
26 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

An Energy-Efficient Integrated Programmable Array Accelerator and Compilation flow for Near-Sensor
Ultralow Power Processing / Das, Satyajit; Martin, Kevin J. M.; Rossi, Davide; Coussy, Philippe; Benini, Luca.
- In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN
0278-0070. - ELETTRONICO. - 38:6(2019), pp. 1095-1108. [10.1109/TCAD.2018.2834397]

Published Version:

An Energy-Efficient Integrated Programmable Array Accelerator and Compilation flow for Near-Sensor Ultralow
Power Processing

Published:
DOI: http://doi.org/10.1109/TCAD.2018.2834397

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/653384 since: 2018-12-27

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TCAD.2018.2834397
https://hdl.handle.net/11585/653384

This is the post peer-review accepted manuscript of:

S. Das, K. J. M. Martin, D. Rossi, P. Coussy and L. Benini, "An Energy-Efficient Integrated

Programmable Array Accelerator and Compilation Flow for Near-Sensor Ultralow Power

Processing", in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

38, no. 6, pp. 1095-1108, June 2019. doi: 10.1109/TCAD.2018.2834397

The published version is available online at: https://doi.org/10.1109/TCAD.2018.2834397

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works

https://doi.org/10.1109/TCAD.2018.2834397

1

An Energy-Efficient Integrated Programmable Array
Accelerator and Compilation flow for Near-Sensor

Ultra-low Power Processing
Satyajit Das∗ †, Kevin J. M. Martin∗, Davide Rossi†, Philippe Coussy∗, and Luca Benini† ‡

∗Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France, [firstname].[lastname]@univ-ubs.fr
†Department of Electrical, Electronic and Information Engineering, University of Bologna, Italy,

[firstname].[lastname]@unibo.it
‡Integrated Systems Laboratory, ETH Zurich, Switzerland, [first-initial][last name]@iis.ee.ethz.ch

Abstract—In this paper we give a fresh look to Coarse Grained
Reconfigurable Arrays (CGRAs) as ultra-low power accelera-
tors for near-sensor processing. We present a general-purpose
Integrated Programmable-Array accelerator (IPA) exploiting a
novel architecture, execution model, and compilation flow for
application mapping that can handle kernels containing complex
control flow, without the significant energy overhead incurred
by state of the art predication approaches. To optimize the per-
formance and energy efficiency, we explore the IPA architecture
with special focus on shared memory access, with the help of the
flexible compilation flow presented in this paper. We achieve a
maximum energy gain of 2×, and performance gain of 1.33× and
1.8× compared with state of the art partial and full predication
techniques, respectively. The proposed accelerator achieves an av-
erage energy efficiency of 1617 MOPS/mW operating at 100MHz,
0.6V in 28nm UTBB FD-SOI technology, over a wide range of
near-sensor processing kernels, leading to an improvement up
to 18×, with an average of 9.23× (as well as a speed-up up to
20.3×, with an average of 9.7×) compared to a core specialized
for ultra-low power near-sensor processing.

Index Terms—CDFG, CGRA, compilation, control flow, ultra-
low power accelerator, computer architecture

I. INTRODUCTION

Due to the increasing complexity of near-sensor data an-
alytics algorithms, low power embedded applications such
as Wireless Sensor Networks (WSN), Internet of Things
(IoT), and wearable sensors combine the requirement of high
performance and extreme energy efficiency in a mW power
envelope [1]. While traditional ultra-low power sensor process-
ing circuits rely on hardwired Application Specific Integrated
Circuit (ASIC) architectures [11], near-threshold parallel com-
puting is emerging as a promising solution [47]. Even though
this approach provides maximum flexibility, a dominating
majority of the power consumed during processing is linked
to the typical overheads of instruction processors [15], such
as instruction fetching and decoding, control and data-path
pipeline overheads (up to 40%), load/store overhead (up to
30%). In this work, we make significant step forward in
parallel near-threshold computing toward the goal of achieving
the energy efficiency of application-specific data-paths, by
exploiting the Coarse Grain Reconfigurable Array (CGRA)

architectural template, and revisiting it to fit within an ultra-
low power (mW) power envelope.

CGRAs have been intensely investigated in the past for
applications with power consumption profiles ranging from
mobile (hundreds of mW) [10] to high performance (hun-
dreds of W) [34]. In this paper, we focus on a CGRA
architecture in the mW range (and below). Very few CGRA
architectures have been pushed in this ultra-low power mission
profile [36] [48] [12]. Our CGRA is designed to work as an
accelerator of an ultra-low power PULP processor cluster [47],
sharing L1 memory with the processors. Hence, another major
challenge in this context is achieving efficient L1 memory
sharing [47]. To reduce memory access contention, it is
necessary to have enough banks in the shared memory. On
the other hand, the number of ports into the multi-banked
shared-L1 memory logarithmic interconnect must be tightly
constrained to avoid significant area and power overheads [44].

