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Abstract—Modern cloud data centers (DCs) need to tackle
efficiently the increasing demand for computing resources and
address the energy efficiency challenge. Therefore, it is essential
to develop resource provisioning policies that are aware of virtual
machine (VM) characteristics, such as CPU utilization and data
communication, and applicable in dynamic scenarios. Traditional
approaches fall short in terms of flexibility and applicability for
large-scale DC scenarios. In this paper we propose a heuristic-
and a machine learning (ML)-based VM allocation method and
compare them in terms of energy, quality of service (QoS), net-
work traffic, migrations, and scalability for various DC scenarios.
Then, we present a novel hyper-heuristic algorithm that exploits
the benefits of both methods by dynamically finding the best
algorithm, according to a user-defined metric. For optimality
assessment, we formulate an integer linear programming (ILP)-
based VM allocation method to minimize energy consumption
and data communication, which obtains optimal results, but is
impractical at runtime. Our results demonstrate that the ML
approach provides up to 24% server-to-server network traffic
improvement and reduces execution time by up to 480x compared
to conventional approaches, for large-scale scenarios. On the
contrary, the heuristic outperforms the ML method in terms of
energy and network traffic for reduced scenarios. We also show
that the heuristic and ML approaches have up to 6% energy
consumption overhead compared to ILP-based optimal solution.
Our hyper-heuristic integrates the strengths of both the heuristic
and the ML methods by selecting the best one during runtime.

Index Terms—cloud data centers, greedy heuristic, machine
learning, hyper heuristic, integer linear programming, energy-
network traffic trade-offs, QoS, scalability assessment.

I. INTRODUCTION

LOUD computing has recently been brought into focus

in both academia and industry due to the increase of
applications and services. Consequently, there has been a rapid
growth in the number of data centers (DCs) in the world,
leading to high energy consumption costs [1]. An approximate
power breakdown shows that both information technology (IT)
equipments (i.e., server, storage and network) and cooling
system encompass over 88% of the total power of a modern
DC [2]. Moreover, the explosion of data-intensive applications
in current DCs, has led to uneven traffic, bandwidth and
communication needs across applications [3].

Virtual machine (VM) consolidation [4] is widely used to
minimize energy consumption based on the peak, off-peak, or
average CPU usage of VMs [5] to pack them together into
the minimum number of servers without degrading quality
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of service (QoS). However, the dynamic nature of cloud
workloads impacts consolidation in two aspects: i) the CPU-
load correlation across VMs (i.e, the similarity of CPU uti-
lization traces and the coincidence of their peaks); and ii)
the data exchange across VMs (i.e., data correlation) [6]. In
this context, several works use heuristics to either address
CPU-load correlation, consolidating VMs when their peak
utilizations do not coincide [7], [8], or take data correlation
into account [9], [10]. Nonetheless, jointly incorporating both
metrics in a multi-objective optimization is an important aspect
missing from prior works, as studied in a recent survey [11],
which significantly increases the complexity of VM allocation.

As complexity raises, integer linear programming (ILP)-
based methods become unfeasible at runtime to provide an
optimal solution. Similarly, heuristics are problem-specific and
less sensitive to dynamic environments, and their benefits
become limited for large problems. Thus, when tackling
dynamic problems with large state and/or action spaces, ma-
chine learning (ML) methods, and in particular reinforcement
learning (RL), are suitable techniques [12]. However, in real
DC scenarios, VM allocation faces the need to incorporate and
assess a wide range of metrics (energy, QoS, network, etc.).
This challenges the deployment of ML methods due to their
limited configurability. The proposal of methods that balance
the trade-offs across these metrics, or dynamically change the
optimization goals during run-time to meet DC constraints,
remains an open challenge, as it requires a deep assessment on
the previous techniques, together with the integration of their
strengths. Within this context, hyper-heuristics are a promising
solution to leverage the benefits of VM allocation approaches.
Hyper-heuristics are “heuristics that choose heuristics” [13]
and allow to determine which method to use depending on the
current DC status, providing better trade-offs than when using
the methods separately.

In this paper, we first propose and assess two different
approaches to tackle the VM allocation problem: i) a two-
phase greedy heuristic, and ii) a ML-based approach. Both
approaches exploit CPU-load and data correlations, together
with information about DC network topology. Our strategies
consolidate VMs into the minimum number of servers and
racks, and set dynamic voltage and frequency scaling (DVFS)
appropriately. Then, we present a novel hyper-heuristic method
that integrates the strengths of both heuristic and ML methods.
We evaluate our approaches in terms of energy consumption,
QoS degradation, network traffic, number of migrations and
scalability, and compare them to an ILP-based optimal solution
and state-of-the-art methods.

In particular, our main contributions are as follows:

« We propose a multi-objective hyper-heuristic method to
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determine dynamically which method among heuristic
and ML is to be used at each time.

« We propose two energy- and network-aware VM alloca-
tion methods: i) a two-phase greedy heuristic, and ii) a
low-complexity ML-based approach that uses the value
iteration algorithm to assign VMs to servers.

+« We provide an evaluation of the flexibility, scalability,
benefits and drawbacks of heuristic vs. ML methods for
the highly dynamic and complex VM allocation problem.

o We compare our proposed solutions with an ILP-based
method, that provides an optimal solution, and also with
two methods in the state-of-the-art.

Our results show that the heuristic, ML, and hyper-heuristic
methods reach almost similar results in terms of energy
consumption (< 2% difference). However, the ML method
improves server-to-server network traffic by up to 24% and
reduces execution time by up to 480x when compared to
conventional approaches for large-scale problems. Also, the
hyper-heuristic obtains better trade-offs for different objectives
when compared to other approaches.

The remainder of this paper is organized as follows. Sect. II
reviews related work. In Sect. III, we describe the system
model and used application. Sect. IV provides an overview
of the problem description. In Sect. V to VIII we introduce
our proposed methods. Sect. IX to XI present the experimental
setup and results, followed by conclusion in Sect. XII.

II. RELATED WORK

Research on VM allocation can be generally categorized in
energy- and network-aware methods.

A. Energy-aware VM allocation

Regarding energy-aware methods, when deciding the allo-
cation of VMs to physical servers, several works only check
that the total size of VMs’ load does not exceed the server’s
capacity [5], [14]. Hence, consolidation solutions are proposed
based on per-VM workload characteristics, i.e., the peak,
off-peak, and average utilization of VMs [4], [15]. Ahvar
et al. [16] present a cost and carbon emission-efficient VM
placement method and optimize network between DCs, using
fuzzy sets. A few studies [7], [17]-[19] consider other VM’s
attributes, like CPU-load correlation, to achieve further energy
savings. Among the latter, Verma et al. [17] define VMs’
CPU utilization in a time series as a binary sequence where
the value becomes °1° when CPU utilization is higher than
a threshold. However, this aggressive quantization alters the
original behavior and is only applicable when VM envelops
are stationary. Meng et al. [18] propose a VM sizing technique
that pairs two uncorrelated VMs into a super-VM by predicting
the workloads. But, once the super-VMs are formed, this
solution does not consider dynamic changes, which limits
further energy savings. Kim er al. [7] present a CPU-load
correlation-aware solution based on the First-Fit-Decreasing
heuristic to separate CPU-load correlated VMs. The main
drawback of this approach is that it cannot be used for online
management at large-scale DCs due to its high computational
overhead. Lin et al. [19] utilize the peak workload characteris-
tics to measure the similarity of VMs’ workload. This method

achieves better results for VMs whose workload follows a
Gaussian distribution.

