
1

Microprocessor Optimizations for the Internet of
Things: A Survey

Tosiron Adegbija, Member, IEEE, Anita Rogacs, Chandrakant Patel, Fellow, IEEE,
and Ann Gordon-Ross, Member, IEEE,

Abstract—The Internet of Things (IoT) refers to a pervasive
presence of interconnected and uniquely identifiable physical
devices. These devices’ goal is to gather data and drive actions
in order to improve productivity, and ultimately reduce or
eliminate reliance on human intervention for data acquisition,
interpretation and use. The proliferation of these connected
low-power devices will result in a data explosion that will
significantly increase data transmission costs with respect to
energy consumption and latency. Edge computing reduces these
costs by performing computations at the edge nodes, prior to
data transmission, to interpret and/or utilize the data. While
much research has focused on the IoT’s connected nature
and communication challenges, the challenges of IoT embedded
computing with respect to device microprocessors has received
much less attention. This article explores IoT applications’ exe-
cution characteristics from a microarchitectural perspective and
the microarchitectural characteristics that will enable efficient
and effective edge computing. To tractably represent a wide
variety of next-generation IoT applications, we present a broad
IoT application classification methodology based on application
functions, to enable quicker workload characterizations for
IoT microprocessors. We then survey and discuss potential
microarchitectural optimizations and computing paradigms that
will enable the design of right-provisioned microprocessors that
are efficient, configurable, extensible, and scalable. Our work
provides a foundation for the analysis and design of a diverse set
of microprocessor architectures for next-generation IoT devices.

Index Terms—Internet of Things, edge computing, low-power
embedded systems, microprocessor optimizations, IoT survey,
adaptable microprocessors, heterogeneous architectures, energy
harvesting, approximate computing.

I. INTRODUCTION AND MOTIVATION

THE Internet of Things (IoT) is an emerging technology
that refers to a pervasive presence of interconnected and

uniquely identifiable physical devices, comprising an expan-
sive variety of devices, protocols, domains, and applications.
The IoT will involve devices that gather data and drive actions
in order to improve productivity, and ultimately reduce or
eliminate reliance on human intervention for data acquisition,
interpretation, and use [9]. The IoT has been described as
one of the disruptive technologies that will transform life,
business, and the global economy [66]. Based on analysis
of key potential IoT use-cases (e.g., healthcare, smart cities,

T. Adegbija is with the Department of Electrical and Computer Engineering,
University of Arizona, USA, e-mail: tosiron@email.arizona.edu.

A. Rogacs and C. Patel are with Hewlett-Packard (HP) Labs, USA, e-mail:
rogacs@hp.com, chandrakant.patel@hp.com.

A. Gordon-Ross is with the University of Florida, USA and the Center
for High Performance Reconfigurable Computing (CHRE) at UF. e-mail:
ann@ece.ufl.edu.

Fig. 1: Illustration of the high-level components of the Internet
of Things.

smart home, transportation, manufacturing, etc.), it has been
estimated that by 2020, the IoT will constitute a trillion dollar
economic impact and include more than 50 billion low-power
devices that will generate petabytes of data [29], [91], [106].

Due to the IoT’s expected growth and potential impact,
much research has focused on the IoTs communication and
software layer [11], [34], [61], [68], however, the challenges
of IoT computing, especially with respect to device micro-
processors, has received much less attention. Computing on
IoT devices introduces new substantial challenges, since IoT
devices’ microprocessors must satisfy increasingly growing
computational and memory demands, maintain connectivity,
and adhere to stringent design and operational constraints, such
as low cost, low energy budgets, and in some cases, real-time
constraints. These challenges necessitate new research focus
on microarchitectural optimizations that will enable designers
to develop right-provisioned architectures that are efficient,
configurable, extensible, and scalable for next-generation IoT
devices.

Figure 1 depicts an IoT use-case that illustrates the high-
level components of the traditional IoT model. The IoT typ-
ically comprises of several low-power/low-performance edge
nodes, such as sensor nodes, that gather data and transmit
the data to high-performance head nodes, such as servers,
that perform computations for visualization and analytics. In
a data center, for example, data aggregation from edge nodes

ar
X

iv
:1

60
3.

02
39

3v
2 

 [
cs

.O
H

] 
 2

0 
Fe

b 
20

18



2

facilitates power and cooling management [14], [73].
However, the growth of the IoT and the resulting expo-

nential increase in acquired/transmitted data poses significant
bandwidth and latency challenges. These challenges are exac-
erbated by the intrinsic resource constraints of most embedded
edge nodes (e.g., size, battery capacity, real-time deadlines,
cost, etc.). These resource constraints must be taken into
account in the design process, and may make it more difficult
to achieve design objectives (e.g., minimizing energy, size,
etc.). Additionally, increasing consumer demands for high-
performance IoT applications will necessitate acquisition and
transmission of complex data. For example, a potentially
impactful IoT use-case is medical diagnostics [67]. With
the advent of technological advances such as cheap portable
magnetic resonance imaging (MRI) devices and portable ultra-
sound machines, several gigabytes (GBs) of high resolution
images will be transmitted to medical personnel for remote
data processing and medical diagnosis. In some cases, this
system must scale to a network of several portable medical
devices that transfer data to medical personnel. Transmitting
this data will result in bandwidth bottlenecks and pose addi-
tional challenges for real-time scenarios (e.g., medical emer-
gencies) where the latency must adhere to stringent deadline
constraints.

The IoT can also incur significant, and potentially unsustain-
able, energy overheads. Previous work [13], [57] established
that energy consumed while transmitting data is significantly
more than the energy consumed while performing compu-
tations on the data. For example, the energy required by
Rockwell Automations sensor nodes to transmit one bit of
data is 1500-2000X more than the energy required to execute
a single instruction (depending on the transmission range and
specific computations) [76].

To address these challenges, fog computing [16] has been
proposed as a virtualized platform that provides compute, stor-
age, and networking services between edge nodes and cloud
computing data centers. Rather than performing computations
in the cloud, fog computing reduces the bandwidth bottleneck
and latency by moving computation closer to the edge nodes.
Our study focuses on further reducing the bandwidth, latency,
and energy consumption through edge computing, where the
edge nodes are directly equipped with sufficient computation
capacity in order to minimize data transmission [4].

Edge computing performs computations that process, inter-
pret, and use data at the edge nodes. Performing these compu-
tations on the edge nodes minimizes data transmission, thereby
improving latency, bandwidth, and energy consumption. For
example, in the medical diagnostics use-case described above,
rather than sending several GBs of MRI data to the medical
personnel for diagnoses, the portable MRI machine (the edge
node) is equipped with sufficient computational capabilities
and algorithms to extract information and interpret the data.
Only processed data (e.g., information about an anomaly in the
patient) is transmitted to the medical personnel, thus speeding
up the diagnoses and reducing the MRI machine’s energy
consumption. Alternatively, the data could be quantifiably
reduced using intelligent algorithms and computations, such
that only important information is transmitted to the medical

personnel.
Gaura et al. [30] examined the benefits of edge mining, in

which data mining takes place on the edge devices. The au-
thors showed that edge mining has the potential to reduce the
amount of transmitted data, thus reducing energy consumption
and storage requirements. However, the edge nodes computing
capabilities must be sufficient/right-provisioned to perform and
sustain the required computations, while adhering to the nodes
design constraints (e.g., form factor, energy consumption, etc.)
[83].

This paper explores microarchitectural optimizations and
emerging computing paradigms that will enable edge com-
puting on the IoT. To ensure that microprocessor architectures
designed and/or selected for the IoT have sufficient computing
capabilities, a holistic approach, involving both application and
microarchitecture characteristics, must be taken to determine
microarchitectural design tradeoffs. However, due to the wide
variety of IoT applications and the diverse set of available
architectures, determining the appropriate architectures is very
challenging. The study presented herein seeks to address these
challenges and motivate future research in this direction.

In this paper, we perform an expansive study and character-
ization of the emerging IoT application space and propose an
application classification to broadly represent IoT applications
with respect to their execution characteristics. To enable the
design of right-provisioned microprocessors, we propose the
use of computational kernels that provide a tractable starting
point for representing key computations that occur in the IoT
application space. Using computational kernels, rather than
full applications, follows the computational dwarfs methodol-
ogy [8] and allows IoT computational patterns to be accurately
represented at a high level of abstraction.

Furthermore, we propose a high-level design methodol-
ogy for identifying right-provisioned architectures for edge
computing use-cases, based on the executing applications
and the applications execution characteristics (e.g., compute
intensity, memory intensity, etc.). Finally, in order to motivate
future research, we survey a few potential microprocessor
optimizations and computing paradigms that will enable the
design of right-provisioned IoT microprocessor architectures.

II. HIGH-LEVEL IOT CHARACTERISTICS AND THEIR
DEMANDS ON MICROPROCESSOR ARCHITECTURES

The IoT’s characteristics necessitate new designs and op-
timizations for microprocessors that will be employed in
IoT devices. We briefly describe seven key characteristics—
based on previous research [75]—that, together, distinguish the
IoT from other connected systems: intelligence, heterogeneity,
complexity, scale, real-time constraints, spatial constraints,
and inter-node support. We also describe the demands that
these characteristics place on microprocessor architectures

• Intelligence: Since the goal of the IoT is to reduce
reliance on human intervention for data acquisition and
use [9], raw data must be autonomously collected and
processed to create actionable information. IoT micro-
processors must be able to dynamically adapt to varying
runtime execution scenarios and adaptable data charac-
teristics [32].



