
 
 

Delft University of Technology

A Mapping Methodology of Boolean Logic Circuits on Memristor Crossbar

Xie, Lei; Du Nguyen, Hoang Anh; Taouil, Mottaqiallah; Hamdioui, Said; Bertels, Koen

DOI
10.1109/TCAD.2017.2695880
Publication date
2018
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Computer - Aided Design of Integrated Circuits and Systems

Citation (APA)
Xie, L., Du Nguyen, H. A., Taouil, M., Hamdioui, S., & Bertels, K. (2018). A Mapping Methodology of
Boolean Logic Circuits on Memristor Crossbar. IEEE Transactions on Computer - Aided Design of
Integrated Circuits and Systems, 37(2), 311-323. https://doi.org/10.1109/TCAD.2017.2695880

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TCAD.2017.2695880
https://doi.org/10.1109/TCAD.2017.2695880


1

A Mapping Methodology of
Boolean Logic Circuits on Memristor Crossbar

Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui, Koen Bertels
Laboratory of Computer Engineering,

Delft University of Technology, Delft, the Netherlands
Email: {L.Xie,H.A.DuNguyen,M.Taouil,S.Hamdioui,K.L.M.Bertels}@tudelft.nl

Abstract—Alternatives to CMOS logic circuit implementations
are under research for future scaled electronics. Memristor
crossbar based logic circuit is one of the promising candidates
to at least partially replace CMOS technology, which is facing
many challenges such as reduced scalability, reliability, and
performance gain. Memristor crossbar offers many advantages
including scalability, high integration density, non-volatility, etc.
The state-of-the-art for memristor crossbar logic circuit design
can only implement simple and small circuits. This paper
proposes a mapping methodology of large Boolean logic circuits
on memristor crossbar. Appropriate place-and-route schemes, to
efficiently map the circuits on the crossbar, as well as several
optimization schemes are also proposed. To illustrate the potential
of the methodology, a multi-bit adder and other nine more
complex benchmarks are studied; the delay, area and power
consumption induced by both the crossbar and its CMOS control
part are evaluated.

Index Terms—Memristor Crossbar, Logic Design, Mapping,
Evaluation.

I. INTRODUCTION

As CMOS transistors gradually scale down to the intrinsically
physical device limits, CMOS VLSI circuits are facing major
challenges such as saturated performance gain, increased
leakage power consumption, reduced reliability, and a more
complex fabrication process [1–3]. In addition, CMOS-
based computers are suffering from memory bottleneck [4],
power wall [5], etc. To address these challenges, alternative
technologies [6] are under investigation; examples are
nanotube [7,8], silicon nanowire FET [9], magnetic/spintronic
[10–12], and memristors [13,14]. Among these proposals,
memristor crossbar based logic circuit is a promising candidate
due to its attractive characteristics in terms of scalability, high
integration density, and non-volatility, etc [15,16]. Moreover,
based on memristor technology, novel computer architectures
for data-intensive applications have been proposed, such as
computation-in-memory [17–21], resistive associate processor
[22] and Pinatubo [23]; they show a potential of order of
magnitude performance improvement as compared to todays’
architectures.

To implement such novel computer architectures, logic
circuits based on resistive devices, such as memristors, are
required; research on this topic is still in infancy stage. As
of today, four types of memristor-based logic circuits have
been proposed: threshold [24,25], majority [25], material
implication [26,27], and Boolean [28,29] logic. Threshold and

majority logic circuits use memristor as the weight of inputs
and use CMOS current mirror or inverter as the threshold
function. Both of them are more suitable for traditional
computer architecture as they represent data by using voltage.
In contrast, both material implication and Boolean logic seem
to be the enabler for the novel computer architectures as they
use resistance to represent data, and can be easily integrated
with high density memories [30,31]. In [27,32,33], the authors
proposed methodologies to implement logic functions using
a sequence of material implication operations. However,
these methodologies suffer from low speed and require
new algorithms to implement arithmetic operations such as
addition [27,34,35]. In [28,29], the authors proposed simple
and small Boolean logic designs for memristor crossbar,
which partially address the shortcomings of implication logic.
Therefore, exploring memristor crossbar logic design for
larger circuits is required in order to appropriately assess the
potential of such technology.

This paper proposes a mapping methodology of Boolean logic
circuits on memristor crossbar to enable the implementation
of large logic circuits, and illustrates the methodology for
a multi-bit adder. Thereafter, the methodology is applied to
nine more complex benchmarks to show its generality. This
work is built on our preliminary work published in [29],
where the focus was mainly on the implementation of simple
Boolean functions. Compared to the preliminary work, the new
contributions of this paper are:

• A mapping flow for memristor crossbar enabling large-
scale logic circuits.

• Two place-and-route schemes to map large-scale logic
circuits on crossbar.

• Design of CMOS peripheral circuits, which act as the
control engine of the memristor crossbar.

• Several schemes to optimize the area, delay and power
consumption.

• A model to evaluate the performance of the design in
terms of area, delay and power consumption, which
considers both the crossbar and CMOS parts.

The remainder of this paper is organized as follows. Section II
briefly describes the design of resistive Boolean logic. Section
III presents the proposed mapping flow, two place-and-route
schemes and CMOS circuits to control the crossbar. Section
IV discusses several optimization schemes. Section V verifies
the methodology using multi-bit adders as a case study, and

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.



SET

RESET

I

V

RL ‘0’

RH ‘1’
VwVthVh

-Vth-Vh-Vw

SET RESET

RL RH

Vw

GND

I

Vw

GND

I

RH RL

Fig. 1: Ideal Memristor Model.

INA

RIN CFM EVM

GERINRSOU

1

2 3 4

567

(b) 

IL

m1

...

A
N

D

(a) 

...

f f

mi

mn

OL

LB

Primary Inputs

ff

INV

Fig. 2: Working Principle of Boolean Logic: (a) Computing Element,
(b) State Machine.

applies the method to nine more complex benchmarks. Section
VI concludes the paper with advantages of the proposal and
challenges in the future work.

II. BOOLEAN LOGIC DESIGN

This section starts first by briefly presenting the memristor
model used in this work. Thereafter, it presents the working
principle of the resistive Boolean logic we proposed in [29].
Then, the implementation of the primitive (logic) operations
(e.g., AND) is given; these are used to build one-bit full adder,
which is used in this work later.

A. Memristor Model

The left part of Fig. 1 shows the current-voltage relation of the
ideal memristor model used in this work; it has a high (RH )
and low (RL) resistive states. The memristor switches from
one resistive state to another when the absolute value of the
voltage across the device is greater than its threshold voltage
Vth. Otherwise, it stays in its current resistive state. Typically, a
memristor requires two different switching threshold voltages
to switch from low to high resistance (RESET) and from high
to low resistance (SET) [36,37] (see the right part of Fig. 1).
For simplicity, we assume that the threshold voltage Vth (in
absolute value) for both switchings are the same. Here, we use
the ideal model as this paper focuses on mapping methodology.
Nevertheless, any model can be used such as those in [36,37].

B. Working Principle of Boolean Logic

Our Boolean logic design approach [29] is able to implement
any logic function f expressed in the format of sum-of-product
(i.e., f = m1 + · · ·+ mi + · · ·+ mn=m1 · · · · ·mi · · · · ·mn

where mi is a minterm of inputs, n the number of minterms);
its implementation is referred to as a computing element (CE)
as shown in Fig. 2(a). A CE consists of an input latch (IL), an
output latch (OL), and a logic block (LB). The LB consists

Rs

Rs

Vw

GND

RH

Vx ≈ GND

Rs

Copy 1

(a) (b) 

(e)

GND

Vx ≈ Vw

RH RH

RL

Copy 0

Vw

GND

GND

Vh Vw

Rs

Vw

GND

Vw

Vw

(c)

Rs(d)

Vh VwVhVh

Vom

Vx Vx

Vx Vx

Vw
RL

+
-

Rs(f)

G Vw

Vx

Fig. 3: Implementation of Primitive Operations: (a) Single-Fanout
Copy, (b) Multi-Fanout Copy, (c) 3AND1, (d) 3NAND1, (e) INV1,
(f) Horizontally Copy.

of all the minterms of the Boolean function; each mi is
realized using a NAND gate consisting of several memristors
depending on the number of its inputs. By ANDing all the
mi, the f can be generated. Finally, f is inverted to obtain
f . The input and output latches are composed of several
memristors depending on the number of inputs and outputs
of the Boolean function, respectively.

Memristor-based logic design described above requires a
CMOS circuit to control the crossbar part; its behaviour is
captured by a state machine as shown in Fig. 2(b). The state
machine requires 7 states:

• INA: INitialize All the memristors of a CE to RH . This
state requires RESET operations.

