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Analog Models Manipulation for Effective
Integration in Smart System Virtual Platforms
Michele Lora,Member, IEEE, Sara Vinco,Member, IEEE, Enrico Fraccaroli,Student Member, IEEE,

Davide Quaglia,Member, IEEE, Franco Fummi,Member, IEEE

Abstract—Analog components are fundamental blocks of smart
systems, as they allow a tight interaction with the environment, in
terms of both sensing/actuation and communication. This impacts
on the design of the overall system, and mainly on the validation
phase, that thus requires the joint simulation of digital and
analog aspects. In this scenario, this paper proposes the automatic
conversion of analog models to C++-based languages, to remove
the overhead of co-simulation with traditional virtual pla tform
tools. The proposed methodology allows to convert a given analog
description to either (1) a fully equivalent description, or (2)
an abstract representation for faster simulation which models
only the aspects of interest. Effectiveness and correctness have
been proved on a number of case studies, that highlight the
effectiveness and potentiality of the proposed methodology.

Index Terms—Heterogeneity, smart systems, analog component
simulation, SystemC-AMS, Verilog-AMS, VHDL-AMS, C++ code
generation, abstraction

I. I NTRODUCTION

Compared to classical embedded systems, a distinctive
aspect of smart systems is theirsmartness, i.e., the ability
to interact and adapt to an evolving environment, by learning
from previous experience and reacting accordingly [35]. This
feature makes them a winning solution in a wide range of
challenges, spanning across healthcare, factory automation and
security, and is mainly enabled by analog components,i.e.,
sensors and actuators, that allow mutual reaction and sensing
between system and environment [36].

The growing importance of the analog domainw.r.t. tra-
ditional embedded systems has not been compensated by a
renewal of the design flows [17]. In fact, embedded SW,
digital HW and analog components follow different design
flows, targeting custom technologies and techniques that can-
not reconcile extremely heterogeneous aspects [15]. As a
consequence, no existing framework or language can handle
all aspects of a smart system simultaneously [33].

At design time, embedded SW and digital HW are usu-
ally integrated through the construction of C++-based virtual
platforms, that allow the validation of the HW-SW interac-
tion [9], [19], [32]. Unfortunately, such virtual platforms do
not natively support analog descriptions, that are still specified
using custom languages,e.g. Verilog-AMS, SystemC AMS,
and SPICE [1], [2], [26], [28]. Extending the support also to

Copyright c© 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

M. Lora, E. Fraccaroli, D. Quaglia and F. Fummi is with the
Department of Computer Science, University of Verona, Italy, e-mail:
name.surname@univr.it.

S. Vinco is with the Department of Control and Computer Engineering,
Politecnico di Torino, Italy, e-mail: sara.vinco@polito.it.

C++/SystemC VIRTUAL PLATFORM

BUS

CPU MemorySW I/O

ANALOG COMPONENT
(C++/SystemC/ SystemC AMS)

① TRANSLATION 
of complete 

behavior

② ABSTRACTION 
preserving only

behaviors of interest

ANALOG COMPONENT 
(Verilog-AMS/VHDL-AMS)

Figure 1: Proposed methodology for simultaneous simulation
of analog components with embedded SW and digital HW in
virtual platforms.

analog components requires the construction of co-simulation
frameworks, at the price of an increase of simulation time, that
heavily impacts on time-to-market [15], [34].

In this scenario, this paper proposes to enhance the design
of smart systems through thehomogeneous and simultane-
ous simulation of analog components with digital HW and
embedded SW. The adopted strategy consists of converting
the starting analog descriptions to C++-based languages. The
resulting code can be easily integrated into C++ HW-SW
virtual platforms, with no additional co-simulation overhead.

As shown in Figure 1, the proposed methodology supports
different levels of adherencew.r.t. the starting description, and
consequently of simulation performance. If all aspects of the
starting description must be preserved the methodology applies
a language translation( 1©). Vice versa, if only a subset of the
modeled aspects is interesting for the validation of digital HW
and SW, the methodology proposes amodel abstractionflow
( 2©). Both flows lead to the generation of efficient C++-based
code, ready to be integrated in the virtual platform.

The main contributions of this work are:
• the definition of atranslation algorithm, that converts

the overall starting description to SystemC AMS. This
flow generalizes the methodology in [34]. The algorithm
supports only linear models, due to SystemC AMS limita-
tions. Non-linear models may be supported after applying
linearization techniques and exploiting the flexibility of
SystemC to compose linear models;

• anabstraction algorithmsupporting both linear and non-
linear models, that restricts the initial description to a sub-



set of input/output relations of interest, to achieve faster
simulation. This algorithm extends [14] by maximizing
the use of symbolic manipulation at generation time, to
further remove complexity from simulation;

• the integration of the proposed flows in aunique sound
methodology, that allows to seamlessly adopt the suitable
level of abstraction and to explore the effects of alterna-
tive configurations in terms of accuracy and performance;

• the generation of C++-based codeto be integrated into
virtual platforms with no co-simulation overhead;

• the application toa number of case studies, that validate
the proposed approach on single components, and show
the impact on the simulation of a complete smart system.

The paper is organized as follows. Section II provides the
necessary background and definitions. Section III presents
the overall approach, that is then detailed in Sections IV
and V, and applied to experimental case studies in Section VI.
Section VII draws our conclusions.

II. STATE OF THE ART AND DEFINITIONS

A. AMS extensions of hardware description languages

Verilog-AMS and VHDL-AMS present the same modeling
concepts, and their differences are mostly syntactic [28].Thus,
even if the following sections adopt the Verilog-AMS syntax,
all considerations are applicable to VHDL-AMS as well.

1) Analog and mixed signal management:Verilog-AMS
supports descriptions belonging to different physical domains,
including electrical, mechanical, and thermodynamics. For
this reason, any description must specify the domain and the
properties modeled for the system under design.

To this extent, Verilog-AMS definesnatures(i.e., attributes
of the measured quantities, like measure units and absolute
tolerance for convergence) anddisciplines, used to associate
system nodes to their measured quantities, that are either
potential (i.e., across quantities) or flow (i.e., through quan-
tities) [2]. The most representative discipline in the context of
smart systems is theelectrical discipline, that usesvoltageas
potential (access functionV()) andcurrent as flow (I()).

Disciplines associate each system node with both potential
and flow natures forconservative systems, while signal-flow
disciplines support only either flow or potential. Equations
defined on nodes sharing the same conservative discipline must
be in accordance with conservation laws (e.g., a net defined
over electrical nodes must obey Kirchhoff’s laws).

2) Analog behavior management:The behavior of any
system is described as a set of relationships between flows
and potentials of nodes and branches (i.e., paths of flows
between nodes). These relations are expressed ascontribution
statements(denoted with<+), that relate flow and potential
quantities of nodes and branches through differential and
algebraic equations. Contribution statements allow to infer a
system topology.E.g., in case of the electrical discipline, a
topology can be inferred whenever the set of relations can
be mapped onto a set of basic passive electrical elements (i.e.,
resistors, capacitors and inductors) and controlled sources (i.e.,
voltage- or current-controlled sources).

The execution semantics of Verilog-AMS mixes the
discrete-event computation typical of HDLs with numerical

Table I: Taxonomy of analog hardware description levels [29].

Level Modeling Primitives Implications
Functional Mathematical signal flow

description per block,
connected in signal flow
diagram

No internal block structure;
conservation laws need not
be satisfied on pins

Behavioral Mathematical description
(equations, procedures)
per block

No internal block structure;
conservation laws must be
satisfied on pins

Macromodel Simplified circuit with
controlled sources

Spatially unrelated to actual
circuit; conservation laws
must be satisfied

Circuit Connection of SPICE
primitives

Spatially one-to-one related
to actual circuit; conserva-
tion laws must be satisfied

techniques, necessary to solve continuous-time models. Simu-
lation environments often rely on SPICE-derived solvers [25].
This makes AMS simulation very accurate but slow, thus not
allowing an effective simulation of mixed-signal systems [3].