3

• Heterogeneity: One of the key characteristics of the IoT
is that it involves a high degree of heterogeneity, featuring
different kinds of devices, applications, and contexts [75].
Thus, IoT microprocessors must be specialized to the
different execution characteristics of IoT applications. IoT
microprocessor heterogeneity may be chip-level—a single
chip with heterogeneous cores—or network-level, where
different devices feature different kinds of cores. Despite
this heterogeneity, the devices must be able to seamlessly
communicate with each other and share resources for
efficient data interpretation and use.

• Complexity: The organization and management of the
IoT will be very complex. Apart from the large numbers
of heterogeneous architectures, the architectures must be
able to execute a wide variety of applications, many of
which may be memory- and compute-intensive. Interac-
tions between the different IoT devices will dynamically
vary. Some devices will be added to the IoT network,
while others will be removed; these changes may impact
individual devices’ execution behaviors.

• Scale: The IoT will comprise more than 50 billion
devices by 2020, and the numbers are expected to grow
continuously [91]. In addition to the increase in the
number of devices, the interactions among them will also
increase. To support this scale, IoT microprocessors must
be efficient—cost, energy, and area efficient—and con-
stitute minimal overhead to the IoT device. In addition,
the microprocessors must be able to portably execute
different kinds of applications.

• Real-time constraints: Some of the most important
IoT use-cases—for example, patient monitoring, medical
diagnostics, aircraft monitoring—involve real-time con-
straints, where execution must adhere to stringent dead-
lines. IoT microprocessors must be able to dynamically
determine and adhere to deadlines, based on various
inputs, such as user inputs, application characteristics,
quality of service.

• Spatial constraints: Several IoT use-cases are location-
based. An IoT device’s location may change throughout
the device’s lifetime. In addition, the device may be
exposed to variable, and potentially non-ideal, environ-
mental conditions. For example, tracking devices may
be exposed to extreme heat, extreme cold, and/or rain
at different times or in different locations. Thus, IoT
microprocessors must feature fault tolerance and adapt-
ability that allows them to adhere to variable operation
conditions.

• Inter-node support: The IoT will comprise of several
devices/nodes that can share execution resources among
each other. Due to the wide variety of IoT applications
that may execute on a device, and the stringent resource
constraints, it may be impractical to equip every device
with all the execution resources it will require throughout
its lifetime. Thus, to maintain efficient execution, IoT
devices must be able to share execution resources with
each other, when necessary.

III. IOT APPLICATION CLASSIFICATION

The IoT offers computing potential for many application
domains, including transportation and logistics, healthcare,
smart environment, personal and social domains [11], etc.
One of the key goals of the IoT, from an edge computing
perspective, is to equip edge devices with sufficient resources
to perform computations that would otherwise have been
transferred to a high-performance device. In order to rightly
provision these devices, we must first understand potential
applications that will be executed on the devices.

Previous works have proposed classifications for various IoT
components. Gubbi et al. [34] presented a taxonomy for a high
level definition of IoT components with respect to hardware,
middleware, and presentation/data visualization. Tilak et al.
[93] presented a taxonomy to classify wireless sensor networks
according to different communication functions, data delivery
models, and network dynamics. Tory et al. [94] presented a
high level visualization taxonomy that classified algorithms
based on the characteristics of the data models.

However, there is currently very little research that char-
acterizes these applications with respect to their execution
characteristics. One of the biggest challenges the IoT presents
is the huge number and diversity of use-cases and potential
applications that will be executed on IoT devices. This chal-
lenge is exacerbated by the fact that only a small fraction
of these applications are currently available in society. Thus,
a significant amount of foresight is required in designing
microprocessor architectures to support the IoT’s emergence
and growth.

Much prior work has characterized IoT applications ac-
cording to different use-cases and domains. For example,
Atzori et al. [11] and Sundmaeker et al. [91] categorized
IoT applications into three domains: industry, environment,
and society. Asin et al. [10] categorized IoT applications into
54 domains under twelve categories. In this work, our goal
is a tractable and extensible classification that enables us to
identify the IoT applications’ key execution characteristics.

As an initial step towards understanding IoT applications’
execution characteristics, we performed an expansive study
of IoT use-cases and the application functions present in
these use-cases. Since it is impractical to consider every
IoT application within these use-cases/application domains,
based on our study, we propose an application classification
methodology that provides a high level, broad, and tractable
representation of a variety IoT applications using the applica-
tion functions. Our IoT application classification consists of
six key application functions:

• sensing
• communications
• image processing
• compression (lossy/lossless)
• security
• fault tolerance.
We note that this classification is not exhaustive; however, it

represents a wide variety of current and potential IoT applica-
tions. The classification also provides an extensible framework
that allows emerging applications/application domains to be



4

analyzed. In this section, we describe the application functions
and motivate these functions using a medical diagnostics use-
case, where applicable, or other specific examples of current
and/or emerging IoT applications.

A. Sensing

Sensing involves data acquisition (e.g., temperature, pres-
sure, motion, etc.) about objects or phenomena, and will
remain one of the most common functions in IoT applica-
tions. In these applications, activities, information, and data
of interest are gathered for further processing and decision
making. We use sensing in our IoT application classification
to represent applications where data acquired using sensors
must be converted to a more useable form. Our motivating
example for sensing applications is sensor fusion [70], where
sensed data from multiple sensors are fused to create data that
is considered qualitatively or quantitatively more accurate and
robust than the original data.

Sensor fusion algorithms can involve various levels of com-
plexity and compute/memory intensity. For example, sensor
fusion could involve aggregating data from various sources
using simple mathematical computations, such as addition,
minimum, maximum, mean, etc. Alternatively, sensor fusion
could involve more computationally complex/expensive appli-
cations, such as fusing vector data (e.g., video streams from
multiple sources), which requires a substantial increase in
intermediate processing.

In a medical diagnostics use-case, for example, sensing is
vital in a body area network [19], where non-invasive sensors
can be used to automatically monitor a patients physiological
activities, including blood pressure, heart rate, motion, etc.
Several sensing devices, such as portable electrocardiography
(ECG), electroencephalography (EEG), and electromyography
(EMG) machines, motion and blood pressure sensors could be
equipped with additional computational resources and algo-
rithms that enable the devices to not only gather data, but also
analyze the data in order to reduce the amount of transmitted
data, with minimal energy or area overheads.

B. Communications

Communications is one of the most common IoT applica-
tion functions due to the IoTs intrinsic connected structure,
where data transfers traverse several connected nodes. There
are many communication technologies (e.g., Bluetooth, Wi-
Fi, etc.), and communication protocols (e.g., transfer con-
trol protocol (TCP), the emerging 6lowpan (IPv6 over low
power wireless personal area network), etc.). In this work,
we highlight software defined radio (SDR) [59], which is
a communication system in which physical layer functions
(e.g., filters, modems, etc.) that are typically implemented in
hardware are implemented in software.

SDR is an emerging and rapidly developing communication
system that is driving the innovation of communications tech-
nology, and promises to impact all areas of communication.
SDR is growing in popularity, and attractive for the IoT,
because of its inherent flexibility, which allows for flexible
incorporation and enhancements of multiple radio functions,

bands, and modes, without requiring hardware updates. SDR
typically involves an antenna, an analog-to-digital converter
(ADC) connected to an antenna (for receiving) and a digital
to analog converter (DAC) connected to the antenna (for
transmitting). Digital signal processing (DSP) operations (e.g.,
Fast Fourier Transform (FFT)) are then used to convert the
input signals to any form required by the application.

Even though SDR applications are typically compute in-
tensive, with small data and instruction memory footprints,
recent work [20] shows that the overheads of SDR can be kept
small in the IoT domain by focusing on optimizing the key
kernels (e.g., Synchronization and Finite Impulse Response
(FIR)) that dominate SDR computations and power consump-
tion. In general, SDR algorithms can be efficiently executed
using general purpose microprocessors or more specialized
processors, such as digital signal processors (DSPs) or field-
programmable gate arrays (FPGAs). Alternatively, heteroge-
neous architectures [40] can also combine different kinds
of microprocessors to satisfy different operations’ execution
requirements while minimizing overheads, such as energy
consumption. Other examples of communication applications
include packet switching and TCP/IP.

C. Image Processing

In the IoT context, image processing represents applications
that involve any form of signal processing where the input is an
image or video stream from which characteristics/parameters
must be extracted/identified. Additionally, this classification
also involves applications in which an image/video input must
be converted to a more usable form. Several emerging IoT
applications, such as automatic number license plate recog-
nition, traffic sign recognition, face recognition, etc., involve
various forms of image processing. For example, face recog-
nition involves operations, such as face detection, landmark
recognition, feature extraction, and feature classification, all
of which involve image processing.

Image processing is important for several impactful IoT use-
cases, and necessitates microarchitectures that can efficiently
perform image processing operations. For example, in medical
diagnostics, image processing can be used to increase the
reliability and reproducibility of disease diagnostics. Image
processing can provide medical personnel with quantitative
data from historical images, which can be used to supple-
ment qualitative data currently used by specialists. In addi-
tion, portable medical devices, e.g., portable ultrasounds, can
be equipped with image processing applications to provide
speedy analysis for remote assessment of patients [69].