• RIN: Receive INputs. The IL of the CE receives the
inputs from primary inputs using CMOS controller to
program the resistance of memristors, or from the OL of
the previous CE using copy operations. Therefore, this
state requires SET, RESET, or copy operations.

• CFM: ConFigure all Minterms. All the minterms are
configured simultaneously through copying inputs stored
in IL to each minterm in parallel. Hence, this state
requires copy operations.

• EVM: EValuate all Minterms. All the mi are evaluated
at the same time; each mi is implemented by an NAND
operation.

• GER: GEnerate Result. The results of EVM are used
as inputs of an AND gate to generate f , which is the
negation of the Boolean function. Therefore, this state
needs an AND operation.

• INR: INvert Result. The result of GER is inverted to
produce the final result f . Hence, an inversion (INV) is
required.

• SOU: Send OUtputs. Finally the result stored in OL is
sent to IL of the next CE. Hence, copy operations are
employed.

The above shows that in order to implement Boolean logic
using the described approach, at least five primitive operations
are needed: RESET, copy, NAND, AND, and INV; RESET

2



Power Supply

CMOS 

Ctrller

ABCi

IL

ABCi

ABCi

ABCi

ABCi

ABCi

S

Co

ABCi

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Rs

RsA A B BCi Ci S Co

Disabled 

Memristor

S Co

Fig. 4: Implementation of One-Bit Full Adder.

is already described and is shown in Fig. 1; the remaining
operations are discussed next.

C. Implementations of Primitive Operations

All primitive operations use RH and RL to represent logic
1 and 0, respectively. Fig. 3 shows the implementations
of all primitive operations; each implementation consists of
one or multiple input and an output memristors. The output
memristors are all initialized to RH prior to any operation
(i.e., RESET operation of state INA), and are surrounded
by a dashed-line box in the figure. The voltage across the
output memristor(s) is denoted by Vom, while the voltage of
the floating nanowire is denoted by Vx; both of them are
used to explain the working principle of primitive operations.
In addition, all primitive operations consist of a resistor Rs

(see Fig. 3), which satisfies the condition RL�Rs�RH ; this
is required to guarantee that the voltage across the output
memristor is close to the desired voltage for proper operations
[27]. Fig. 3(a), (c), (d) and (e) show primitive operations with
one output memristor or single fanout. Multi fanout operations
can be realized by employing multiple output memristors;
Fig. 3(b) shows a two-fanout copy operation by employing
two output memristors. Note that the positive terminal of each
memristor is connected to the vertical nanowire. Fig. 3(f)
shows the horizontal copy; it will be used later.

To control primitive operations, three different voltages are
required: Vw, Vh, and GND; see Fig. 1. Vw is used to program
the memristor; Vh is used to minimize the impact of sneak
path currents by half-select voltage strategy [38]; Vh is then
applied to memristors which are not involved in particular
operations within a crossbar. Vh is also used to control NAND
and INV as shown in Fig. 3(d) and Fig. 3(e). The relationship
between Vw, Vh, GND and Vth is 0<Vh=Vw

2 <Vth<Vw. This
relationship guarantees Vw−Vh=2Vh−Vh=Vh<Vth which
prevents undesired switching of non-accessed memristors
[34,39].

The copy operation will be used as an example to explain its
working principle; the other operations can be understood in

TABLE I: Control Voltages for One-Bit Full Adder

States

Control Voltages
Row Column

IL LB OL IN Output
OUT OUTN

H1 H2-8 H9-10 V1-6 V8,10 V7,9
INA Vw Vw Vw G G G
RIN G Vh Vh F Vh Vh
CFM Vw G Vh F Vh Vh
EVM Vh F Vh Vh Vh Vw
GER Vh Vw G Vh Vh F
INR Vh Vh F Vh Vw Vh
SOU Vh Vh Vw Vh Vh Vh

a similar way, and more details can be found in [29]. Before
performing any operation, the data should be stored in the
right locations. Then, for a copy operation, a voltage Vw>Vth

and GND are applied to the input and output memristors,
respectively, as shown in Fig. 3(a). In case of copy 1 (RH ), Vx

is around 0 as Rs�RH . Therefore, Vom=Vx−0≈0<Vth. As
a result, the output memristor stays at RH . In case of copy 0
(RL), Vx≈Vw as RL�Rs. Therefore, Vom=Vx−0≈Vw>Vth.
As a result, the output memristor switches to RL.

D. One-Bit Full Adder

The sum (S) and carry (Co) of a one-bit full adder (FA)
are expressed by Eq.1 [40]. Each equation consists of four
minterms.

S = ĀB̄Ci · ĀBC̄i ·AB̄C̄i ·ABCi

Co = ĀBCi ·AB̄Ci ·ABC̄i ·ABCi (1)

Fig. 4 shows the crossbar implementation of this FA using the
principle of Fig. 2 and Fig. 3. For convenience, H# and V# are
used to denote a horizontal and vertical nanowire, respectively;
a memristor in the crossbar is denoted by M(H#,V#). To
implement the FA, two types of memristors are used: active
(which can switch between two resistive states) and disabled
(which is permanently high resistance) memristor. In the
figure, the junctions where disabled memristors are located
have no devices as shown in Fig. 4.

The FA is implemented using a CE consisting of an IL, LB
and OL. The IL is mapped on the memristors M(H1,V1-V6),
since IL consists of primary inputs and their complements.
The remaining memristors on H1 are disabled. The LB
consisting of seven minterms is mapped on H2-H8, where the
minterm ABCi is shared by sum and carry. Each minterm
is implemented by placing active memritors at junctions
formed by the horizontal nanowire (representing the minterm)
and (a) the vertical nanowires associated with the minterm’s
inputs, or (b) an output for which the minterm is part of.
For example, ĀB̄Ci on H2 is a minterm of sum. Therefore,
memristors M(H2,V1=Ci), M(H2,V4=Ā), M(H2,V6=B̄),
and M(H2,V7=S) are active; while the remaining memristors
on H2 are disabled. The four minterms of S and those of Co

(see Eq. 1) are then ANDed in parallel by column V7=S and
V8=Co, respectively. The OL is realized by H9 and H10. The

3



Divide 

Design 

Into 

Simple 

Functions

Optimize 

Functions

Implement

Functions 

by CEs

Place-and-

Route CEs 

on Crossbar

Design 

CMOS

Control 

Circuit CMOS 

Layer

Memristor

Nanowire

Via

CrossbarLogic

Interconnect

CMOS

Circuit

Controller

Voltage Driver

Logic 

Design

Description

Integrate 

Crossbar 

and 

CMOS 

Circuits

Fig. 5: Mapping Flow and Implementation.

results provided by the two ANDs are then stored at M(H9,
V7) and M(H10, V8), which are thereafter inverted and
stored at M(H9, V9=S) and M(H10, V10=Co), respectively.
Note the FA implementation requires 10 rows and 10 columns.

To perform the desired primitive operations during each state,
appropriate voltages are applied to each horizontal and ver-
tical nanowire of the CE. Table I summarizes the required
voltages for the FA; they are straightforwardly derived from
the implementations of the primitive operations as shown in
Fig. 3. Each row (horizontal nanowire) is associated with
the implementation of IL, LB or OL; while the columns are
associated with the primary inputs (IN) or outputs (OUT), or
their complements (OUTN). For instance, to perform copy
operations required by CFM state to configure all minterms
in parallel, Vw is applied to row H1, GND (G) is applied to
rows H2-H8, while columns V1-V6 are left floating (F) (see
the row CFM of Table I). It is worth noting that the remaining
rows (H9-H10) and columns (V7-V10) are set to Vh in order
to minimize the impact of sneak path currents [34,39]. All the
circuits mentioned in this paper use this methodology to solve
the sneak path problems.

III. MAPPING METHODOLOGY AND IMPLEMENTATION

This section first presents the mapping flow for Boolean logic
based on memristor crossbar. Subsequently, it highlights the
challenges of place-and-route within crossbar and potential
solutions. Finally, it presents the CMOS circuit used to control
the memristor crossbar.

A. Mapping Flow

Fig. 5 shows the flow of the mapping methodology. The
entire design is first divided into multiple simple Boolean
functions (e.g., look-up tables), which can be further optimized
by EDA tools such as ESPRESSO [41]. Next, the optimized
Boolean functions are implemented using CEs, as presented in
Section II. Thereafter, all CEs are placed and routed within the
crossbar, and the CMOS circuit (used to control the crossbar)
is designed. Finally, the memristor crossbar and CMOS control
circuits are integrated together by stacking the crossbar on
the CMOS part as shown in Fig. 5. The first three steps are
described in our previous work [29]; this section will focus
on the place-and-route and CMOS circuit design.