Ruan et al. [20] propose a dynamic migration-based VM
allocation method to achieve the optimal balance between
server utilization and energy consumption such that all servers
operate at the highest performance-to-power levels. Wang et al.
[21] also address a matching-based VM consolidation mecha-
nism using migration such that active servers can operate close
to a desirable utilization threshold. ML is a recently used tech-
nique for energy-aware VM allocation in DCs. Farahnakian et
al. [22] and Masoumzadeh et al. [23] present a cooperative
multi-agent learning management to minimize the number
of active servers managing the overutilized and underutilized
servers. Masoumzadeh et al. [24] introduce a VM selection
task using a fuzzy Q-learning technique to make decisions
for migration. Ravi et al. [25] also present an energy-efficient
Q-learning based technique to decide on VM migrations. The
main drawback of those approaches is their high VM migration
overhead. Thus, as opposed to short-term decision, Chen et
al. [8] propose a long-term VM consolidation mechanism such
that the total demand of co-located VMs nearly reaches their
host capacity during their lifetime period. This algorithm first
detects the utilization pattern of each VM based on the four
types of simple pulse functions. Then, a heuristic algorithm
is used to place all VMs in as few servers as possible. They
show a significant reduction in the number of migrations, i.e.
only 4% of the total number of VMs, compared to dynamic
short-term decision-based methods. Nonetheless, this work
ignores the original utilization pattern of the VMs, which
is usually a combination of those simple types of functions,
achieving lower energy savings. Moreover, none of these
approaches consider the data communication between VMs
in the allocation process.

B. Network-aware VM allocation

To provide better network resource usage and improve the
performance of applications, certain algorithms [16], [26],
[27], take into account the communication among VMs in
the DC. However, some works assume that data dependencies
are given in the form of a directed acyclic graph (DAG).
Differently, in practice there are often cyclic communication
scenarios, where two VMs regularly exchange information in
both directions. As a result, Biran et al. [10] propose two new
heuristic algorithms to address bidirectional data communi-
cation under time-varying traffic demands. However, without
the consideration of CPU-load correlation, both approaches
are sub-optimal to minimize energy consumption.

III. DATA CENTER MODELLING AND APPLICATIONS

In this section we first define the considered DC configu-
ration and describe the used power model. Then, we detail
the type of applications tackled in this paper. For the sake of
clarity, Table I summarizes the main parameters and notations
used throughout this paper.

A. Data center configuration

A DC typically encompasses two main structural compo-
nents of our interest: i) computing elements —I'T- comprising
servers and network switches, and ii) cooling systems. We
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TABLE I: Overview of the used notation

General Parameters and Variables

Ny Total number of servers in DC VMcpu VMs CPU utilization traces
Nym Total number of VMs in DC VMmem VMs memory footprint traces
f Number of samples per time slot VMdata Data communication demands between VMs
fmex Maximum frequency level of each server F reqf Selected frequency level of j”* server in time slot T
Bior ToR switch bandwidth Uchu,,n j" server CPU utilization at n' sample in time slot T
Bagr Aggregation-layer switch bandwidth ur,. m j™ server memory utilization at n’" sample in time slot T
B, Core router bandwidth ty Servers’ frequency update time during one time slot
C* Maximum CPU capacity of each server te Cooling system update time during one time slot
cn Maximum memory capacity of each server
General Power Model Parameters and Variables
Ppe DC total power consumption Py Total server power consumption
P, Cooling power consumption P; j’h server power consumption
Py IT power consumption Pt Total network power consumption
ILP-Based Method Parameters and Variables
X}- 7™ server is on X[ =D oroff X =0)in T D;,, 7™ server data communication at n" sample in T
Place;k Whether k" VM is placed on j server in T VMstatus; i, Placement status of any pair of VMs on j”* server
ejT- Number of placed VMs on j/ server BinVMstatus;r; Whether k" and I"" VMs have been allocated to j** server
DtTUt o Total data communication amongst servers
Heuristic Method Parameters and Variables
Nyerver Minimum number of servers to accommodate all VMs N7,/ ToR switch traffic of /" rack
Giata Inter-cluster data communication graph N T,f(’,},, Aggregation-layer switch traffic of A" group of racks
ML Method Parameters and Variables

¢[ . Similarity score between VM and VM; in T ;‘[}‘Es} Average similarity score among all classes per T
p,: / Pearson correlation similarity on any pair of VMs Ny Maximum number of VMs can be allocated to each server
DiSI,z ! Euclidean distance between k™' and ['" VM features R; Total reward value per server

Number of classes Weighting factor to keep reward factors in the same range
No Number of VMs available in class @ ur, i Maximum utilization of j* server among samples in T

g,’_“T“ Per-class () similarity score
Hyper-Heuristic Method Parameters and Variables

0] Selected objectives set Cost; Cost value per method i
o and 8 User-defined weighting factors to objectives Num; Number of times that i method is selected
M Pool of candidate methods

consider a typical raised-floor air-cooled DC [28] with 8 racks
arranged in hot-cold aisle, as depicted in Fig. 1. Each rack
contains 10 to 16 servers, each server with its dedicated power
unit, fans and disks. Each rack has one Top-of-Rack (ToR)
switch to which all servers in the rack are physically attached,
providing a bandwidth B,,,. The ToR switch is the lowest layer
of a 3-layer tree network topology [14]. Several ToR switches,
connect to an aggregate switch, which consolidates traffic into
a higher speed link with bandwidth B,g.. The Aggregation-
layer switches connect to a core router that redirects incoming
requests to servers, and tracks and routes VM migrations from
one server to another server or DC in another location. The
Core router operates in network backbone with the highest
speed and bandwidth B,,.

Core Router

Aggregation-layer

& &

Switches
Top of Rack
g g g g g g g g Switches
Rack A Rack D| T |Rack E Rack H HOtAiry
10-16 10-16 10-16 10-16 |
Servers Servers Servers Servers|_ crac
Unit

— A
== Cold Air == L

e A=
i}

Fig. 1: Considered DC configuration: location of servers,
cooling system and multi-layer network topology.

B. Data center power model

In this work, we model total DC power consumption (Ppc)
as the sum of: i) IT power (Pr), including total server (F)
and network (B,.;) power, and ii) the cooling power (P,):

Poc=Pr+F, Pr=F+Pau ey

Server power can be further extended as: Py = Zjile,
where P; and Nj specify the j" server power and the total
number of servers in the DC, respectively. Following the same
methodology than in previous research in the area [1], [29],
the major contributors to power consumption in servers are
the CPU, memory, fans and disks. Among these, CPU has the
largest effect on power, and previous research shows that the
power-frequency relation is linear for a given CPU-intensive
workload [30]. Hence, server power can be calculated as [29]:

P] = Pjsmtic + deyn
ijtatic = PdiSk + Rﬂm + F’Ll;gk + Pclgite + P}’lriiel}f’L (2)
) )
Py = Piput - (Ucpu; /100) + Pt - (Uem, /100)

where under P;, .. we consider all the contributions to power
that are workload-independent. Py;s and Py, are considered
constants for our particular workload, and respectively account
for the power consumption of disks and fans. Pclf,‘;k refers
to temperature-dependent leakage power. We consider a high
fan speed and a low inlet temperature to reduce the effect

of temperature-dependent leakage power, considering it as a
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worst-case constant. Pc‘ff,ff and P are constants that show
the idle power consumption of CPU and memory respectively.

Pj,,,, accounts for server dynamic, and is proportional to work-

load. Pcdpy,'} and P2 are the fitted constants of our linear model
for dynamic CPU and memory power, respectively. Finally,
Ucpu_,. and Umem_,. represent CPU and memory utilization of the
server, and vary between 0 and 100. The fitted values of Pf},f
and P,‘,i,% have been obtained from the models proposed in
previous work [1], [29], and assuming that for our workloads
(i.e., virtualized banking applications) memory utilization is
proportional to the amount of memory accesses.

Network power (P,) is the summation of power of all
turned-on switches in each layer of network topology, as [14]:

Pier :B()r+Pagr+Pcr (3)

where B, P, and P, denote power consumption of ToR
and aggregation-layer switches, and core router respectively.

Finally, to account for cooling power consumption P,
we use a time-varying Power Usage Effectiveness (PUE)
model, proportional to power consumed by IT components;
i.e. P.=(PUE —1)- Py, as presented in [31]. In this model,
PUE mainly depends on the DC room and outside temperature.