The National Institute of Health (NIH) supports the Medical
Image Processing, Analysis, and Visualization (MIPAV) appli-
cation [67], which enables medical researchers to easily share
research data and enhance their ability to diagnose, monitor,
and treat medical disorders. However, since image processing
applications are typically data-rich, and both memory and
compute intensive, novel optimization techniques are required
to enable the efficient execution of these applications in the
context of IoT edge computing. Furthermore, some image
processing applications require large input, intermediate, or



5

output data to be stored (e.g., medical imaging), thus requiring
a large amount of storage.

D. Compression

With the increase in data and bandwidth-limited systems,
compression can reduce communication requirements to en-
sure that data is quickly retrieved, transmitted, and/or an-
alyzed. Several emerging IoT use-cases will involve large
volumes of data, which will necessitate efficient compression
techniques to accommodate the rapid growth of the data
and reduce transmission latency and bandwidth costs [100].
Additionally, since most IoT devices are resource-constrained,
compression also reduces storage requirements when data
must be stored on the edge node. For example, data gathered
using sensors in a body area network can be quantifiably and
intelligently reduced in order to minimize transmission and
storage requirements for medical diagnosis devices.

Compression involves encoding information using fewer
bits than the original representation. The data can be encoded
at the data source before storage or transmission, known as
source encoding, or during transmission, known as channel
coding [6]. In our studies, however, we focus on source
encoding, as this type of encoding will be more relevant in
the context of edge computing.

Compression techniques can be broadly classified as lossy
or lossless compression. Lossy compression (e.g., JPEG) typ-
ically exploits the perceptibility of the data in question, and
removes unnecessary data, such that the lost data is impercep-
tible to the user. Alternatively, lossless compression removes
statistically redundant data in order to concisely represent data.
Lossless compression typically achieves a lower compression
ratio and is usually more compute and memory intensive
than lossy compression. However, lossy compression may
be unsuitable in some scenarios where high data fidelity is
required to maintain the quality of service (QoS) (e.g., in
medical imaging).

E. Security

Since IoT devices are often deployed in open or potentially
unsafe environments, where the devices are susceptible to ma-
licious attacks, security applications are necessary to maintain
the integrity of both the devices and the data. Furthermore,
sensitive scenarios (e.g., medical diagnostics) may require se-
curity applications to prevent unauthorized access to sensitive
data and functions. Implantable medical devices, such as pace-
makers, implantable cardiac defibrillators, neurostimulators are
especially susceptible to potentially fatal security and privacy
issues, such as replay attacks [37], [48]. Since medical device
security is still in its infancy, there still exists a wide knowl-
edge gap with respect to the microprocessor characteristics
that will support security algorithms execution requirements
without sacrificing the devices functional requirements.

We highlight data encryption [89], which is a common tech-
nique for ensuring data confidentiality, wherein an encryption
algorithm is used to generate encrypted data that can only
be read/used if decrypted. Data encryption applications (e.g.,
secure hash algorithm) are typically compute intensive and

Use-case
specification/

verification

Application
specification

Application
functions

Computational
kernels

Execution
characteristics

Microprocessor
configurations

Fig. 2: Illustration of a high-level IoT microprocessor design
life-cycle

memory intensive, since encryption speed is also dependent
on the memory access latency for data retrieval and storage.

F. Fault Tolerance

Fault tolerance [39] refers to a system’s ability to operate
properly when some of its components fail. Fault tolerant
applications are especially vital since IoT devices may be
deployed in harsh and unattended environments, where QoS
must be maintained in potentially adverse conditions, such as
cryogenic to extremely high temperatures, shock, vibration,
etc. In some emerging IoT devices, such as implantable
medical devices, fault tolerance could be the single most
critical requirement, since faults can be potentially fatal. Thus,
fault tolerance must be incorporated into such devices without
accruing significant overheads.

Fault tolerance can be achieved in different ways. Hardware-
based techniques usually rely on redundancy—RAID (redun-
dant array of independent disks) [74] is a common example—
wherein redundant disks or devices are used to provide fault
tolerance in the event of a failure. This kind of redundancy
can be achieved in IoT devices using a dedicated IoT device,
or integrated into a larger, less constrained device, in order to
minimize the attendant overheads of redundancy. Alternatively,
redundancy can be incorporated directly into the IoT devices,
at the expense of area and power overheads. To reduce
the overheads from hardware-based fault tolerance, software-
based fault tolerance can also be employed. Software-based
fault tolerance [39], [80], [95] involves applications and al-
gorithms that perform operations, such as memory scrubbing,
cyclic-redundancy checks (CRC), error detection and correc-
tion, etc.

IV. DETERMINING IOT MICROPROCESSOR
CONFIGURATIONS

One of the major challenges for IoT microprocessor design
is determining the best microprocessor configurations that
satisfy the IoT device’s execution requirements. In this section,



6

TABLE I: Application functions and sample representative
kernels.

Application function Kernel
Sensing dense matrix transpose
Communications Fast Fourier Transform (FFT)
Image processing Dense matrix multiplication
Lossy compression jpeg
Lossless compression lz4
Security Secure Hash Algorithm (sha)
Fault tolerance Cyclic redundancy check (crc)

we describe a sample high-level process through which an
IoT microprocessor can be designed and optimized. Figure
2 illustrates a high-level IoT microprocessor design life-cycle,
consisting of six steps. First, the use-case needs to be specified.
This step describes the overall functionality and behavior
of the IoT device, which will dictate the microprocessor
requirements. Based on the use-case, the required applications
to achieve the desired functionality are then specified. For
example, a medical diagnostics use-case involving a portable
ultrasound device [50] may require applications for image
capture, anomaly detection, anomaly recognition, data encryp-
tion, and data transmission. Thereafter, the specific functions
within each application are determined, and these functions
are broken down into their respective computational kernels.

Computational kernels are basic execution blocks that repre-
sent applications’ functions; the kernels disconnect the execu-
tions from specific implementations, programming languages,
and algorithms. Using computational kernels can make the
design process more manageable, since kernels are faster to
simulate and can represent a variety of applications/application
functions. In addition, kernels expose computational nuances
and reveal execution characteristics that may not be visible
when considering the full application. Kernels also provide a
fine-grained view of applications, such that additional design
processes (e.g., hardware/software partitioning [90]) can be
sped up. Using computational kernels to represent application
functions is supported by the concept of computational dwarfs
[8]. Computational dwarfs represent patterns of computation at
high levels of abstraction to encompass several computational
methods in modern computing.

Table I illustrates sample kernels that can be used to
represent the different application classes (Section III). After
the computational kernels are determined, the kernels’ exe-
cution characteristics are then determined. One of the most
common way for determining these characteristics is through
simulations. During design space exploration [85], the kernels’
execution characteristics—memory intensity, compute inten-
sity, instructions per cycle, memory references, etc.—using
different microprocessor configurations are then analyzed to
determine which configurations best satisfy the application re-
source requirements. These configurations can then be refined,
if necessary, after verifying that the functional requirements of
the use-case are met.

V. STATE OF THE ART IN IOT MICROARCHITECTURE
CONFIGURATIONS

We performed an extensive survey and study of the state-
of-the-art in commercial-off-the-shelf (COTS) embedded sys-

tems microprocessor architectures from several designers and
manufacturers ranging from low-end microcontrollers to high-
end/high-performance low-power embedded systems micro-
processors. Our studies included publicly available information
on these microprocessors’ configurations, and conversations
with researchers and engineers directly involved with micro-
processor design and development in several manufacturing
companies.

Based on our studies, we categorized the microprocessors
in terms of several microprocessor characteristics, including
number of cores, on-chip memory (e.g., cache), off-chip
memory support, power consumption, number of pipeline
stages, etc. Using this information, we developed a set of
four high-level microarchitecture configurations for IoT edge
computing support. These configurations represent the range of
available state-of-the-art COTS microprocessors, and provide
a reference point from which future IoT microprocessors and
optimizations can be developed. While microprocessors could
include central processing units (CPUs), graphics processing
units (GPUs), DSPs, etc., in this survey, we focus on CPUs,
since they are typically the backbone for most edge computing
applications.

Table II depicts the microarchitecture configurations,
comprising of four configurations: config1, config2, con-
fig3, and conf4, representing different kinds of micro-
processors. We highlight specific state-of-the-art microcon-
troller/microprocessor examples to motivate the configura-
tions, however, we note that these configurations are only
representative and not necessarily descriptive.

Config1 represents low-power and low-performance micro-
controller units, such as the ARM Cortex-M4 [101] found in
several IoT-targeted MCUs from several developers, including
Freescale Semiconductors, Atmel, and STMicroelectronics.
Conf1 contains a single core with 48 MHz clock frequency,
three pipeline stages, in-order execution, and support for 1 MB
of flash memory.

Config2 represents recently-developed IoT-targeted CPUs,
such as the Intel Quark Technology [78], and contains a single
core with 400 MHz clock frequency, five pipeline stages, in-
order execution, 16 KB level one (L1) instruction and data
caches, and support for 2 GB RAM.

Config3 represents mid-range CPUs, such as the ARM
Cortex-A7 [98] found in several general purpose embedded
systems, and contains four cores with 1 GHz clock frequency,
8 pipeline stages, in-order execution, 32 KB L1 instruction
and data caches, 1 MB level two (L2) cache, and support for
2 GB RAM.