B. Potential Solutions to Place-and-Route

To highlight the challenge of place-and-route, a 4-bit ripple
carry adder is used as an example. Fig. 6(a) shows this 4-bit
adder which uses four FAs of Fig. 4 as building blocks.
A naive solution to place and route these FA blocks is to
arrange them adjacently to each other, as the two options

(a)

(b)

FA1

A1 B1

C0

S1

FA2

A2 B2

C1

S2

FA3

A3 B3

C2

S3

FA4

A4 B4

C3

S4

C4

FA1 FA2 FA3 FA4 FA1 FA2

FA3 FA4

Fig. 6: Place-and-Route Challenges: (a) Block Diagram, (b) Layouts
Sharing Nanowires.

(a)

FA1

FA2

FA3

FA4

(b)

FA1 FA2 FA3 FA4

Interconnect

40

46 40

12

Fig. 7: Place-and-Route Schemes: (a) Diagonal Scheme, (b) Isolated
Scheme.

shown in Fig. 6(b). However, typically this cannot be done
as the operations of each FA require specific control voltages
applied to the horizontal and vertical nanowires (see Table I);
sharing these nanowires between different FAs will lead to a
conflict of control voltages; and hence impacting each other’s
operations. Therefore, special attention should be given to
place-and-route.

Potential solutions to address the above challenge are:
• Preventing each pair of FAs from sharing the same

horizontal or vertical nanowires;
• Breaking the nanowires within the crossbar in order to

isolate each FA;
• Stacking FAs on each other rather than having them

within the same crossbar layer.
In the rest of this subsection, we will discuss the first two
potential solutions in more details. Actually the third potential
solution is similar to the second one except that the FAs are
stacked.

To prevent each pair of FAs from sharing the same horizontal
and vertical nanowires, diagonal place-and-route scheme is
proposed. Fig. 7(a) shows the 4-bit adder which is placed
and routed using the diagonal scheme. All the FAs are placed

4



Rs

Vh

G

Vw

(b)

Vx≈ Vh

INA

RIN

CFM

EVM GER INR

SOU

TRD
...

Vh

LB

OL

INT

RL

RL

RL

RH

Rs

Vw

G

Vw

Vx≈ Vw

...

Vw

RL

RL

RL

RH RL

(a)

n < Ns

n = Ns

Fig. 8: CMOS Controller: (a) Modified State Machine, (b) State SOU.

TABLE II: Control Voltages for Multi-CE Design

State

Control Voltage
Row Column

IL LB OL INT IN OUT OUTN
INA Vw Vw Vw Vw G G G
RIN G Vh Vh Vh F Vh Vh
CFM Vw G Vh Vw F Vh Vh
EVM Vh F Vh Vh Vh Vh Vw
GER Vh Vw G Vh Vh Vh F
INR Vh Vh F Vh Vh Vw Vh
SOU Vh Vw Vw G Vh Vh Vh
TRD Vh Vh Vh F Vw G G

in a diagonal pattern, and therefore, no FAs share the same
horizontal and vertical nanowires. To route the carry and its
negation between FAs (e.g., carry C1 and it negation C1

between FA1 and FA2), two extra rows are reserved for
interconnect [42]. As a result, the implementation of the four-
bit adder of Fig. 6(a) is mapped on a 46×40 crossbar using
the diagonal scheme; see Fig. 7(a).

Fig. 7(b) shows the 4-bit adder which is placed and routed
using isolated scheme. By breaking the nanowires within the
crossbar, each pair of FAs is isolated. Therefore, all the FA
units can be placed adjacently, and the adder requires less
crossbar area. Similar to the diagonal scheme, two extra rows
are reserved for interconnect to route carry between FAs.
The neighbour interconnect segments are isolated with each
other, and each FA only connects to the interconnect segment
connecting its up- and down-stream FAs. As a result, the
implementation of the four-bit adder of Fig. 6(a) is mapped
on a 12×40 crossbar using the isolated scheme; see Fig. 7(b).
Note that the isolated scheme consumes less crossbar area
than the diagonal scheme to place and route the same design;
e.g., the crossbar area is reduced from 46×40 to 12×40; a
reduction of 74%.

C. CMOS Control Circuits

To control the memristor crossbar, a CMOS circuit is
employed; it consists of a controller and voltage drivers. The
behaviour of the controller is captured by the state machine
in Fig. 8(a); it is generated based on the state machine of
Fig. 2(b). As the crossbar consists of multiple CEs, the
state machine of Fig. 2(b) is extended with an extra state
TRD (transfer data), which is needed to horizontally transfer

Out

Vw

Vh

GND

C[0]

C[1]

C[2]

T1

T2

T3

...

na nd

RL RD

Active

Memristors

...

C[0:2]

Vw Out
Vh

GND Disabled

Memristors

Vw

Fig. 9: CMOS Voltage Drivers.

the carry (using the interconnect) between FAs. Note that
the execution of the state machine of Fig. 8(a) needs to be
repeated Ns times after the initialization, where Ns is the
number of stages (i.e., FAs) that the crossbar consists of. For
example, Ns for the design of Fig. 6(a) is 4. Consequently,
a design with Ns stages requires 7Ns + 1 execution steps,
where 7 is the number of states (initialization excluded).

Table II summarizes the control voltages required for each
state of Fig. 8; it is derived from Table I. As already
mentioned, additional rows are needed for interconnects; they
are included in the table and denoted as ‘INT’. Note that the
states in the table are extended with state TRD.

In addition, the control voltages of state CFM and SOU in
Table II are different from Table I, due to the impact of sneak
path currents [43]. Fig. 8(b) shows state SOU as an example. In
state SOU, the data in OL is copied to INT; therefore, voltage
Vw and GND are applied to row OL and INT, respectively.
To reduce the impact of sneak path currents, Vh are typically
applied to rows LB as half-select voltage [44]. Let assume
that OL stores ‘0’ (RL). As OL stores the results of AND
operations of state GER, at least one of the memristors in
rows LB is RL as shown in the left part of Fig. 8(b). After
applying control voltages, the voltage of the floating nanowire
Vx is around Vh, and the voltage across the output memristor
in INT is Vx−0≈Vh<Vth. As a result, the output memristor
stays at RH , and cannot copy ‘0’. To solve this issue, Vw

is applied to row LB, and hence Vx≈Vw>Vth; see the right
part of Fig. 8(b). Consequently, the output memristor in INT
switches to RL, and copies 0 from OL.

Next, we will illustrate how to design a voltage driver while
taking the restrictions of the crossbar design into account.
Fig. 9 shows a possible implementation of voltage drivers,
which are parts of the control circuit. A voltage driver is
composed of one NMOS and two PMOS pass transistors; the
state (i.e. closing or opening) of these transistors are controlled
by three-bit signals C[0:2], which are provided by the CMOS
controller. To drive a nanowire connecting active memristors
as shown in the right part of Fig. 9, the transistors should
provide enough current. Therefore, their width-to-length ratio
W
L should be carefully determined. Let assume that we have na

active and nd disabled memristors. To program a single active
memristor, the current supplied by a NMOS transistor should
be greater than Iw= Vw

RL
[45]. Therefore, the NMOS transistor

typically needs (W
L )n=2 and its area has to be An=6F 2

[46,47], where F is the feature size of CMOS technology;

5



ABCi

IL

ABCi

ABCi

ABCi

ABCi

ABCi

S & Co

ABCi

A A B BCi Ci S CoS Co

ABCi

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Fig. 10: The FA Calculating All Outputs Simultaneously.

see Eq. 2. 
Iw = Vw

RL
,

(W
L )n = 2,

An = 6F 2

(2)

To drive na active memristors in parallel, (W
L )n and An of the

NMOS should be increased na times in order to provide the
required current Iw, as shown in Eq. 3.

Iw = na
Vw

RL
,

(W
L )n = 2na,

An = 6naF
2

(3)

In addition, assume that we have nd disabled memristors; each
of them consumes the current ID= Vw

RD
, and hence the NMOS

transistor should be adjusted as to compensate for the current
through nd disabled memristors, as shown in Eq.4.

Iw = na
Vw

RL
+ nd

Vw

RD
= (na + RL

RD
nd) Vw

RL
,

(W
L )n = 2(na + RL

RD
nd),

An = 6(na + RL

RD
nd)F 2

(4)

As the mobility of PMOS transistor is typically twice lower
than that of NMOS [48], the W

L of the PMOS has to be twice
larger than that of NMOS. Therefore, the (W

L )p and area Ap
of PMOS are obtained as expressed in Eq.5.{

(W
L )p = 2(W

L )n = 4(na + RL

RD
nd),

Ap = 2An = 12(na + RL

RD
nd)F 2

(5)

Finally, the total area Avd of a single voltage driver which
consists of one NMOS and two PMOS pass transistors is given
in Eq.6. Typically, RD

RL
>5 × 104 [49]; hence, the number of

active memristors na dominates the area of the voltage driver.