To cope with the ultra-low power profile and memory
sharing challenges we build upon the Integrate Programmable-
Array accelerator (IPA) concept proposed in [9] involving
a multi-bank Tightly Coupled Data Memory (TCDM) cou-
pled with a flexible and configurable memory hierarchy for
data storage. As shown in Figure 1, from an architectural
viewpoint, point-to-point data communication between pro-
cessing elements (PEs) during kernel execution, represents a
key advantage over energy-hungry data sharing over shared
memory that is required when using a traditional processor-
cluster architecture for parallel processing. The IPA cluster
performs a lower number of memory operations on the sample
program presented in the Figure 1(c), which in turn gives and
energy improvement of 1.3× over the clustered multi-core
architecture, which performs data sharing through the TCDM.
In this comparison, we even ignore the barrier synchronization
overheads in the many-core cluster for the sake of simplicity.

The IPA approach allows to significantly reduce the pressure
on L1 memory, and hence the complexity of the interconnect
between the PEs and the memory banks, since it requires
a smaller number of banks to achieve low contention [47].
On the other hand, as opposed to clustered multi-core ar-
chitectures, where data-exchange among cores is managed

2

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7
PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

(a) (b)

INTERCONNECT

TCDM
Bank

0

Bank

1

Bank

n-2

Bank

n-1

INTERCONNECT

TCDM
Bank

0

Bank

1

Bank

n-2

Bank

n-1

for(i=0; i<1; i++)

{

A[i] = B[i] * C[i]

}

for(i=0; i<1; i++)

{

sum = sum + A[i];

}

B[0] B[1] C[0] C[1] B[0] B[1] C[0] C[1]

���������������������������������
���������������������������������
���������������������������������

�����������������������������������
�����������������������������������
�����������������������������������*

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������*

Load Load
S
to

re

Store

L
oad Load

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������+

Load Load

����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������

*
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������

*
M

OV

M
O
V

����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������

+

LoadLoad

A[0] A[1]

LoadLoad

A[0] A[1]

(c) (d)

Load-Store

operations

Arithmetic

operations

4.2 3.4

Total

#LS

Total

#Arithmetic

Total

#MOV

Energy

(pJ) Gain

Many-Core 8 3 0 43.8 -

IPA 4 3 2 33.2 1.3x

Average energy consumption in pJ/operation

MOV operation

3.1

Figure 1: (a) Cluster of processors; (b) Cluster with shared
memory IPA accelerator (c) Sample program running in both
the clusters; (d) Energy consumption comparison between the
two clusters

through shared data structures and OpenMP parallel process-
ing constructs, in CGRAs the compiler must take care of data-
exchange among PEs, exploiting as much as possible point-
to-point connections among PEs to minimize accesses to the
shared memory.

Another major compiler challenge towards achieving high
energy efficiency in CGRAs is the management of loop-carried
data dependencies and control dependencies. State of the art
compilers [37] [18] [40] [4] for CGRAs deal only with the
straight-line code sequence (basic block) of the innermost loop
of a kernel. In case of conditional present in the innermost
loop, the compilers use predication [45] techniques to convert
the control flows into data flow structures. Indeed, these
compilers can only generate code to execute a single loop, as
a set of pipelined stages is repeatedly executed up to a certain
number (loop boundary / number of pipelined stages)
specified by the compiler. In case of nested loops, only the
innermost loop is accelerated using a CGRA, leaving the
outer loops for the host processor. However, this approach
requires several offloads by the host, which implies addi-
tional memory-mapped I/O operations for synchronization and
communication with the CGRA. Hence, it causes significant
overhead, especially when the innermost loop has a very small
number of iterations, which is a typical scenario for near-
sensor processing applications [52].

On the other hand, large CGRA architectures for high
performance computing have frequently resorted to predication
techniques to expose parallelism across control dependencies,
such as conditionals [45] [19]. Unfortunately, predication leads
to waste of resources and it is hard to justify in an extremely
power and area constrained scenario [55]. In this paper, we
address the above challenges by proposing a novel compilation
flow tailored for our ultra-low power IPA architecture. This
flow enables the execution of multiple loops and conditionals
starting from ANSI C code, relying on the energy efficient
register allocation approach presented in [7].

In a nutshell, this paper contributes to the two critical
aspects of energy-efficient application mapping onto CGRAs.

First, we carry out an architectural exploration, based on
the IPA proposed in [9], for optimizing performance and
energy efficiency. The IPA features full support for condi-
tional operations, exploits the internal registers of the PEs
for intermediate data exchange and relies on a multi-bank
TCDM only for accesses to input/output buffers, significantly
improving energy efficiency. Second, we describe a complete
compilation flow to map kernels with multiple loop nests
and conditionals onto the IPA. The flow helps releasing the
host processor from performing the computation of the outer
loops, significantly improving performance of the IPA. It also
achieves high energy efficiency by minimizing the number of
memory operations exploiting the features of the architecture.