Finally, config4 represents high-end/high-performance em-
bedded systems CPUs, such as the ARM Cortex-A15 [98], and
contains four cores with 1.9 GHz clock frequency, 8 pipeline
stages, 32 KB L1 instruction and data caches, 2 MB L2 cache,
support for 4 GB RAM, and out-of-order execution. Out-of-
order execution allows instructions to execute as soon as the
instruction becomes available, unlike in-order execution where
instructions must execute in program order.



7

TABLE II: State of the art microprocessor configurations.

Config1 Config2 Config3 Config4
Sample CPU ARM Cortex M4 Intel Quark ARM Cortex A7 ARM Cortex A15
Frequency 48 MHz 400 MHz 1 GHz 1.9 GHz
Number of cores 1 1 4 4
Pipeline stages 3 5 8 15
Cache None None 32KB I/D L1, 1MB L2 32KB I/D L1, 2MB L2
Memory 512KB flash 2GB RAM 2GB RAM support 1TB RAM support
Execution In-order In-order In-order Out-of-order

VI. MICROPROCESSOR OPTIMIZATIONS, COMPUTING
PARADIGMS, AND FUTURE DIRECTIONS

Using the configurations described in Section V and the
kernels listed in Table I as benchmarks, we performed detailed
architectural simulations on GEM5 [15] to analyze the char-
acteristics of the configurations. The details of our analysis
can be found in our preliminary work [4]. Based on our
analysis and extensive surveys, we have identified five key
characteristics that IoT microprocessors must have in order to
support the IoT’s growth:

• Efficiency: Due to the typical stringent resource con-
straints of IoT devices, IoT microprocessors must be op-
timized for energy, cost, performance, and area efficiency.

• Configurability: One of the major observations from
our studies is that different IoT applications have vastly
different runtime resource requirements. With the growth
of the IoT and the current trend of IoT applications, we
envision that this variability in runtime resource require-
ments will increase even further with next-generation IoT
applications. Therefore, these variable runtime resource
requirements necessitate adaptable/configurable microar-
chitectures with configurations that can be autonomously
specialized to different applications in order to achieve
optimal execution, especially in terms of energy effi-
ciency.

• Security: Security must be one of the primary design
goals of IoT microprocessors, especially since IoT de-
vices will be inherently more susceptible to attacks.

• Future-proof: Designing IoT microprocessors will re-
quire a lot of foresight. With the rapid emergence of new
IoT applications, and the applications’ increasing memory
and compute requirements, IoT microprocessors must be
able to execute future applications without being over-
provisioned for current applications.

• Extensibility: Future-proofing IoT microprocessors can
be achieved by extending the microprocessors with ad-
ditional functionalities (e.g., specialized instructions, se-
curity monitors, new on-chip peripherals). Thus, IoT mi-
croprocessors must be designed with ease of integration,
customization, and extension in mind. Such extensibility
will allow new levels of performance and energy effi-
ciency to be achieved.

In this section, we survey a few potential microprocessor
optimizations and computing paradigms, from a context of
edge computing, that will enable the aforementioned IoT
characteristics, and support the IoT’s growth. We first discuss
optimizations for achieving adaptability in IoT micropro-

cessors; we then survey and discuss research directions in
other computing paradigms that will enable microprocessor
optimizations for the IoT, including non-volatile processors,
approximate computing, in-memory processing, and secure
microarchitectures. Our goal in this section is not to provide an
exhaustive survey of potential microprocessor optimizations;
our goal is to motivate researchers with future directions for
developing novel, configurable, and extensible low-overhead
IoT microprocessors. Table III summarizes the different com-
puting paradigms, benefits, and references for further details.

A. Configurable/Adaptable Architectures

In order to achieve the right balance between performance,
power, and area in IoT applications, IoT microprocessors must
be adaptable to the application requirements. This adaptability
can be achieved through the ability to change the micropro-
cessor’s configuration at runtime or by heterogeneous proces-
sors that offer different processing resources for executing
the applications. Several microprocessor components can be
configured, including the issue queue [28], reorder buffer
[53], register files [1], and pipelines [27]. However, in this
subsection, we focus on configurable caches [104] due to their
potential impact on the microprocessor’s end-to-end energy,
performance, and area.

The memory will arguably remain the most important
microprocessor component for performance and energy con-
sumption. Since emerging IoT applications will increase in
memory and compute intensity, IoT microprocessors must be
equipped with more advanced memory hierarchies to take
advantage of the spatial and temporal locality of the IoT
applications. Due to the memory hierarchy’s large impact on
system performance and energy consumption, much emphasis
must be placed on efficient caching techniques for IoT micro-
processors.

Previous work has shown that specializing the cache config-
urations to different application or phase memory requirements
can reduce the memory hierarchy’s energy consumption by
up to 62% [33]. In addition, our studies revealed that the
cache is one of the more easily over-provisioned resources in
an IoT microprocessor, resulting in high energy consumption
with no performance benefits. The energy consumption can be
quantifiably reduced, without any performance degradation, by
dynamically changing the cache configurations (e.g., reducing
the cache size). Thus, a prominent optimization for IoT mi-
croprocessors is dynamically configurable cache architectures
that allow the caches parameter values to be specified/changed
during runtime.



8

Three major challenges must be addressed in order to
enable dynamically configurable caches for IoT micropro-
cessors: augmenting caches for configurability, cache tuning
algorithms/heuristics, and cache tuners. In order to maximize
the benefits of configurable caches, the required hardware
optimizations to enable configurability must accrue minimal
overhead. For example, a potential technique for enabling
cache configurability uses bit-width configuration registers that
allow a caches banks to be shutdown to configure the cache
size, or concatenated to configure the cache associativity [104].

For optimal execution, the best configurations that achieve
optimization goals and satisfy design constraints for different
applications must be dynamically determined. Cache tun-
ing determines the optimal cache configurations that match
an application’s runtime behavior. The cache tuning algo-
rithm/heuristic can result in time and energy overheads, since
the processor must stall during the tuning process. Much
previous work (e.g., [2], [33], [36], [71], [104]) have proposed
different algorithms/heuristics for cache tuning to minimize the
potential of overhead and maximize the cache tuning benefits.
These works offer a valuable foundation for IoT microproces-
sors. The intrinsic characteristics of the IoT necessitate further
studies and development of innovative cache tuning techniques
for IoT microprocessors that are low-overhead, robust, and
versatile for the variety of applications that will execute on
these microprocessors.

To orchestrate the cache tuning process, hardware
and/or software cache tuners employ cache tuning algo-
rithms/heuristics to determine the best cache configurations to
meet design constraints. However, the tuner could impose sig-
nificant power, area, and/or performance overheads while ex-
ploring the configuration design space [3]. Thus, to maximize
the benefits of configurable caches in IoT microprocessors,
novel cache tuners must be designed such that they constitute
minimal overhead and effectively implement the cache tuning
algorithms.

B. Distributed Heterogeneous Architectures

Heterogeneous architectures [56] allow a coarse-grained
specialization of system resources to application requirements
by equipping a microprocessor with different kinds of cores or
different core configurations. The different cores execute the
same instruction set, but have different capabilities and perfor-
mance levels. Thus, at runtime, the system software evaluates
the resource requirements of applications or application phases
and determines the core that best satisfies the optimization
goals for the executing applications.

One of the major advantages of heterogeneous architectures
for IoT microprocessors, from a design perspective, is that
existing cores (e.g., CPUs, DSPs, GPUs, etc.) can be reused
in the implementation of heterogeneous microprocessors; this
allows previous design and verification efforts to be amortized.
However, unlike configurable architectures, heterogeneous ar-
chitectures offer a much smaller design space, which neces-
sitates greater design time effort in determining the best core
configurations that will satisfy the application requirements.
In addition, in a system with a large number of applications,

In-order 
4-CPU

1-CPU

72-GPU

DSP

FPGA

OoO
4-CPU

Fig. 3: Distributed heterogeneous architectures.

heterogeneous cores may have a lower optimization potential
than configurable cores, since there are fewer configurations
to choose from in heterogeneous cores.

Much previous research efforts have targeted heterogeneous
cores in general purpose computers, embedded systems, etc.,
but their applicability to IoT microprocessors have yet to
be explicitly determined [68], [88]. Two major challenges
that must be addressed in designing heterogeneous micro-
processors for the IoT are the number and choice of cores,
and scheduling of applications to the appropriate cores. In
order to maximize the optimization potential, designers must
expend a considerable amount of effort to determine the
best cores or configurations to incorporate into the micro-
processor. To provide an effective platform that satisfies the
execution requirements of a wide variety of application char-
acteristics, the selected cores must cater to a wide range
of computational complexities and performance requirements.
This effort would require a priori knowledge and analysis of
the applications/application domains that will execute on the
microprocessor. In addition, potential core configurations and
their characteristics must be extensively analyzed.

Given the application execution requirements, the appropri-
ate core on which to execute/schedule the application must
also be determined either statically or dynamically [7]. Static
scheduling suffices when the applications are known a pri-
ori. However, when the applications are unknown, dynamic
scheduling evaluates application characteristics at runtime and
schedules the applications to the appropriate cores. Much
research is needed to develop low-overhead, computationally
simple, and accurate scheduling techniques, for IoT micropro-
cessors, that will achieve optimization goals and satisfy the
microprocessors resource constraints.