Avd = An + 2Ap = 30(na +
RL

RD
nd)F 2 ≈ 30naF

2 (6)

IV. MAPPING OPTIMIZATION SCHEMES

This section presents three mapping schemes to optimize the
delay and/or area of a memristor crossbar logic design. These
schemes can be used separately or in a combination.

OL

LB

FA1

FA2

FA3

FA4

IL

OL

LB

IL

OL

LB

IL

OL

LB

IL

40

46 Output C1 of 

FA1
Input C1 

of FA1

(a) (b)

INA

RIN

GER

TRD

SOU

n < Ns

n = Ns

CFM

EVM

Fig. 11: Diagonally-Mapped Adder: (a) State Machine, (b) Layout.

A. Scheme 1: Calculate All Outputs Simultaneously

The first optimization scheme is calculating both the primary
and complementary outputs at GER state. For example, the
FA of Fig. 4 is optimized as shown in Fig. 10; its outputs S
and S are expressed by Eq.7.

S = ĀBCi ·AB̄Ci ·ABC̄i · ĀB̄C̄i (7)

S = ĀB̄Ci · ĀBC̄i ·AB̄C̄i ·ABCi

All the eight required minterms of output S and S are
implemented by placing active memristors on related junctions
in a similar manner as Fig. 4. Therefore, all the minterms of
both S and S are calculated at state EVM, and then ANDed to
obtain the output S and S at state GER. The similar approach
can be applied to the output Co and Co; see Fig. 10. In
addition, the OL can be implemented by only a single row,
as S and Co are calculated at state GER, rather than by
inverting S and Co as in Fig. 4(a). As both the primary and
complementary outputs are obtained at state GER, state INR
of Fig. 8(a) can be removed as shown in Fig. 11(a); hence, the
four-bit adder of Fig. 7 (a) reduces the number of execution
steps from 7Ns+1=29 to 6Ns+1=25. Fig. 11(b) shows the
layout of the new four-bit adder implementation, where the
FAs of Fig. 4 have been replaced with the FA of Fig. 10.
Note that this new implementation requires the same area (i.e.,
46×40) as the initial design of Fig. 7(a).

However, this scheme typically requires more area as all the
2n minterms of an n-input Boolean function must be mapped
on the crossbar, instead of the required minterms only. For
instance, the output S only needs four minterms as shown
in Eq.7, and they can be implemented by only four rows in
the crossbar. As both primary and complementary outputs are
required as the inputs of the next FA stage, the output S should
also be calculated, and hence, all eight minterms should be
implemented by eight rows of the crossbar. To alleviate the
incurred area overhead, several Boolean functions that have
the same minterms can be implemented using the same share
of hardware. For instance, the sum and carry of a FA are
implemented together as shown in Fig. 10. As a result, it has
the same area as the FA of Fig. 4.

6



LB FA2

FA3

FA4

LB

LB

OL

LB

OL OL OL

IL IL ILFA1IL

34

34

(a)

INA

RIN

CFM EVM

GER

n < Ns

n = Ns

(b)

Aligned C1 between 

FA1 and FA2

Fig. 12: Align Intermediate Signals: (a) Layout, (b) State Machine.

B. Scheme 2: Align Intermediate Signals

The area and execution steps of the four-bit adder in Fig. 11(b)
can be further reduced by aligning the intermediate signals
between computing elements. For instance, all the carries
between FAs (e.g., FA1 and FA2) of Fig. 11(b) are aligned
in the same column as shown in Fig. 12(a). Therefore,
the columns initially used for carry transfer are removed.
In addition, the carry of a FA can be directly stored in
the minterms of the next stage FA, as the carry has been
aligned in the same column. Hence, the extra rows initially
allocated for interconnect, as well as the parts of IL and OL
initially required to store carries, are removed. Finally, the
four ILs to store the primary inputs are rearranged at the
top of the crossbar, while the four OLs to store final results
are rearranged at the bottom of the crossbar, as shown in
Fig. 12(a). Fig. 12(b) shows the state machine required by
the new implementation of Fig. 12(a). The adder receives
all the primary inputs of the four FAs (i.e., C0, Ai, Bi,
0≤i≤3) at state RIN. Then, they are copied to the four FAs
to configure their minterms at state CFM. For each stage,
the state EVM generates the minterms of the corresponding
FA, and state GER ANDs these minterms to generate the
sum, carry, and their complements. It is worth noting that the
number of execution steps are reduced from 7Ns+1 (design
of Fig. 7(a)) to 2Ns+3; e.g., for Ns=4, the reduction is 62%.
Moreover, the crossbar area is also reduced. For our 4-bit
adder case study, the crossbar area is reduced from 46×40
(default design) to 34×34 (Fig. 12(a)); a reduction of 37%.

This optimization scheme is not applicable to all designs; it
strongly depends on the place-and-route scheme. For instance,
the design using the isolated scheme (e.g., Fig. 7(b)) does not
support this scheme; the intermediate signals cannot be aligned
in the same column since computing elements are isolated
from each other.

C. Scheme 3: Combine Data Transfer and Inversion

Instead of producing intermediate result Ci and its comple-
ment Ci by each FA, we can rather produce only one of
them (e.g., Ci); the other one (e.g., Ci) will be generated
while communicating the intermediate result to the next FA
stage. Hence, the required crossbar column to produce Ci

can be removed, resulting in less execution steps and area.
Applying this scheme to default design of Fig. 7(b) results
in the implementation shown in Fig. 13(a). The part where

OL

LB

IL

12

FA1

OL

LB

IL FA2

OL

LB

IL FA3 FA4

37

OL

LB

IL

(a)

CFM EVM

GERTRI

n < Ns

n = Ns TRC
C1

Rs
INV

Copy

C1C1

(c)

FA1 FA2

(b)

Interconnect

M1

M2

M3

M4

INA

RIN

Fig. 13: Use Inversion to Transfer Data: (a) Layout, (b) Interconnect,
(c) State Machine.

the combination of data transfer and inversion take place is
highlighted, and illustrated in Fig. 13(b). The output C1 of FA1
is generated at state GER and directly stored in two memristors
M1 and M2 of the interconnect. The interconnect feeds FA2
with C1 and C1 via row INV and row Copy; C1 is provided
by inverting C1, while C1 is provided by just copying M2 to
M4. In addition, the four ILs to store the primary inputs are
rearranged at the top of the crossbar, while the four OLs to
store final results are rearranged below the FAs as similar to
Fig. 12(a).

Fig. 13(c) shows the state machine required by this new
implementation; it makes use of two additional states; transfer
using inversion (TRI), and transfer using copy (TRC). The
adder receives all the primary inputs of the four FAs at state
RIN. For each stage, state CFM configures the minterms of
the corresponding FA; state EVM generates the results of these
minterms; state GER provides logic AND of these minterms to
obtain the complementary carry (e.g., C1); state TRI transfers
Ci to the next stage using inversion; state TRC feeds the
next FA stage with Ci. Note that state TRI and TRC cannot
be combined, because inversion and copy require different
control voltages to the column related to output carry (e.g.,
C1 of FA1); see also Fig. 3(e) and (f). It is worth noting that
the number of execution steps is reduced from 7Ns+1=29
(design of Fig. 7(b)) to 5Ns+2=22 steps; a reduction of 25%.
Meanwhile, the area is also reduced from 12×40 to 12×37; a
reduction of 7.5%.

V. EVALUATION

To validate the proposed approach, we select four designs as a
case study, and perform two experiments on all of them. These
four designs are four-bit ripple carry adders with different
place-and-route and optimization schemes; they are:

• ID design: Initial design based on Diagonal place-and-
route scheme as shown in Fig. 7(a).

• II design: Initial design based on Isolated place-and-route
scheme as shown in Fig. 7(b).

• OD design: An Optimized version of ID design which
is shown in Fig. 12(a); it incorporates the optimization

7



TABLE III: Description of Benchmarks

Circuit Function No. Input No. Output No. LUT4
alu4 ALU 14 8 1522
apex2 Logic 39 3 1878
apex4 Logic 9 19 1262
des Data Encryption 256 245 1591
ex5p Logic 8 63 1064
misex3 Logic 14 14 1397
pdc Logic 16 40 4575
seq Logic 41 35 1750
spla Logic 16 46 3690

scheme 1 (i.e., calculate all outputs simultaneously) and
2 (i.e., align intermediate signals). Note that it is not
possible to incorporate all the three discussed optimiza-
tion schemes in the ID design. E.g., as the use of
optimized scheme 2 removes the interconnects between
FAs, scheme 3 (which makes use of the interconnect)
cannot be used. Based on the nature of the three schemes,
incorporating scheme 1 and 2 is the best in order to
optimize delay.

