, and reliability simulations
of multicore microarchitecture.IEEE TCPMT, 5(11):1590–1601, 2015.

[34] J. Srinivasan, S. Adve, P. Bose, and J. A. Rivers. Lifetime reliability:
toward an architectural solution.IEEE Micro, 25(3):70–80, May 2005.

[35] J. Srinivasan and P. Ramachandran. The RAMP Lifetime Reliability
Model (Version 2.0), 2005. rsim.cs.uiuc.edu/ramp/ramp20.

[36] M. Stan, K. Skadron, M. Barcella, W. Huang, K. Sankaranarayanan,
and S. Velusamy. Hotspot: a dynamic compact thermal model atthe
processorarchitecture level.Elsevier Microelectronics Journal, 34:1153–
1165, 2003.

[37] STMicroelectronics. EFL700A39 EnFilm rechargeable solid state
lithium thin film battery datasheet, 2013. www.st.com.

[38] STMicroelectronics. STLQ015150 mA - ultra low quiescent current
linear voltage regulator, 2015. www.st.com.

[39] V. Tiwari, S. Malik, A. Wolfe, and M. T. C. Lee. Instruction level power
analysis and optimization of software. InIEEE ICVD, pages 326–328,
1996.

[40] A. Vachoux, C. Grimm, and K. Einwich. Towards analog andmixed-
signal SOC design with SystemC-AMS. InProc. of IEEE DELTA, pages
97–102, 2004.

[41] D. Veillard. The XML C parser and toolkit of Gnome. xmlsoft.org.
[42] S. Vinco, V. Guarnieri, and F. Fummi. Code manipulationfor virtual

platform integration.IEEE TCOMP, 65(9):2694–2708, 2015.
[43] S. Vinco, A. Sassone, F. Fummi, E. Macii, and M. Poncino.An open-

source framework for formal specification and simulation ofelectrical
energy systems. InIEEE/ACM ISLPED, pages 287–290, 2014.

[44] Y. Zhang, F. Zhang, , Y. Shakhsheer, J. D. Silver, et al. ABatteryless
19mu W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC
for ExG Applications. IEEE SCC, 48(1):199–213, Jan 2013.

Sara Vinco (M09) received the Ph.D. degree in
computer science from the University of Verona,
Italy, in 2013. She is currently a Post-Doctoral
Research Associate at the Department of Control
and Computer Engineering, Politecnico di Torino,
Italy. Her main research interests are energy efficient
electronic design automation and techniques for sim-
ulation and validation of heterogeneous embedded
systems.

Yukai Chen (M15) received the M.Sc. degree in
Computer Engineering at Politecnico di Torino, Italy,
in 2014. He is working toward the PhD degree in the
Department of Control and Computer Engineering
at Politecnico di Torino. His main research inter-
ests focus on computer-aided design for integrated
circuits and electrical energy systems, with particu-
lar emphasis on modeling and simulation of extra-
functional properties of cyber-physical systems.

Franco Fummi (M92) received the Ph.D. degree
in electronic engineering from Politecnico di Mi-
lano, Italy, in 1995. He is currently the Head of
the Department of Computer Science, University of
Verona, Italy, where he is a Full Professor since
2000, and where he became an Associate Professor
in computer architecture in 1998. Since 1995, he
has been with the Department of Electronics and
Information, Politecnico di Milano, as an Assistant
Professor. He is a co-founder of EDALab, an EDA
company developing tools for the design of net-

worked embedded systems. His current research interests include electronic
design automation methodologies for modeling, verification, testing, and
optimization of embedded systems.

Enrico Macii (SM02, F07) Enrico Macii is a Full
Professor of Computer Engineering at Politecnico
di Torino, Italy. Prior to that, he was an Associate
Professor (1998-2001) and an Assistant Professor
(1993-1998) at the same institution. From 1991 to
1997 he was also an Adjunct Faculty at the Uni-
versity of Colorado at Boulder. He holds a Laurea
Degree in Electrical Engineering from Politecnico di
Torino (1990), a Laurea Degree in Computer Science
from Università di Torino (1991) and a PhD degree
in Computer Engineering from Politecnico di Torino

(1995). Since 2007, he is the Vice Rector for Research at Politecnico di Torino;
he was also the Rector’s Delegate for Technology Transfer (2009-2015) and
for International Affairs (2012-2015). His research interests are in the design
of electronic circuits and systems, with particular emphasis on low-power
consumption, optimization, testing, and formal verification. In the last few
years, he has been growingly involved in projects focusing on the development
of new technologies and methodologies for smart cities and bioinformatics.
In the fields above he has authored over 450 scientific publications. Enrico
Macii is a Fellow of the IEEE.

Massimo Poncino(M97,SM12) received the Ph.D.
degree in Computer Engineering and the Dr.Eng.
degree in Electrical Engineering from the Politecnico
di Torino, Italy. He is currently a Full Professor
of Computer Engineering at Politecnico di Torino.
His research interests include several aspects of
design automation of digital systems, with particular
emphasis on the modeling and optimization of low-
power systems. He is the author or coauthor of more
than 300 journal and conference papers. He is an
Associate Editor of the ACM Transactions on Design

Automation of Electronic Systems and of IEEE Design & Test. Prior to that, he
was an Associate Editor of IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2006-2012). He was the Technical Program
Co-Chair (in 2011) and the General Chair (in 2012) of the ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED).
He serves on the Technical Program Committee of several IEEEand ACM
technical conferences, including DAC, ICCAD, DATE, ISLPED, ASP-DAC,
CODES-ISSS, and GLSVLSI.