An alternative to heterogeneous cores on a single device is
a network of distributed heterogeneous architectures. Figure
3 illustrates the distributed heterogeneous network. Different
devices are equipped with different computational resources
that may be required by the devices at different times. For ex-
ample, Figure 3 depicts six nodes containing six different kinds
of microprocessors: a single core in-order microprocessor (1-
CPU), a 72-core general purpose GPU (72-GPU), a DSP, an
FPGA, a quad-core out-of-order processor (OoO 4-CPU), and
a quad-core in-order processor (In-order 4-CPU). Assuming an



9

8-threaded application A with deadline constraints arrives on
1-CPU—1-CPU may be under-provisioned for A’s execution
(i.e., the execution time on 1-CPU will exceed the deadline)—
an alternative node in the network can be used to execute
A. Apart from determining which node contains sufficient re-
sources to execute A, the costs—energy and time—to transfer
A from 1-CPU to the right-provisioned node, in addition to
the time to retrieve the results, must not negate the savings
from executing A on a right-provisioned core

To enable distributed heterogeneous architectures, several
research challenges must be addressed: benefits of waiting
for a right-provisioned node if the node is busy; tradeoffs of
time—execution and transmission times—and energy in the
presence or absence of deadline constraints; runtime, low-
overhead determination of right-provisioned nodes; developing
portable applications and standardizing the communication
protocols between different kinds of nodes.

C. Energy Harvesting and Non-Volatile Processors

One of the most important, and most persistent, challenges
for IoT devices is energy consumption. Energy harvesting
is a promising technique for replacing or supplementing en-
ergy sources (e.g., batteries), especially in ultra-low power
applications. Energy can be harvested from several sources,
including solar, thermal gradients, radio frequency radiation,
etc. [18], [31], [35], [60], [77]. These energy sources, however,
are typically not reliable; external factors—distance from a
power source, physical obstacles, electromagnetic signals—
can disrupt the energy supply [97]. Due to this unreliability,
traditional processors may be impractical for systems equipped
with energy harvesting—when the energy supply is disrupted,
volatile processors will lose their operating state.

Non-volatile processors [62] use non-volatile storage
components—non-volatile memories—to store the processor
state when the power supply is disrupted. When the power
is restored, the processor’s state is restored from the the non-
volatile memory to continue execution. Thus, non-volatile pro-
cessors allow continuous computation despite power disrup-
tions. For example, one of the earlier non-volatile processors
[99] allowed system states to be backed up within 7µs and
restored within 3µs. Additionally, since embedded systems
typically spend a significant amount of time idling, resulting
in high leakage power, non-volatile processors can reduce the
idle power by allowing the system to be shut down while idle.
The state can then be instantaneously restored on wake-up
[63], [102].

There are several potential non-volatile architectures that
can be used at different abstraction levels to achieve non-
volatile processors for energy harvesting systems. For exam-
ple, various FeRAMs, STT-RAMs, PCRAMs, ReRAMs have
been explored for use in energy harvesting systems [22],
[62], [72], [92], [108]. Several factors must be considered
when selecting an energy harvesting non-volatile processor
system. The input power characteristics—for example, the
power behavior when interrupted—affect the choice of non-
volatile architectures [65]. The application characteristics also
affect the choice of non-volatile architectures. Application

characteristics, such as deadlines, real-time, and quality of
service (QoS) requirements, must also be taken into considera-
tion. For example, solar powered systems can typically be used
to meet real-time QoS requirements more effectively than RF
or thermal source [65]. Much research is required to quantify
the tradeoffs of different energy sources with respect to the
non-volatile architectures.

D. Approximate Computing
Approximate computing has recently gained a lot of traction

as a viable alternative to exact computing. Exact comput-
ing targets exact numerical or Boolean equivalence, while
approximate computing allows a non-exact, inaccurate result
that maintains the desired output quality [21]. Approximate
computing allows new optimization options for processors that
execute resilient applications—applications that can produce
outputs of sufficient quality despite some imprecise com-
putations, e.g., signal processing, multimedia, graphics, etc.
Allowing bounded approximation in processors can provide
significant performance and energy gains, while achieving an
acceptable amount of accuracy.

Approximate computing can enable energy-efficient edge
computing in IoT devices, such as wearable electronics [54],
[81]. One of the first steps to incorporating approximate com-
puting into IoT devices is identifying the devices’ applications,
and the applications’ resilience to computing error. In [21],
Chippa et al. presented an automatic resilience characteriza-
tion framework to evaluate how amenable an application is to
approximate computing. This framework uses approximation
models that evaluate different approximate computing tech-
niques for different partitions of an application. This frame-
work relies on significant amounts of a priori knowledge about
the executing applications, such as, the computational patterns
and input data. Since applications typically have different
execution phases, and the phase behaviors could change at
runtime, key to efficient approximation is a runtime framework
that automatically detects resilient application phases and ad-
justs the computing exactness to match the currently executing
phase’s resilience [42].

Several optimizations to enable approximate computing
have been developed at different abstraction levels. Using
various digital signal processing filters and an electrocardio-
gram (ECG) application, Venkataraman et al. [96] presented
a system-level design flow to study a system’s exactness
and used elimination heuristics to explore the design space
under inexactness, area, and energy constraints. Several other
techniques have been proposed [38] for achieving inexactness
at the circuit level through different approximate components,
such as approximate adders [26], [64], approximate multipliers
[55], [58], and approximate logic synthesis [86], [87]. Sim-
ilarly, approximate computing can also be exploited at the
memory level, for example, by storing data approximately
[82] or through systems that can tolerate memory errors while
maintaining the desired quality of service [17].

E. In-Memory Processing
In-memory processing—or processing in memory—has

been studied in relation to big data and distributed com-



10

TABLE III: Summary of computing paradigms and potential benefits

Computing Paradigm Benefits References
Configurable architectures Efficiency, future-proof, configurability [1]–[3], [27], [28], [33], [36], [53], [71], [104]
Distributed heterogeneous architectures Extensibility, efficiency, future-proof [56], [68], [88]

Energy harvesting and non-volatile processors Efficiency [18], [31], [35], [60], [62], [77], [97],
[22], [63], [65], [72], [92], [99], [102], [108]

Approximate computing Efficiency [21], [26], [38], [42], [54], [64], [81], [96],
[17], [55], [58], [82], [86], [87]

In-memory processing Efficiency, extensibility [5], [24], [41], [44]–[46], [103], [105]
Secure microarchitectures Security [12], [23], [25], [47], [49], [51], [52], [79], [84], [107]

puting systems [41], [103]. In-memory processing addresses
the well-known processor-memory performance gap through
internal memory accesses; it avoids delays caused by off-chip
communication. Caches have been widely used to bridge the
processor-memory performance gap; in-memory processing
further reduces this gap by allowing computations to be per-
formed on the memory chip without the need for processor-to-
memory communication. With the growth of the IoT, massive
amounts of data generated, and resource constraints of IoT de-
vices, in-memory processing offers an attractive optimization
for IoT devices.

One of the major attractions of in-memory processing for
IoT devices, in the context of edge computing, is the need
for real-time in-situ data processing on large data volumes.
The data processing must be energy-efficient and involve low
hardware overhead. To achieve such capabilities, researchers
have explored inherently robust brain-inspired models of com-
putation that involve highly efficient inference applications
[24]. An example of such a computing model is the sparse
distributed memory (SDM), which can be trained to remember
sparse data vectors and retrieve them when presented with
noisy or incomplete versions of the vectors [43]. However,
SDM architectures are challenging due to the often conflicting
design goals of achieving both high throughput and energy
efficiency.

To enable sparse distributed memory, compute memory has
been proposed as a viable implementation architecture [46].
Compute memory [44], [45] is an in-memory processing
architecture that implements both memory and processing in
a single architecture in order to completely eliminate the
processor-memory interface. The compute memory architec-
ture implements inference algorithms in the periphery of the
memory array, and does not modify the core bit-cell array, thus
maintaining the storage density. The compute memory is able
to implement operations, such as the sum of absolute differ-
ences, signed multiplication, etc. The SDM implementation,
using compute memory, has been shown to achieve both high
throughput and energy efficiency for data-rich applications,
such as pattern recognition [46].

However, most current compute memory implementations
are application-specific. Ahn et al. [5] proposed a processor
in memory application that uses specialized instructions, called
PIM-enabled instructions, to invoke in-memory computations.
The goal of the proposed work was to allow processing in
memory operations to be compatible with existing systems
and applications, without the need to specifically design the
processor in memory for specific applications. Much work

exists to extend compute memory architectures to multi-
application use-cases, with minimal overheads.

Another architecture, similar to the compute memory, with
high potential for IoT devices is the compute sensor [105],
which offers in-sensor processing. The compute sensor takes
advantage of machine learning algorithms’ inherent adaptabil-
ity to noise, and embeds information processing functionality
for these algorithms into the sensor substrates. The com-
pute sensor eliminates the sensor-processor interface, wherein
sensed data is typically transmitted to a processor for data
visualization, as is the case in traditional sensors. The compute
sensor significantly reduces energy consumption and latency
of feature extraction and classification functions, without sac-
rificing accuracy [105].