B. SystemC AMS

SystemC AMS extends SystemC with constructs for mod-
eling analog and mixed-signal systems [1]. To cover a wide
variety of descriptions, SystemC AMS provides three abstrac-
tion levels, supporting different communication styles and
representationsw.r.t. the physical domain.Electrical Linear
Network(ELN) models electrical networks through the instan-
tiation of predefined primitives,e.g., resistors and capacitors,
associated with electrical equations.Linear Signal Flow(LSF)
adopts signal-flow (i.e., non conservative) representations, but
it still supports differential equations. The SystemC AMS
internal linear solver analyses the ELN and LSF components
to derive the equations describing system behavior, that are
solved to determine system state at any simulation time.
Finally, Timed Data-Flow(TDF) models are signal-flow rep-
resentations, that are scheduled statically by considering their
producer-consumer dependencies.

SystemC, both plain [11] and with its AMS extension [10],
has been used to model mixed-signal systems. However, none
of the previous works provide automatic generation of Sys-
temC AMS modules from previously designed analog models.

C. High level analog modeling and simulation

Behavioral analog modelingis a high-level abstraction of
a circuit which describes its behavior as a set of input-output
relations. Analog hardware can be described at different levels
of abstraction, as shown in Table I. The behavioral level is
used both in top-down design flows,e.g., refinement of the
circuit from its mathematical behavioral description, as well
as in bottom-up verification flows [21].

Even if the design of analog models is tipically top-
down [28], recent work proposed bottom-up flows in order
to address non-linearities as well as speeding up simulation
of analog circuits. In [18] a non-linear analog model is
represented as a set of previously-computed linearized versions
that are picked during simulation, thus transforming a non-
linear model to a set of linear models described at circuit
and behavioral level.This approach avoids any numerical in-
tegration during simulation but it works only with stepwise
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input. [22] extends the previous work by executing an on-
the-fly reachability analysis to select only a sub-set of the
linearized models. Simulation of non-linear analog circuits is
also addressed in [20] by applying a state-space exploration
technique. Continuous-time models described as a SPICE net-
list are replaced by boolean finite state machines capturing
the I/O behavior of the system. However, it requires extensive
SPICE simulation in order to extract the behavior. Model
Order Reduction (MOR) has been used to achieve faster
simulation of analog circuits [4] (both linear [27] and nonlinear
circuits [23], [24]) and to reduce complexity of large-scale dy-
namical models [7] and of multi-physical analog models [31].
However, none of these techniques allow to translate already
designed analog models into C++-based languages that may
be easily integrated within virtual platforms.

D. Modeling styles

The main classification of modeling styles considered in
this work is based on theadherence to a physical description.
Analog contributions are definedstructural if they can be
mapped onto passive electronic elements (e.g., resistors and
capacitors), thus inferring a topology. Otherwise, contributions
are calledbehavioral. This definition reflects the behavioral
concept as formalized in the digital domain,i.e., a description
of a functionality expressed as set of behaviors rather thanas
an aggregation of sub-components.

E. Formalisms and conventions

Any analog description can be described as a tuple:

S =< Ne,R >

where:

• Ne = nG ∪ {ni : i ∈ N
+}: is the set of theelectrical

nodes of the system. By reflecting the Verilog-AMS
semantics, this set does not distinguish between internal
nodes and interface nodes.Ne always contains a special
nodenG, that representsground.
FromNe, we derive the set ofelectrical branchesBe =
{bi,j = (ni, nj) : (ni, nj) ∈ Ne × Ne ∧ ni 6= nj}.
Electrical branches are associated with a current flowing
through and an electrical potential across (i.e., voltage).
Physical quantities on a branch can be accessed by using
the following access functions:

– V(bi,j): voltage on branchbi,j , defined as the electric
potential difference between nodesni andnj .

– I(bi,j): amount of current flowing through branch
bi,j , composed by nodesni andnj .

Such access functions are generalized through the defini-
tion of P(bi,j), that represents any access function for a
non-specified physical quantity on branchbi,j (i.e., either
V(bi,j) or I(bi,j)).

• R: is the set of relations defined by the contribution
statements of the model. For electrical linear networks,
all contribution patterns can be reduced to:

Pi(bi) =

( l
∑

k=1

CkPk(bk)

)

+ Cl+1 (1)

CONTROL 
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CONTROLLED 

NODE SIDE

POSITIVE 
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Figure 2: SystemC AMS ELN terminology and main primi-
tives adopted in this work.

Pi(bi) = Ci ∗ A
(

Pj(bj)
)

(2)

where the termsCi stand for real constants. Operator
A() generalizes the differential operatorsddt() (i.e.,
the derivative operator) andidt() (i.e., the integrative
operator).A()can be applied to any access function.

In the following sections, analog descriptions will be labeled
with apices to distinguish between Verilog-AMS (v), Sys-
temC AMS (s) and C++ implementations (c).

It is important to notice that model definitions are based on
the set of relations expressed by the model. This allows to rea-
son about models independently from the runtime solver, that
may introduce unavoidable numerical errors. As such, different
solver-independentequivalence relations between modelsmay
be defined. In particular, given two systemsS1 =< N1,R1 >
andS2 =< N2,R2 > and a mapping function betweenN1

andN2, two possible equivalence relations are defined:

• node-level equivalence:S1 and S2 are node-level equiv-
alent if R1 = R2 once applied the mapping function
betweenN1 andN2;

• interface-level equivalence:Let N ′

1 ⊆ N1 andN ′

2 ⊆ N2

be the elements of interest for the designer, such that all
elements inN ′

2 are projections of all elements inN ′

1

according to the mapping function fromN ′

1 to N ′

2. Let
R′

1 ⊆ R1 and R′

2 ⊆ R2 be the relations between
quantities (i.e., Voltages or Currents) on branches defined
respectively over elements ofN ′

1 andN ′

2. S1 andS2 are
interface-level equivalentif R′

1 = R′

2.

In other words,node-level equivalencepreserves the relations
among all the nodes of the system, whileinterface-level
equivalencepreserves all the relations between those quantities
of the system that are of interest for the designer (usually
including all terminals on the component interface).

F. ELN terminology

Top of Figure 2 details the main characteristics of ELN
components. ELN modules have a standard interface made up
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Figure 3: Verilog-AMS code of the guiding example.

of a positive terminal (p port) and a negative terminal (n port)
for each contributing circuit node (left-hand side). When an
ELN module is controlled by any circuit node, the interface
has (right-hand side): a source side (i.e., the result of the
ELN module, here called thecontrolled node, with a positive
terminalnp and a negative terminalnn) and a control node
side (i.e., the input of the primitive module, here called the
controller node, with a positive terminalncp and a negative
terminalncn).

Figure 2 also details the main ELN primitives adopted in
this work, as defined by the SystemC AMS standard [1].

G. Guiding Example

Figure 3 shows a synthetic guiding example used throughout
the paper. Its representation in terms of aSv =< N v

e ,R
v >

tuple is as follows:

• electrical nodes are:

N v
e = {gndv, inv, in1v, in2v, in3v, outv}

• the only branch explicitly specified is(in, out) ∈ Be,
other than the (implicit) ones between the nodes and
ground;

• contribution statements are represented as relations as
follows:

Rv =











V(in) = V(in1) +
∫

V(in2) + V(in3)dt+ 5.0,

I(in, out) = V(in, out)/R1,

I(out) = C1 ∗ d(V(out))/dt











III. M ETHODOLOGY OVERVIEW

The proposed methodology for converting analog descrip-
tions into C++-based languages is realized through two tech-
niques, exposing complementary characteristics (as outlined in
Figure 1). The main discriminating factor is the desired level
of adherence w.r.t.the starting description.