• OI design: An Optimized version of II design which is
shown in Fig. 13(a); it incorporates optimization scheme
1 and 3. Again, incorporating all the three schemes is not
possible. Hence, scheme 1 and 3 are the best to use with
II design in order to optimize the delay.

The three experiments performed are the following.
• Verification of the mapping methodology; in this exper-

iment, exhaustive SPICE simulations of all the designs
are performed in order to check the correct functionality
of the generated designs with all the possible input
combinations.

• Evaluation and comparison of the four designs; in this ex-
periment, all the four-selected designs are evaluated and
compared in terms of area, delay and power consumption.

• To further illustrate the generality of our mapping
methodology, it is applied to nine benchmarks selected
from MCNC20 benchmark suite [50]. Table III summa-
rizes the functions of the benchmarks and their input
number, output number and number of required 4-input
LUTs. These benchmarks spread in a wide range of
input number, output number and circuit size (quantified
by the number of LUTs). Area and delay are used as
performance metrics to compare the initial and optimized
designs.

Next, we first briefly review the simulation platform, and the
parameters and models used to evaluate performance metrics.
Thereafter, we provide the results.

A. Simulation Setup and Performance Metrics

The simulation platform consists of a memristor crossbar, a
CMOS controller, and voltage drivers. The memristor model,
controller, and voltage drivers are described by Verilog-A,
and the crossbar array by SPICE netlist. The behavioural
function of each of four selected designs is first verified
using HSPICE simulator. Thereafter, each initial design and
its optimized version are evaluated and compared with each

TABLE IV: Simulation Parameters

Parameter Description Value
Technology

Memristor (TaOx) [49,51,52]
F (nm) Feature size 90
T (nm) Thickness of TaOx 8
Vth (V) Threshold voltage 1.5
RL (kΩ) Low resistance 200
RH
RL

– 7k
RD
RH

– 50
Am (µm2) Area of a memristor 0.0324
Tsw(ns) Switching time (max of SET and RESET) 1.71
Em Endurance of a memristor (max switching number) 1012

Nanowire (Copper) [53]
κ Dielectric constant of interlayer spacing 3.9
ρ (µΩcm) Resistivity of Copper 8
Tnw(nm) Thickness of the nanowire (= F ) 90
Wnw(nm) Width of the nanowire (= F ) 90
Cnw (fF/µm) Capcitance in unit length 0.26
Rnw (Ω/µm) Resistance in unit length 9.88

CMOS
Use UMC 90nm Library @ 500MHz)

Design [29]
NR No. of rows in crossbar –
NC No. of columns in crossbar –
Nstep No. of execution steps –
na,xbar No. of all active memristors in the whole crossbar –
Vw (V) Program voltage 2.1
Vh (V) Half-select voltage 1.05
Rs
RL

– 10

other in terms of area, delay and power consumption. Note
that memristor models are used for SPICE simulations, while
the controller and drivers are described by Verilog-A so that
the entire design (consisting of both the crossbar and CMOS
part) can be simulated and verified using HSPICE simulator.
To estimate the performance of CMOS controller, we will
use a Verilog version.

To evaluate the benchmarks in Table III, a Matlab script
is developed to read, map and estimate the metrics under
consideration both for initial and optimized design versions;
the optimized version uses diagonal mapping scheme and
the optimization scheme 2. The inputs of the Matlab script
are files in Berkeley logic interchange format (BLIF) of
each benchmark [50]; BLIF consists of the minterms of each
4-input LUT which can be directly mapped to crossbar using
our methodology.

Table IV summarizes the used simulation parameters; they
are classified into technology and design parameters. The
technology parameters are taken from [49,51–53], and provide
realistic values for memristor as well as nanowires used to
build the crossbar. For CMOS controller and voltage drivers,
the UMC 90nm library is used. On the other hand, the design
related parameters consist of those specifying the design
itself (e.g., Nstep, which is different for different designs), and
those which specifies the requirements for the correctness of
the design operations (e.g., values of control voltages of the
crossbar) taken from [29,54]. Four parameters (i.e., NR, NC,
NStep, and na,xbar) are design dependent; hence for different
benchmarks, they will have different values.

Three metrics are used to evaluate the performance: area,
delay, and power consumption, while considering the

8



crossbar, CMOS voltage drivers and CMOS controller.
Next, we will show how these evaluation metrics are
determined. An adder is used as an example to illustrate the
evaluation model and other benchmarks use the similar model.

The area of a single adder (Aadder) is expressed in Eq.8.

Aadder = max{Axbar, Acmos} (8)

where Aadder is defined as the maximum of the two values
Axbar and Acmos, where Axbar gives the crossbar area and
Acmos the area of entire CMOS part; note that we select only
the max of the two values as the crossbar is stacked on the
top of CMOS part.

Axbar is a product of (NR+1) crossbar rows by (NC+1)
columns as expressed in Eq.9.

{
Axbar = (NR + 1) · (NC + 1) ·Am

Am = 4F 2
(9)

where ‘+1’ is needed as the implementation requires the use
of a resistive element Rs to perform the appropriate logic
operations (see e.g., Fig. 3(a)). Am gives the memristor area.

Acmos consists of the area of all voltage drivers (Avd,all) and
that of the control state machine (Actrl) as expressed in Eq.10.



Acmos = Avd,all + Actrl

Avd,all = Avd,row + Avd,col

=
∑NR

i=1

(
30na,iF

2
)

+
∑NC

j=1

(
30na,jF

2
)

= 30F 2
(∑NR

i=1 na,i +
∑NC

j=1 na,j
)

= 30F 2(na,xbar + na,xbar)

= 60na,xbarF
2

(10)

The value of Avd,all is derived from Eq.6, which expresses
the area of a single voltage driver used to drive a row or
column with na active memristors. Avd,all is the sum of all
the voltage drivers used to drive both rows and columns
as shown in Eq.10, where na,xbar is the total number of all
the active memristors in the crossbar. The value of Actrl is
provided by Cadence RTL compiler.

The delay of a single adder (Dadder) is expressed in Eq.11.

{
Dadder = Nstep ·Dstep

Dstep = Dxbar + Dctrl
(11)

where Dadder is the product of the execution step number
Nstep and the delay of a single step Dstep. Dstep is the sum of
the crossbar delay Dxbar and that of the CMOS controller Dctrl.

The value of Dctrl is provided by Cadence RTL compiler. On
the other hand, Dxbar consists of the memristor switching time

...
R1 Ri

C1 Ci

...

M1 Mi Mn

Rn

CnVoltage

Driver

Fig. 14: Elmore RC Delay Model.

Tsw and the RC delay due to signal propagation through the
nanowires Dnw; expressed in Eq.12.

Dxbar = Tsw + Dnw

Dnw =
∑n

i=1

[
Ci(
∑n

j=i Rj)
]

= (n2 + 4n− 21/8)Rnw · Cnw · F 2 [55]
n = max{NR, NC}

where
R1 = 3

2F ·Rnw

Ri = 2F ·Rnw, 1 < i ≤ n

C1 = 3
2F ·

Cnw
2

Ci = 2F · Cnw, 1 < i < n

Cn = 2F · Cnw + 3
2F · Cnw

(12)

where Dnw equals to the time to propagate the signal from
the voltage driver to the nth memristor; it is given by Elmore
model as shown in Eq.11 [53,55]. Fig. 14 shows the equivalent
circuit to model the RC delay in a row or column of a crossbar.
As the resistance value of the memristor device in its ON as
well as in its OFF state is order of magnitudes higher than the
nanowire resistance, the impact of memristor resistance in the
modelled delay by Eq.11 is neglected [55]. Note that Rnw and
Cnw denote the resistance and capacitance of nanowire in unit
length (see Table IV).

The power consumed by a single adder Padder is expressed by
Eq.13, and is the sum of the power consumed by crossbar
(Pxbar), by the CMOS voltage drivers (Pvd,all) and by the
controller (Pctrl) for all steps Nstep to be executed.

Padder =
∑Nstep

n=1(Pxbar + Pvd,all + Pctrl)n

Pxbar =
∑

all devices PR

=
∑

all devices
V 2

R
R

(13)

For each execution step, Pxbar is the total power consumed
by all the devices within the crossbar, which consists of
the active and disabled memristors, and the resistors Rs.
PR=

V 2
R
R is the power consumed by each device, where VR

is the voltage across the device and R is its resistance, and
they are both obtained using SPICE simulations. Pvd,all is
the power consumed by all the voltage drivers; we assume
that the voltage drivers are almost ideal voltage sources and
their power consumption is very small as compared with that
consumed by the crossbar (which constitutes the load of the
voltage drivers). The value of Pctrl is provided by Cadence
RTL compiler. To evaluate the power of each design, we first
estimate the power for each input combination (28 in total),
and thereafter calculate the average power consumption.