F. Secure Microarchitectures

Security applications are some of the most important ap-
plications that will be executed on IoT microprocessors. The
IoT’s characteristics—pervasiveness, interdependence, con-
nectedness, mobility—makes IoT devices inherently vulner-
able to increasing number of attacks. IoT devices are suscep-
tible to physical, side channel, cryptoanalysis, software, and
network attacks. Security can no longer be an afterthought in
microprocessor design; it is imperative that microprocessors
are designed to be inherently secure. However, security in IoT
devices is especially challenging due to the typically stringent
resource constraints of these devices.

Most IoT devices will have no hardware support for virtual-
ization or enhanced security features, such as trusted execution
[52]. The processing capabilities of IoT devices’ microproces-
sors may be exceeded by the resource requirements of security
processes and algorithms. As a result, security designers often
need to trade off other vital optimization goals, such as energy,
performance, or cost [51]. Apart from the resource constraints
of IoT device microprocessors, these devices also generate
massive amounts of data, some of which may contain private
or sensitive information [79].

Much previous research has proposed hardware security
techniques for embedded systems [12], [47], [49], [84]. While
most of these techniques can also be employed in IoT devices,
one critical requirement for IoT devices is the need to have
runtime configurable hardware security policies that can adapt
to varying security requirements [23]. This requirement is
motivated by the resource constraints of IoT devices and the
fact that the sensitivity of various computations vary depending
on the executing applications. Thus, secure microarchitectures
for the IoT must have the capability to be adjusted to satisfy



11

specific applications’ or tasks’ needs, while incurring minimal
overheads.

There are currently very few techniques that have been
proposed for configurable hardware security in microproces-
sor architectures, especially for IoT devices [23]. The main
advantage of security at the level of the microarchitecture is
that microarchitectures can typically be easily augmented for
runtime configurability. In addition, configurable microarchi-
tectures can be used to achieve multiple optimization goals.
Thus, ensuring hardware security, using configurable microar-
chitectures, need not be at the expense of other optimization
goals, such as energy consumption. For example, configurable
caches can be used as a moving target defense [107] against
side-channel attacks in caches, while also maintaining the
other optimization benefits of configurability (e.g., energy and
performance) [25].

VII. CONCLUSIONS

The Internet of Things (IoT) is expected to transform
life, business, and the global economy. The IoT’s scale and
rapid proliferation will generate massive amounts of data
that will result in communication bandwidth bottlenecks, and
latency and energy overheads. Edge computing significantly
reduces these overheads by equipping IoT devices with right-
provisioned microprocessors and algorithms that can perform
computations on the edge nodes to interpret, visualize, and use
data.

This paper presented an overview of microprocessor char-
acteristics that will support the growth of the IoT, from an
edge computing perspective, and optimizations that will en-
able those characteristics. The survey presented herein should
provide researchers with a foundation for designing IoT micro-
processors that are efficient, configurable, secure, future-proof,
and extensible. We have also discussed some of the challenges
with achieving the discussed optimizations, and presented
some potential solutions for addressing the challenges. Since
edge computing on the IoT is a growing area of research, this
study provides a foundation for further research into applica-
tion requirements and microprocessor optimizations that will
support edge computing in next-generation IoT devices.

REFERENCES

[1] J. Abella and A. González. On reducing register pressure and energy in
multiple-banked register files. In Computer Design, 2003. Proceedings.
21st International Conference on, pages 14–20. IEEE, 2003.

[2] T. Adegbija, A. Gordon-Ross, and A. Munir. Phase distance mapping: a
phase-based cache tuning methodology for embedded systems. Design
Automation for Embedded Systems, 18(3-4):251–278, 2014.

[3] T. Adegbija, A. Gordon-Ross, and M. Rawlins. Analysis of cache tuner
architectural layouts for multicore embedded systems. In Performance
Computing and Communications Conference (IPCCC), 2014 IEEE
International, pages 1–8. IEEE, 2014.

[4] T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross. Enabling right-
provisioned microprocessor architectures for the internet of things.
In International Mechanical Engineering Congress and Exposition.
ASME, 2015.

[5] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. Pim-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture. In
Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on, pages 336–348. IEEE, 2015.

[6] J. B. Anderson and S. Mohan. Source and channel coding: an
algorithmic approach, volume 150. Springer Science & Business
Media, 2012.

[7] H. Arabnejad and J. G. Barbosa. List scheduling algorithm for
heterogeneous systems by an optimistic cost table. IEEE Transactions
on Parallel and Distributed Systems, 25(3):682–694, 2014.

[8] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
et al. The landscape of parallel computing research: A view from
berkeley. Technical report, Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[9] K. Ashton. That ’internet of things’ thing. RFiD Journal, 22(7):97–114,
2009.

[10] A. Asin and D. Gascon. 50 sensor applications for a smarter world.
Libelium Comunicaciones Distribuidas, Tech. Rep, 2012.

[11] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer networks, 54(15):2787–2805, 2010.

[12] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad. Proposed
embedded security framework for internet of things (iot). In Wire-
less Communication, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems Technology (Wireless VITAE), 2011
2nd International Conference on, pages 1–5. IEEE, 2011.

[13] J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker. Green cloud
computing: Balancing energy in processing, storage, and transport.
Proceedings of the IEEE, 99(1):149–167, 2011.

[14] C. E. Bash, C. D. Patel, and R. K. Sharma. Dynamic thermal manage-
ment of air cooled data centers. In Thermal and Thermomechanical
Phenomena in Electronics Systems, 2006. ITHERM’06. The Tenth
Intersociety Conference on, pages 8–pp. IEEE, 2006.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5
simulator. Computer Architecture News, 40(2):1, 2012.

[16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and
its role in the internet of things. In Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, pages 13–16. ACM,
2012.

[17] D. Bortolotti, H. Mamaghanian, A. Bartolini, M. Ashouei, J. Stuijt,
D. Atienza, P. Vandergheynst, and L. Benini. Approximate compressed
sensing: ultra-low power biosignal processing via aggressive voltage
scaling on a hybrid memory multi-core processor. In Proceedings of the
2014 international symposium on Low power electronics and design,
pages 45–50. ACM, 2014.

[18] A. P. Chandrakasan, D. C. Daly, J. Kwong, and Y. K. Ramadass. Next
generation micro-power systems. In 2008 IEEE Symposium on VLSI
Circuits, pages 2–5. IEEE, 2008.

[19] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung. Body
area networks: A survey. Mobile networks and applications, 16(2):171–
193, 2011.

[20] Y. Chen, S. Lu, H.-S. Kim, D. Blaauw, R. G. Dreslinski, and T. Mudge.
A low power software-defined-radio baseband processor for the internet
of things. In High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on, pages 40–51. IEEE, 2016.

[21] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and
A. Raghunathan. Approximate computing: An integrated hardware
approach. In 2013 Asilomar Conference on Signals, Systems and
Computers, pages 111–117. IEEE, 2013.

[22] J.-M. Choi, C.-M. Jung, and K.-S. Min. Pcram flip-flop circuits with
sequential sleep-in control scheme and selective write latch. JSTS:
Journal of Semiconductor Technology and Science, 13(1):58–64, 2013.

[23] J. Crenne, R. Vaslin, G. Gogniat, J.-P. Diguet, R. Tessier, and D. Un-
nikrishnan. Configurable memory security in embedded systems.
ACM Transactions on Embedded Computing Systems (TECS), 12(3):71,
2013.

[24] J. M. Cruz-Albrecht, M. W. Yung, and N. Srinivasa. Energy-efficient
neuron, synapse and stdp integrated circuits. IEEE transactions on
biomedical circuits and systems, 6(3):246, 2012.

[25] C. Dai and T. Adegbija. Exploiting configurability as a defense against
cache side channel attacks. In 2017 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2017.

[26] K. Du, P. Varman, and K. Mohanram. High performance reliable
variable latency carry select addition. In 2012 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1257–1262.
IEEE, 2012.

[27] A. Efthymiou and J. D. Garside. Adaptive pipeline structures for
speculation control. In Asynchronous Circuits and Systems, 2003.
Proceedings. Ninth International Symposium on, pages 46–55. IEEE,
2003.

[28] D. Folegnani and A. González. Energy-effective issue logic. In ACM
SIGARCH Computer Architecture News, volume 29, pages 230–239.
ACM, 2001.



12

[29] Gartner. http://www.gartner.com/newsroom/id/2684616, 2016. Ac-
cessed: April 2016.

[30] E. I. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, and
R. Rednic. Edge mining the internet of things. Sensors Journal, IEEE,
13(10):3816–3825, 2013.

[31] S. Gollakota, M. S. Reynolds, J. R. Smith, and D. J. Wetherall. The
emergence of rf-powered computing. Computer, 47(1):32–39, 2014.

[32] V. S. Gopinath, J. Sprinkle, and R. Lysecky. Modeling of data adapt-
able reconfigurable embedded systems. In Engineering of Computer
Based Systems (ECBS), 2011 18th IEEE International Conference and
Workshops on, pages 276–283. IEEE, 2011.

[33] A. Gordon-Ross, F. Vahid, and N. D. Dutt. Fast configurable-cache
tuning with a unified second-level cache. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 17(1):80–91, 2009.

[34] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things
(iot): A vision, architectural elements, and future directions. Future
Generation Computer Systems, 29(7):1645–1660, 2013.