To quantify the efficiency of IPA architecture and compila-
tion flow, we compare the performance and energy consump-
tion with the state of the art predication methods running on
the IPA. Experimental results on a benchmark set of control
intensive kernels show that the register allocation approach
achieves a maximum of 1.33× (with minimum of 1.04×
and average of 1.13×) and 1.8× (with minimum of 1.37×
and average of 1.59×) performance gain compared to partial
predication and full predication techniques. For what concerns
shared-L1 memory access optimization, our exploration shows
that a banking factor of 0.5 (i.e. 8 LSUs, 4 TCDM banks)
provides the optimal configuration in terms of performance
and energy for a IPA configuration with 4x4 PEs. Moreover,
the IPA features a very regular control and data-path structure,
which is suitable for fine-grained power management. We
exploit this architectural regularity to design a fine-grained
clock gating mechanism, which turns into an average 2×
energy efficiency boost with respect to the non-clock-gated
implementation of the IPA. Results show that the IPA achieves
a maximum speed up of 20.3×, with an average of 9.7×
compared to one or1k processor [16]1, with an area ratio of
just 1.6×. The average energy efficiency achieved by the IPA
operating at 0.6V is 1617 MOPS/mW, which is up to 18×
and on average 9.23× better than what is achieved by the
processor.

The rest of this paper is organized as follows. In Section II,
the background and related work are discussed. In section III,
the target architecture, memory hierarchy and the execution
model are described. Section IV focuses on presenting the
full compilation flow, with the support of required definitions,
and models. Section V presents the implementation and exper-
imental results. Finally, the paper is concluded in Section VI.

II. BACKGROUND AND RELATED WORK

Much research has been done to evaluate the performance,
power, and cost of CGRA architectures [10]. In this paper, we
focus on the energy efficiency aspects of both the architecture
and the compiler.

A. Architecture

While targeting low power execution, data and context
management is of utmost importance, integration of CGRAs

1This processor is optimized for low power execution in the context of near
threshold near-sensor processing

3

as accelerators with the data and instruction memory has seen
several solutions over the past years [10].

In many low-power targeted CGRAs [2][39][49][23], mem-
ory operations are managed by the host processor. Among
these architectures, Ultra-Low-Power Samsung Reconfigurable
Processor (ULP-SRP) and Cool Mega Array (CMA) operate
in ultra-low-power (up to 3 mW) range. In these architectures,
PEs can only access the data once prearranged in the shared
register file by the processor. For an energy efficient implemen-
tation, the main challenge for these designs is to balance the
performance of the data distribution managed by the CPU, and
the computation in the PE array. However, in several cases, the
computational performance of the PE array is compromised by
the CPU, due to large synchronization overheads. For example,
in ADRES [2] the power overhead of the VLIW processor used
to handle the data memory access is up to 20%. In CMA [39]
the host CPU feeds the data into the PEs through a shared fetch
register (FR) file. This is very inefficient in terms of flexibility.
The key feature of this architecture is the possibility to apply
independent DVFS [53] or body biasing [36] to balance array
and controlling processor parameters to adjust performance
and bandwidth requirements of the applications. The highest
reported energy efficiency for CMA is 743 MOPS/mW on 8-
bit kernels, not considering the overhead of the controlling
processor, which is not reported. With respect to this work,
which only deals with DFG described with a customized lan-
guage, we target 32-bit data and application kernels described
in C language, which are mapped onto the array using an end-
to-end C-to-CGRA compilation flow.

In architectures such as, MorphoSys [51], RSPA[24], Smart-
Cell [29], PipeRench [17], SIMD-CGRA [14], load-store
operations are managed explicitly by the PEs. Data elements
in these architectures are stored in a shared memory with one
memory port per PE row. The main disadvantages of such
data access architecture are: (a) lots of contention between
the PEs on the same row to access the memory banks, and
(b) expensive data exchange between rows through complex
interconnect networks within the array. With respect to these
architectures, our approach minimizes contention by exploiting
a multi-banked shared memory with word-level interleaving.
In this way data-exchange among tiles can be performed
either through the much simpler point-to-point communication
infrastructure or fully flexible shared TCDM.

Solutions targeting high programmability and performance
executing full control and data flows are reported for the
weakly programmable processor array (WPPA) [25], Asyn-
chronous Array of Simple Processors (AsAP) [56], RAW [54],
ReMAP [6], XPP [3], and TRIPS [50]. The WPPA array
consists of VLIW processors, and for low power target, the
instruction set of a single PE is minimized according to
domain-specific computational needs. In AsAP, each processor
contains local data and instruction memory, FIFOs for tile-
to-tile communication, and local oscillator for local clock
generation. Both the ReMAP and XPP consist of PE array
each with DSP extension. These architectures are mainly
intended for exploitation of task-level parallelism, and each
processor of the array must be programmed independently.
RAW PEs consist of 96 KB instruction cache and 32 KB data

cache, router based communication. These large-scale ”array
of processors” CGRAs are out of scope for ultra-low power,
mW-level acceleration. Still there are reported in Table IX for
comparison.

NASA’s Reconfigurable Data-Path Processor (RDPP) [12],
and Field Programmable Processor Array (FPPA) [13] are
targeted for low-power stream data processing for spacecrafts.
These architectures rely on control switching [12] of data
streams, and synchronous data flow computational model
avoiding investment on memories and control. On the contrary,
the IPA is tailored to achieve energy-efficient near sensor
processing of data with workloads very different from the
stream data processing.

