
High-Performance Architecture for
Binary-Tree-Based Finite State Machines

Raouf Senhadji-Navarro and Ignacio Garcia-Vargas

Abstract—A binary-tree-based finite state machine (BT-FSM)
is a state machine with a 1-bit input signal whose state tran-
sition graph is a binary tree. BT-FSMs are useful in those
application areas where searching in a binary tree is required,
such as computer networks, compression, automatic control, or
cryptography. This paper presents a new architecture for imple-
menting BT-FSMs which is based on the model finite virtual state
machine (FVSM). The proposed architecture has been compared
with the general FVSM and conventional approaches by using
both synthetic test benches and very large BT-FSMs obtained
from a real application. In synthetic test benches, the average
speed improvement of the proposed architecture respect to the
best results of the other approaches achieves 41% (there are
some cases in which the speed is more than double). In the
case of the real application, the average speed improvement
achieves 155%.

Index Terms—Binary tree, field programmable gate
array (FPGA), finite state machine, finite virtual state
machine (FVSM).

I. INTRODUCTION

TODAY, we can observe a growing interest in the
devel-opment of new hardware architectures for
implementing

algorithms whose software solutions do not achieve the high
performance required by current applications [1]. In many
cases, these algorithms are based on binary trees; so, the effi-
cient implementation of binary trees has a decisive influence
on the overall performance of the system. In computer sci-
ence, a binary tree is a data structure widely used in searching
algorithms. Computer networks [2], [3], compression [4], auto-
matic control [5], [6], or cryptography [7] are some application
areas of binary trees. Many examples of hardware implemen-
tations that perform searches on binary trees can be found in
the literature. Internet protocol (IP) address look-up engines
for high-speed hardware routers are usually implemented by
using binary trees [2]. Huffman decoders, which require to
process binary trees, are implemented on hardware in order
to speed up decompression algorithms [4]. In [3], a packet
classifier based on a binary tree for network intrusion detec-
tion systems is proposed. Efficient hardware implementations
of the binary trees used by the Knuth–Yao algorithm (called
discrete distribution generating trees) are required in many

cryptography applications [7]. Finally, general piecewise-affine
functions, which are used in embedded control systems, can
be implemented in hardware using binary search trees in such
way that the function is evaluated at each node to determine
the next node to visit [5], [6].

The flexibility and performance of field programmable gate
arrays (FPGAs) make these devices an ideal platform for
building custom hardware accelerators and embedded systems.
There are many examples in the literature of FPGA-based
implementations that use binary trees [3]–[5], [7]. In these
applications, the circuit that performs searches on the binary
tree can be modeled as a finite state machine (FSM) [2], [5].
We will refer to this kind of FSM as binary-tree-based
FSM (BT-FSM). Many authors highlight that software FSM
implementations on FPGA-based general processors cannot
compete with specific hardware implementations in terms of
speed [8], [9]. In software solutions, several instructions are
required to determine the next node and output of the binary
tree (or the FSM); so, each transition spends more than one
clock cycle unlike hardware solutions. The efficient hardware
implementation of BT-FSMs is a challenge, particularly when
the binary tree has a large number of nodes [2].

In [10], a model of finite state machines based on
a two-level memory hierarchy, called finite virtual state
machines (FVSMs), was proposed. The aim of this model is to
improve the performance of the FPGA-based implementations
of state machines with a large number of states. The archi-
tecture presented in [10] (which will be referred as general
FVSM architecture) allows the implementation of any FSM;
however, the performance could be increased if the architec-
ture is adapted to exploit the particular properties of BT-FSMs.
In this paper, we propose a new architecture based on the
FVSM model specifically designed for BT-FSMs, which is
called binary-tree-based FVSM (BT-FVSM).

The next sections are organized as follows. In Section II,
conventional implementations of BT-FSMs are outlined.
Section III shows the general FVSM architecture and explains
the features of BT-FSM implementations when this archi-
tecture is used. In Section IV, the proposed architecture is
described and compared with the general FVSM architecture.
Section V presents the experimental results. Finally, the main
conclusions are summarized in Section VI.

II. CONVENTIONAL IMPLEMENTATIONS OF BT-FSMS

A BT-FSM is an FSM with a 1-bit input signal whose state
transition graph (STG) is a binary tree. Like any arbitrary
FSM, a BT-FSM can be implemented in an FPGA using

mailto:raouf@us.es
http://www.ieee.org/publications_standards/publications/rights/index.html

Fig. 1. Memory-based architecture of a BT-FSM.

two different approaches. On the one hand, BT-FSMs can be
implemented by using registers and combinational logic that
is mapped into look-up tables (LUTs). We will refer to this
approach as cell-based implementation. On the other hand,
BT-FSMs can be implemented by using memory (which will
be referred as memory-based implementation).

Fig. 1 shows the architecture of a memory-based implemen-
tation of a BT-FSM. Each memory word contains a transition
of the FSM, i.e., the value of the output signal and the next
state encoding bits [11]. The memory address is composed of
the input signal and the present state encoding bits. The next
state is stored in the register and is fed back to the memory
address signal as the present state. This architecture allows
the implementation of Mealy FSMs with registered outputs.
Therefore, a Moore FSM must be converted to an equivalent
Mealy FSM in which the output of each transition takes the
value of the output corresponding to the next state. Current
FPGA devices include a large number of synchronous embed-
ded memory blocks (EMBs) that can be used for storing the
transitions of the FSM.