C. Applications description

Due to the tight dependency between the nature of the
applications and the techniques to be applied, in this paper we
consider business-critical applications [32] and, in particular,
virtualized banking applications executing batches of tasks. To
characterize the power and performance of these applications,
we make use of synthetic workloads which are representative
of real banking applications according to our industry partners.
As realistic CPU usage and memory footprint traces, we use
the publicly available traces from Bitbrains, a service provider
that provides service to banks such as ING [32]. Bitbrains
traces provide data every 5 minutes. Half of the VMs have low
variance on CPU usage. However, around 20% of VMs have a
very unstable CPU usage. Concerning memory footprint, 80%
of VMs use less than 1GB of memory, and in most of them
maximum is below 8GB [32].

The Bitbrains traces do not provide any information on
the amount of data being exchanged across VMs. Thus,
we synthetically generate the amount of data communicated
between each pair of VMs using a non-uniform distribution,
as detailed in Section IX-A.

IV. PROBLEM DESCRIPTION

In this section we present an overview of the problem
description, including the objectives, inputs and outputs. The
goal of all the methods proposed in this paper is to minimize
the overall server (P;) and accordingly DC (Ppc) power
consumption, and network traffic (D;,y) by means of ef-
ficient consolidation-based VM allocation. All the proposed
approaches examined consist of two consecutive steps: i) VM
characterization and ii) VM allocation, as shown in Fig. 2.

The VM characterization step is used to determine the data
communication patterns between VMs, the CPU utilization,
and the memory requirements for the next time slot. For the
heuristic and ML approach, we use a last-value predictor to

i) VM Characterization ii) VM Allocation
i) ILP-Power: Power J

Oracle Predictor )- ------------- 1"
i L Consumption Optimization

ILP-based {Actual Dat: tCtommunlcatlon} H
GEERECl | 2 e;ns - ii) ILP-Data: Data
{ Actual CPU & Memory } e il St SRR

Utilization Traces

Last-value Predictor r-----------s

Heuristic- Data Communication Patterns | ! VMs Clusters
H
based from Previous Time Slot L 3 A
— Clustering Allocation
Approach CPU & Memory Utilization
Traces from Previous Time Slot

ML-based . Class Classification &
JYSORQINY | Last-value Predictor -+~ Generation | Value iteration
— Algorlthm

Fig. 2: Overall diagram of the proposed scenario.

estimate these parameters. The last-value predictor considers
that the CPU and memory utilization traces of current time slot
(e.g., a time series of n samples, each sample gathered every 5
minutes) are exactly the same than on the previous time slot, as
shown in Fig. 3. The specified areas in the figure indicate miss-
predictions that can potentially lead to server overutilization
and violations, when the predicted CPU utilization is lower
than the real one. For the ILP-based method, we assume that,
at the beginning of each time slot, all the VM characteristics
for the time slot are known (oracle predictor).

The VM Allocation step takes the input VMs CPU, memory,
and data communication requirements from the previous step,
and the DC network topology. Every time slot, the VM allo-
cation method re-allocates the existing VMs, migrating them
if needed to the minimum number of servers such that highly
data-correlated VMs are placed together, while highly CPU-
load correlated VMs are placed apart. By lowering the number
of active servers and racks, unused computing equipment (i.e.,
idle servers and network switches) can be turned off during
that time slot to increase energy efficiency. Turning on/off IT
equipment can be applicable to such applications when time
slot duration is long enough to prevent significant performance
degradation caused by the long transition latency between
power modes and changes of resource demands.

After allocating all VMs to the minimum number of servers,
the minimum frequency level (F req]T-) among all the samples in
time slot 7 for each turned-on server is computed as follows:

Freq; > (U}, cpu;n/100) - [, 4)
where UCPM , indicates the total CPU utilization of the j*
server at n'* sample in time slot 7. In this paper, we assume a

homogeneous DC with all servers of the same type. Therefore,
S is equal for all servers and determines the maximum

‘ = Real Trace (Oracle Predictor) = Predicted Trace ‘

Predictor Miss-prediction  Leads to Violation
e

VM CPU Utilization

Time

115‘ Sample

nth Sample 115‘ Sample

nth Sample 1

Time Slot T-1 Time Slot T+1

TimeSlot T

Fig. 3: Time slot and sample description.
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frequency level. This equation guarantees that the selected
frequency is sufficient to avoid server overutilization for all
the samples in time slot 7. Thus, in the proposed scenario,
violations can only occur due to miss-predictions on the
VM usage (e.g., for the case highlighted in Fig. 3), when
the server utilization needs a higher frequency than the one
selected. In this sense, the ILP method will never exhibit
violations, as it uses an oracle predictor. After allocation, for
all the proposed methods during one time slot, we update the
servers frequency every ¢y by computing the maximum server
utilization occurred in the previous ¢y period. Finally, after
computing the total IT power consumption, we update and
compute the cooling system power every f, during one time
slot, based on the DC room and outside temperatures.

V. PROPOSED ILP-BASED OPTIMIZATION METHOD

The ILP method can be divided in two minimization
problems: i) power consumption (ILP-Power), and ii) data
communication (ILP-Data). Due to the varying nature of DC
workloads (i.e., VMs’ utilization patterns change over time),
there is an optimal VM allocation for each time slot and,
thus, a need to invoke the ILP-based method. The time slot
duration is a parameter that can be adjusted by the DC
operator depending on the granularity of the traces used, to
increase accuracy. We define the ILP formulations in a generic
form regardless of the network topology constraints. Hence,
an optimal server-to-server data communication is obtained
that represents the total network traffic. In the following
subsections, we describe these two optimization goals in detail.

A. Power consumption optimization

The proposed ILP-Power VM allocation aims to minimize
overall server power based on the Eq. 2. The minimization
objective is given by Eq. 5, where P/ and P}, denote overall
and j™ server power consumption at the n'" sample of the 7"
time slot, respectively. Ny and N, are the number of servers in
the DC and number of samples in one time slot, respectively.
The binary variable X; T is defined to indicate whether the j*
server is on (X r— 1) or off (X T — 0) in the T™ time slot.

We use the b1nary variable Place ik to indicate whether k"
VM (k € 1,2,...,Nyy) is placed on j" server in T time
slot. Ny, is the total number of VMs available in the DC.
Matrices VMcpu,i,l and VMmem! contain the k" VM’s CPU
utilization and memory footprintr at n'" sample, respectively,
during the T*" time slot. Slmllarly, ur indicates the total

mem s
memory utilization of the j server.

The minimization problem is subject to the constraints given
in Eq. 8 to 12. Constraint 1 forces each VM to be placed only
in one server. Constraints 2 and 3 enforce that aggregated
CPU and memory utilizations of the VMs in j server do
not exceed the maximum CPU and memory capacities, i.e. C*
and C™, respectively. In Constraint 4, the integer variable eJT~
is used to specify the number of placed VMs on the j/* server.
This value is upper-bounded by Ny,,. Constraint 5 guarantees
that if no running VMs are placed on j server in the T
time slot (e = (), this server can be turned off X; ' — ().

Server power in the objective function (Eq. 5) should be
written as P].T =X jT (P +Pj€yn). However, this would

Istatic

introduce a non-linearity in the ILP problem (due to the
product of variables X[ - U, and X[ -Uy, in P} ).
Constralnt 5 avoids thls issue as, when the number of VMs
on j™ server (eT) as well as the server CPU and memory

utilization is zero, X T —0. On the contrary, if 1 <e; < Nyy,

then X| = 1. Therefore we can write: X[ Ul = Uy
g1 T
and X Umemj n - Umem_/,n'

min P =Y ZN’ x7-pl,
_ N T X T
—Z, . (X -P +dem,,)

Jstatic
_ . dyn 71T
- Zj=1 n=1 Xj 'P]xtam Pcpu Ucpu nt

Pyt Unem; n) ©
where

ngu,,n = kwr Place/ k- VMcpukn 6)
mem n= kaw Place”’ ke VMmemk " @)

subject to the following Constraints :
1. Z Placel, =1 (8)
2 Ugpuyn < C° ©)
3. Unfem,,, <c" (10)
T =Y " Place”, (11)
5. X].T < e <X/ NVM (12)

B. Data communication optimization

The amount of data exchanged between VMs directly im-
pacts network traffic and response time. In practice, two VMs
regularly exchange a varying amount of data. Our goal is to
minimize total data communication (network traffic, D, otal)
amongst the servers. In our formulation, D , represents the j th
server data communrcatron i.e., the amount of data transferred
by a server at the n'" sample of the T time slot.