Whenever a designer wishes to preserve all behaviors, the
code generation process applies a simplelanguage translation,
by mapping the starting syntactic constructs to SystemC AMS
(left-hand side of Figure 1). This preserves all the physical
quantities defined on internal nodes of the system, thus pro-
ducing a model that isnode-level equivalentto the original.
This choice is fundamental when the generated code is the
starting point of further analysis or refinements,e.g., to apply
power or noise analysis, as well as “white box” verification
of internal properties. By referring to Table I, the translation

transforms an analog hardware model given at thecircuit level
into a model at thebehavioral level.

The complementary approach is to focus only on a subset
of behaviors “of interest”, to speed up simulation. This is
achieved through anabstractionflow, realized by identifying
a sub-set of values of interest of the system (right-hand
side of Figure 1): corresponding behaviors are preserved,
while any other behavior is pruned. Note that values of
interest must be specified by the designer, and they typically
carry semantic information necessary to interface the analog
component within a mixed-signal environment. They are thus
considered as inputs/outputs for the analog device. As a result,
the abstraction flow produces a model that isinterface-level
equivalentto the original design, and it moves an analog model
from thecircuit to the functional level.

Reducing the starting description to a subset of its possible
behaviors is on one hand a limitation, as it restricts the scope
of any analysis or “white box” verification. However, this
limitation can be overcome by specifying internal values as
of values of interest, so that they are preserved during the
abstraction process. On the other hand, reducing the starting
description is a key advantage, since abstracted models are
faster to simulatew.r.t. those produced through translation.
This simulation speed-upis extremely useful when simulating
a whole mixed-signal platform to evaluate its global features,
and it is achieved without affecting overall system behavior.

The translation and abstraction algorithms differ in terms
of supported input models, as highlighted by Table II. Only
linear descriptions are supported by both approaches. Trans-
lation is constrained to accept only linear models, since the
translation algorithm targets SystemC AMS ELN, that relies
on a strictly linear solver. The support can be extended to
non-linear models only by applying preliminary manipulation
to the model, as will be discussed in the next section. On
the contrary, the abstraction procedure targets C++ models
and performs symbolic resolution through the adoption of
solver technologies [5], that nowadays support also non-linear
equations. This implies that the scope of application of the
abstraction methodology is wider than the scope of translation.

Despite of the differences in the code generation process,
the result of both flows can be integrated within C++ or Sys-
temC prototypes in virtual platforms, thus allowing effective
evaluation of the heterogeneous system under design.

Table II: Models supported by the proposed approaches.

Methodology Linear
Models

Non-linear Models
Piecewise-linear Algebraic

Translation X (X) (~)
Abstraction X X X

IV. T RANSLATION METHODOLOGY

The translation implements the flow on the left-hand side of
Figure 1, and it is represented by a functionτ(Sv) = Ss, that
given a Verilog-AMS implementationSv =< N v

e ,R
v > re-

turns its node-level equivalent SystemC AMS implementation
Ss =< N s

e ,R
s >.

Figure 4 gives an overview of the translation procedure. An
analog description can be considered as a mean to represent
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Figure 4: Translation flow for analog component descriptions.

a system of AMS equations composing the circuit. As such,
the idea guiding the algorithm is to reproduce the exact set of
equations expressed by the analog description (left-hand side
of Figure 4) through the instantiation of SystemC AMS ELN
primitives (right-hand side of Figure 4).

The translation flow works as follows. Analog nodes are
mapped to SystemC AMS nodes (1©). Then, every contribution
statement is analyzed in order to isolate its basic contributions
( 2©). Each contribution is mapped to ideal ELN primitives,
where the equations associated with the ELN primitives are
the same as the original contribution (3©). The algorithm
determines how to connect the ELN modules, so that the
bindings describe the same relationships between quantities
as the original representation.

The construction of the complete system of equations is
demanded to the SystemC AMS internal solver (4©), that also
takes care of applying conservation laws (5©). The resulting
equations system will thus be node-equivalent to the one
described by the starting description, and the resulting model
will preserve every detail of the model for what concerns the
relations between conservative nodes.

Discussion on supported models:Since the translation
algorithm relies on SystemC AMS ELN primitives, only linear
descriptions are straightforwardly supported. As anticipated by
Table II, support can be extended also to non-linear models
with some preliminary maneuver.

Piecewise-linear modelsmay be supported by applying
translation to each linear region individually, as proposed
by [18]. To ensure that only one region is considered at
any simulation instant, regions are wrapped within a control
structure composed by SystemC AMS voltage and current
sources driven by the Discrete Event SystemC kernel.

Algebraic non-linear models(e.g., models involving poly-
nomials) require to undergo some abstraction, that can be
provided either by our abstraction approach, or by state-of-
the-art linearization approaches,e.g., [18]. These produced
piecewise-linear models that can be treated as above.

Both strategies must be performed at code generation time.
Thus, they would not impact simulation performance.

A. Choice of the suitable SystemC AMS abstraction level

A representation obtained through the translation process
will not match entirely any abstraction level of SystemC AMS.
The generated code is based on the instantiation of an ELN
topology composed by ideal components. Thus, it does not
represent a physically realizable circuit topology, but rather
an aggregation of components reproducing the behavioral re-
lationships between conservative nodes in the original model.
As such, the description is consideredbehavioral (see Sec-
tion II-D). At the same time, the generated code isconserva-
tive, as ELN primitives predicate over physical quantities of
conservative nodes in electrical circuits. Thus, they abide by
energy conservation laws (i.e., Kirchhoff’s laws). This kind
of descriptions constitues a novel modeling formalism in Sys-
temC AMS, calledAnalog Behavioral Modeling(ABM) [34].

The characteristics of ABM models do not fit in any of the
SystemC AMS modeling formalisms [34]. However, they are
supported by other AMS HDLs and widely used for the design
of components such as MEMS and analog circuitry [12], [30].
It is thus necessary to extend SystemC AMS, to improve its
coverage and effectiveness. Since the SystemC AMS standard
forbids the definition of additional library classes [1], this
work proposes an algorithm that maps ABM descriptions to
a novel use of SystemC AMS ELN blocks. These blocks
are aggregated according to a set of rules guaranteeing to
reproduce exactly the set of relations between physical quan-
tities specified in the original model. The use of predefined
ELN primitives guarantees the correctness of the underlying
synchronization and solving mechanisms, and it preserves
compatibility with standard SystemC AMS descriptions.

B. Circuit node management

Step 1© of Figure 4 implements the functionν(N v
e ) = N s

e ,
that maps electrical nodes of the analog implementation into
SystemC AMS.

The ground nodenv
G is mapped into nodens

G, correspond-
ing to an instantiation of a node of typesca_node_ref.
Any other nodenv

i is mapped into a nodens
i , that will be

declared in SystemC AMS according to the following rules:

• if nv
i belongs to the interface of the analog model,ns

i is
declared as asca_terminal;

• else,ns
i is declared as asca_node.

Each nodens
i inserted into the SystemC AMS imple-

mentation (including instances of bothsca_terminal and
sca_node) is connected to the groundns

G through a 1 GΩ
resistor, by using the ELNsca_r primitive. This is identical
to theGmin conductance inserted by SPICE-based simulators
to help convergence.