In a cell-based implementation, the maximum operating
frequency is determined by the number of levels of LUTs,
which depends on the complexity of the transition and output
functions. In BT-FSMs, the number of states is a signif-
icant factor of the complexity of these functions. FPGA
manufacturers recommend to map large FSMs into EMBs
in order to improve the performance. For example, Xilinx
asserts that large FSMs can be made more compact and
faster by implementing them in EMBs [12]. In fact, cell-
based implementations of large FSMs do not provide the best
performance [13].

EMBs have a fixed access time independently of its con-
tent. Therefore, the performance is high if the BT-FSM can
be stored on a unique EMB. However, if the memory depth
(i.e., the number of words) is greater than the maximum
depth available in EMBs [14], then some LUTs and embed-
ded multiplexers are used for multiplexing the outputs of the
EMBs. The delay of these extra logic elements and the rout-
ing overhead can reduce significantly the performance of the
memory [11]. As a drawback, EMBs are limited resources in
comparison with LUTs and they are essential in the design of
memories in system-on-programmable-chips.

Despite memory-based implementations usually uses
EMBs [15], it is also possible to use distributed memory (i.e.,
LUTs configured as little memories [16], [17]). These imple-
mentations can obtain high performance when the memory
depth is small [11], [17]

Memory-based implementations can use either ROM
(ROM-based implementations) or RAM (RAM-based
implementations). RAM-based implementations have an

Fig. 2. General FVSM architecture.

important advantage respect to cell-based implementations:
the behavior of the FSM can be modified in run-time. In
some applications (e.g., IP routing [2]), run-time update is a
requirement.

III. GENERAL FVSM IMPLEMENTATION OF BT-FSMS

The FVSM model is based on a two-level memory hier-
archy in which the states required by the behavior of the
state machine are dynamically transferred from the sec-
ondary memory (called S-memory) to the main memory
(called M-memory). The general FVSM architecture proposed
in [10] (see Fig. 2) allows to implement state machines using
this model. M-memory implements a RAM-based FSM with
generic states (called frames) whose behavior is determined
by the content of the memory. In order to be implemented in
this architecture, an FSM is decomposed into a set of nondis-
joint sub-FSMs called instances. At each moment, the instance
stored on M-memory (called present instance) is the only
active instance, which determines the FSM operation. So, in
M-memory, frames play the role of the states of the FSM.

The FVSM architecture allows to implement any arbitrary
FSM, including BT-FSMs. Fig. 3(a) shows a possible decom-
position of a BT-FSM example into instances. This BT-FSM
models a pattern recognizer, i.e., a circuit that recognizes a
set of patterns from a sequence of bits [2]. For example, for
the input value 01010001, the BT-FSM matches the patterns
010, 0101, and 010100 and generates the output values 0010,
0101, and 1100 at the states s5, s8, and s18, respectively (these
values represent the position of the patterns in the list shown
in the figure caption). The output value 0000 indicates that no
pattern has been matched. Note that s19 (called final state) is
the only state that has more than one incoming transition. If
this state is removed, the obtained STG is a binary tree.

In the example, the BT-FSM is decomposed into the
instances I0, . . . , I5. The initial instance (i.e., the instance that
is loaded into M-memory when the state machine is reset) is
I0. The present instance can be changed by reading a set of
states (called instance update) from S-memory and by writing
them on M-memory. This operation, which requires two clock
cycles, is carried out by the present instance itself without
interrupting the proper FSM operation. For example, Fig. 3(b)
shows the transitions that involve the change of the present
instance from I2 to I5. At the first cycle, the instance update of
I5 is read from S-memory by setting the addr signal [denoted
by addr (I5) in the transition to s2]. This instance update do
not need to include s19 because this state belong to both I2

Fig. 3. Example of general FVSM and BT-FVSM implementations generated from a given BT-FSM which matches the patterns 001, 010, 000, 0010, 0101,
011, 100, 1001, 11, 0011, 0110, and 010100. (a) Decomposition into instances of the general FVSM implementation. (b) Detail of the signals involved in the
change of the present instance from I2 to I5. (c) Decomposition into sub-FSMs of the BT-FVSM implementation.

and I5. At the second cycle, the instance update is written on
M-memory by setting the we signal (see the transition to s3).

Instance changes occur at the output transitions of special
states called update states, which are marked with a double
circle in the BT-FSM example (e.g., s3 is the update state
of I5). Therefore, the number of instances and their content are
determined by the update states: each update state determines
an instance that is composed of all states reachable from that
update state without traversing any other update state. The
initial instance is determined by the reset state in a similar
way. As the instance update is read one clock cycle before the
update state is reached, two states with the same father (e.g., s3
and s6) cannot be update states of different instances in this
architecture [10]. The read and write operations are pipelined
by using registers (see Fig. 2), which allow a throughput of
one update per cycle. In the transition to s2 of the example,
the update of I5 begins by setting addr and the update of I2
finishes by setting we.

The performance of the FVSM architecture is determined by
the slowest memory [10]. As the performance of a memory
is mainly given by its depth [11], the memory with greater
depth determines the overall performance. On the one hand,
the depth of M-Memory is equal to the number of transitions

of the greatest instance (i.e., the double of the number of states
of that instance). On the other hand, the depth of S-memory
is given by the number of instances updates (i.e., the number
of instances different to the initial one). In the example, the
depth of M-memory and S-memory are 12 and 5, respectively
(so the performance is determined by M-memory).