To express DT i n» the binary variable BinV Mstatus” 1y 1nd1-
cates whether both k& and I’ VMs have been allocated to j'"
server (BinV Mstatus’. k1 = 0); otherwise, BmVMstatusjk =1
in the T time slot. The matrix VMdata,{M contains the
amount of data transferred from the k' to I'" VM at the n'"
sample during T*" time slot.

The constraints of the problem are formulated in Equa-
tions 15 to 19, as follows. Constraints 1, 2 and 3 are the
same as those of ILP-Power. Constraint 4 determines the
status of the k" and I"* VMs on the j* server. The variable
VMstatusJT.M is used to specify the status of any pair of VMs
based on the status of each VM on j* server. As this variable
is the sum of two binary variables, it can take only three
different values (i e. 0, 1, and 2): i) the k”* and I'" VMs are
allocated to the j™ server (Place K= =1 & Place” = = 1), then

VMstatus® ik = 0; or ii) either the Kt or 1t VM is allocated

to the J’h server (Placeﬁk =1& Placejl =0 or vice versa),
then VMstatus]T-‘k‘, = 1; or iii) neither the k" and I'" VMs
are allocated to the j server (Place;k =0 & PlaceJT.J =0),

T _
VMstatusjka =2.
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The original data communication objective is written as
Dj,= Zivﬂl Placej - Z?]:V’l” Ik (1—Placej;)-VMdatay . To
remove the non-linearity in the equation, constraint 5 is used
to compute per-server data communication and demonstrates
that, if VMstatus;y; = 0, then BinVMstatus;;; =0, and "1’
otherwise. In other words, if both VMs are allocated to the
same server, then BinV Mstatus; ;= 0.

. T Ny N T
min - Dy =30 3,1 Djn (13)
where
N N
D}, = Y 0 Y2 [Place], —
1#k (14)
(1 —BinVMstatus;k’,)] ~VMdata,€,_’n
subject to the following Constraints :
LY Placel, =1 (15)
2. Ulpyyn <C° (16)
3. Upemjn < C" (17)
4. VMstatus?kJ =(1 —Placeik) +(1 —Placei,)
(18)
5. BinVMstatus]TA’kll < VMstatusg-:kJ < (19)

2 -BinVMstatuska

VI. PROPOSED TWO-PHASE GREEDY HEURISTIC METHOD

In this section we propose a two-phase greedy heuristic
algorithm (Heuristic, in what follows) that, at each time slot
T, jointly minimizes power consumption —P! — and network
traffic —DtTot — (Phase 1), and then allocates resulting traffic
in a network topology-aware fashion (Phase 2).

A. Phase 1 - VM Clustering

We split this phase in two steps and use a method sim-
ilar to the one presented in [6]. First, at time slot 7, all
VMs available in the system are represented as points in a
two dimensional (2D) plane. Based on the data and CPU-
load correlation properties, as highly data-correlated VMs
should be clustered together while highly CPU-load correlated
VMs should be placed apart, a function is defined to calcu-
late attraction and repulsion forces between each two VMs.
Nonetheless, differently from the original algorithm [6], we
calculate the attraction force as a worst-case peak bidirectional
data exchanged between each two VMs during the time slot.
Similarly, the repulsion force is computed as a worst-case peak
CPU utilization when the peaks of two VMs coincide during
the last time slot. As a result, the points are remapped in the
2D plane with new coordinates based on the computed forces.

In the second step, after finding the final position of the
VMs, we determine the minimum number of clusters (i.e.,
servers), Neervers as follows:

A {repu x7mem
Nyerver = max{Nserver ) Nserver

~ N, — .
Nelrver = max, (L2 VMepuf ! /CY)

. 20
Rmem = max, (Lo VMmem] ' /C™) (20)

where Ngbye, and N™¢" = denote the minimum number of

servers needed to comply with the VMs’ CPU and memory

utilization requirements, respectively. Hence, Neorver is equal to
the minimum number of servers to accommodate all the VMs
while satisfying both the VMs CPU and memory utilization.
Then, we utilize a modified version of the k-means algo-
rithm [6] to cluster VMs with respect to the distance between
two VMs obtained from the repulsion and attraction phase in
the 2D plane. Differently from the original k-means algorithm,
we define a cap per cluster (i.e., C* and C"™) when considering
the VMs’ CPU and memory utilization. Moreover, the initial
centroid of clusters are not set randomly, but instead calculated
based on the last position of points available in the previous
time slot. We start with the minimum number of clusters,
Neervers to allocate the VMs to the clusters with shortest
distance. If unfeasible, we increment the number of clusters by
one. The process is iterated until all VMs are allocated to the
minimum number of possible clusters. Our method guarantees
that the total load of each cluster at each sample does not
exceed C° and C™ during the time slot. However, violation
occurs due to miss-predictions, leading to delays in workload
execution and, eventually, to their execution in the next time
slot (with 100% prediction accuracy, no violation occurs).

B. Phase 2 - Clusters Allocation

In this phase, we allocate the clusters to the appropriate
servers considering the DC network structure as described
in Algorithm 1. This algorithm fills up the racks one by
one, reducing the number of active switches, and minimizing
network power, while keeping highly-communicating servers
close to each other.

Algorithm 1 Cluster Allocation

Input: Network topology and data communication graph (Gyu, = {V,E})
V = clusters & W(E) = data communication between clusters
Output: Cluster allocation
1: Edge™™ «+ Max. edge (W(E,.;) +W(E.,,)) between any V,, and V.
2: N Tai,, <0 Initial network traffic of " agr. switch

3: for r =1 : Total racks do

4:  NTJ,.+ 0 Initial ToR switch network traffic of 7 rack
5: Unused servers of " rack « Total servers of " rack
6: while (Selected clusters < Unused servers of ' rack) & (N T < Bior)
& (NT),, < Bygr) do
7. if V,, and V, have not been allocated then
8: Allocate clusters w and z to two servers in * rack
9: NT,, + Update traffic of servers of " rack
10: NT,,, < Update traffic of racks of K" group
11: Update unused servers in r" rack
12: else if V,, or V; has not been allocated then
13: Allocate w or z to one server in " rack
14: NT},, + Update traffic of servers of " rack
15: NTg, < Update traffic of racks of W™ group
16: Update unused servers in r" rack
17: end if
18: Combine V,, and V,
19: Update W (E)
20: if All clusters allocated then
21: Terminate
22: end if
23: Edge™™ < Find maximum edge weight
24: Find number of selected clusters ("1’ or ’2’) when both clusters

have not been allocated
25: end while
26: end for

The output of the modified k-means creates an edge-
weighted data communication graph (Gyuq = {V,E}), where
set V and W (E) represent the clusters and the amount of data
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transferred across clusters, respectively. The algorithm first
selects the maximum edge weight (Edge™*") and initializes
the amount of traffic transferred through all aggregation-layer
switches (NTah,r) for different groups of racks (lines 1 and
2). Then, we select the first rack and try to fill it up. For
the selected rack (#*" rack), we first initialize its ToR switch
traffic (NT;,,) and the number of unused servers with the total
number of servers available in 7" rack (lines 4 and 5). Then,
for clusters related to the selected edge (lines 6 ~ 25) if either:
i) two clusters have not been allocated yet and the number of
unallocated clusters is less than the unused servers in the rack,
ii) NT;,, of the new selected clusters is less than the B;,,, and
iii) NTa’Z,, related to the selected rack is less than B, we
allocate clusters to the servers in that rack. We also update
the N1, N Ta};r, and the number of unused servers of the r"
rack (lines 7 ~ 17). After allocation, we combine clusters V,,
and V; and update W(E) (lines 18 and 19). We repeat until
violating those conditions for the rack, and then we select the
next rack. This algorithm iterates until all clusters are allocated
to physical servers, which guarantees that the bandwidth of
switches is not exceeded.