9



C0

X3

X1

Y3

Y1

S4

S2

X4

X2

Y4

Y2

C5

S3

S1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

5 10 5 10

5 10 5 10

5 10 5 10

5 10

5 10

5 10

5 10 5 10

5 10

5 10

5 10

Fig. 15: Waveform of OD Adder SPICE Simulation.

B. Simulation Results

In the first experiment, all the four selected designs are
exhaustively verified using SPICE simulations for all the
possible input combinations. The simulation results have
validated the correctness of the approach. For instance,
Fig. 15 shows the waveform of a SPICE simulation of the
OD design when input X=‘0001’, Y=‘0010’ and C0=0.
After eleven execution steps, the final results are C5=0 and
S=‘0011’. It is worth to note that the input data of the input
latch are destructed after they are copied to the computing
elements [29]; this has no impact on the correctness of the
circuit as the inputs have been stored in minterms of the
computing elements to calculate the final results.

In the second experiment, the performance of all the four
selected designs is estimated in terms of area, delay and
power consumption; the results are discussed next.

Area: Fig. 16(a) shows the area of the selected designs. Among
all the designs, OI design uses the smallest crossbar as its
FAs are adjacently placed. OD design requires the smallest
CMOS part as its state machine is the simplest, and consumes
the least overall area. The optimized designs require (up to
55%) less area than initial designs as their controllers have
less states and less output control signals. Note that for these
small designs, the CMOS area dominates the overall area. To
further explore the scalability of the designs and their impact
on area, we estimate the area of n-bit adders based on OD
design (n=2k, 2≤k≤7). Fig. 16(b) shows the area ratio of the
crossbar over the CMOS part (including both the controller
and voltage drivers). Clearly for larger adders (in this case for
k>6), the crossbar area surpasses that of CMOS part.

Delay: Fig. 17(a) shows the required number of execution
steps for each of the four designs, while Fig. 17(b) shows
the corresponding delay for a single execution step Dstep for
each design and its breakdown; see also Eq.9. Obviously, the
optimized designs have lower execution time and OD design
performs by far the best. As each design is based on the same
memristor crossbar technology, each design has the same

(a) (b)

64bit

n
0

0.6

1.2

1.8

ID II OD OI

A
re

a 
(1

0
3

u
m

2 )

Axbar Avd,all Actrl

1.8

1.2

0.6

0
ID II OD OI

Axbar Avd,all Actrl

A
re

a 
(u

m
2
)

2.5

2

1.5

1

0.5

0
50 100 150

A
x
b
ar

/A
cm

o
s

Fig. 16: Area of Selected Designs: (a) Area, (b) Scalability Explo-
ration.

(a) (b) 

0

0.5

1

1.5

2

2.5

3

3.5

ID II OD OI

D
el

ay
 p

er
 S

te
p

 (
n

s)

Tsw Dnw Dctrl

0

10

20

30

ID II OD OI

N
o

. o
f 

St
ep

s

ID

Tsw Dnw Dctrl30

20

10

0
II OI

D
el

ay
 p

er
 S

te
p

 (
n

s)

3.5

3

2.5

2

1.5

1

0.5

0
ID OD OIIIOD

N
o
. 

o
f 

S
te

p
s

Fig. 17: Delay of Selected Designs: (a) Number of Execution Steps,
(b) Delay per Execution Step.

(a) (b) 
T

im
e 

(n
s)

1.71ns [Miao]

0.3ns [Lee]

0.2ns [Torrezan] 0

0.6

1.2

1.8

4 8 16 32 64 128

Dctrl Miao Lee Torrezan102

101

100T
sw

 (
n

s)

10-1

2006 2008 2010
Year

2012 2014

1.8

1.2

0.6

0

4 8 16 32 64 128

Dctrl Miao Lee Torrezan

n

Fig. 18: Delay Scalability Exploration: (a) Tsw for Memristor Tech-
nology, (b) Dctrl and Tsw for n-Bit OD Designs.

memristor switching time Tsw=1.71 ns. The interconnect
delay Dnw is negligible for all designs as compared with other
delays. Moreover, CMOS controller delay Dctrl for optimized
designs is about 11% less than that of the initial designs.

The memristor technology is not mature yet and its switching
time is still being improved. Fig. 18(a) shows the switch-
ing time of some reported resistive devices over the years
[44,49,56–58], while Fig. 18(b) selects three reported Tsw and
compares them with the controller delay for n-bit adders based
on OD design (n=2k, 2≤k≤7). Clearly, the CMOS delay
may become the major critical component with respect to the
performance of crossbar based logic designs. Nevertheless, the
potential of the crossbar is enabling the massive parallelism,
(where the same CMOS circuit may control different paral-
lel designs within crossbar) and reducing the overall delay-
operation of the whole design; hence this increases the overall
throughput.

Power: Fig. 19 (a) shows the power consumption Padder of a
single adder and its breakdown for RL=200kΩ [49], where

10



(a) (b)

0

700

1400

2100

2800

3500

ID II OD OI

P
o

w
er

 (u
W

)
Pxbar_Dyn Pxbar_Leak Pctrl

0

5

10

15

20

25

ID II OD OI

P
o

w
er

 (u
W

)

Pxbar_Dyn Pxbar_Leak Pctrl

ID

P
o
w

er
 (

u
W

)

3500

II OIOD

2800

2100

1400

700

0

Pxbar_Dyn Pxbar_Leak Pctrl Pxbar_Dyn Pxbar_Leak Pctrl

ID
P

o
w

er
 (

u
W

)

25

II OIOD

20

15

10

5

0

Fig. 19: Power Consumption of Selected Designs Using Different
RL: (a) RL=200kΩ, (b) RL=100MΩ.

RL is the memristor resistance in its ON state; see also Eq.13.
The power consumption of the crossbar Pxbar consists of the
dynamic part (Pxbar,dyn) as a result of resistive switching, and
the leakage part (Pxbar,leak) induced by sneak path currents.
The difference between the dynamic power consumption of
the four designs is marginal. However, the crossbar leakage is
at least twice higher than the crossbar dynamic power. This
highlights one of the major challenges the crossbar designs
is facing, namely sneak path currents [52]; and shows the
need of providing solutions. Note that the optimized designs
consume about 30% less power than the initial designs, as
they require less crossbar area. Fig. 19 also shows that the
power consumption of the CMOS part Pctrl is negligible.

One possible solution to reduce the power consumption in the
crossbar (especially the part caused by sneak path currents)
is to increase the value of RL. For example, Fig. 19(b) shows
the power consumption Padder and its breakdown when RL is
increased to 100MΩ [59]. As a result, both the dynamic and
leakage power consumption of the crossbar are significantly
reduced, and the power consumed by CMOS controller
becomes dominant now. Note that the optimized designs
consume approximately 20% less power than the initial
designs, as they have simpler CMOS controllers. Another
possible solution to reduce the leakage power is reducing the
duration of control voltages.

The results show systematically that the OD is the best design
with respect to the three considered metrics.

In the third experiment, the performance of the nine
benchmarks in Table III is estimated in terms of area and
delay. Fig. 20 (a) and (b) shows the improvement ratios
realized by optimized designs. As compared to the initial
designs, the area of optimized designs is 7.8X to 10.2X
smaller, and the delay is 2.2X to 6.0X shorter (due to a
reduced number of execution steps).

Overall, the methodology can be used to not only map logic
design on the crossbar, but also to evaluate its performance
while considering optimization schemes. The results also show
that the optimization techniques can significantly improve the
performance of designs in terms of area and delay when the
logic circuits become larger and more complex.

(a) (b)

9.7 9.9 10.2
9.4 9.3 9.6 9.3

7.8

9.7

2.8
3.1

2.6
2.2

6.0

2.7

4.8

3.1
2.6

Fig. 20: Improvement Ratios for Different Benchmarks: (a) Area, (b)
Delay.

VI. CONCLUSION

This paper has proposed a mapping methodology of Boolean
logic circuits on memristor crossbar as well as several
optimization schemes. The performance of mapped logic
circuits can be evaluated including both memristor and CMOS
parts.

The proposed methodology provides the following advantages.
• Generality: The proposed methodology is potential to

map arbitrary logic circuits as long as they are based on
Boolean logic, such as adders, ALUs, data encryption
(see also Table III).

• Scalability: The proposed methodology is scalable to
map logic circuits as large as possible, but it should
also consider the technology restrictions (e.g., sneak path
current issues [43,44]) for appropriate functionality.