An optimization process is used to find a decomposition into
instances that balances the depth of both memories [10]. For
n states and k instances, the minimum depth of M-memory is
2�(n/k)� whereas the depth of S-memory is k −1. Ideally, the
highest performance is obtained when both values are equals;
however, the best approximation is obtained when S-memory
depth is ⌈√

1 + 8n − 1

2

⌉
. (1)

This value, which will be referred as optimal depth, determines
an upper bound for the performance of a general FVSM imple-
mentation with n states. In the example, the optimal depth is
6 and could be obtained with instances of 3 states (so both
memories would have a depth of 6). Note that the optimal
depth cannot be reached in the BT-FSM example due to the

topology of the STG and the constraint imposed on update
states by the architecture.

M-memory is a dual-port RAM with asymmetric port
width [18], which allows to use a word size in read operations
different than in write operations. However, the ratio between
the ports is limited both in memories based on EMBs and
in those based on LUTs (i.e., distributed memories) [14]. For
example, a 6-LUT can be configured as a RAM of 64 × 1,
so a distributed RAM of 256 × 1 is composed of 4 RAMs
of 64 × 1; therefore, the ratio is 1/4, i.e., it is possible to
read 1 word and to write 4 words (1 word per each RAM).
The decomposition shown in Fig. 3(a) has been done by sup-
posing no constraint in the read/write ratio of M-memory
(i.e., all states of the present instance can be updated in one
write operation). In a real implementation, the optimization
process increases the size of instances in order to guarantee
the ratio imposed by the implementation of M-memory [19].
For example, if the ratio is 1/2, M-memory can only write
2 transitions (i.e., one state) in each write operation; there-
fore, the algorithm must extend the adjacent instances in order
to guarantee that they only differ in one state. For example,
I1 = {s2, s4, s5, s9, s16, s19} and I2 = {s3, s6, s19} could be
extended with {s3} and {s4, s5, s9, s16}, respectively (so the
update from I1 to I2 consists on changing s2 to s6). Therefore,
M-memory depth is increased from 12 to 14).

The balance between memories is done by a complex opti-
mization algorithm [10]. In practice, the algorithm obtains
solutions in which the depth of at least one of the memo-
ries is much greater than the optimal depth; this results in a
significant degradation of the performance of general FVSM
implementations. The reasons are summarized below. First,
the optimal depth has been calculated without considering the
topology of BT-FSMs, and so the constraint imposed on update
states can prevent to reach that value. Second, the limited
read/write ratio of M-memory can increase its depth. Finally,
the algorithm is based on branch-and-bound techniques, and
so an optimal solution is not guaranteed.

IV. BT-FVSM ARCHITECTURE

The performance of FVSM implementations of BT-FSMs
can be improved by exploiting the regular structure of binary
trees. This structure allows a systematic decomposition of
a BT-FSM into sub-FSMs that can overcome the problems
resulting from the balance between the memories. Fig. 3(c)
shows the decomposition of the BT-FSM example of Fig. 3(a).
The sub-FSMs are marked by rounded rectangles. Each sub-
FSM is composed of states of two consecutive levels of the
tree. The states of the levels 0 and 1 compose an special sub-
FSM called initial sub-FSM (in the example, it is composed
by s0, s1, and s10). The rest of sub-FSMs are obtained from
the states of the odd levels of the tree, which are update states.
Each update state determines a different sub-FSM that is com-
posed of its child and grandchild nodes. So, each sub-FSM has
at most 6 states (i.e., 12 transitions) and, thus, M-memory only
requires 12 words. However, all states of the odd levels of the
tree have to be update states of different instances, so this

decomposition cannot be applied in the general FVSM archi-
tecture due to the constraint on update states that imposes this
architecture.

The set of sub-FSMs obtained from all update states
included in a given sub-FSM is called sub-FSM group (or sim-
ply, group). As each sub-FSM have a maximum of 4 updates
states, the number of sub-FSMs of a group is at most 4. In
Fig. 3(c), the groups are marked by rectangles, and each sub-
FSM of a group is labeled with Fk

j , where k identifies the
group and j = 0, 1, 2, 3 identifies the sub-FSM. For example,
the group G1 is composed of the sub-FSMs F1

0, F1
1, F1

2, and
F1

3. All these sub-FSMs are determined by the update states
included in F0

0, which in turn are determined by s1; therefore,
regardless of the input sequence, when the state s1 is reached,
one of the sub-FSMs of the group G1 will be required after
two clock cycles. Due to this property, the read of a group
from S-memory can start two clock cycles before the sub-
FSM is written on M-memory. Therefore, S-memory could be
controlled by a clock that operates at the half of the frequency
of the clock of M-memory. However, S-memory would require
to read four sub-FSMs in parallel (i.e., a group) and to select
one of them after the read is finished. This is not possible
in the general FVSM architecture, because only one instance
update (i.e., the equivalent to one sub-FSM) can be read from
S-memory. So, the instance update that will be loaded into
M-memory must be known before the read operation starts.
The final state of the BT-FSM (s19 in the example) is the
unique state that belongs to more than one sub-FSM (this state
is shown as a filled circle).