In the guiding example of Figure 3, the set of SystemC AMS
nodes isN s

e = {gnds, ins, in1s, in2s, in3s, outs}, where
gnd is the ground (i.e., sca_node_ref), in1, in2, in3 and
out are declared assca_terminal, while in is an instance
of sca_node.

C. Division into contributions

Step 2© analyses all the contribution statements and reduces
the set of generic relations described by the starting analog

5



Algorithm 1: Normalization algorithm for the translation procedure.

Input : Initial System (from original specification).
Output: Final Normalized System.

1 S′ = Normalization(S)
2 S′ ← S
3 foreach r in R′ do
4 if r ∈ ǫ+ ǫ2 then
5 (c1, c2)← Rule1(r)
6 R′ ←R′

r {r} ∪ {c1, c2}

7 foreach r in R′ do
8 if r ∈ C0 ∗ A

(

ǫ) then
9 (c1, c2)← Rule2(r)

10 R′ ←R′
r {r} ∪ {c1, c2}

11 if S′ 6= S then
12 S′ ← Normalization(S′)

13 return S′

implementation into a set of relations expressed in the patterns
(1) and (2) (Section II-E).

This pre-processing phase is based onto a set of rules, that
divide any original relation into sub-equations. Each couple of
sub-equations is connected by anadditional electrical node,
connected to ground by branchbz. This new node does not
have a physical correspondence in the modeled circuit, as itis
only used for artificially splitting the described relation. Also
this new node is connected to ground through a 1 GΩ resistor.

The following symbols are adopted for the sake of clarity:ǫ1
to indicate a relation expressed in pattern (1),ǫ2 for a relation
expressed in pattern (2), andǫ for a generic expression other
than a constant, or an access function.

Rule 1 – isolating differential contributions:

Pi(bi) = ǫ1 + ǫ2 →

{

Pi(bi) = ǫ1 + V(bz)

V(bz) = ǫ2

Any differential termǫ2 contained by the original statement
is replaced by the voltage of the new branchbz. This transfor-
mation reduces the original statement in the Form (1). Then,
a new contribution in the Form (2) is added, to explicit the
equivalence betweenV(bz) and the termǫ2.

Rule 2 – managing arguments of differential operators:

Pi(bi) = Ci ∗ A
(

ǫ) →

{

Pi(bi) = Ci ∗ A
(

V(bz))

V(bz) = ǫ

This rule handles all the cases in which the argument of
a differential operator is more complex than a single access
function. The original argument of the differential operator ǫ
is replaced by the voltage of the new branchbz, thus creating
a contribution of type (2). The voltage ofbz is then used as
target of a new contribution statement, having as source the
original argument of the differential operator (ǫ).

Rule 1 and Rule 2 preserve the relations defined over
the branches specified by the original contribution statement.
The rules are applied recursively according to Algorithm 1.
Given any systemS, intended as the set of relations defined
over electrical branches, the algorithm returns a normalized
equivalent set of relations, expressed only through expressions
in patterns (1) and (2).

In detail, for each contribution in the set of relations, the
algorithm tries to apply Rule 1 (Lines 3-6). If a contribution

is expressed as the trigger condition to apply Rule 1 (Line 4),
than the algorithm applies the rule and replaces the original
contribution with the new ones (Lines 5–6). Similarly, for each
contribution in the resulting set of relations, the algorithm tries
to apply Rule 2 (Lines 7-10). Finally, if any modification of the
input set occurred, the algorithm is recursively applied tothe
new set of relations (Lines 11-12). This is necessary because
both Rule 1 and Rule 2 may introduce new contributions, that
must be normalized. If no modifications occurred, the setS′

of relations reached a fixed-point and it can be returned as
final result of the normalization.

It is worth noting that Algorithm 1 modifies the input model
only by applying Rules 1 and 2. As such, it preservers all the
relations over branches specified in the input system.

Guiding example. The following exemplifies the applica-
tion of Algorithm 1 to the case study in Figure 3. Given the
systemSv =< N v

e ,R
v >, line 2 creates a new systemS ′ =<

N ′

e,R
′ > whereN ′

e = N v
e = {gnd, in, in1, in2, in3, out},

R′ = Rv =











V(in) = V(in1) +
∫

V(in2) + V(in3)dt+ 5,

I(in, out) = V(in, out)/R1,

V(out) = C1 ∗ d(V(out))/dt











Since the first relation inR′ is in the formǫ+ ǫ2 (Line 4), the
algorithm applies Rule 1 (Line 5), thus adding a new noden1
in N ′

e and modifying the setR′ as follows (Line 6):

R′ =



















V(n1) =
∫

V(in2) + V(in3)dt,

V(in) = V(in1) + V(n1) + 5,

I(in, out) = V(in, out)/R1,

V(out) = C1 ∗ d(V(out))/dt



















The newly introduced relation is in the formC0∗A(ǫ) (Line 8),
hence Rule 2 can be applied (Line 9), thus adding noden2 in
N ′

e and modifyingR′ as follows:

R′ =































V(n2) = V(in2) + V(in3),

V(n1) =
∫

V(n2)dt,

V(in) = V(in1) + V(n1) + 5,

I(in, out) = V(in, out)/R1,

V(out) = C1 ∗ d(V(out))/dt































Since S ′ 6= S, the function is recursively applied toS ′.
However, no further transformation is performed, and the
normalized systemS ′ is returned. △

D. ELN Components instantiation

Step 3© recreates the normalized relations produced by
Algorithm 1 by instantiating and connecting ELN components.
The procedure differs for the two formats of contributions.
In the following, figures follow a chromatic convention: light
blue for current and red for voltage, while yellow portions are
dependent on the type of contribution to reproduce.

Type (1) contributions:This rule applies to all contribution
statements of pattern (1):

Pi(bi) =

( l
∑

k=1

CkPk(bk)

)

+ Cl+1
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Note that, since we are dealing with linear systems, it
is sufficient to take care of the addition of physical values.
Figure 5 exemplifies the instantiation for the relation:

P0(n1, n2) = P1(n3, n4)+P2(n5, n6)+...+P3(nk−1, nk)+C

The sum is implemented as parallel composition of controlled
current sources (left-hand side of Figure 5). The control side
of such sources (in yellow) depends on the operands appearing
on the right-hand side of the contribution statement. For
any k, if Pk is V(), then the instantiated component is a
voltage-controlled current source (i.e., sca_vccs). If else
Pk is I(), the instantiated component is a current-controlled
current source (i.e., sca_cccs). The positive terminal of the
control interface is connected to branchbk, and the gain of
the controlled source is set toCk.

Figure 5: Topological pattern for Type (1) contributions.

All current sources are connected in parallel to a new
intermediate noden′, that is connected to the control side of
a current controlled source (right-hand side of Figure 5). The
control side of this block (in yellow) once again depends on
the starting contribution. If the target of the contribution Pi()
is V(), the block is a voltage source. Else if the target of the
contributionPi() is I(), the block is a current source. The
controlled interface is then connected to the target branchbi.

Finally, the constant valueCl+1 in the summation is re-
produced by connecting in parallel a constant current source,
whose generated current is equal to the value ofCl+1.

Let us consider the topology instantiated by the described
algorithm from a contribution of type (1). The algorithm
assures that the equations solved by the SystemC AMS solver
are equivalent to the ones in the original contribution. The
current entering the noden′ is equal to the sum of the right-
hand operands of the original contribution statement. Simply
applying the Kirchhoff Current Law (KCL), this is also equal
to the current flowing in the branch(n′, ground). Thus, it
will be the output quantity generated by the current controlled
source connected to the target branch.