Table I summarizes an overview of the jobs managed
by CGRA and the host processor for different architectural
approaches. Acceleration of the kernels involves memory op-
erations, innermost loop computation, outer loop computation,
offload and synchronization with the CPU. As shown in
the table, IPA manages to execute both the innermost and
outer loops, and the memory operations of a kernel imposing
least communication and memory operation overhead while
synchronizing with the CPU execution.

With respect to these state of the art reconfigurable ar-
rays and array of processors, this paper introduces a highly
energy efficient, general-purpose IPA accelerator where PEs
have random access to the local memory, and execute full
control and data flow of kernels on the array starting from a
generic ANSI C representation of applications [7]. This paper
also focuses on the architectural exploration of the proposed
IPA accelerator [9], with the goal to determine the optimal
configuration of number of LSUs and number of banks for
the shared L1 memory. Moreover, we employ a fine-grained
power management architecture to eliminate dynamic power
consumption of idle tiles during kernels execution which
provides 2× improvement of energy efficiency, on average.
The globally synchronized execution model, low cost but full-
flexible programmability, tightly coupled data memory organi-
zation, and fine-grained power management architecture define
the suitability of the proposed architecture as an accelerator
for ultra-low power embedded computing platforms.

B. Compilation

To map the loops, state of the art compilers for CGRA
mostly rely on software pipelining [18] [37] [40]. This ap-
proach can manage to map the innermost loop body in a
pipelined manner. On the other hand, for the outer loops,
CPU must initiate each iteration in the CGRA, which causes

Table I: Comparison between different architectural ap-
proaches

References [2][39][48]
[13][12]
[38][35]

[31] [51][24]
[17][5]

IPA
This
paper

Memory ops CPU CGRA CPU CGRA
Innermost loop CGRA CGRA CGRA CGRA
Outer loop CPU CPU CGRA CGRA
Offload + Sync CPU CPU CPU CPU
Overhead

4

Table II: Comparison between different approaches to manage
control flow in CGRA

Techniques Conditionals Loops
Balanced Imbalanced Single Nested

Partial
predication [19]

√ √
× ×

Full predication [20]
√ √

× ×
State based
full predication [21]

√ √
× ×

Dual issue
single execution [19]

√
× × ×

TLIA [32]
√ √ √

×
Software
pipelining [37] × ×

√
×

Loop unrolling [27] × ×
√

NA
Register allocation [7]

√ √ √ √

significant overhead in the synchronization between the CGRA
and CPU execution. Liu et al in [31] pinpointed this issue and
proposed to map maximum of two levels of loops using poly-
hedral transformation on the loops. However, this approach is
not generic as it cannot scale to an arbitrary number of loops.
Some approaches [30] [27] use loop unrolling for the kernels.
The basic assumption for these implementations is that the
innermost loops trip count is not large. Hence, the solutions
end up doing partial unroll of the innermost loops. The outer
loops remain to be executed by the host processor. As most of
the proposed compilers handle innermost loop of the kernels,
they mostly bank upon the partial predication [19] [37] and
full predication [20] techniques to map the conditionals inside
the loop body.

Partial predication maps instructions of both if-part and else-
part on different PEs. If both the if-part and the else-part
update the same variable, the result is computed by selecting
the output from the path that must have been executed based
on the evaluation of the branch condition. This technique
increases the utilization of the PEs, at the cost of higher energy
consumption due to execution of both paths in a conditional.
Unlike partial predication, in full predication all instructions
are predicated. Instructions on each path of a control flow,
which are sequentially configured onto PEs, will be executed
if the predicate value of the instruction is similar with the flag
in the PEs. Hence, the instructions in the false path do not get
executed. The sequential arrangement of the paths degrades
the latency and energy efficiency of this technique.

Full predication is upgraded in state based full predica-
tion [21]. This scheme prevents the wasted instruction is-
sues from false conditional path by introducing sleep and
awake mechanisms, but fails to improve performance. Dual
issue scheme [19] targets energy efficiency by issuing two
instructions to a PE simultaneously, one from the if-path,
another from the else-path. In this mechanism, the latency
remains similar to that of the partial predication with improved
energy efficiency. However, this approach is too restrictive,
as far as imbalanced and nested conditionals are concerned.
To map nested, imbalanced conditionals and single loop onto
CGRA, the triggered long instruction set architecture (TLIA)
is presented in [32]. This approach merges all the conditions
present in kernels into triggered instructions, and creates
instruction pool for each triggered instruction. As the depth
of the nested conditionals increases the performance of this

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Logarithmic Interconnect

Bank

#0

Bank

#1

Bank

#2

Bank

#n-1 ... TCDM .

IPA Controller

Global Context

Memory

Figure 2: Integrated Programmable-Array Accelerator

approach decreases. As far as the loop nests are concerned,
the TLIA approach reaches bottleneck to accommodate the
large set of triggered instructions into the limited set of PEs.