[35] K. Gudan, S. Chemishkian, J. J. Hull, M. S. Reynolds, and S. Thomas.
Feasibility of wireless sensors using ambient 2.4 ghz rf energy. In
Sensors, 2012 IEEE, pages 1–4. IEEE, 2012.

[36] H. Hajimiri and P. Mishra. Intra-task dynamic cache reconfiguration. In
VLSI Design (VLSID), 2012 25th International Conference on, pages
430–435. IEEE, 2012.

[37] D. Halperin, T. S. Heydt-Benjamin, K. Fu, T. Kohno, and W. H. Maisel.
Security and privacy for implantable medical devices. IEEE pervasive
computing, 7(1):30–39, 2008.

[38] J. Han and M. Orshansky. Approximate computing: An emerging
paradigm for energy-efficient design. In 2013 18th IEEE European
Test Symposium (ETS), pages 1–6. IEEE, 2013.

[39] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Design optimization of
time-and cost-constrained fault-tolerant distributed embedded systems.
In Proceedings of the conference on Design, Automation and Test in
Europe-Volume 2, pages 864–869. IEEE Computer Society, 2005.

[40] B. Jeff. Big. little system architecture from arm: saving power
through heterogeneous multiprocessing and task context migration. In
Proceedings of the 49th Annual Design Automation Conference, pages
1143–1146. ACM, 2012.

[41] T. Jiang, Q. Zhang, R. Hou, L. Chai, S. A. Mckee, Z. Jia, and N. Sun.
Understanding the behavior of in-memory computing workloads. In
Workload Characterization (IISWC), 2014 IEEE International Sympo-
sium on, pages 22–30. IEEE, 2014.

[42] A. B. Kahng and S. Kang. Accuracy-configurable adder for approx-
imate arithmetic designs. In Proceedings of the 49th Annual Design
Automation Conference, pages 820–825. ACM, 2012.

[43] P. Kanerva. Sparse distributed memory. MIT press, 1988.
[44] M. Kang, S. K. Gonugondla, M.-S. Keel, and N. R. Shanbhag. An

energy-efficient memory-based high-throughput vlsi architecture for
convolutional networks. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1037–1041.
IEEE, 2015.

[45] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz.
An energy-efficient vlsi architecture for pattern recognition via deep
embedding of computation in sram. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 8326–8330. IEEE, 2014.

[46] M. Kang and N. R. Shanbhag. In-memory computing architectures for
sparse distributed memory. 2016.

[47] A. Kanuparthi, R. Karri, and S. Addepalli. Hardware and embedded
security in the context of internet of things. In Proceedings of the
2013 ACM workshop on Security, privacy & dependability for cyber
vehicles, pages 61–64. ACM, 2013.

[48] N. Karimian, P. A. Wortman, and F. Tehranipoor. Evolving authentica-
tion design considerations for the internet of biometric things (iobt). In
Hardware/Software Codesign and System Synthesis (CODES+ ISSS),
2016 International Conference on, pages 1–10. IEEE, 2016.

[49] M. M. Kermani, M. Zhang, A. Raghunathan, and N. K. Jha. Emerging
frontiers in embedded security. In 2013 26th International Conference
on VLSI Design and 2013 12th International Conference on Embedded
Systems, pages 203–208. IEEE, 2013.

[50] G.-D. Kim, C. Yoon, S.-B. Kye, Y. Lee, J. Kang, Y. Yoo, and T.-
K. Song. A single fpga-based portable ultrasound imaging system
for point-of-care applications. IEEE transactions on ultrasonics,
ferroelectrics, and frequency control, 59(7):1386–1394, 2012.

[51] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Moderator-
Ravi. Security as a new dimension in embedded system design. In
Proceedings of the 41st annual Design Automation Conference, pages
753–760. ACM, 2004.

[52] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. Trustlite:
A security architecture for tiny embedded devices. In Proceedings of
the Ninth European Conference on Computer Systems, page 10. ACM,
2014.

[53] Y. Kora, K. Yamaguchi, and H. Ando. Mlp-aware dynamic instruction
window resizing for adaptively exploiting both ilp and mlp. In
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 37–48. ACM, 2013.

[54] L. Kugler. Is good enough computing good enough? Communications
of the ACM, 58(5):12–14, 2015.

[55] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for
power with an underdesigned multiplier architecture. In 2011 24th
Internatioal Conference on VLSI Design, pages 346–351. IEEE, 2011.

[56] R. Kumar, K. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Processor power reduction via single-isa heterogeneous multi-core
architectures. Computer Architecture Letters, 2(1):2–2, 2003.

[57] T. T.-O. Kwok and Y.-K. Kwok. Computation and energy efficient
image processing in wireless sensor networks based on reconfigurable
computing. In Parallel Processing Workshops, 2006. ICPP 2006
Workshops. 2006 International Conference on, pages 8–pp. IEEE,
2006.

[58] K. Y. Kyaw, W. L. Goh, and K. S. Yeo. Low-power high-speed
multiplier for error-tolerant application. In 2010 IEEE International
Conference of Electron Devices and Solid-State Circuits (EDSSC),
2010.

[59] H. Lee, Y. Lin, Y. Harel, M. Woh, S. Mahlke, T. Mudge, and
K. Flautner. Software defined radio–a high performance embedded
challenge. In International Conference on High-Performance Embed-
ded Architectures and Compilers, pages 6–26. Springer, 2005.

[60] C. Li, W. Zhang, C.-B. Cho, and T. Li. Solarcore: Solar energy
driven multi-core architecture power management. In 2011 IEEE 17th
International Symposium on High Performance Computer Architecture,
pages 205–216. IEEE, 2011.

[61] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin. Smart community:
an internet of things application. IEEE Communications Magazine,
49(11):68–75, 2011.

[62] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John,
Y. Xie, et al. Ambient energy harvesting nonvolatile processors:
from circuit to system. In Proceedings of the 52nd Annual Design
Automation Conference, page 150. ACM, 2015.

[63] Y. Liu, Z. Wang, A. Lee, F. Su, C.-P. Lo, Y. Zhe, et al. A 65nm
reram-enabled nonvolatile processor with 6x reduction in restore time
and 4x higher clock frequency using adaptive data retention and self-
write- termination nonvolatile logics. In IEEE International Solid-state
Circuits Conference (ISSCC), pages 84–86. IEEE, 2016.

[64] S.-L. Lu. Speeding up processing with approximation circuits. Com-
puter, 37(3):67–73, 2004.

[65] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan. Architecture exploration for ambient energy
harvesting nonvolatile processors. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA),
pages 526–537. IEEE, 2015.

[66] McKinsey. Disruptive technologies: advances that will transform life,
business, and the global economy. http://www.mckinsey.com, 2016.
Accessed: January 2016.

[67] Medical. Medical image processing, analysis, and visualization.
http://mipav.cit.nih.gov/, 2015. Accessed: January 2016.

[68] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of
things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, 2012.

[69] A. Mort, L. Eadie, L. Regan, A. Macaden, D. Heaney, M.-M. Bouam-
rane, G. Rushworth, and P. Wilson. Combining transcranial ultrasound
with intelligent communication methods to enhance the remote assess-
ment and management of stroke patients: Framework for a technology
demonstrator. Health informatics journal, 22(3):691–701, 2016.

[70] E. F. Nakamura, A. A. Loureiro, and A. C. Frery. Information fusion for
wireless sensor networks: Methods, models, and classifications. ACM
Computing Surveys (CSUR), 39(3):9, 2007.

[71] O. Navarro, T. Leiding, and M. Hübner. Configurable cache tuning with
a victim cache. In Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), 2015 10th International Symposium on, pages 1–6.
IEEE, 2015.

[72] S. Onkaraiah, M. Reyboz, F. Clermidy, J.-M. Portal, M. Bocquet,
C. Muller, C. Anghel, A. Amara, et al. Bipolar reram based non-
volatile flip-flops for low-power architectures. In New Circuits and
Systems Conference (NEWCAS), 2012 IEEE 10th International, pages
417–420. IEEE, 2012.



13

[73] C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal, and R. Friedrich.
Smart cooling of data centers. In ASME 2003 International Elec-
tronic Packaging Technical Conference and Exhibition, pages 129–137.
American Society of Mechanical Engineers, 2003.

[74] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks (RAID), volume 17. ACM, 1988.

[75] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context
aware computing for the internet of things: A survey. IEEE Commu-
nications Surveys & Tutorials, 16(1):414–454, 2014.

[76] V. Raghunathan, S. Ganeriwal, M. Srivastava, and C. Schurgers.
Energy efficient wireless packet scheduling and fair queuing. ACM
Transactions on Embedded Computing Systems (TECS), 3(1):3–23,
2004.

[77] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava.
Design considerations for solar energy harvesting wireless embedded
systems. In Proceedings of the 4th international symposium on
Information processing in sensor networks, page 64. IEEE Press, 2005.

[78] M. C. Ramon. Intel galileo and intel galileo gen 2. In Intel R© Galileo
and Intel R© Galileo Gen 2, pages 1–33. Springer, 2014.

[79] A.-R. Sadeghi, C. Wachsmann, and M. Waidner. Security and privacy
challenges in industrial internet of things. In Proceedings of the 52nd
Annual Design Automation Conference, page 54. ACM, 2015.

[80] G. K. Saha. Software based fault tolerance: a survey. Ubiquity,
2006(July):1, 2006.