Type (2) contributions:Differential contributions are more
complex, as they model a derivative (or integrative) rela-
tionship between currents or voltages of two separate circuit
branches. SystemC AMS, on the other hand, restricts differ-
ential behaviors to dependencies on single network branches,

through the adoption of capacitors or inductors. (sca_l
ELN primitive). To overcome this limitation, it is necessary
to introduce an intermediate node that has no physical corre-
spondence in the circuit, but that is rather used for describing
the differential dependence.

All the differential contributions are mapped using the
generic topological pattern depicted in Figure 6.

Figure 6: Topological pattern for contributions in Form (2).

Component 1 is a controlled current source, as indicated
by the controlled side (in blue). The control side (in yellow)
depends on the modeled contribution. If the argument of
the derivative construct isV(), Component 1 is a voltage-
controlled current source (i.e., sca_vccs). Else, if the ar-
gument isI(), Component 1 is a current-controlled current
source (i.e., sca_cccs).

Component 3 is a voltage-controlled source, as indicated by
the control side (in red). The controlled side (in yellow) reflects
the target of the Verilog-AMS contribution statement. If the
target isV(), Component 3 is a voltage controlled voltage
source (i.e., sca_vcvs). Else if the target isI(), Component
3 is a voltage-controlled current source (i.e., sca_vccs).

Component 2 (in yellow in Figure 6) is used to create the
differential relation between the current value, controlled by
Component 1, and the voltage value controlling Component
3. Component 2 is an inductor whenever the differential
contribution is derivative (i.e., sca_l), and it is a capacitor in
case of an integrative contribution (i.e., sca_c). Thus, given
Inp,nn the current flowing through terminalsnp and nn of
Component 1, andVncp,ncn the voltage on the branch between
the terminalsncp andncn of Component 3, the relationship
described by Component 2 is:

Vncp,ncn =

∫

Inp,nndt

in case of a derivative contribution (i.e., Component 2 is a
capacitor), and

Vncp,ncn =
dInp,nn

dt

in case of an integrative contribution (i.e., Component 2 is an
inductor).

Considering the derivative and the integrative operators of
Verilog-AMS, we can describe all possible configurations in
terms of the eight cases in Table III. For each case, the table
shows the corresponding SystemC AMS primitives.
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Table III: Summary of the components employed to map differential contributions.

Contribution Component 1 Component 2 Component 3

I(n1, n2)<+k ddt(I(n3, n4))
Current Controlled Current Source Inductor Voltage Controlled Current Source

sca_cccs sca_l sca_vccs

I(n1, n2)<+k ddt(V(n3, n4))
Voltage Controlled Current Source Inductor Voltage Controlled Current Source

sca_vccs sca_l sca_vccs

V(n1, n2)<+k ddt(I(n3, n4))
Current Controlled Current Source Inductor Voltage Controlled Voltage Source

sca_cccs sca_l sca_vcvs

V(n1, n2)<+k ddt(V(n3, n4))
Voltage Controlled Current Source Inductor Voltage Controlled Voltage Source

sca_vccs sca_l sca_vcvs

I(n1, n2)<+k idt(I(n3, n4))
Current Controlled Current Source Capacitor Voltage Controlled Current Source

sca_cccs sca_c sca_vccs

I(n1, n2)<+k idt(V(n3, n4))
Voltage Controlled Current Source Capacitor Voltage Controlled Current Source

sca_vccs sca_c sca_vccs

V(n1, n2)<+k idt(I(n3, n4))
Current Controlled Current Source Capacitor Voltage Controlled Voltage Source

sca_cccs sca_c sca_vcvs

V(n1, n2)<+k idt(V(n3, n4))
Voltage Controlled Current Source Capacitor Voltage Controlled Voltage Source

sca_vccs sca_c sca_vcvs

Given a contribution of Type (2), the set of equations defined
by the topology instantiated as described is equivalent to the
original contribution. Let us consider a contribution of Type
(2), whereA is a derivative operatorddt. Given the additional
noden′, its physical quantities are defined as:

I(n′, nG) = Pj(bj) V(n′, nG) = Pi(bi)

The algorithm adds the equation for the inductor connecting
n′ andnG with inductance valueCi:

V(n′, nG) = Ci ∗
dI(n′, nG)

dt
By replacing the values, we obtain:

Pi(bi) = C0 ∗
dPj(bj)

dt
Let us consider now a contribution of type (2) whereA is
an integrative operatoridt. The physical quantities on the
intermediate noden′ are:

I(n′, nG) = Pj(bj) V(n′, nG) = Pi(bi)

The algorithm adds a capacitor with capacity value ofCi,
connectingn′ andnG:

V(n′, nG) = Ci ∗

∫

I(n′, nG)dt

Thus, replacing the values:

Pi(bi) = Ci ∗

∫

Pj(bj)dt

Finally, it is possible to conclude that the topology generated
by applying the instantiation rules isnode-levelequivalent to
the input model of the translation algorithm.

Guiding example. Figure 7 depicts the topology of com-
ponents instantiated by applying the algorithm to the Verilog-
AMS model in Figure 3. For the sake of readability, discon-
nected terminals in the figure are intended as connected to
the ground node. White nodes (i.e., in1, in2, in3, in and
out) are the ones explicitly specified in the original model.
Yellow nodes (i.e., n1 and n2) are nodes inserted during
node management (Section IV-B). Green “unnamed” nodes are
inserted during ELN component instantiation to connect basic
blocks of the topology (Section IV-D). Note that all nodes are
connected to ground via the 1 GΩ resistors. △

VCCS CCVS

VCCS

in3

in2

in1 in

out

n2

CCCS

VCCS CCVS

VCVS

n1

VCCS

CCCSVCCS

VCCS VCVS

Figure 7: Resulting topology obtained by the translation ofthe
guiding example in Figure 3.

E. Complexity

The complexity of the proposed translation algorithm is
derived from its constituting steps:

• Step 1©: the instantiation of the SystemC AMS nodes and
1GΩ resistors is performed in constant time for every
node. Thus the complexity for this step isO(|Ne|).

• Step 2©: the application of Rules 1 and 2 is constant.
Thus the complexity of the step is the complexity of Al-
gorithm 1. Its worst case happens when every contribution
statement is of maximum length (i.e., O(|Ne|

2)) and ev-
ery branch appears on the left-hand side of a contribution
statement (i.e., O(|Ne|2)). Thus, the complexity of this
step isO(|Ne|2) · O(|Ne|2) = O(|Ne|4).

• Step 3©: a topological pattern is instantiated for ev-
ery addend in any relation generated after the previous
step. The maximum number of addends per relation is
O(|Ne|2), while the relations are at mostO(|Ne|2). Thus,
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Figure 8: Abstraction flow for analog component descriptions.

the complexity of this step isO(|Ne|4).

In conclusion, the total complexity of the translation proce-
dure is the sum of these three steps:

O(|Ne|) +O(|Ne|
4) +O(|Ne|

4) = O(|Ne|
4)

V. A BSTRACTION METHODOLOGY

The abstraction flow can be represented by the function
α(Sv,P(n)) = Sc. Given a Verilog-AMS implementation
Sv =< N v

e ,R
v > and a value of interestP(n), α(Sv,P(n))

returns a C++ modelSc =< N c
e ,R

c >, such that any relation
between input values and the quantityP(n) is preserved. Since
α deals with only one value of interestP(n), it is applied to
Sv once for each value of interest to be preserved.

Figure 8 gives an overview of the abstraction approach. The
guiding idea is to analyze the starting analog description to
restrict the model to the sub-equations binding the specified
value of interest to the inputs of the model. Note that the
starting description can be both linear and non-linear.