VII. PROPOSED MACHINE LEARNING METHOD

This section describes a two-step ML approach to allocate
VMs to servers. First, we generate offline different classes us-
ing k-means according to the features extracted from the VMs’
CPU utilization traces. To decide the appropriate number of
classes (K), we use a heuristic-based process, as explained
in Section VII-A. Second, at runtime, we classify VMs into
classes by determining the shortest euclidean distance to each
class centroid, and then we use the value iteration algorithm,
amongst the various RL methods, to allocate the VMs to
physical servers. RL is particularly useful in problems with
large state and/or action spaces that change dynamically over
time and depend on the environment [12]. We use the first
week of Bitbrains traces for class generation and for the
exploration phase of the ML approach, and the second week of
traces for run-time VMs classification and exploitation phase.

A. Class generation — Offline pattern detection

Class generation significantly simplifies the process of VM
allocation, reducing the complexity of the value iteration algo-
rithm. In the Bitbrains traces we observe a high-variability but
also a daily periodicity in the CPU utilization traces, making
them suitable for classification. As memory resources are more
over-provisioned than CPU resources, and less critical, our
class generation only takes into account the CPU utilization
traces to generate classes. In this step, based on the time slot
duration (i.e., 1 hour), we consider each VM’s CPU utilization
trace per time slot as an individual pattern composed of 12
samples (1 every 5 minutes).

Feature extraction is a key point that greatly affects classi-
fication results. In this work, we select a list of features as:

¢ Maximum and minimum CPU utilization, to represent the
range of variation and the absolute value of the traces.

o Time at which the maximum utilization happens, to
enable CPU-load correlation techniques.

« Variance, as it shows the trace variability.

o Median, to account for typical values.

« Skewness, which is a measure of the trace asymmetry.

« Kaurtosis, which provides an insight on the trace shape.
Then, we use the k-means method to classify CPU utilization
patterns [33]. As k-means does not decide on the number of
classes (K), we propose the following heuristic.

Heuristic-based process for determining the appropriate
number of classes (K): First, we define a similarity score
(¢kT7 ; in Eq. 21) that expresses the similarity between any
pair of VMs, VM and VM; during time slot 7. To define
this metric we use the Pearson Correlation (p,Z ;)» which is
effective to judge the similarity on the shape of the traces.
However, as the Pearson Correlation cannot reflect the absolute
CPU utilization value, we incorporate the euclidean distance
(Dist,i ;) over all the samples into the metric. As a result, Eq. 21
demonstrates that (ka ; is high when two traces have both the
same shape and CPU utilization absolute value. Since two VM
traces may be totally the same, we consider (Dist,z ;+1) in the
denominator to avoid having infinite value when DistkT, =0,
and we normalize the values to [0, 1].

T
Pr,

DT 1 Dist,zl = ||[VMcpul —VMcpul' |, (21)
kI

T
O =
Second, for each time slot in one week, we classify the

VMs into K different classes, according to their euclidean
distance (exhaustively testing different values of K). After
classification, we compute the per-class similarity score during
each time slot (¢3ﬁ;~*‘), as calculated by Eq. 22, where Ny, is
the number of VMs available in class @, obtaining K different
scores (i.e., as many as classes). We average these K scores

to obtain an average similarity score ( 55?%) per T.
N, N T
class Zkgl Z1=w1. 1#k ¢k,l
o = (22)
’ Ng * (Ny — 1)

By increasing the number of classes (K), the similarity
score exhibits a logarithmic growth, achieving its highest value
of ’1’, when we have as many classes as patterns. As the
number of classes directly impacts the execution time of the
ML algorithm, but a high similarity is needed to achieve good
accuracy, we heuristically choose a similarity score of 0.5,
which leads to 150 classes (K). Because managing 150 classes
is still unfeasible for the ML algorithm, we first combine the
centroids of classes (i.e., compute the mean of centroids that
are below a certain euclidean distance). Then, we delete those
classes whose number of VMs are below a certain threshold.
By appropriately setting these thresholds, our method allows
to reduce the number of classes from 150 to 27, i.e. K =27,
without decreasing average similarity.

B. Run-time classification and value iteration algorithm

At runtime, we use the second week of traces to classify
VMs into the classes resulting from the previous step in each
time slot. First, we use the last-value predictor to obtain
the last VMs’ patterns and extract their features. Then, we
assign the VM to the class which has the shortest euclidean
distance to the centroid. Finally, we use a RL technique,
the value-iteration algorithm, to allocate the VMs to physical
servers. Typically, RL models are composed of an agent and
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Fig. 4: The overall process of our ML approach.

an environment with a finite set of actions (A) and a state space
(S). In the environment, the states are observed and the actions
determined by agent are applied. The agent maps actions to
states at any decision time. There is a reward function used
for each state-action pair (R) which should be maximized
by the agent. R(s,a,s’), thus, shows the immediate reward
value obtained after performing action a in current state s,
representing the next state (s") reward value [12].

The proposed ML approach consists of two phases, namely
exploration and exploitation, as shown in Fig. 4. If the current
state has not been previously explored, we are in the explo-
ration phase, and the agent randomly chooses new actions
for the new states, and records the new states and rewards
obtained from each action separately. On the contrary, if a
state has already been explored, we proceed to the exploitation
phase, and use the value iteration algorithm to find the best
action among the pool of actions obtained during exploration
to maximize the reward. The essential idea is: if we knew
the true value of each state, we would simply choose the
action that maximizes the expected reward. In our case, at each
communication between agent and environment, we apply a
set of actions to environment (allocating only one VM to
each server). Hence, we don’t initially know the state’s true
value; we only know its immediate reward. For example, a
state might have low initial reward but be on the path to a
high-reward state. Value-iteration progressively evaluates the
states until the solution converges. Nonetheless, it assumes
that the agent has a great knowledge about the reward of all
states in the environment. Because in a consolidation problem
the reward can be clearly stated (i.e., the higher the server
utilization, the higher the reward is), the value-iteration method
is suitable to solve this problem.

Because the value iteration algorithm uses a vector of
actions, the amount of servers active per time slot needs to be
defined before VM allocation. To this end, we first compute
the maximum number of VMs than can be allocated to each
server (Ny/¢") and the minimum number of needed servers,
ie., Nervers per time slot. Then, the agent decides the VM
placement by choosing which VM class should be allocated
to each server. If the selected class has no VMs, it picks a VM
from the class with a shortest euclidean distance to it. After
applying the actions, we update the utilization of each server,

set its state and reward, and send them back to the agent. We
iterate this communication until all the VMs are allocated.
Finally, to minimize traffic through the different switches
considering bandwidth constraints, we fill up the racks one
after the other with the servers that have higher data com-
munication (after allocation, we sort the amount of data
transferred between any pair of servers in descending order).
The following subsections describe the state, actions, and the
proposed reward function for the value-iteration algorithm.

1) State and action definitions

Each time slot, the agent provides one action per server to
the environment. This means that Ny, actions are applied
t0 Nyorver servers. The number of communication steps in one
time slot is the maximum number of VMs allowed to be
allocated to one server, i.e. Ny

The state of each server is defined based on the number of
VMs allocated to it and the server utilization. In general, we
use three parameters to reflect one state value. Each parameter
can get a discrete value in a finite range, as shown in Table II.
The first parameter, P1, indicates the number of VMs allocated
to server. P2 exhibits the maximum aggregated CPU utilization
of co-located VMs during the time slot. We discretize server
utilization (from 0 to 100%) in 11 uniform levels. We map
the predicted server utilization to the nearest higher level to
minimize violations due to miss-predictions. P3 is a binary
parameter that shows that if the server is active. The allocation
of a VM from one class to a server is considered as an action.
We choose the first VM available from the selected class. If
the class is empty, we choose a VM from the non-empty class
which has the minimum distance to that class.