The compilation flow we propose, uses the register alloca-
tion approach [7] to map CDFGs onto the CGRA. This allows
to map both loops and conditionals of any depth. In our case,
the only limitation in the mapping of kernels onto the CGRA
is given by the size of instruction memory of the PEs, and not
by the structure of the application (i.e. number of loops, and
branches). Also, one can increase the size of code segment to
be executed in the CGRA as much as possible, minimizing the
control and synchronization overheads with the core, which
is not negligible in the other approaches. Table II presents
a comprehensive comparison between several techniques to
manage control flow in the kernels. Software pipelining and
loop unrolling are mostly used for the mapping of the inner-
most loop, while branches inside the loop are managed by one
of the described predication techniques. Hence, the existing
compilers use combined solutions for branches and innermost
loop mapping. This requires exhaustive exploration to find out
the most suitable combination for the target architecture and
application domain. On the contrary, our proposed compilation
flow uses a register allocation approach which can handle both
conditionals and loops efficiently.

III. IPA ARCHITECTURE AND EXECUTION MODEL

In this section, we present the general-purpose Integrated
Programmable-Array Accelerator (IPA) architecture, support-
ing standalone execution of complete control and data flow
applications.

A. Integrated Programmable-Array Accelerator (IPA)

IPA is the integration of a PE Array (PEA) and a tightly
coupled data memory (TCDM) through a low-latency loga-
rithmic interconnect. An IPA controller loads the context into
the PEs from a pre-loaded Global Context Memory (GCM).
Figure 2 shows the organization of the IPA.

The PEA consists of a parametric number of PEs connected
with a 2-dimensional tours network. The PE Array follows the
multiple instruction, multiple data (MIMD) model of compu-
tation. All PEs operate on different set of instructions. A bus
based interconnect network is implemented to load instructions

5

ALU

LSU

INREG0 INREG1

OPR CR
Controller

IRF

JR

Decoder

RRF CRF

PMU

From the neighbouring PEs To and from memory interconnect

To the

neighbouring

PEs

Control bits

from all the

PEs

Control

bits to all

the PEs

Global

stall to all

the PEs

Global

stalls from

all the PEs

Clockgate_en

Global

clock

driven
Gated

clock

driven

Figure 3: Components of the PE

and constants (i.e. context) from the GCM into the PEs,
whereas the torus network is used during execution phase for
low power data communication between the PEs. The details
of the load context protocol are discussed in [9]. To achieve
low power execution, the instruction set architecture [9] was
designed from scratch resulting 20-bit long instruction. We
took the advantage of the visibility of the micro-architecture
to the compiler and shifted the immediate data to constant
register file in the PEs (discussed later) which eases the
compression of the instruction, imposing low pressure on the
decoder.

Figure 3 describes the components of a PE. The Load Store
Unit (LSU) is optional for the PEs (the optimal number of
LSU is a parameter studied in this paper). Two operands (IN0
and IN1) define the inputs of each PE. The input sources are
the neighbouring PEs and the register file. A 32-bit ALU and a
16-bit× 16-bit→ 32-bit multiplier are employed in this block.
The Constant Register File (CRF) stores the immediate values
of the instructions, while the Regular Register File (RRF)
and Output Register (OPR) store the temporary variables.
The Controller fetches the instructions from the Instruction
Register File (IRF). If the decoded instruction is a jump, the
target address of the jump is stored in the Jump Register (JR).
The cjump (conditional jump) instruction contains two target
addresses. The true path is evaluated in the JR by the Boolean
“OR” of the Condition Register (CR) bits of the PEs.

The TCDM acts as L1 memory for the IPA. Featuring
a number of ports equal to the number of memory banks,
the TCDM provides concurrent access to different memory
locations. The TCDM is interfaced with the LSUs of the PE
array through a low latency, logarithmic interconnect [44],
implementing a word level interleaving scheme to minimize
access contention.

B. Power Management Unit (PMU)

To reduce dynamic power consumption in idle mode, each
PE contains a tiny Power Management Unit (PMU) which
clock gates the PEs when idle. An idle condition for a PE
arises from three situations: (i) Unused PE: when a PE is
not used during mapping; (ii) Load Store stall: In case of
TCDM banking conflict the PMU generates a global stall,

Table III: Instruction format
5 bits 2 bits 3 bits 1 bits 4 bits 1 bit 4 bits

Opcode
Output

Reg
type

Dest
Reg
Addr

IN0
Type

IN0
Addr

IN1
Type

IN1
Addr

Jmp Address unused

Cjmp Address of the
true path

Address of the
false path unused

NOP
Number of
consecutive
NOPs

unused

which is broadcast to all the PEs. Until the global stall is
resolved, all the PEs are clock gated by their corresponding
PMUs. LSUs are placed in the global clock region (Figure 3)
to avoid deadlocks; (iii) Multiple NOP operations: a NOP
instruction contains the number of successive NOPs. When
a NOP instruction is fetched, the decoder loads this number
into a counter within the PMU. The clockgate en remains low
until the count reaches zero. The counter gets halted when it
encounters a global stall and resumes the count after the stall
is resolved, synchronizing the execution flow among PEs.