The first step of the algorithm generates new equations by
replacing the left-hand side of each equation with the terms
on its right-hand side (1©). As a next step, circuit topology is
inferred to extend the system of equations with the application
of Kirchhoff’s conservation laws (2©). Then, the algorithm
analyses the whole set of equations to identify the sub-set
describing the relation between the specified value of interest
and the inputs of the model (3©). The sub-set of equations
is then solved by means of a symbolic solver, with the goal
of breaking all the algebraic loops (4©). The result is used to
generate the behavioral C++ description (5©).

A. Circuit equations acquisition

Step 1© parses all relations inRv and translates each
of them into an abstract syntax tree (AST). In each AST,
leaves represent values and variables, while intermediatenodes
represent operators. Each element of the tree is associatedwith
a number of flags for storing additional information,e.g., the
presence of derivative or integrative operators. The generated

equations are then stored inside a Multimap,i.e., an efficient
data structure which requiresO(1) to insert an element, and a
worst case effort proportional to the list lengthO(l) to search
and delete an element.

The translation to ASTs is based on five rules, divided into
Left-Hand Side rules (LHS) and Right-Hand Side rules (RHS).
In the remainder of this section, for each relationri ∈ Rv, ǫi
identifies the expression on its right-hand side.

LHS Rule 1:Given any branchbi,j , if Rv contains one and
only one relationrk containing an access functionP (bi,j) on
the LHS (i.e., the LHS defines a quantity of branchbi,j), then
the access function is replaced by a variable as follows:

P (bi,j) = ǫk → P_i_j = ǫk

LHS Rule 2:Given any branchbi,j, we defineRpar as the
set of relations having a current access functionI(bi,j) on the
LHS. For eachrk ∈ Rpar , with 1 ≤ k ≤ |Rpar|, the LHS of
rk is replaced by a variable as follows:

Ik(bi,j) = ǫk → I_i_j_k = ǫk

Suffix k is necessary because multiple relations may assign
a current value over the same pair of nodes. Such relations
actually make an assignment over distinctparallel branches,
and thus must be treated separately. Addingk as variable suffix
allows to preserve the distinction between different branches.

LHS Rule 3: Given any branchbi,j , we defineRser as
the set of relations having a voltage access functionV (bi,j)
on the LHS. The management ofRser introduces a setNs

of intermediate nodes, with|Ns| = (|Rser | − 1). For each
rk ∈ Rser , with 1 ≤ k ≤ |Rser |, the LHS ofrk is replaced
by a variable as follows:

Vk(bi,j) = ǫk →











V _i_nk = ǫk if k = 1

V _n(k−1)_nk = ǫk if 1 < k < |Rser |

V _n(k−1)_j = ǫk if k = |Rser |

where nk and nk−1 are respectively the k-th intermediate
node and its precedent. Note that the intermediate nodes are
introduced because relations assigning a value to voltage over
the same pair of nodes actually refer to branchesin series.
LHS Rule 3 preserves this by distributing the relations onto
distinct pairs of nodes, included in{ni} ∪Ns ∪ {nj}.

RHS Rule 1:A relation containing a differential operator
over a sum of access functions on the RHS is modified moving
the operator from the entire expression to its single elements:

A

( l
∑

k=1

CkPk(bk)

)

→
l

∑

k=1

(

Ck ∗ A(Pk(bk))
)

RHS Rule 2:Any access function is replaced with a variable
as follows:

P (bi,j) → P_i_j

Guiding example. Considering the case study in Figure 3
as its formalizationSv =< N v

e ,R
v >, where:

Rv =











V(in) = V(in1) +
∫

(V(in2) + V(in3))dt+ 5,

I(in, out) = V(in, out)/R1,

I(out) = d(V(out))/dt ∗ C1










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Set Equations

Rc
Z V _in = V _in1 +

∫

(V _in2)dt +
∫

(V _in3)dt + 5

A I_in_out = V _in_out/R1

B I_out = d(V _out)/dt ∗C1

Rc
d

C V _in_out = I_in_out ∗R1

D V _out =
∫

(I_out)dt/C1

Rc
kvl

E V _in_out = V _in− V _out
F V _out = V _in− V _in_out

Rc
kcl

G I_in_out = I_out
H I_out = I_in_out

Table IV: Equations gathered (A, B and Z) and generated
(from C to H) by the abstraction procedure.

The LHS and RHS rules lead to the definition of a new set of
relationsRc:

Rc =











V _in = V _in1 +
∫

(V _in2)dt+
∫

(V _in3)dt+ 5

I_in_out = V _in_out/R1

I_out = d(V _out)/dt ∗ C1











△

B. Equation system enrichment

The second step of the abstraction approach infers circuit
topology to enrich the set of relationsRc with Kirchhoff’s
conservation laws. The starting point consists ofpartitioning
the set of relationsinto two sub-sets:Rc

bhv, containing behav-
ioral equations, andRc

str, devoted to structural equations:

Rc
bhv =

{

V _in = V _in1 +
∫

(V _in2)dt+
∫

(V _in3)dt+ 5
}

Rc
str =

{

I_in_out = V _in_out/R1
I_out = d(V _out)/dt ∗ C1

}

Rc = Rc
bhv

⋃

Rc
str

Table IV exemplifies the enrichment step application on the
guiding example, and is used as a reference throughout the
remainder of this section. EquationsA, B andZ are the ones
derived from the previous step.

The construction of circuit topology insists only on the
sub-set of structural equationsRc

str, due to their adherence
to a physical description.Kirchhoff ’s conservation laws[13]
allow to derive two new sets of equations:Rc

kcl andRc
kvl.

Rc
kcl contains those equations derived fromRc through the

application of Kirchhoff’s Current Law (KCL), and it contains
|N v

e | − 1 independent equations. Complementarly,Rc
kvl con-

tains |Bv
e | − |N v

e |+1 independent equations derived by using
Kirchhoff’s Voltage Law (KVL). Considering the guiding
example, this process leads to the definition of EquationsE, F ,
G andH of Table IV. Note that equations describing the same
circuit mesh (i.e., E andF ) are linerly dependent. The same
relation applies to the equations describing currents entering
and exiting the same node (i.e., G andH).

The next stepderives the dual relation of each equationin
Rc

str [6], by interchanging the relation left-hand side term
with the right-hand side terms. This introduces a new set
of equationsRc

d linearly dependent from the original one.
The size of the new set of equations is|Rc

d| = |Rc
str|. The

application of this step is exemplified by EquationsC andD
in Table IV, which are dualsw.r.t. EquationsA andB.

(a) (b)

Figure 9: Dependencies graph generated for the guiding exam-
ple starting from the equations of Table IV (a), and application
of graph visit (b).

Linear dependencies between equations are stored in a
linked-list, i.e., each equation inside a set of linearly dependent
equations points to the next equation belonging to the same set.
This allows to partition the set of equations into equivalence
classes based on the linear dependency relation.

C. Cone of influence exploration

The third step of the methodology determines the equations
necessary to describe the outputs of the modelw.r.t. its
inputs. To ease the application of this step, relations between
equations are represented by agraph of dependencies, like the
one in Figure 9a. The graph is built as follows:

• Node Creation Rule: Each equation introduces a node,
labeled with the corresponding LHS variable.

• Edge Creation Rule: An edge connects nodesni andnj

whenever the LHS variable associated to the nodeni

appears on the RHS of the equation associated tonj .

For the sake of readability, both equations in Table IV and
in Figure 9 are labeled with letters. Consider nodeH in
Figure 9a, associated with equationH of Table IV, i.e.,
I_out = I_in_out. The RHS of the equation contains the
variable I_in_out, that is also used on the LHS of the
equations represented by nodesA and G. This adds to the
graph an edge fromH to A, and an edge fromH to G.