2) Reward function

Each pair of state-action reward (next state reward) is
defined per server (R;(s,a,s’) for j” server; we simply name
it Rj) according to two parameters: i) the gap between the
current and the maximum utilization (i.e. utilization gap, Ri,)
and, ii) the amount of data transferred by the server (Ré) as:

.

Rj=R]— Td

where A is a weighting factor used to keep the reward factors
in the same range.

Given that we are using consolidation as a strategy for
power minimization, we could have three different situations:
i) fully utilized server (i.e., = C°), ii) underutilized server
(< C%), and iii) overutilized server (> C*). To minimize power
consumption via consolidation, R} needs to be highest when
the server is fully utilized (we choose 1000). Hence, it is
enough to set lower reward values for the rest of situations.
For underutilization situations, we choose a positive propor-
tional range between 1 and C*/10, i.e., the higher the server
utilization, the higher the reward is. On the other hand, to

(23)

TABLE II: State definition (s) and value per server

Parameter Definition Range

P1 Number of allocated VMs 0—-Ny"
P2 Utilization of server 0—-11

P3 Active/inactive in time slot 0/1
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minimize violations and QoS degradation, we need to avoid
surpassing maximum utilization (C®). For this purpose, due
to the higher importance of server overutilization compared
to underutilized server situations, it is enough to choose a
lower value to decrease the server reward. Therefore, we set
a negative value to utilization above C* (we choose -1). In
practice, any other negative value works, and gives the same
results. Thus, Rﬁ, can be computed as follows:

cs 4T s
o7, Ucpuj <C
) c llj

Ry = 11000 0L, =C (24)

T :

-1 Uepu; > C°
where UCTW/ represents the maximum utilization of j* server
among all the samples in the T*" time slot, i.e., max, (UL, ).

‘ cpuj,n
Similarly, Rfl represents the total amount of data transferred
by jth server, as follows:
J _ M T
Rd - Zn:l Dj i

R A\ 778 wli77A wii T
= Lak=1 Lei=1 Zn:lVMdatakJ«,"

(25)
VM; € server; & VM, & server;

The reward function is computed per-server, aiming to
maximize server utilization while minimizing the amount of
data should be exchanged between servers.

VIII. PROPOSED HYPER-HEURISTIC METHOD

In this section we present a hyper-heuristic algorithm to
dynamically determine which method, among Heuristic and
ML, should be used at each time slot 7' to achieve a specific
trade-off across the different objectives. The proposed hyper-
heuristic relies on the long-term periodicity of the workloads
being executed, and learns the performance of the methods
over time. The considered trade-offs (objective set Q) are
power consumption (Ppc), worst-case server overutilization
(WCV), and total network traffic of ToR (T'N,,,), aggregation-
(T Nggr), and core-layer (T N.) switches, as the most important
metrics from the DC providers perspective. They are computed
for each method i in a cost function (CostFunction(Q);)) as:

Cost; = 01 Ppc + 0o WCV + 03 (B1 T N,or + ﬁzTNagr-f—
3 3
BsTN.,) , Zj:lajzl &Y.  B=1

where a; and B are user-defined weighting factors that need
to be set with respect to the importance that the user gives
to a specific objective (each normalized to (0,1]), and whose
value can be changed during runtime. In this work, for the
sake of clarity, we decided to give the same priority to all ob-
jectives (i.e., aj = op = a3 = 1/3). Due to the communication
distance, we consider higher weight for upper network layers
(B1 =0.1, B, =0.3, and B3 = 0.6). Thus, the lower the power
consumption, overutilization and network traffic, the lower the
cost value is. The proposed algorithm is as follows.

At the beginning of each time slot, one of the methods
in the pool of candidate methods (M) (i.e., Heuristic and
ML in our case) is selected. To choose which algorithm to
be executed, our proposed hyper-heuristic builds a history of
the performance of the Heuristic and ML methods by using
the cost function (Eq. 26). As described in Algorithm 2,
at the beginning of time slot 7, we create a hash code of

(26)

the previous execution (7' — 1) that is stored in a hash table
(HashTable). For the first time slot, HashTable is empty and
we randomly select one of the methods. We generate the
hash using the function HashGenerator (line 1) that creates a
binary string with the length of the selected objectives (0), in
which each character is *1” if the ML performed better in that
objective than the Heuristic, and is 0’ otherwise. For example,
hash code ”11011” shows that ML has the best results for
four objectives with respect to Heuristic. In HashTable, for
each observed hash, we also store two entries per method
including the cost value (CostiH‘”h, i € M) and how many
times we selected that method in the past (Num!%", i € M).
After generating the hash, the algorithm checks in HashTable
whether the hash had been already observed. If it exists, we
select the method with the minimum Cost™%" /Num!'®" (line
4). Otherwise, we select the method with minimum cost value
for T — 1, and we record only the observed hash (lines 6 and
7). We update the hash entries, i.e. Cost'®" and Num®®"  at
the end of T as follows.

After executing the selected method, at the end of time
slot 7, we collect the results (O7) per method (lines 9 and
10). Then, we just update the entries of the method with the
minimum cost value for corresponding hash (lines 13 and 14).

Algorithm 2 Hyper-heuristic Algorithm

Input: O] ' = (Pl wevT -1 TNV TNEL TN 1Y ie M
HashTable
Output: Select one method from M
. Hash HashGenerator(@NT/ﬂ’l)
: HashObserved < IsHashObserverd(Hash, HashTable)
. if HashObserved == True then
m « Select method with min(Cost 4" |Numt®sh), i € M
else if HashObserved == False then
Record Hash in HashTable
m < Select method with minimum CostFunction(Q7 1)
. end if
: Execute method m for time slot T
10: Obtain O at the end of time slot T, Vi
11: Cost; CostFunction(@,—T), Vi
12: m < Find method with min(Cost)
13: CostHoh « Costl®h 4 Costy,
14: Numtoh « Numtlesh 41

IX. EXPERIMENTAL SETUP AND SCENARIOS

In this section we present the experimental setup and
introduce two scenarios to compare the proposed methods.

A. Experimental Setup

1) Data center configuration: We consider two rows of
racks in the DC. Each row consists of four 42U racks, and
each rack has ten servers. We target Intel S2600GZ servers
consisting of 6-core CPU (Intel E5-2620), 9 frequency levels
varying from 1.3 to 2.4GHz, and 32GB of memory.

The server power consumption is modeled as in Section
III-B; each server consumes constant 16W and 27.2W for
disk (Pyis) and cooling fan (Pyay,), respectively. We consider a
high fan speed (8000rpm) and a low inlet temperature (22°C)
to reduce the effect of temperature-dependent leakage power.
Under this condition, leakage power (ng,ﬁk) is almost constant
and 3.1W in the worst-case. Idle power for CPU (Pj%f) and

memory (Pid¢) are SOW and 4W, respectively. The dynamic

mem
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power of CPU (Pé%' ) and memory (P2%) are 42.5W and 56W
at 100% utilization, respectively [29].

A three-layered tree network topology is considered. The
types of ToR, aggregation-layer switches and the core router
are HP5920 with 60GBps bandwidth (By,), HP6600 with
180GBps bandwidth (B,g,), and HP8800 with 430GBps band-
width (B.,) that dissipate 366W, 405W and 3500W, respec-
tively [14]. For cooling power consumption, we use a time-
varying PUE model ranging from 1.25 to 1.55, as in [31].

2) Simulation framework: To simulate a realistic scenario,
we utilized the VMs’ CPU and memory traces of Bitbrains
for a time horizon of two weeks [32]. We used the first
week of traces for class generation and exploration phase, and
the second week for VMs classification, exploitation phase
of ML and for evaluating all the methods. We also used the
validated power model of Section III-B to compute DC power
consumption by exploiting an in-house simulator tool written
in C++, where we coded all the algorithms used in this paper.

The VM allocation and the frequency updating (t7) are
invoked every 1 hour, whereas the cooling system update ()
is invoked every 10 minutes. For each experiment, we have
considered different number of VMs (from 50 to 1000) in DC.