Due to the fine-grained nature of the power management,
more aggressive power gating is not implemented, since it
imposes large area penalty without significant benefits. The
leakage power of each tile is so small that it does not change
significantly the energy efficiency when the rest of the system
is active.

C. Overview of the execution model

After compiling a kernel (see section IV), the compiler
generates the assembly and the addresses for the input and
output data in the local shared memory. The assembler takes
the assembly and the Instruction Set Architecture (ISA) of the
IPA, to generate the context (i.e. the program to be stored into
the IRF) for each PE, which is pre-loaded in the GCM. The
context contains instructions and constants for each PE in the
array. Prior to the execution start, the context is loaded into the
corresponding IRF and CRF of the PEs. We assume that the
code fits in the local memory. Larger execution contexts can
be handled using the IPA controller and overlays. Details on
this process are omitted for the sake of conciseness2. In each
cycle, the PEs fetch 20-bit instruction from the local IRF. The
immediate data are shifted to constant register file which eases
the compression of the instruction. Hence, the pressure on the
decoder is quite low. Table III describes the instruction format.

Figure 4 shows the execution of a sample program in a
traditional CPU and the IPA. The total number of instructions
for the sample program in the CPU and the IPA are 31 and 12
respectively. Also, the IPA achieves 28× performance gain
compared to that of the CPU while executing the sample
program. The decrease in the number of instructions in the
IPA in this specific example is mainly due to the much lower
number of memory operations and the fact that the small loop
can be completely unrolled without code size blown-up.

2Note that the context loading and setup cost are accounted for in the
experimental results.

6

int example(int a[4], int b[4])

{

int i;

for(i=0; i<4; i++)

{

 b[i] = a[i] + i;

}

}

PE1 PE2 PE3 PE4PE1 PE2 PE3 PE4

PE1: ld r2, 0

PE2: ld r2, 4

PE3: ld r2, 8

PE4: ld r2, 16

PE1: add r2, r2, 0

PE2: add r2, r2, 1

PE3: add r2, r2, 2

PE4: add r2, r2, 3
PE1: str r2, 20

PE2: str r2, 24

PE3: str r2, 28

PE4: str r2, 32

PE1: ld r2, 0

PE2: ld r2, 4

PE3: ld r2, 8

PE4: ld r2, 16

PE1: add r2, r2, 0

PE2: add r2, r2, 1

PE3: add r2, r2, 2

PE4: add r2, r2, 3
PE1: str r2, 20

PE2: str r2, 24

PE3: str r2, 28

PE4: str r2, 32

Cycle 1

Cycle 2

Cycle 3

PE1: ld r2, 0

PE2: ld r2, 4

PE3: ld r2, 8

PE4: ld r2, 16

PE1: add r2, r2, 0

PE2: add r2, r2, 1

PE3: add r2, r2, 2

PE4: add r2, r2, 3
PE1: str r2, 20

PE2: str r2, 24

PE3: str r2, 28

PE4: str r2, 32

Cycle 1

Cycle 2

Cycle 3

(a)

(b)

(c)

(d)

time

(e)

 ldr r3, [r7, #12]

 add r3, r3, #1

 str r3, [r7, #12]

.L2: ldr r3, [r7, #12]

 cmp r3, #3

 ite gt

 movgt r3, #0

 movle r3, #1

 uxtb r3, r3

 cmp r3, #0

 bne .L3

example(int*, int*):

 push {r7}

 sub sp, sp, #20

 add r7, sp, #0

 str r0, [r7, #4]

 str r1, [r7, #0]

 mov r3, #0

 str r3, [r7, #12]

 b .L2
.L3: ldr r3, [r7, #12]

 lsl r3, r3, #2

 ldr r2, [r7, #0]

 adds r3, r2, r3

 ldr r2, [r7, #12]

 lsl r2, r2, #2

 ldr r1, [r7, #4]

 adds r2, r1, r2

 ldr r1, [r2, #0]

 ldr r2, [r7, #12]

 adds r2, r1, r2

 str r2, [r3, #0]

 ldr r3, [r7, #12]

 add r3, r3, #1

 str r3, [r7, #12]

.L2: ldr r3, [r7, #12]

 cmp r3, #3

 ite gt

 movgt r3, #0

 movle r3, #1

 uxtb r3, r3

 cmp r3, #0

 bne .L3

example(int*, int*):

 push {r7}

 sub sp, sp, #20

 add r7, sp, #0

 str r0, [r7, #4]

 str r1, [r7, #0]

 mov r3, #0

 str r3, [r7, #12]

 b .L2
.L3: ldr r3, [r7, #12]

 lsl r3, r3, #2

 ldr r2, [r7, #0]

 adds r3, r2, r3

 ldr r2, [r7, #12]

 lsl r2, r2, #2

 ldr r1, [r7, #4]

 adds r2, r1, r2

 ldr r1, [r2, #0]

 ldr r2, [r7, #12]

 adds r2, r1, r2

 str r2, [r3, #0]

Initialization

Loop control

Compute and

store

Figure 4: (a) Sample program (b) Execution in CPU (c)
Example PEA (d) Execution in IPA (e) Execution metrics in
CPU and IPA

IV. COMPILATION FLOW

The compilation generates a mapping of the program for
the corresponding PEA. In this section, we present the models
adopted for the architecture and the application and the full
compilation flow to map control and data flow onto the PEA.
We also discuss the register allocation approach to exploit
the register files of the PEs while preserving control-carried
dependencies.