The BT-FVSM architecture is shown in Fig. 4. Although
this architecture is also based on the FVSM model [10], it
has been specifically designed to allow the implementation of
the systematic decomposition of BT-FSMs presented above.
In this architecture, M-memory is a RAM-based implementa-
tion of a generic FSM of a 1-bit input and 6 generic states
(i.e., six frames). Therefore, any sub-FSM can be stored on
it. S-memory contains the sub-FSMs in which the BT-FSM is
decomposed. During the BT-FVSM operation, the sub-FSMs
are dynamically transferred from S-memory to M-memory. At
each instant of time, the sub-FSM stored on M-memory is
the unique sub-FSM active, which is called present sub-FSM.
Similarly, the sub-FSM that will be loaded into M-memory
during the next write operation is called next sub-FSM.

Each state of a sub-FSM is statically assigned to one differ-
ent frame. So, each frame contains one different state of the
present sub-FSM according to this assignment. Table I shows
a possible assignment of states to frames for the BT-FVSM
shown in Fig. 3(c). For example, the frame f3 contains s5
(i.e., contains the transitions of s5) when the present sub-FSM
is F0

0, and s19 when the present sub-FSM is F0
1. Therefore,

the present state of a BT-FVSM is determined by the present
sub-FSM and the present frame. As the depth of M-memory
is very reduced, it can be implemented using registers with-
out loss of performance (in general terms, this is not feasible
in the general FVSM architecture due to its larger depth).
For this purpose, M-memory includes the registers called
T0, T1, . . . , T11. Each one of these registers contains one of

Fig. 4. BT-FVSM architecture.

TABLE I
ASSIGNMENT OF STATES TO FRAMES FOR THE BT-FVSM EXAMPLE

the 12 transitions of the present sub-FSM (2 transitions per
each one of the six frames). The whole content of M-memory
can be modified in one clock cycle because the registers can
be loaded in parallel. This allows to load a complete sub-FSM
into M-memory in one clock cycle. This is an important dif-
ference from the general FVSM architecture that allows to
overcome the problem resulting from the read/write ratio of
M-memory.

M-memory also includes a set of registers (called F, O, G,
S, and L) that store at each clock cycle the last transition of
the FSM. The register F contains the present frame encoding
bits, which corresponds to the next frame encoding bits of
the transition. The register O contains the current value of the
output signal. The registers G, S, and L store the value of
the group-selector, sub-FSM-selector, and load-enable signals,
respectively. These signals are used for transferring sub-FSMs
from S-memory to M-memory, as will be explained later. The
12:1 multiplexer allows to select the transition via a word
composed of the present-frame and input signals.

S-memory contains all sub-FSMs in which the BT-FSM is
decomposed except the initial one. It is implemented with
four memory blocks (called S-memory blocks) that are read
in parallel. Each word of the S-memory blocks contains a
complete sub-FSM (i.e., its 12 transitions). The sub-FSMs of
a same group are stored on different S-memory blocks at the
same address. So, it is possible to read a sub-FSM group from
S-memory and to write one of its sub-FSMs on M-memory
(the sub-FSM is selected by the 4:1 multiplexer).

Each S-memory block is a ROM of n × v bits with reg-
istered output, where n is the number of groups and v is
the maximum number of bits of a sub-FSM. Each transition
includes the values of the following signals: group-selector
(r = �log2n� bits), output (m bits), present-frame (3 bits),
sub-FSM selector (2 bits), and load-enable (1 bit); therefore,
v = 12(r + m + 6) bits. If run-time reconfiguration is required,
RAM can be used instead of ROM. In this case, memories with
a time-multiplexed port or dual-port memories must be used.

Like in the general FVSM architecture, the performance
of the BT-FVSM architecture depends on the performance of
M-memory and S-memory. However, the BT-FVSM decom-
position allows S-memory to be controlled by a clock (called
CLK2) that operates at the half of the frequency of the clock
of M-memory (called CLK1). The depth of S-memory is prac-
tically always much greater than that of M-memory (i.e., 12
words). In addition, S-memory presents a more routing over-
head due to its greater size. As a consequence, S-memory is the
slowest memory. Therefore, the use of different clocks allows
to reduce the impact of S-memory on the overall performance.
On the other hand, according to (1), the depth of M-memory
of BT-FVSM (i.e., 12 words) is less than the optimal depth
of the general FVSM architecture for BT-FSMs with more
than 78 states. In these cases, M-memory of BT-FVSM archi-
tecture presents better performance than the general FVSM
architecture.

A. BT-FVSM Operation

When a BT-FVSM is reset, Ti registers (with i = 0, . . . , 5)
are initialized with the transitions of the initial sub-FSM; the
L register, with 0; the F register, with the encoding bits of the
initial frame; and the output registers of two of the S-memory
blocks, with the sub-FSMs determined by the update states
at level 1 of the tree (in the example, F0

0 and F0
1). At each

CLK1 cycle, the present sub-FSM (i.e., the sub-FSM stored
on M-memory) generates the output value of the BT-FSM. In
addition, the present sub-FSM controls the process for trans-
ferring the next sub-FSM from S-memory to M-memory. This
process begins by setting the group-selector signal, which con-
tains the address where the corresponding sub-FSM group
is stored on S-memory. Each S-memory block provides one

of the four sub-FSMs of the group, which are called can-
didate sub-FSMs. One of these candidate sub-FSMs will be
finally stored on M-memory after two CLK1 cycles (note
that an access to S-memory requires two cycles of CLK1).
Finally, after these two cycles, the next sub-FSM is written on
M-memory by setting the sub-FSM-selector and load-enable
signals. The first one allows to select the next sub-FSM from
the candidate sub-FSMs via the 4:1 multiplexer. The load-
enable signal allows to load the transitions of the selected
sub-FSM into Ti registers. The values of the group-selector,
sub-FSM-selector, and load-enable signals are stored on the
registers: G, S, and L, respectively. While the rest of regis-
ters of M-memory are controlled by CLK1, the register G
is controlled by CLK2 because its value is used to address
S-memory blocks. In Fig. 3(c), the transitions of the BT-FVSM
are labeled with “i/Gp, Fk