• Automation: The proposed methodology provides a po-
tential to automate the mapping of large-scale logic
circuits on memristor crossbar, which can be incorporated
with existing logic synthesis tools (e.g., ODIN II [60] and
ABC [61]).

• Evaluation: The proposed methodology provides perfor-
mance evaluation for both the crossbar and CMOS part
in terms of area, delay and power consumption, which
can be used to compare between different designs based
on resistive Boolean logic.

• Modularity: The proposed methodology uses a modular
approach; this facilitates the improvement of the approach
if need. E.g., in Fig. 5, the block ‘implement functions
by CEs’ can be updated without the need to touch any
other blocks in the flow.

In order to improve the logic based on memristor crossbar
and related tools for mapping, more efforts should be paid to
address the following challenges in the future work.

• Support Other Logic Types: As our method is modular,
it is possible to be tuned to support other logic styles such
as logic circuits proposed in [26,62–64].

• Innovative Logic Design Styles: As memristor logic cir-
cuit is still in infancy stage, innovative logic circuits based
on resistive switching should be invented to maximize the
potential of memristor crossbar. For instance, memristor
crossbar may be suitable for analog circuits as a single
memristor can represent a multi-level value, instead of a
binary value [38].

11



• Impact of Unreliable Technology: Memristor technol-
ogy is still under development, and therefore logic circuits
based on crossbar are facing reliability challenges due
to limited device endurance, device-to-device variation,
cycle-to-cycle variation [44,65,66].

• Sneak Path Issues: The crossbar-based logic may fail
due to the sneak path currents [34,35], which are the
unexpected currents within the crossbar [43,44]. Even
though several approaches have been proposed such as
adding selector devices (e.g., CMOS transistor) [43,66],
using complementary resistive switches [35], applying
half-select voltages [34,38], how to efficiently apply these
techniques to large-scale circuit is still under research. In
addition, based on our simulations, when the ON/OFF
current ratio increases, the impact of sneak path currents
reduces.

• Implementation Consideration: Some effects should be
considered in the future implementation. First, parasitic
nanowire resistance causes the IR-drop. It can be solved
by slightly increasing the control voltage Vw and Vh

(e.g., 10%). In addition, increasing the low resistance is
also helpful to reduce the impact of parasitic nanowire
resistance. Second, the needed resistance ratio RH

RL
is

typically 1000 to 10000. Third, the area of voltage driver
is related to the placement of memristors within the
crossbar. This may impact the scalability of the design.
A possible solution is balancing the voltage drivers in
the CMOS layer. Fourth, to isolate the crossbars, the
nanowires should be broken and isolated materials (e.g.,
SiO2) should be inserted. Some other possible solutions
are reported in [67].

• Complexity of CMOS Controller: As the logic circuits
based on memristor crossbar is scaling up, the complex-
ity of CMOS controller is also increasing in order to
compensate the driving force and support more execution
states of the FSM. Therefore, it is crucial to design
efficient CMOS control circuity in terms of area and delay
being able to drive appropriate number of logic blocks
in the crossbar. Some approaches may be helpful, such
as sharing the CMOS controller between different logic
circuits, pipelining the computing elements to simplify
the controller, etc. In addition, a simpler controller is
likely to have a shorter delay. Therefore, it is possible to
reduce the power consumption due to a shorter duration
of applied control voltages.

Overall, the proposed mapping methodology sets a step to-
wards the implementation of large-scale resistive computing
architectures, and provides an opportunity to examine the
potential of memristor crossbar architectures.

REFERENCES

[1] B. Hoefflinger, Chips 2020: a guide to the future of nanoelectronics.
Springer Science & Business Media, 2012.

[2] S. Borkar, “Design perspectives on 22nm cmos and beyond,” in Proceed-
ings of the 46th Annual Design Automation Conference (DAC). ACM,
2009, pp. 93–94.

[3] S. Hamdioui et al., “Reliability challenges of real-time systems in
forthcoming technology nodes,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE). EDA Consortium,
2013, pp. 129–134.

[4] J. L. Hennessy et al., Computer architecture: a quantitative approach.
Elsevier, 2011.

[5] F. J. Pollack, “New microarchitecture challenges in the coming gener-
ations of cmos process technologies (keynote address),” in Proceedings
of the 32nd annual ACM/IEEE international symposium on Microarchi-
tecture (MICRO). IEEE, 1999, p. 2.

[6] D. E. Nikonov et al., “Overview of beyond-cmos devices and a uniform
methodology for their benchmarking,” Proceedings of the IEEE, vol.
101, pp. 2498–2533, 2013.

[7] A. Bachtold et al., “Logic circuits with carbon nanotube transistors,”
Science, vol. 294, pp. 1317–1320, 2001.

[8] L. Ding et al., “Cmos-based carbon nanotube pass-transistor logic
integrated circuits,” Nature communications, vol. 3, p. 677, 2012.

[9] L. Amarú et al., “New logic synthesis as nanotechnology enabler,”
Proceedings of the IEEE, vol. 103, pp. 2168–2195, 2015.

[10] B. Behin-Aein et al., “Proposal for an all-spin logic device with built-in
memory,” Nature nanotechnology, vol. 5, pp. 266–270, 2010.

[11] B. Behin-Aein et al., “All-spin logic,” in Device Research Conference
(DRC), 2010. IEEE, 2010, pp. 41–42.

[12] M. Fuhrer et al., “Spintronics: A path to spin logic,” Nature physics,
vol. 1, pp. 85–86, 2005.

[13] L. O. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on Circuit Theory, vol. 18, pp. 507–519, 1971.

[14] D. B. Strukov et al., “The missing memristor found,” Nature, vol. 453,
pp. 80–83, 2008.

[15] ITRS, “Beyond cmos white paper,” 2014.
[16] W. Zhao et al., “Nanodevice-based novel computing paradigms and

the neuromorphic approach,” in Circuits and Systems (ISCAS), IEEE
International Symposium on. IEEE, 2012, pp. 2509–2512.

[17] S. Hamdioui et al., “Memristor based computation-in-memory archi-
tecture for data-intensive applications,” in Proceedings of the Design,
Automation & Test in Europe (DATE). EDA Consortium, 2015, pp.
1718–1725.

[18] S. Hamdioui et al., “Memristor for computing: Myth or reality?” in
Proceedings of the Design, Automation & Test in Europe (DATE). EDA
Consortium, 2017, pp. 1729–1725.

[19] H. A. Du Nguyen et al., “Computation-in-memory based parallel adder,”
in Proceedings of the 2015 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH 15). IEEE, 2015, pp. 57–62.

[20] A. Haron et al., “Parallel matrix multiplication on memristor-based
computation-in-memory architecture,” in High Performance Computing
& Simulation (HPCS), 2016 International Conference on. IEEE, 2016,
pp. 759–766.

[21] J. Yu et al., “Skeleton-based design and simulation flow for computation-
in-memory architectures,” in Nanoscale Architectures (NANOARCH),
2016 IEEE/ACM International Symposium on. IEEE, 2016, pp. 165–
170.

[22] L. Yavits et al., “Resistive associative processor,” IEEE Computer
Architecture Letters, vol. 14, pp. 148–151, 2015.

[23] S. Li et al., “Pinatubo: a processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in Proceedings
of the 53rd Annual Design Automation Conference. ACM, 2016, p.
173.

[24] L. Gao et al., “Programmable cmos/memristor threshold logic,” IEEE
Transactions on Nanotechnology, vol. 12, pp. 115–119, 2013.

[25] G. S. Rose et al., “Leveraging memristive systems in the construction of
digital logic circuits,” Proceedings of the IEEE, vol. 100, pp. 2033–2049,
2012.

[26] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, pp. 873–876, 2010.

[27] E. Lehtonen et al., “Memristive stateful logic,” in Memristor Networks.
Springer, 2014, pp. 603–623.

[28] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, pp. 1165–1172, 2005.

[29] L. Xie et al., “Fast boolean logic mapped on memristor crossbar,” in
Computer Design (ICCD), 2015 33rd IEEE International Conference
on. IEEE, 2015, pp. 335–342.

[30] Intel xpoint memory. [Online]. Available:
http://www.intel.com/content/www/us/en/architecture-and-
technology/non-volatile-memory.html

[31] Crossbar 3d rram. [Online]. Available: http://www.crossbar-inc.com/
[32] A. Raghuvanshi et al., “Logic synthesis and a generalized notation for

memristor-realized material implication gates,” in Proceedings of the
2014 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2014, pp. 470–477.

12



[33] F. S. Marranghello et al., “Sop based logic synthesis for memristive
imply stateful logic,” in Computer Design (ICCD), 2015 33rd IEEE
International Conference on. IEEE, 2015, pp. 228–235.