A. Architecture, application model and homomorphism

The compiler takes two inputs. The first is the PEA model,
and the second is the ANSI-C code of the application.

The PEA is modelled by a bipartite directed graph with two
types of nodes: operators and registers. Timing is implicitly
represented by connections between registers and operators,
which is referred to as the time extended model of the
PEA [18]. Two types of operator nodes are defined for the
PEAs. The first type is the computing operator (functional
unit (FU) nodes in Figure 5(a)) that represents the physical
implementation of an arithmetic and logical operation (+, ×, -,
OR, AND) and/or memory access (e.g. load/store). The second
type of operator is the memorization operator (circular nodes
in Figure 5(b)). It is associated with the output register and
represents the operation of keeping a value in a local register
explicitly.

Figure 5 (a) shows a sample PEA with two PEs connected
by a torus network. Each PE has 3 registers in the distributed
register file, and a single output register. Figure 5 (b) represents
the time extended model of the PEA shown in Figure 5 (a).
In this model, one can vary the interconnect network, the
distribution and size of the register file, and the type of the
PE, to explore different PEA architectures.

The application is modelled as a control and data flow
graph (CDFG). Supporting control flow gives the opportunity

X5 b

MULMUL

X3 X4a

MULMUL

X5 c

ADDADD

X3 X4

From previous cycle

X4

X4

X5

X5

MUL MUL

b a

ADD

c

LT

X4

ADD

c X5

SUB

p[i]

N[i] X2 M[i] X1

X3

c

c

p[i]

STR

LD

LD LD

(e)

X5 b

MUL

X3 X4a

MUL

X5 c

ADD

X3 X4

STR

From previous cycle

X4

X4

X5

X5

MUL MUL

b a

ADD

c

LT

X4

ADD

c X5

SUB

p[i]

N[i] X2 M[i] X1

X3

c

c

p[i]

STR

LD

LD LD

(e)(d)

X5 b

MUL

X3 X4a

MUL

X5 c

ADD

X3 X4

X5 X3 X4

STR

From previous cycle

X4

X4

X4

X5

X5

X5

X5 c

LD

X3 X4X4 X5

X5 X3 X4

LT

X4 X5

MUL MUL

b a

ADD

c

LT

X4

ADD

c X5

SUB

p[i]

N[i] X2 M[i] X1

X3

c

c

p[i]

STR

LD

LD LD

X5 c

LD

X3 X4X4 X5

X5 X3 X4p[i]

ADD/SUB

X4 X5

(e)(d)

MUL MUL

b a

ADD

c

LT

X4

ADD

c X5

SUB

p[i]

(b)

N[i] X2 M[i] X1

X3

c

c

p[i]

(c)

X5 b

MUL

X3a

MUL

X5 c c

ADD

X3

X5 c X3

LT

X5 p[i]

ADD/SUB

X3c

From previous cycle

X4

X4

X4

X4

(a)

FUFU FUFU
RFRF

PE1 PE2

FU FU
RFRF

PE1 PE2

Figure 5: (a) A 2×1 PEA with 3 registers in RF and one output
register (b) CDFG model (c) A possible mapping of (b) onto
the PEA over 4 cycles using register allocation based approach.
(d) The transformed CDFG of (b) for systematic load store
based approach (e) A possible mapping of (d) onto the PEA
over 7 cycles using systematic load store based approach

to accelerate a kernel without any intervention of the host
processor. A CDFG is depicted as G = (V,E) where V is the
set of basic blocks and E ⊆ V ×V is the set of directed edges
representing control flow. A Basic Block (BB) is represented
as a data flow graph (DFG) or BB = (D,O,A) where D is
the set of data nodes, O is the set of operation nodes and A
is the set of arcs representing dependencies. The control flow
from one basic block to another is supported with jump (jmp)
and conditional jump (cjmp) instructions.