Data communication between a pair of VMs is modeled by
a log-normal distribution [34]. As 80% of the VMs have 800
kB/min traffic among each other while 4% of VMs have 10
times higher traffic [35], we tune log-normal distribution with
a mean of 800 and uniform variance in the range of [1,4] for
each time slot. The amount of data communication between
VMs varies every 5 minutes during the one-hour time slot.

3) Simulation environment: The proposed methods are car-
ried out on a separate server equipped with a 24-core Intel
CPU@1.60GHz and 50GB of memory. To solve the ILP, we
used the CPLEX 12.3 solver available in GAMS 23.7 [36].

B. Scenarios

1) Scenario I - Optimality assessment: To evaluate the
efficiency of the proposed methods we compare them to the
ILP-based methods (optimal solutions), for a few number of
VMs (50, 100 and 150) and a time horizon of one day. We also
take advantage of the fact that in multi-service cloud scenarios,
data exchange only occurs between the tenants (VMs) of each
service. In other words, we can group together the VMs that
exchange data between them, while these groups are isolated
and do not share data to other groups. In this scenario we
assume a number of groups equal to 20% of the available VMs
in the DC and we uniformly distribute the VMs to groups,
limiting the number of VMs per group (group size) to 10.
We generate different traffic (data communication) between
VMs of the same group for each sample during one time
slot. We also redistribute the VMs per time slot under the
group size limitation. For instance, for the 50 VM scenario we
generate 10 groups of sizes between 1-10, and ensuring that
each VM is assigned to one group. Moreover, to fairly compare
ILP method to other approaches, we compute the total data
communication among the servers (total network traffic) for
all the methods regardless of network topology constraints.

2) Scenario Il - Comparison heuristicc ML and hyper
heuristic in large-scale scenarios: Communication patterns

contain a wide range of variations from one-to-one to all-
to-all traffic between VMs [10]. As opposed to Scenario I,
in application-specific private DCs, a high number of VMs
communicate with each other, e.g., bank transactions between
any two customers. Thus, in this scenario we consider a more
general data communication pattern between VMs, assuming
that half of the VMs in the DC communicate with each other.
The communicating VMs are randomly selected using a uni-
form distribution. Then, each selected VM is set to exchange
data with any other 50% of the VMs, also selected according to
a uniform distribution. We analyze the network traffic through
different layers as it is considered in the heuristic, ML, and
hyper-heuristic methods. Moreover, we increase the number
of VMs from 200 to 1000, to compare these methods in a
large-scale scenario for a time horizon of one week.

X. RESULTS - OPTIMALITY ASSESSMENT (SCENARIO )

In this section we compare the total energy consumption of
DC, QoS (violations caused by overutilized servers), network
traffic, number of migrations, and execution time of the
algorithms for eight different methods:

o Correlation-aware VM Allocation (CVMA) [7] that is the
best in its class to optimize energy consumption.

o Network-aware VM allocation (GH) presented in [10] for
network traffic minimization.

o Heuristic: our proposed heuristic (Sect. VI).

o Heuristic-Cap: for a realistic and fair comparison with
ILP-based methods, we reduce the servers capacity to
80% during the VM allocation phase to guarantee that
no violation occurs due to miss-prediction. This selected
cap empirically represents a trade-off between energy
efficiency and violation compared to Heuristic. We also
assume that all the active servers use the maximum fre-
quency level; i.e. 2.4GHz (100%), to compute violations.

e ML: the proposed ML algorithm (Sect. VII).

o ML-Cap: the proposed ML algorithm with 80% servers
capacity cap and setting maximum frequency level.

o ILP-Power: the proposed ILP-based method for DC en-
ergy optimization (Sect. V-A).

o ILP-Data: the proposed ILP-based method for data com-
munication optimization (Sect. V-B).

A. Energy efficiency analysis

Figure 5 shows the energy consumption breakdown of the
DC including both IT and cooling components. As a result
of turning-off more servers, all approaches show an overall
energy improvement higher than ILP-Data; on the contrary,
ILP-Data further reduces (up to 66%) network energy, as it
turns off switches for longer periods of time. Heuristic and
ML exhibit less than 2% energy savings compared to CVMA;
while providing 10 and 9% improvements compared to GH,
respectively. This is because CVMA only considers CPU-load
correlation between VMs; but, GH allocates the VMs with
high data correlations to fewer servers. On the other hand,
ILP-Power only improves up to 5% the results of ML by
optimizing the number of active servers. In general, Heuristic-
Cap and ML-Cap lead to higher energy consumption, due to
the conservative capping approach, that increases the number
of used servers.
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Fig. 5: Energy consumed by the DC for one day.

B. QoS - Analysis of violations

Figure 6 (right y-axis) shows the total number of violations,
defined as the number of overutilized servers during one day.
Heuristic provides a drastic reduction of the violations, from
30 to 87% in worst and best cases compared to ML, respec-
tively. This is because, in the ML approach for a low number
of VMs, most of the classes are empty after classification.
Therefore, to fill up the servers, ML chooses one VM from
the nearest non-empty class, decreasing classification accuracy
and leading to violation. On the other hand, Heuristic and
ML achieve 94 and 65% improvements compared to CVMA,
respectively. GH drastically decreases the number of violations
in comparison with the other approaches due to partially filling
up the servers. Due to the nature of the ILP-Power, ILP-Data,
Heuristic-Cap and ML-Cap, these methods do not present any
violation. Thus, they are not shown in Fig. 6.

Figure 6 (left y-axis) shows the average and worst-case
amount of overutilized servers for a time horizon of one day,
which determines the degree by which the negotiated QoS
requirements can be violated. Basically, quality degradation is
observed due to the miss-predictions, especially during abrupt
workload changes. The results show, for lower number of
VMs, Heuristic and CVMA provide better worst-case violation
reduction compared to ML. But, for higher number of VMs,
the violation of ML remains below the violation of Heuristic
and CVMA because classification accuracy is improved. As
a result, we obtain 70 and 19% less violations on average
and in the worst case for ML compared to Heuristic, and also
88 and 10% improvements compared to CVMA, respectively,
for 150 VMs. This figure also shows that GH obtains better
results compared to the other approaches due to the servers’
underutilizations.
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Fig. 6: Average, worst-case percentage amount and total
number of violations for one day.
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Fig. 7: Total amount of data exchanged among the servers for
one day.

C. Network traffic analysis - data communication

Figure 7 shows total amount of data exchanged among the
servers. Results demonstrate that ILP-Data (optimal solution)
reduces the traffic ~41, 42 and 46x in best case and ~19,
17 and 21x in the worst case compared to Heuristic, ML and
ILP-Power, respectively. This is due to the fact that ILP-Data
distributes the non-communicating groups of VMs to different
servers to minimize traffic. However, the number of turned-on
servers is increased, leading to higher energy consumption. GH
achieves up to 3x less network traffic compared to Heuristic
and ML since its gaol is to minimize the network traffic. On
the contrary, the other approaches first try to use the minimum
number of servers and then minimize the data communication.

In this sense, heuristic and ML increase the capability
of absorbing time-varying data communication between the
servers compared to ILP-Power and CVMA. These results
show up to 14, 11 and 3% improvements for ML compared
to ILP-Power, CVMA and Heuristic, respectively.

D. Evaluating the number of migrations

Table III shows the total number of migrations for one day.
CVMA reduces the number of migrations compared to other
methods since this considers only CPU-load correlation. On
the contrary, ILP-Power and ILP-Data have the highest number
of migrations in order to find the optimal allocation solutions.
In the best case, ML obtains up to 31 and 25% improvements
in the number of migrations compared to GH and Heuristic,
respectively, due to the trace classification strategy. Moreover,
ML-Cap outperforms Heuristic-Cap by up to 23%.