j , v,” where i represents the value of
the input signal; Gp, the group addressed by group-selector;
Fk

j , the sub-FSM selected by sub-FSM-selector (note that Fk
j

does not belong to the group Gp; i.e., k �= p); and v, the
value of load-enable (L when it is enabled, and L̄ otherwise).
The symbol “-” represents a do not care value. The reading
of a group and the loading of a sub-FSM into M-memory
are controlled by the transitions to update states. In these
transitions, the value of sub-FSM-selector selects one of the
sub-FSMs of the last group read, and the value of group-
selector addresses the new group to read. For example, in the
transition from s0 to s1, the read operation of G1 is started,
however, the next sub-FSM selected is F0

0, which belongs to
G0. Once s1 is reached, the read operation of G1 must begin
because, regardless of the input sequence, one of the sub-FSM
of this group (i.e., F1

0, F1
1, F1

2, or F1
3) will be required after

two CLK1 cycles. In the transitions to nonupdate states, load-
enable is disabled, and the value of group-selector does not
affect to the current read operation from S-memory because
the G register is controlled by CLK2.

In order to illustrate the operation of the BT-FVSM archi-
tecture, Fig. 5 shows a timing diagram of the BT-FVSM
example for the input value 01010001. In Fig. 5, the cycles
are numbered according to CLK1 clock. At each cycle, the
present state is the state stored on M-memory at the present
frame. So, the present state is given by the present sub-FSM
and the present frame. Although the present-frame signal con-
tains the frame encoding bits, for clarity, the timing diagram
shows the identifier of the present frame (i.e., fk). In addi-
tion, the present state is shown in brackets. States are stored
on the frames of M-memory according to Table I. When
the BT-FVSM is reset, the initial sub-FSM is loaded into
M-memory (see present-sub-FSM), the present-frame signal is
set to f0, and the group G0 is loaded into the output registers
of S-memory blocks (see the candidate-sub-FSMi signals).
As the first bit of the input sequence is 0, the present frame
changes from f0 to f1 at the 2nd cycle (according to Table I,
these frames contain the states s0 and s1, respectively). In the
transition from s0 to s1 [see Fig. 3(c)], group-selector sets the
address of G1; so, the read operation of G1 from S-memory
begins at the second cycle (note that the rising edge of CLK1
and CLK2 match at the even cycles). In addition, in this tran-
sition, load-enable is high and sub-FSM-selector selects F0

0

TABLE II
SUB-FSM GROUPS BEFORE THE OPTIMIZATION PROCESS

TABLE III
SUB-FSM GROUPS AFTER THE OPTIMIZATION PROCESS

from the output registers of S-memory blocks (which have
been set to G0 by the reset signal); so, next-sub-FSM takes the
value of F0

0 at the second cycle and it is stored on M-memory
at the third cycle (see present-sub-FSM at this cycle). Note
that, unlike the rest of groups, G0 has not been read from
S-memory blocks due to the initialization done by the reset
signal. At the fourth cycle, according to the transition from s4
to s5, the read of the group G3 begins (see group-selector), and
F1

2 is selected as the next sub-FSM from the group G1, which
was read at the second cycle (note that an access to S-memory
requires two cycles of CLK1). At this fourth cycle, the transi-
tion also sets the output value to 0010 and changes the present
frame from f2 to f3 (which contains s5 due to the present sub-
FSM is F0

0). At the fifth cycle, F1
2 is stored on M-memory

as the present sub-FSM. In a similar way, the last change
of the present sub-FSM is done at seventh cycle. After s18 is
reached, regardless the value of the input sequence, the present
state will remain in the final state s19 until the state machine
is reset.

B. Optimization of BT-FVSM Implementations

The efficiency of BT-FVSM implementations can be
improved by applying an optimization process to reduce the
number of groups obtained from a given BT-FSM. This allows
to reduce the depth and width of S-memory blocks, and the
width of Ti and G registers. So, area and speed results can
be improved. As the binary tree is usually incomplete, there
are many sub-FSMs (different to the initial one) that have
less than six states (these sub-FSMs are called incomplete
sub-FSMs). A greedy algorithm is used to reduce the num-
ber of groups by joining incomplete sub-FSMs. This allows
to reduce significantly the amount of memory used for imple-
menting S-memory and, therefore, the overall performance can
be improved. This algorithm is based on a heuristic similar
to first fit decreasing, which is used in greedy bin-packing
algorithms [20]. The algorithm guarantees that two states that
belong to a same sub-FSM will belong to a same sub-FSM
after the procedure is applied. For the BT-FVSM example,
Table II shows the groups obtained directly from the decom-
position shown in Fig. 3(c). Table III shows the groups after
the joining procedure. The sub-FSMs F0

1, F2
0, and F3

0 are joined
in F0

1. So, the number of groups is reduced to half.

Fig. 5. Timing diagram of the BT-FVSM example for the input value 01010001.