[34] S. Kvatinsky et al., “Memristor-based material implication (imply) logic:
design principles and methodologies,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, pp. 2054–2066, 2014.

[35] A. Siemon et al., “A complementary resistive switch-based crossbar
array adder,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 5, pp. 64–74, 2015.

[36] S. Kvatinsky et al., “Team: Threshold adaptive memristor model,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 60, pp.
211–221, 2013.

[37] X. Guan et al., “A spice compact model of metal oxide resistive
switching memory with variations,” IEEE electron device letters, vol. 33,
pp. 1405–1407, 2012.

[38] K.-H. Kim et al., “A functional hybrid memristor crossbar-array/cmos
system for data storage and neuromorphic applications,” Nano letters,
vol. 12, pp. 389–395, 2011.

[39] X. Zhu et al., “Performing stateful logic on memristor memory,” Circuits
and Systems II: Express Briefs, IEEE Transactions on, vol. 60, pp. 682–
686, 2013.

[40] B. Parhami, Computer arithmetic. Oxford university press, 1999,
vol. 20, no. 00.

[41] P. C. McGeer et al., “Espresso-signature: A new exact minimizer for
logic functions,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 1, pp. 432–440, 1993.

[42] L. Xie et al., “Interconnect networks for memristor crossbar,” in
Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International
Symposium on. IEEE, 2015, pp. 124–129.

[43] S. Hamdioui et al., “Memristor based memories: Technology, design
and test,” in Design & Technology of Integrated Systems In Nanoscale
Era (DTIS), 9th IEEE International Conference On. IEEE, 2014, pp.
1–7.

[44] J. J. Yang et al., “Memristive devices for computing,” Nature nanotech-
nology, vol. 8, pp. 13–24, 2013.

[45] X. Tang et al., “A high-performance low-power near-vt rram-based
fpga,” in Field-Programmable Technology (FPT), 2014 International
Conference on. IEEE, 2014, pp. 207–214.

[46] P.-E. Gaillardon et al., “Design and architectural assessment of 3-d
resistive memory technologies in fpgas,” IEEE Transactions on Nan-
otechnology, vol. 12, pp. 40–50, 2013.

[47] M. Mao et al., “Optimizing latency, energy, and reliability of 1t1r reram
through appropriate voltage settings,” in Computer Design (ICCD), 2015
33rd IEEE International Conference on. IEEE, 2015, pp. 359–366.

[48] J. M. Rabaey et al., Digital integrated circuits. Prentice hall Englewood
Cliffs, 2002, vol. 2.

[49] F. Miao et al., “Anatomy of a nanoscale conduction channel reveals
the mechanism of a high-performance memristor,” Advanced materials,
vol. 23, pp. 5633–5640, 2011.

[50] “Fpga place-and-route challenge.” [Online]. Available:
http://www.eecg.toronto.edu/ vaughn/challenge/challenge.html

[51] M. Zangeneh et al., “Performance and energy models for memristor-
based 1t1r rram cell,” in Proceedings of the great lakes symposium on
VLSI. ACM, 2012, pp. 9–14.

[52] J. J. Yang et al., “The mechanism of electroforming of metal oxide
memristive switches,” Nanotechnology, vol. 20, p. 215201, 2009.

[53] D. B. Strukov et al., “Cmol fpga: a reconfigurable architecture for hybrid
digital circuits with two-terminal nanodevices,” Nanotechnology, vol. 16,
p. 888, 2005.

[54] L. Xie et al., “Boolean logic gate exploration for memristor crossbar,” in
Design and Technology of Integrated Systems in Nanoscale Era (DTIS),
2016 International Conference on. IEEE, 2016, pp. 1–6.

[55] W. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, pp. 55–63, 1948.

[56] M.-J. Lee et al., “A fast, high-endurance and scalable non-volatile mem-
ory device made from asymmetric ta2o5- x/tao2- x bilayer structures,”
Nature materials, vol. 10, pp. 625–630, 2011.

[57] A. C. Torrezan et al., “Sub-nanosecond switching of a tantalum oxide
memristor,” Nanotechnology, vol. 22, p. 485203, 2011.

[58] Crossbar 3d rram. [Online]. Available:
https://nano.stanford.edu/stanford-memory-trends

[59] C. Schindler et al., “Electrode kinetics of cu-sio2-based resistive switch-
ing cells: Overcoming the voltage-time dilemma of electrochemical
metallization memories,” Applied physics letters, vol. 94, p. 2109, 2009.

[60] P. Jamieson et al., “Odin ii-an open-source verilog hdl synthesis tool
for cad research,” in Field-Programmable Custom Computing Machines
(FCCM), 2010 18th IEEE Annual International Symposium on. IEEE,
2010, pp. 149–156.

[61] Abc: A system for sequential synthesis and verification. [Online].
Available: https://people.eecs.berkeley.edu/ alanmi/abc/abc.htm

[62] E. Linn et al., “Beyond von neumann? logic operations in passive
crossbar arrays alongside memory operations,” Nanotechnology, vol. 23,
p. 305205, 2012.

[63] S. Kvatinsky et al., “Mrlmemristor ratioed logic,” in 2012 13th Interna-
tional Workshop on Cellular Nanoscale Networks and their Applications.
IEEE, 2012, pp. 1–6.

[64] S. Kvatinsky et al., “Magicmemristor-aided logic,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 61, pp. 895–899, 2014.

[65] H.-S. P. Wong et al., “Metal–oxide rram,” Proceedings of the IEEE, vol.
100, pp. 1951–1970, 2012.

[66] R. Waser et al., “Redox-based resistive switching memories–nanoionic
mechanisms, prospects, and challenges,” Advanced Materials, vol. 21,
pp. 2632–2663, 2009.

[67] I. Vourkas et al., “Alternative architectures toward reliable memristive
crossbar memories,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, pp. 206–217, 2016.

Lei Xie (S’15) received his Bachelors and Mas-
ters degree in Microelectronics from Xian Jiaotong
University, Xian, China. Currently, he is pursuing a
PhD at the Computer Engineering Lab in the Delft
University of Technology, Delft, the Netherlands.
His research interest is memristor-based logic circuit
design.

Hoang Anh Du Nguyen (S’15) received the M.Sc.
degrees in computer engineering from the Delft
University of Technology, Delft, The Netherlands.
She is currently a pursuing the Ph.D. degree with
the Computer Engineering Laboratory, Delft Uni-
versity of Technology. Her current research interests
include Computation-in-Memory (CIM) architecture
for Big-Data, memristor based systems and synthesis
automation.

Mottaqiallah Taouil (S’10 – M’15) received the
M.Sc. and Ph.D. degrees (both with Hons.) in
computer engineering from the Delft University of
Technology, Delft, The Netherlands. He is currently
a Post-Doctoral Researcher with the Dependable
Nano-Computing Group, Delft University of Tech-
nology. His current research interests include recon-
figurable computing, embedded systems, very large
scale integration design and test, built-in-self-test,
and 3-D stacked integrated circuits, architectures,
design for testability, yield analysis, and memory test

structures.

13



Said Hamdioui (M’99 – SM’11) is currently a
Chair Professor on Dependable and Emerging Com-
puter Technologies at the Computer Engineering
Laboratory of the Delft University of Technol-
ogy (TUDelft), the Netherlands. Prior to joining
TUDelft, Hamdioui worked for Intel Corporation
(Califorina, USA), Philips Semiconductors R&D
(Crolles, France) and for Philips/ NXP Semicon-
ductors (Nijmegen, The Netherlands). His research
focuses on two domains: Dependable CMOS nano-
computing (including Reliability, Testability, Hard-

ware Security) and emerging technologies and computing paradigms (in-
cluding 3D stacked ICs, memristors for logic and storage, in-memory-
computing). He owns one patent and has published one book and co-authored
over 170 conference and journal papers. He delivered dozens of keynote
speeches, distinguished lectures, and invited presentations and tutorial at
major international forums/conferences/schools and at leading semiconductor
companies. Hamdioui is a Senior member of the IEEE, Associate Editor of
IEEE Transactions on VLSI Systems (TVLSI), and he serves on the editorial
board of IEEE Design & Test, and of the Journal of Electronic Testing: Theory
and Applications (JETTA). He is also member of AENEAS/ENIAC Scientific
Committee Council (AENEAS =Association for European NanoElectronics
Activities).

Koen Bertels is Professor and Head of the Com-
puter Engineering Laboratory at Delft University of
Technology. His research focuses on heterogeneous
multicore computing, investigating topics ranging
from compiler technology, runtime support and ar-
chitecture. He recently started working on quantum
computing as a principal investigator in the Qutech
research center. He served as general and program
chair for various conferences such as FPL, RAW,
ARC. He co-authored more than 30 journal papers
and more than 150 conference papers.

14