E. Execution time of proposed algorithms

The proposed methods trade-off solution optimality by
execution time. To obtain the results shown in Table IV, we run
the VM allocation methods for all time slots in 1 day, and we
compute its average. The execution time of ILP-based methods
is the highest (> 2 hours in some cases), making runtime
allocation unfeasible. On the other hand, ML is the fastest

TABLE III: Total number of migrations for one day

Method 50VMs 100VMs 150VMs
CVMA 429 1271 2180
GH 868 2038 3192
Heuristic 715 1862 3003
ML 619 1410 2251
Heuristic-Cap 791 1914 3180
ML-Cap 659 1561 2464
ILP-Power 888 2160 3120
ILP-Data 936 2352 3528
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TABLE IV: Execution time (sec.) of the algorithms

Method 50VMs 100VMs 150VMs
CVMA 0.19 0.93 2.49
GH 0.005 0.026 0.073
Heuristics 0.969 3.907 12.897
MLs 0.003 0.005 0.009
ILPs 10.087 287.694 8619.48

algorithm (<10 ms in the worst case) making it particularly
suitable to solve large-scale problems.

XI. RESULTS - LARGE-SCALE SCENARIO (SCENARIO II)

In this section we show, for the same metrics than in the
previous case, a comparison between the heuristic, ML, hyper-
heuristic (Hyper) methods, and the state-of-the-arts.

A. Energy efficiency analysis

Figure 8 shows that heuristicc ML and Hyper reach al-
most similar results for energy consumption (< 2%). Hyper
provides better energy savings compared to ML by selecting
the Heuristic method in some time slots where Heuristic
dramatically outperforms ML in terms of energy consumption.
We observe up to 35 and 34% energy improvements for
proposed Heuristic and ML algorithms compared to Heuristic-
Cap and ML-Cap, respectively, for 800 VMs. For larger
scenarios, above 800 VMs, we need to turn-on a new rack
and, thus, the second aggregation switch and the core router.
Thereby, energy consumption increases due to the higher
network energy consumption. Also, Heuristic and ML result in
high energy savings compared to GH and CVMA, reducing the
number of active servers when the total demand of co-located
VMs nearly reaches their server capacity during period.

B. QoS - Analysis of violations

Figure 9 (right y-axis) shows that ML provides a violation
reduction, up to 15 and 63% compared to Heuristic and
CVMA, starting from 400 VMs. On the other hand, for the
lower number of VMs, Heuristic performs better than ML. In
order to provide a better trade-off, Hyper reduces the number
of violations by 11% compared to Heuristic while decreasing
the energy consumption compared to ML. Moreover, GH
performs better since it is not fully utilizing CPU resources
which is not a case for energy efficiency. Also, Heuristic-Cap
and ML-Cap reduce the number of violations dramatically
because of the cap set on server load.

Figure 9 (left y-axis) shows that Heuristic outperforms ML
in terms of the amount of violations for 200 VMs, reaching up
to 18% improvement in the worst case. As the number of VMs
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Fig. 9: Average, worst-case percentage amount and total
number of violations for one week.

increases, e.g. 800 and 1000 VMs, the violations of ML get
closer to Heuristic and GH, inverting the trend for 600 VMs.
This is because ML has less control on the worst-case violation
during peak loads. Hyper outperforms ML and Heuristic by up
to 23 and 14% due to selecting the best method per time slot
with lower violation, while leading to only up to 8% overhead
compared to both approaches over all cases.

In average, ML provides better results than the other ap-
proaches by managing the off-peak VMs load. Finally, for all
the cases, Hyper is able to exploit the strengths of Heuristic
and ML for providing intermediate solutions.

C. Multi-layer network traffic analysis

Figure 10 shows the total traffic through the ToR,
aggregation-layer switches, and core router. From 200 to 800
VMs, when the core router is turned off, the results demon-
strate that ML reduces the ToRs traffic up to %9 compared
to Heuristic; while, Heuristic improves the aggregation-layer
up to 4%. Note that for 200 and 800 VMs, traffic in the
aggregation and core layers is very low for ML, while for
Heuristic they are zero. This increase is due to turning on a
server in a new rack. For 1000 VMs, ML provides less ToR
and aggregation-layer traffic, but higher core traffic compared
to Heuristic. Basically, Heuristic results in lower traffic in the
upper layers of the network, due to its fine-tuning capabilities.
Comparing the ML to CVMA and GH, we obtain significant
improvements especially in upper layers for higher number of
VMs, when CVMA and GH are less sensitive to dynamic
environments, and their benefits become limited for large
problems. By using Hyper, we achieve up to 5 and 7%
improvements in ToR and aggregation compared to Heuristic;
while 6 and 9% overheads compared to ML, respectively. For
the core layer, Hyper improves 53% compared to ML, but
presents an overhead of 16% compared to Heuristic.

Following the same trend, Heuristic-Cap outperforms ML-
Cap in upper network layers. Differently, we need to turn on
the core router for both methods, starting from 800 VMs, due
to setting a conservative cap and consequently turning on a
server from a new group of racks connected to the aggregation
switch.

D. Evaluating the number of migrations

Table V represents the total number of migrations for
one week. ML reduces the number of migrations by up to
36, 40, and 39% compared to CVMA, GH, and Heuristic,
respectively. This happens because in ML, the classification
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accuracy increases for higher number of VMs, thus allowing
to place together better candidate VMs. In addition, ML-Cap
improves this metric by up to 35% compared to Heuristic-Cap.
On the other hand, Hyper achieves 13% improvement and 20%
overhead on average over different number of VMs, trading-
off the benefits of Heuristic and ML. In the worst case, i.e.
1000 VMs, we only migrate 4.8 and 6.5% of total number of
VMs on average every sample for ML and Hyper, respectively,
that does not lead to high live migration overhead.

E. Computational overhead (execution time) and discussion

Table VI shows the average execution time of the proposed
VM allocation methods for one week of traces. The results
follow the same trend than for the small-scale scenario, with
Hyper exhibiting a trade-off between the execution time of
Heuristic and ML. In summary, the ML method provides
almost the same energy efficiency, but dramatically lowers
computational overhead when compared to Heuristic, while
the heuristic method obtains better network traffic and QoS.

TABLE V: Total number of migrations for one week

Method 200 400 600 800 1000
CVMA 22904 55102 87642 121332 153891
GH 30072 63578 96836 130260 163643
Heuristic 28608 61724 95014 128540 158635
ML 22539 47437 65690 78726 98407
Heuristic-Cap 29406 62607 96061 129465 163007
ML-Cap 23929 49380 69299 86689 105262
Hyper 25609 57471 83143 111935 132822

TABLE VI: Execution time (sec.) of the proposed algorithms
under different number of VMs

Methods 200 400 600 800 1000
CVMA 4.45 28.5 88.3 200.6 471.6
GH 1.01 4.12 9.65 17.49 28.6
Heuristics 20.3 88.8 188.7 3414 519.9
MLs 0.047 0.19 0.421 0.711 1.107
Hyper 10.4 60.86 102.1 199.72 282.35

This is because heuristic methods allow more fine-tuning on
the allocation, but present a larger computational overhead,
which makes them unsuitable for large-scale scenarios. Our
results show that Hyper ensures a good trade-off between
solution quality (energy, QoS, and network traffic) using the
benefits of both Heuristic and ML approaches.

XII. CONCLUSION

In this paper we have proposed a two-phase greedy heuristic
and a ML method to tackle the challenge of energy- and
network-aware VM allocation, evaluating them in terms of
energy, network traffic, QoS, migrations and scalability. We
have compared them to the optimal solutions (implemented
using ILP), and to two algorithms in the state-of-the-art that
are the best in their areas. We have presented, for the first time
in literature, a novel multi-objective hyper-heuristic method
for the VM allocation problem able to find better solutions
by leveraging the strengths of heuristic and ML methods,
while allowing users to decide on the importance of each
metric. Our experimental results have shown that heuristic
and ML methods reach similar results in energy consumption
(< 2% difference), consuming only up to 6% more energy
than the optimal solution. The ML approach obtains up to 24%
server-to-server network traffic improvements when compared
to all other methods, and achieving execution time speed-up
up to 480x for large-scale problems. On the other hand, the
heuristic algorithm results in better QoS and lower traffic in
the upper layers of the network structure, due to its fine-tuning
capabilities. Finally, the hyper-heuristic algorithm integrates
the benefits of heuristic and ML to ensure a good trade-off
between solution quality and computational overhead.
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