V. EXPERIMENTAL RESULTS

A comparison analysis between the techniques described
in this paper is presented with the aim of evaluating the
performance of the BT-FVSM architecture. The memory of
the ROM-based implementation and S-memory of both FVSM
architectures have been implemented using either LUTs (i.e.,
as distributed memory) or EMBs. So, this paper includes the
following techniques: BT-FVSM with S-memory implemented
using EMBs (BTFVSM-EMB) or LUTs (BTFVSM-LUT),
the general FVSM architecture with S-memory implemented
using EMBs (GFVSM-EMB) or LUTs (GFVSM-LUT), ROM-
based implementation using EMBs (ROM-EMB) or LUTs
(ROM-LUT), and cell-based implementation (FSM-LUT).

Two different sets of test benches have been used in this
paper. The first set is composed of 16 synthetic BT-FSMs
whose number of states ranges from 146 to 28 267, each of
one generated from a different set of random patterns. These
test benches have been used to compare all techniques using a
Spartan-6 xc6slx75-2 FPGA device. This device includes 172
EMBs of 18 KB which can be configured as two indepen-
dent EMBs of 9 KB (in the results, each EMB of 9 KB is
computed as 0.5). The second set of test benches is composed
of four large BT-FSMs obtained from the well-known Mae-
East IP routing database [2]. In this case, the largest device
supported by ISE WebPACK 14.6 (i.e., Virtex-6 xc6vlx75t-2)
has been used. However, due to a BT-FSM that recognizes the
whole database does not fit into this device, 4 BT-FSMs have
been generated using only the first k IP addresses, where k is
equal to 5000, 6000, 7000, and 8000. The number of states
of these BT-FSMs ranges from 36 080 to 52 589. For these
test benches, the BT-FVSM architecture is compared with the
most competitive technique for large BT-FSMs.

All designs have been described using VHDL. FSM-LUT
implementations have been generated from a standard descrip-
tion of an FSM. In the rest of implementations, the standard
components (like ROMs, multiplexors, etc.) are described
using the VHDL template provided by the synthesis tool. In the
case of FVSM implementations, M-memory is implemented
using ASYMRAM description [18]. The clock signals for the

BT-FVSM architecture are generated using the Xilinx Clock
Generator IP core.

The VHDL descriptions of the BT-FVSM and the general
FVSM implementations have been automatically generated
from the BT-FSMs. In the case of the BT-FVSM implemen-
tations, the execution time ranges from less than 1 s to 1.8 h,
with an average value of 14.3 min. In the case of the general
FVSM implementations, it has only been possible to gener-
ate the ten smallest cases because in the rest of cases the
generation was aborted after a time limit of 25 days. The
execution time grows enormously with the number of states
(e.g., the largest generated FVSM spent 23.6 days whereas the
corresponding BT-FVSM was generated in only 62 s).

All designs have been synthesized and implemented
using high-effort speed optimization because the goal
of the proposed technique is to obtain high-performance
implementations. In FSM-LUT implementations, fsm_extract,
fsm_encoding, and fsm_style options were set to “yes,”
“auto,” and “lut,” respectively. In the rest of implementa-
tions, rom_extract was set to yes; rom_style was set to lut
in LUT-based implementations and to “block” in EMB-based
implementations. In the place-and-route stage, a timing con-
straint for the clock signal was set to the value obtained in the
synthesis stage. The post place-and-route results are shown in
Fig. 6.

A. Speed Results for Synthetic Test Benches

Fig. 6(a) shows the maximum operating frequency versus
the number of BT-FSM states. The results show that either
or both BT-FVSM implementations are the best options in
all cases except the four smallest BT-FSMs (in which FSM-
LUT is on average only 7% faster than BTFVSM-LUT). By
considering all cases, the average improvement of BTFVSM-
LUT and BTFVSM-EMB with respect to the best results of
the other implementations are 36% and 23%, respectively (this
measure achieves 41% when the best result of both BT-FVSM
implementations is considered). In 25% of cases, the improve-
ment is greater than 56% and 44% for BTFVSM-LUT and

(a)

(b)

(c)

Fig. 6. Experimental results for the synthetic test benches (Spartan-6).
(a) Maximum operating frequency (x-axis is in logarithmic scale). (b) Number
of LUTs (both axes are in logarithmic scale). (c) Number of EMBs (x-axis is
in logarithmic scale).

BTFVSM-EMB, respectively (there are some cases in which
the speed is more than double).

BTFVSM-LUT is faster than BTFVSM-EMB in BT-FSMs
with a number of states less than 212. In these cases, the imple-
mentation of S-memory is more efficient when distributed
memory is used because the depth is small [11], [17] (e.g.,
S-memory has only 166 words for the greatest BT-FSM with
less than 212). For larger BT-FSMs, the results show that
BTFVSM-LUT and BTFVSM-EMB have similar speed. The
trend of the results suggest that BT-FSMs with very many
states can be implemented more efficiently by using EMBs
(this fact is confirmed in Section V-D).

As regards the general FVSM architecture, GFVSM-EMB
and GFVSM-LUT never are the fastest option. In the one
hand, BTFVSM-LUT is always faster than GFVSM-LUT
(with an average speed increment of 81%). On the other

hand, BTFVSM-EMB is faster than GFVSM-EMB in all cases
except one.