[81] F. Samie, L. Bauer, and J. Henkel. An approximate compressor for
wearable biomedical healthcare monitoring systems. In Proceedings
of the 10th International Conference on Hardware/Software Codesign
and System Synthesis, pages 133–142. IEEE Press, 2015.

[82] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage
in solid-state memories. ACM Transactions on Computer Systems
(TOCS), 32(3):9, 2014.

[83] E. Sánchez-Sinencio. Smart nodes of internet of things (iot): a hardware
perspective view & implementation. In Proceedings of the 24th edition
of the great lakes symposium on VLSI, pages 137–138. ACM, 2014.

[84] D. N. Serpanos and A. G. Voyiatzis. Security challenges in embedded
systems. ACM Transactions on Embedded Computing Systems (TECS),
12(1s):66, 2013.

[85] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), pages 97–
108. IEEE, 2014.

[86] D. Shin and S. K. Gupta. Approximate logic synthesis for error tolerant
applications. In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 957–960. European Design and Automation
Association, 2010.

[87] D. Shin and S. K. Gupta. A new circuit simplification method for error
tolerant applications. In 2011 Design, Automation & Test in Europe,
pages 1–6. IEEE, 2011.

[88] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on
multi/many-core systems: survey of current and emerging trends. In
Proceedings of the 50th Annual Design Automation Conference, page 1.
ACM, 2013.

[89] S. P. Singh and R. Maini. Comparison of data encryption algo-
rithms. International Journal of Computer Science and Communica-
tion, 2(1):125–127, 2011.

[90] G. Stitt, R. Lysecky, and F. Vahid. Dynamic hardware/software
partitioning: a first approach. In Proceedings of the 40th annual Design
Automation Conference, pages 250–255. ACM, 2003.

[91] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé. Vision and
challenges for realising the Internet of Things, volume 20. EUR-OP,
2010.

[92] K. Swaminathan, R. Mukundrajan, N. Soundararajan, and
V. Narayanan. Towards resilient micro-architectures: Datapath
reliability enhancement using stt-mram. In 2011 IEEE Computer
Society Annual Symposium on VLSI, pages 236–241. IEEE, 2011.

[93] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. A taxonomy of
wireless micro-sensor network models. ACM SIGMOBILE Mobile
Computing and Communications Review, 6(2):28–36, 2002.

[94] M. Tory and T. Möller. Rethinking visualization: A high-level tax-
onomy. In Information Visualization, 2004. INFOVIS 2004. IEEE
Symposium on, pages 151–158. IEEE, 2004.

[95] O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-aware
software-based fault tolerance in real-time systems. In Low Power
Electronics and Design, 2002. ISLPED’02. Proceedings of the 2002
International Symposium on, pages 124–129. IEEE, 2002.

[96] S. Venkataraman, A. Kumar, J. Schlachter, and C. Enz. Designing
inexact systems efficiently using elimination heuristics. In Proceedings
of the 2015 Design, Automation & Test in Europe Conference &
Exhibition, pages 758–763. EDA Consortium, 2015.

[97] H. J. Visser, A. C. Reniers, and J. A. Theeuwes. Ambient rf energy
scavenging: Gsm and wlan power density measurements. In Microwave
Conference, 2008. EuMC 2008. 38th European, pages 721–724. IEEE,
2008.

[98] W. Wang and T. Dey. A survey on arm cortex a processors. http:”
www. cs. virginia. edu1˜ skadron, 2011.

[99] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan,
B. Sai, and H. Yang. A 3us wake-up time nonvolatile processor based
on ferroelectric flip-flops. In ESSCIRC (ESSCIRC), 2012 Proceedings
of the, pages 149–152. IEEE, 2012.

[100] Z. Xiong, X. Wu, S. Cheng, and J. Hua. Lossy-to-lossless compression
of medical volumetric data using three-dimensional integer wavelet
transforms. IEEE transactions on medical imaging, 22(3):459–470,
2003.

[101] J. Yiu. The Definitive Guide to ARM R© Cortex R©-M3 and Cortex R©-M4
Processors. Newnes, 2013.

[102] W.-k. Yu, S. Rajwade, S.-E. Wang, B. Lian, G. E. Suh, and E. Kan. A
non-volatile microcontroller with integrated floating-gate transistors. In
2011 IEEE/IFIP 41st International Conference on Dependable Systems
and Networks Workshops (DSN-W), pages 75–80. IEEE, 2011.

[103] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2–2. USENIX Association, 2012.

[104] C. Zhang, F. Vahid, and W. Najjar. A highly configurable cache
architecture for embedded systems. In Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on, pages 136–146.
IEEE, 2003.

[105] S. Zhang, M. Kang, C. Sakr, and N. Shanbhag. Reducing the energy
cost of inference via in-sensor information processing. arXiv preprint
arXiv:1607.00667, 2016.

[106] L. Zhou and H.-C. Chao. Multimedia traffic security architecture for
the internet of things. Network, IEEE, 25(3):35–40, 2011.

[107] R. Zhuang, S. A. DeLoach, and X. Ou. Towards a theory of moving
target defense. In Proceedings of the First ACM Workshop on Moving
Target Defense, pages 31–40. ACM, 2014.

[108] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M. Herzog,
R. Ledwa, C. Sichert, V. Rzehak, P. Thanigai, et al. An 82µa/mhz mi-
crocontroller with embedded feram for energy-harvesting applications.
In 2011 IEEE International Solid-State Circuits Conference, 2011.

Tosiron Adegbija received his M.S and Ph.D in
Electrical and Computer Engineering from the Uni-
versity of Florida in 2011 and 2015, respectively
and his B.Eng in Electrical Engineering from the
University of Ilorin, Nigeria in 2005. He is currently
an Assistant Professor of Electrical and Computer
Engineering at the University of Arizona, USA.
His research interests are in computer architecture,
with emphasis on adaptable computing, low-power
embedded systems design and optimization method-
ologies, and microprocessor optimizations for the

Internet of Things (IoT). He received the best paper award at the Ph.D forum
of IEEE Computer Society Annual Symposium on VLSI in 2014.

Anita Rogacs received her M.S. and Ph.D in Me-
chanical Engineering from Stanford University and
her B.S. in Mechanical Engineering from San Jose
State University. She is recipient of National Science
Foundation and Sandia National Laboratories Re-
search Fellowships. At HP Labs she built Life Sci-
ences Labs, which is now home to research efforts
in areas of plasmonics, Raman spectroscopy, mi-
crofluidics, analytical chemistry, molecular biology
and data mining. She is also the HP Labs Principle
Investigator of the CRADA collaboration with the

Federal Food and Drug Administration, which aims to develop screening
methods using Surface Enhanced Raman Spectroscopy (SERS) sensors.



14

Chandrakant Patel is currently Chief Engineer
and Senior Fellow of HP Inc. Patel has led HP
Labs in delivering innovations in chips, systems,
data centers, storage, networking, print engines and
software platforms. He is a pioneer in thermal and
energy management in data centers, and in the
application of information technology for available
energy management at the scale of cities. Patel is an
ASME and an IEEE Fellow, and has been granted
151 patents and published more than 150 papers. An
advocate of a return to fundamentals, he has served

as an adjunct faculty member in engineering at Chabot College, U.C. Berkeley
Extension, San Jose State University and Santa Clara University. In 2014, Patel
was elected to the Silicon Valley Engineering Hall of Fame.

Ann Gordon-Ross received the B.S. and Ph.D.
degrees in computer science and engineering from
the University of California, Riverside, USA, in
2000 and 2007, respectively. She is currently an
Associate Professor of Electrical and Computer En-
gineering with the University of Florida, USA, and
a member of the NSF Center for High Performance
Reconfigurable Computing with the University of
Florida. She is also a Faculty Advisor of the Women
in Electrical and Computer Engineering and the
Phi Sigma Rho National Society for Women in

Engineering and Engineering Technology, and an active member of the
Women in Engineering Proactive Network. Her research interests include
embedded systems, computer architecture, low-power design, reconfigurable
computing, dynamic optimizations, hardware design, real-time systems, and
multicore platforms. She was a recipient of the CAREER Award from the
National Science Foundation in 2010, best paper awards at the Great Lakes
Symposium on VLSI in 2010 and the IARIA International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies in 2010,
and the Best Ph.D. Poster at IEEE Computer Society Annual Symposium on
VLSI in 2014. She is very active in promoting diversity in STEM fields, and
has been a Guest Speaker at several international workshops/conferences on
this topic, organizes workshops, and participates in local outreach programs
at local K-12 schools.


	I Introduction and Motivation
	II High-level IoT Characteristics and their Demands on Microprocessor Architectures
	III IoT Application Classification
	III-A Sensing
	III-B Communications
	III-C Image Processing
	III-D Compression
	III-E Security
	III-F Fault Tolerance

	IV Determining IoT Microprocessor Configurations
	V State of the Art in IoT Microarchitecture Configurations
	VI Microprocessor Optimizations, Computing Paradigms, and Future Directions
	VI-A Configurable/Adaptable Architectures
	VI-B Distributed Heterogeneous Architectures
	VI-C Energy Harvesting and Non-Volatile Processors
	VI-D Approximate Computing
	VI-E In-Memory Processing
	VI-F Secure Microarchitectures

	VII Conclusions
	References
	Biographies
	Tosiron Adegbija
	Anita Rogacs
	Chandrakant Patel
	Ann Gordon-Ross