The graph is visited according to the following rules:

• Node visit rule: When a nodeni is visited, the node
is disabled and the corresponding equationei is stored
inside a set calledRes. Then, all nodes representing
equations linearly dependentw.r.t. ei are disabled.

• Disabled node rule: Disabled nodes cannot be visited.
• Next node rule: After completing the visit of a nodeni,

the visit moves to all non disabled neighbors ofni. If all
nodes of the graph are disabled the visit ends.

After the visit,Res is the smallest set of equations describing
the relation between system inputs and the values of interest.

Guiding example. Figure 9b depicts an example of ex-
ploration of the graph in Figure 9a starting from nodeF .
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Numbers represent the order in which the nodes are visited.
The resulting set of equations is:

Res =































V _out = V _in− V _in_out

V _in = V _in1 +
∫

(V _in2)dt+
∫

(V _in3)dt+ 5

V _in_out = I_in_out ∗R1

I_in_out = I_out

I_out = d(V _out)/dt ∗ C1

(3)

△

D. Equations system solver

Algebraic loops may lead to an erroneous simulation if not
properly managed. The fourth step of the methodology aims
at removing them by solving the equations system.

The first step deals withtime-dependent operators(i.e.,
ddt and idt), that are not managed by symbolic solvers.
Each equation is visited and occurrences of the aforementioned
operators are replaced with the corresponding discrete-time ap-
proximation. Different techniques of numerical differentiation
or integration can be used, depending on the desired degree
of accuracy. A simple example of approximation technique
for the derivative operator is the finite difference formulain
Equation 4, whereh is the simulation step of the model:

dV (t)

dt
−→

V (t)− V (t− 1)

h
(4)

For the integrative operator, a typical example is the quadrature
formula in Equation 5, where variableVacc is an accumulator
incremented by(V (t) ∗ h) at the end of each simulation step:

∫

V (t)dt −→ (V (t) ∗ h) + Vacc (5)

Note that replacing all the time-dependent operators with
the corresponding approximation formula moves the model
semantics from continuous- to discrete-time, with timestep h.

To ensure the correctness of the final code, equations must
then be solved by a symbolic solver capable of dealing with
systems of linear equations. In this work, the choice fell on
GiNaC [5], a C++ library for symbolic computation. Given
a system of linear equations and its unknown variables, the
symbolic engine provides a function calledlsolve, which
solves the system and returns a set of equations describing
the functional behaviorof the electrical model. This set can
be mapped onto C++-based descriptions, ranging from pure
C++ to SystemC AMS TDF. These generated models can be
easily integrated into C++-based virtual platforms.

Guiding example. The result of applying the proposed
approximations to Equation 3 is:

R′

eq =















































V _in =V _in1

+ (V _in2 ∗ h) + V _in2_acc

+ (V _in3 ∗ h) + V _in3_acc+ 5

V _out = V _in− V _in_out

V _in_out = I_in_out ∗R1

I_in_out = I_out

I_out = ((V _out− V _out_prev)/h) ∗ C1

(6)

Figure 10 depicts then the corresponding C++ code, ob-
tained through GiNaC. △

Figure 10: Abstracted C++ description generated for the
guiding example in Figure 3.

E. Complexity

In the worst case scenario, the initial set of relations
Rv contains only structural equations. As consequence, the
dimension ofRv is at most|Ne|2.

The complexity of the proposed abstraction approach is
derived from its constituting steps:

• Step 1©: Access function renaming and the integral
(derivative) decomposition is constant for each equation
in Rv. The algorithmic complexity of this step is given
by the size of the set:O(|Ne|2).

• Step 2©: Gathering KCL and KVL equations has a
worst case running time respectively of at mostO(|Ne|2)
and O(|Ne|3). Dual relation generation is linearw.r.t.
the length of each structural equation, that is constant,
and it must be applied to at mostO(|Ne|2) equations,
thus resulting in a complexity ofO(|Ne|2). Thus, the
overall complexity of this step isO(|Ne|

2)+O(|Ne|
3)+

O(|Ne|2) = O(|Ne|3).
• Step 3©: Equations are partitioned into equivalence

classes, whose number is given by the dimension of
initial set of relations and the number of independent
Kirchhoff’s equations. During graph exploration, these
classes are disabled whenever a node associated with
one of their equations is visited. Therefore, the graph
exploration complexity isO(|Ne|

2) + (O(|Ne|) − 1) +
(O(|Ne|2)−O(|Ne|) + 1) = O(|Ne|2).

• Step 4©: The number of equations selected by the explo-
ration is at most equal to the number of branches in the
circuit. Solving an equation system of dimension|Ne|2

has a computational complexity ofO(|Ne|6) [5].
• Step 5©: Generating the set of C++ assignments requires

at mostO(|Ne|2).

The overall computational complexity is thus:

O(|Ne|
2) + O(|Ne|

3) +O(|Ne|
6) = O(|Ne|

6)

VI. EXPERIMENTAL RESULTS

This section proves the effectiveness of the proposed
methodology on a number of case studies of increasing
complexity. All experiments have been executed on a 64-
bit machine running Ubuntu 14.04, equipped with 16 GB of
memory and an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz.

All proposed steps have been automated in theASTRAL

tool, i.e., theAnalog Systems Translation and absRAction tooL.
ASTRAL relies on the HIFSuite framework [8] for parsing and
manipulation of Verilog-AMS models.
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Table V: Benchmarks characteristics and generation time.

Benchmark Relations
Values of Interest

LoC
Abstraction

Time (s)
Translation
Time (s)Input Output

RC1 2 1 1 17 0.026 0.041

IN2 3 2 2 21 0.029 0.051

PIFilter 4 1 1 21 0.035 0.075

IN3 5 3 2 31 0.037 0.058

Op-Amplifier 6 1 1 46 0.036 0.064

RC5 10 1 1 42 0.069 0.108

RC10 20 1 1 67 0.195 0.197

RC20 40 1 1 117 0.828 0.411

Accelerometer 66 10 8 123 0.417 0.402

A. Case studies

The case studies used for the experimental analysis are:

• four low-pass filters with an increasing number of stages
(i.e., RC1, RC5, RC10andRC20);

• a capacitor-input filter (i.e., PIFilter), composed by a
couple of capacitors, an inductor and a load resistance;

• two multi-input circuits, composed by the interconnection
of passive basic electrical components, with two (i.e.,
IN2) and three (i.e., IN3) inputs respectively;

• an operational amplifier (i.e., Op-Amplifier);
• an accelerometer, modeled using a set of algebraic dif-

ferential equations expressing behavioral relations over
electrical values.

Table V reports the characteristics of the benchmarks, in
terms of number of relations, number of selected values of
interest, and lines of code (LoC) of the starting Verilog-AMS
model. The adopted case studies have an increasing number of
relations, to prove the scalability of the proposed methodology.

B. Methodology accuracy

The accuracy of the proposed approach is estimated by
comparing a reference Simulink model of each benchmark
w.r.t. both the original Verilog-AMS description (simulated
by using SPICE) and the code generated through translation
and abstraction. Table VI reports the accuracy estimated for
the four low-pass filters, by showing thenormalized root-
mean-square error(NRMSE) on the computed outputs. The
low error rate of both the abstracted and translated codes
highlights the high level of accuracy of the generated models.
The NRMSE rages from10−6 to 10−7, that is comparable to
the precision obtained using SPICE-based simulators.

Table VI: NRMSE of the generated modelsw.r.t. Simulink.

Description RC1 RC5 RC10 RC20

SPICE 2.81E-07 2.92E-07 7.28E-07 3.60E-07
Translation 1.84E-06 1.83E-07 2.13E-06 1.75E-06
Abstraction 8.14E-07 9.55E-07 1.65E-06 1.47E-06

C. Methodology performance

The performance of the generated code is evaluated by
considering all benchmark individually.