The fastest conventional technique for more than 29 states
is ROM-EMB. However, BTFVSM-LUT is faster than ROM-
EMB in all cases, while BTFVSM-EMB is in the BT-FSMs
with more than 211 states. This is mainly due to two fac-
tors. First, as S-memory is controlled by a half-frequency
clock, the speed of a BT-FVSM implementation doubles the
speed of its S-memory. Second, the depth of S-memory is
small (e.g., the depth for the largest test bench is 1728 in BT-
FVSM and 56 533 in ROM-EMB). This allows S-memory of
BTFVSM-LUT to be implemented efficiently using distributed
memory, notably in the cases with less than 211 states. In con-
trast, the number of EMBs used by BTFVSM-EMB is large
compared to ROM-EMB [see Fig. 6(c)]; due to the routing
overhead, BTFVSM-EMB is not competitive with ROM-EMB
in the first five cases, in which ROM-EMB uses no more than
2 EMBs.

B. LUT Results for Synthetic Test Benches

Fig. 6(b) shows the number of LUTs versus the num-
ber of BT-FSM states. As regards implementations that use
EMBs, ROM-EMB is the one that spends the least num-
ber of LUTs. On the other hand, GFVSM-EMB uses less
LUTs than BTFVSM-EMB in the smallest five cases; how-
ever, this trend is reversed in the largest cases. LUTs are used
for a different purpose in each kind of implementation. ROM-
EMB only spends LUTs in large BT-FSMs in order to join
EMBs. However, BTFVSM-EMB and GFVSM-EMB do not
use LUTs for joining EMBs because the depth of S-memory is
small. LUTs are used to implement the two multiplexers of the
architecture in BTFVSM-EMB and to implement M-memory
in GFVSM-EMB. The results suggest that in GFVSM-EMB
the number of used LUTs grows faster with the number of
states than in BTFVSM-EMB.

Regarding implementations that do not use EMBs, FSM-
LUT spends the least number of LUTs in all cases except two
(in which the best option is BTFVSM-LUT). GFVSM-LUT
always gets the worst results. The average reduction of LUTs
obtained by FSM-LUT respect to BTFVSM-LUT is 30%. The
results show that this reduction decreases with the number of
states; e.g., the average reduction is 52% in the cases of the
first half of the graph whereas this value is 7% in the cases
of the second half. On the other hand, BTFVSM-LUT obtains
worse results than ROM-LUT when the number of states is less
than 210. However, for BT-FSMs with more than 212 states,
BTFVSM-LUT is a better option. On average, ROM-LUT
spends a 38% more LUTs than BTFVSM-LUT.

C. EMB Results for Synthetic Test Benches

Fig. 6(c) shows the number of EMBs versus the number of
BT-FSM states. The average reduction of EMBs obtained by
ROM-EMB respect to BTFVSM-EMB is 67%. On the other
hand, for the ten smallest cases, GFVSM-EMB uses on aver-
age 75% less EMBs than BTFVSM-EMB. BTFVSM-EMB
uses the largest number of EMBs due to the following reasons.
First, even after applying the procedure for joining incomplete

TABLE IV
EXPERIMENTAL RESULTS FOR THE IP ROUTING DATABASE (VIRTEX-6)

sub-FSMs, the number of sub-FSM with less than six states
may be significant, resulting in a wastage of memory. Second,
the configuration of the depth of EMBs is limited to powers
of two with a minimum value of 512 [14]; therefore, part of
the address space of some EMBs is wasted when the depth
of the ROM to be implemented does not match the avail-
able configurations of EMBs (we will refer to this effect as
memory fragmentation [11]). This fragmentation particularly
affects BTFVSM-EMB because each one of the four blocks
of S-memory has less depth than the ROM of ROM-EMB and
than the S-memory of GFVSM-EMB. In addition, S-memory
blocks of BTFVSM-EMB usually have a very large width,
so the number of EMBs that suffer memory fragmentation is
high. For example, in the BT-FSM with the least number of
states, ROM-EMB requires a ROM of 292 × 15 bits; so, only
one half EMB configured as 512 × 16 is used. The S-memory
of GFVSM-EMB is a ROM of 64 × 90 bits, which requires 5
half EMBs configured as 512×36 (i.e., a total of 2,5 EMBs).
Finally, each one of the four S-memory blocks of BTFVSM-
EMB is a ROM of 8 × 192 bits, which requires six EMBs
configured as 512 × 36 (making a total of 24 EMBs).

The relative influence of the memory fragmentation in
the EMB usage decreases with depth; this explains that the
reduction reached by ROM-EMB respect to BTFVSM-EMB
decreases with the number of states (the average reduction is
92% for the cases in the first half of the graph whereas this
value is 42% in the cases of the second half). On the other
hand, the size of S-memory of GFVSM-EMB is on average a
17% greater than that of BTFVSM-EMB, so it is expected that
BTFVSM-EMB uses a less number of EMBs if the number
of states is large enough.

With the aim of reducing the effect of the memory frag-
mentation in BTFSVM-EMB implementations, two S-memory
blocks with depth less than 256 words could be mapped into
the same EMBs by exploiting the dual-port feature available
on EMBs [14]. In this case, the average EMB reduction respect
to BTFVSM-EMB could be decreased to 59% in the case of
ROM-EMB and to 55% in the case of GFVSM-EMB.

D. Results for the BT-FSMs Obtained from the IP
Routing Database

The average values of the post place-and-route results
are summarized in Table IV. BTFVSM-EMB is faster than
BTFVSM-LUT in all cases. This confirms the trend observed
in the results obtained for synthetic test benches. The
average speed improvement of BTFVSM-EMB respect to
BTFVSM-LUT is 72%. On the other hand, both imple-
mentations of the BT-FVSM architecture are faster than
ROM-EMB in all cases. The average speed improvement of

BTFVSM-EMB and BTFVSM-LUT respect to ROM-EMB are
155% and 53%, respectively.