The generation time(reported in columnsTranslation time
(s) andAbstraction time (s)of Table V) is always well below
1s, for all benchmarks and code versions. Whenever the model
is mostly composed by structural equations (e.g., RC20),
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Figure 11: Structure of the OSTC virtual platform.

the abstraction flow requires more time than the translation
flow. On the contrary, models comprising primarily behavioral
equations (e.g., Accelerometer) speed up the abstraction flow,
since steps2© and 3© are not applied.

To estimate thesimulation performance, we considered
three scenarios for each benchmark:

• Verilog-AMS description, simulated with Questa [25];
• SystemC AMS ELN code, generated through translation;
• C++ code, generated through the abstraction flow.

Each scenario executes 1 second of simulated time with a
fixed time step of 50 nanoseconds. The adoption of a fixed
time step is necessary to ensure correct interaction of the
analog benchmarks with the digital sub-system [16]. The fixed
time step degrades SPICE simulation speedw.r.t. adaptive
step simulation, as the simulator has to re-evaluate the overall
analog sub-system more often.

The resulting simulation times are reported in columns
Component time (s)of Table VII. The speed-up achieved for
the different case studies depends on their internal structure.
Nonetheless, both the translation and the abstraction models
proved to improve simulation time for all benchmarks. Trans-
lation achieves a maximum speed-up of 67.0x, with an average
speed-up of 37.4x. Abstraction further fastens simulationby
reaching 2 orders of magnitude speed-ups (ranging from
711.0x to 122.1x), for an average speed-up of 335.7x.

D. Application to a smart system scenario

To prove the effectiveness of the generated code in the
context of virtual platforms, the generated models have been
integrated in a mixed-signal virtual platform: the Open Source
Test Case (OSTC) [15], available as open-source demonstrator
for HIFSuite. The structure of the OSTC is depicted in
Figure 11: it comprises a SW application running on top of
a general-purpose CPU, and a number of both digital and
analog peripherals which communicate through a bus. The
Verilog-AMS models of the analog components are integrated
and simulated within a mixed VHDL, Verilog and SystemC
version of the OSTC. The SystemC AMS and C++ versions
of the analog components are integrated and simulated within
a C++ implementation of the OSTC. Each implementation of
the platform is stimulated with the same testbench carryingon
a transient analysis covering 1 second of simulated time, with
a time step of 50 nanoseconds.

Table VII reports theexecution timerequired to simulate
the platform including the benchmarks in each code version
(columnsPlatform time (s)). The speed-up achieved for the
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Table VII: Execution times for different abstractions simulated both alone and together with the smart system.

Benchmark
Heterogeneous Translation – SystemC AMS/ELN Abstraction – C++

Component Platform Component Platform Component Platform
Time (s) Time (s) Time (s) Speed-up (x) Time (s) Speed-up (x) Time (s) Speed-up (x) Time (s) Speed-up (x)

RC1 4,898.45 8,751.36 73.16 67.0 539.38 16.2 6.89 711.0 70.79 123.6

IN2 3,706.86 7,358.91 86.88 42.7 568.31 13.0 11.69 317.1 70.95 103.7

PIFilter 5,097.50 8,905.17 99.83 51.1 569.54 15.6 9.75 522.8 71.52 124.5

IN3 3,815.47 7,465.37 114.73 33.3 623.40 12.0 16.75 227.8 71.51 104.4

Op-Amplifier 5,174.22 6,369.19 105.45 49.1 559.73 11.4 19.63 263.6 71.24 89.4

RC5 5,307.23 9,075.30 151.58 35.0 612.57 14.8 12.56 422.6 73.55 123.4

RC10 6,152.12 9,826.31 268.72 22.9 722.17 13.6 22.59 272.3 82.13 119.6

RC20 7,746.65 11,288.23 443.50 17.5 939.35 12.0 63.45 122.1 111.93 100.9

Accelerometer 7,749.64 12,388.71 576.73 13.4 1,348.39 9.2 47.83 162.0 82.84 149.6

Figure 12: Structure of the non-linear case study.

simulation of the component in isolation is mitigated in this
scenario by the execution of the remainder of the platform.
However, the achieved speed-up is always one order of
magnitude for the translation flow (maximum 16.2x, average
13.09x), and two orders of magnitude for the abstraction flow
(ranging between 89.4x and 124.5x, average 115.4x).

Even in this case simulation times show a certain variability
among the test cases. The speed-up achieved by simulating a
component, may not be completely reached once the com-
ponent is integrated within the platform:e.g., IN3 and RC20
reach the same speed-up, but IN3 is faster once integrated
in the OSTC. This is caused by the overhead introduced to
manage the component interface and the communication with
the other components composing the platform.

Note that the methodology proved to improve simulation
performance in every considered scenario and for all case
studies. Thus, it allows to effectively and efficiently simulate
an entire virtual platform of a smart system, still guaranteeing
negligible accuracy losses.

E. Non-linear case study

This section focuses on the analysis of the applicability of
the proposed approaches to a system presenting non-linearities.
The case study (depicted in Figure 12) contains:

• three linear sub-components: two Digital-to-Analog Con-
verters (DAC), one Analog-to-Digital Converter (ADC);

• five Piecewise linear components: four Operational Am-
plifier (OPAMP) and a Trans-Impedance Amplifier (TIA);

• a MEMS Actuator, whose behavior is described by using
polynomial functions.

Table VIII reports the application to the non-linear case
study of the same analysis carried on for linear benchmarks
in Section VI-D. TheHeterogeneousline reports the sim-
ulation time of the original Verilog-AMS description, sim-
ulated both as a single component and within the OSTC.

Table VIII: Simulation results on the non-linear case study.

Code Version
Component Platform

time(s) speed-up(x) time(s) speed-up(x)

Heterogeneous 9,067.63 – 10,156.27 –
Translation 385.57 23.51 661.78 15.34
Abstraction 112.43 80.65 276.62 36.71

The second line (i.e., Translation) reports the time needed
to simulate a SystemC model of the device, as obtained
through translation. Given the presence of non-linear com-
ponents, translation could be applied straightforwardly only
to linear and piecewise-linear sub-components. Piecewise-
linear sub-components additionally required the introduction
of wrappers for managing discontinuities, and the non-linear
sub-component has been replaced by its abstracted version,
wrapped with a SystemC interface. The last line of Table VIII
(i.e., Abstraction) reports the results of abstraction, that has
been straightforwardly applied to the entire device.

The table highlights that simulation performance worsens
w.r.t. the linear benchmarks. When applying translation, sim-
ulation is slowed down by the introduction of computationally
expensive interfaces, necessary to handle discontinuities. In
the case of the abstraction, the overhead is caused by both
the introduction of SystemC wrappers and by the increased
complexity of the assignments, that include polynomials and
other burdening numerical operations. Still, the proposed
methodology enhances simulation speedw.r.t. heterogeneous
simulation, thus proving the effectiveness of the generated
code and that the proposed methodology could be successfully
applied also to quite complex non-linear devices.

VII. C ONCLUDING REMARKS

This paper proposed a methodology for integrating analog
descriptions in virtual prototypes for smart systems. The
methodology provides two alternative flows with different
characteristics in terms of adherencew.r.t. the starting descrip-
tion and of simulation speed-up. Effectiveness and correctness
have been shown on a number of case studies, as well as
on a smart system prototype. Experimental results highlight
the effectiveness, efficiency and correctness of the approach,
thanks to a worst case NRMSE in the order of10−6 and to a
maximum speed-up of 711.0x.
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