VI. CONCLUSION

In this paper, the BT-FVSM architecture has been proposed.
The goal of this architecture is to achieve high-speed imple-
mentations of BT-FSMs. The differences between the proposed
architecture and the general FVSM architecture have been
described in detail. An experimental study that include BT-
FVSM, general FVSM, and conventional implementations
has been presented. Both synthetic BT-FSMs and BT-FSMs
obtained from an IP routing database have been used.

In synthetic test benches, the average speed improvement of
the proposed architecture with respect to the best results of the
other approaches (including the general FVSM) is 41% (there
are some cases in which the speed is more than double). In
the case of IP routing database, the average speed improve-
ment achieves 155%. Therefore, considering all test benches,
BTFVSM-LUT is the best option if EMBs must be preserved
(FSM-LUT is slightly better only for BT-FSMs with less than
512 states), otherwise BTFVSM-EMB is the best option for
BT-FSMs with a large number of states.

As future work, we plan to improve the area and speed
results by using a more complex algorithm for joining incom-
plete sub-FSMs. In addition, we are going to generate BT-
FVSM implementations that use the dual-port available on
EMBs in order to reduce memory fragmentation.

REFERENCES

[1] M. P. Desai, H. Narayanan, and S. B. Patkar, “The realization of finite
state machines by decomposition and the principal lattice of parti-
tions of a submodular function,” Discrete Appl. Math., vol. 131, no. 2,
pp. 299–310, Sep. 2003.

[2] M. Desai, R. Gupta, A. Karandikar, K. Saxena, and V. Samant,
“Reconfigurable finite-state machine based IP lookup engine for high-
speed router,” IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 501–512,
May 2003.

[3] J. Li, Y. Chen, C. Ho, and Z. Lu, “Binary-tree-based high speed packet
classification system on FPGA,” in Proc. Int. Conf. Inf. Netw., Jan. 2013,
pp. 517–522.

[4] S. Beak et al., “Novel binary tree Huffman decoding algorithm and
field programmable gate array implementation for terrestrial-digital
multimedia broadcasting mobile handheld,” IET Sci. Meas. Technol.,
vol. 6, no. 6, pp. 527–532, Nov. 2012.

[5] A. Oliveri, A. Oliveri, T. Poggi, and M. Storace, “Circuit implementation
of piecewise-affine functions based on a binary search tree,” in Proc. Eur.
Conf. Circuit Theory Design, Antalya, Turkey, Aug. 2009, pp. 145–148.

[6] P. Brox et al., “A programmable and configurable ASIC to generate
piecewise-affine functions defined over general partitions,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 60, no. 12, pp. 3182–3194, Dec. 2013.

[7] S. S. Roy, F. Vercauteren, and I. Verbauwhede, High Precision Discrete
Gaussian Sampling on FPGAs. Heidelberg, Germany: Springer, 2014,
pp. 383–401.

[8] S. L. Aritz, “Analysis of the FSMs implementation with mini-
microprocessors in FPGAs,” in Proc. IEEE Int. Symp. Ind. Electron.,
Vigo, Spain, Jun. 2007, pp. 2290–2294.

[9] X. Zhang et al., “Ztcore: Zero-waste tiny core for real-time con-
trol within FPGA,” in Proc. IEEE Int. Symp. Ind. Electron., Seoul,
South Korea, Jul. 2009, pp. 359–363.

[10] R. Senhadji-Navarro and I. Garcia-Vargas, “Finite virtual state
machines,” IEICE Trans., vol. 95-D, no. 10, pp. 2544–2547, 2012.

[11] R. Senhadji-Navarro, I. Garcia-Vargas, and J. L. Guisado, “Performance
evaluation of RAM-based implementation of finite state machines in
FPGAs,” in Proc. IEEE Int. Conf. Electron. Circuits Syst., Seville, Spain,
2012, pp. 225–228.

[12] XST User Guide 13.1, Xilinx, San Jose, CA, USA, 2011.

[13] I. Garcia-Vargas and R. Senhadji-Navarro, “Finite state machines with
input multiplexing: A performance study,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 5, pp. 867–871, May 2015.

[14] Spartan-6 FPGA Block RAM Resources User Guide, Xilinx, San Jose,
CA, USA, 2011.

[15] A. Barkalov, L. Titarenko, M. Kolopienczyk, K. Mielcarek, and
G. Bazydlo, Design of EMB-Based Mealy FSMs. Cham, Switzerland:
Springer, 2016, pp. 193–237.

[16] Cyclone V Device Overview, Altera, San Jose, CA, USA, 2016.
[17] Spartan-6 FPGA Configurable Logic Block User Guide, Xilinx,

San Jose, CA, USA, 2010.
[18] R. Senhadji-Navarro, I. Garcia-Vargas, G. Jimenez-Moreno, and

A. Civit-Balcells, “FPGA-based implementation of RAM with asymmet-
ric port widths for run-time reconfiguration,” in Proc. IEEE Int. Conf.
Electron. Circuits Syst., Marrakesh, Morocco, Dec. 2007, pp. 178–181.

[19] R. Senhadji-Navarro and I. Garcia-Vargas, “Minimum maximum recon-
figuration cost problem,” Optim. Lett., vol. 10, no. 3, pp. 605–617,
2016.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences). New York, NY, USA: W. H. Freeman, Jan. 1979.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