Fig. 6 presents a sample program and the corresponding
CDFG. In this figure, basic blocks are represented as blue

7

X1 = 10;

X2 = 20;

X3 = 500;

X4 = 30;

X5 = 50

for(i = 0; i < q; i++)

{

 a = m[i] * X1;

 b = n[i] * X2;

 c = b + a;

 if(c < X3)

p[i] = c + X4;

 else

p[i] = c - X5;

}

BB_1

X1 = 10; X2 = 20;

X3 = 500; X4 = 30;

X5 = 50; i = 0;

BB_2

i < q;

BB_7

i ++;

BB_3

a = m[i] * X1;

b = n[i] * X2;

c = b + a;

BB_4

c < X3;

BB_5

p[i] = c + X4;

BB_6

p[i] = c - X5;

jmp

cjmp

jmp

jmp
jmpjmp

BB_8

Outside the

for loop

cjmp

X1 = 10;

X2 = 20;

X3 = 500;

X4 = 30;

X5 = 50

for(i = 0; i < q; i++)

{

 a = m[i] * X1;

 b = n[i] * X2;

 c = b + a;

 if(c < X3)

p[i] = c + X4;

 else

p[i] = c - X5;

}

BB_1

X1 = 10; X2 = 20;

X3 = 500; X4 = 30;

X5 = 50; i = 0;

BB_2

i < q;

BB_7

i ++;

BB_3

a = m[i] * X1;

b = n[i] * X2;

c = b + a;

BB_4

c < X3;

BB_5

p[i] = c + X4;

BB_6

p[i] = c - X5;

jmp

cjmp

jmp

jmp
jmpjmp

BB_8

Outside the

for loop

cjmp

Figure 6: Sample program and corresponding CDFG

rectangles. The flow from one basic block to another basic
block is represented by black arrows and managed by simple
branch (jmp) operation. The true and false paths of a condi-
tional managed by cjmp, are shown by solid and dashed arrows
respectively. The execution flow of the CDFG is presented as:
BB 1→ BB 2→ (either BB 3 or BB 8) if BB3→ BB 4
→ (either BB 5 or BB 6) → BB 7 → BB 2 · · · . In order
to maintain the execution flow, it is necessary to synchronize
all the PEs in the array, to the execution of the same basic
block. When the execution flow jumps from one basic block
to another, all the PEs in the PEA must be synchronized
to the current basic block execution. This allows to use all
the PEs concurrently or sequentially, while executing a single
basic block. Dually, several basic blocks can use the same
PE. The synchronized execution allows the compiler to map
several operations and data onto the same PE. Next, we present
the homomorphism of the CDFG model with the application
model, to support different stages in the compilation flow.

The basic blocks in the CDFG, presented in Figure 5(c),
are composed of data nodes, operation nodes, and data depen-
dencies. Three equivalences between the basic block DFGs
and PEA model nodes are defined: (1) data and registers; (2)
computation and computing operators; (3) data dependences
and connection between the time extended PE components.
As the two models are homomorphic, the mapping of a DFG
onto the PEA is therefore a problem equivalent to finding a
DFG in the PEA graph.

Figure 5(b) represents a possible mapping of the sample
CDFG in Figure 5(c) onto the PEA in Figure 5(a) over 4
cycles. In the next section, we discuss the full compilation
flow for CDFG mapping.

B. The compilation flow step by step

Figure 7 shows a schematic representation of the compi-
lation flow for mapping CDFGs onto the PEA. A CDFG
mapping is a set of DFG mappings that are compatible
with each other. To be compatible, the DFGs must access
the data that remain in the PEs (see symbol variables (see
definition IV.1)) in the same location. This is ensured by the
register allocation approach.

CGRA

model

GCC plugin

CDFG

Scheduling &

placement

Solutions?

Last Node?
Stochastic

pruning

Changes?

Graph

transformation

Update

constraints

BB selection

Last DFG?

Assembly of

the CDFG

mapping

yes

Assembler
Context word

(Instruction +

constant)

yes

yes

no

no

yes

no

no

Backtracking
Mappings

C

Code

CGRA

ISA

Figure 7: Compilation flow

To map the basic blocks, we rely on the highly scalable
and efficient mapping approach for DFGs described in [8].
The compilation flow proposed in this paper, extends the
DFG mapping to accommodate the register allocation ap-
proach to map a full CDFG onto the PE array. As presented
in Figure 7, the full compilation flow is composed of six
interdependent stages: BB selection, backtracking, update con-
straints, scheduling and placement, graph transformation and
a stochastic pruning. These tasks are described in detail in the
next sub-sections.

1) Scheduling and placement: The proposed approach uses
a backward traversal [43] list scheduling algorithm to schedule
the DFG of each basic block. It relies on a heuristic in which
the schedulable operations are listed by priority order. In
backward traversal, a node is schedulable if and only if all its
children are already scheduled. The priority of nodes depends
on their mobility [42]. It is possible to process memorization
nodes and conventional nodes differently. Also, when several
nodes have the same mobility, their respective number of
successors is used as a second priority criterion. The higher
is the number of successors, the higher the priority is. Indeed,
a node with a higher number of successors is more difficult
to map due to the routing constraint coming from the limited
amount of connections between tiles. Thus, scheduling these
nodes at first usually allows to decrease the application’s
latency [43]. As soon as the highest priority node has been
defined, the compiler tries to find a placement in the PE array
model. If a placement solution exists, the node is scheduled
else the graph is transformed.

The proposed placement uses an incremental version of
Levi’s algorithm [28]. The proposed algorithm adds the newly
scheduled operation node and its associated data node to the
sub-graph composed of already scheduled and placed nodes.

8

1

1

1'

2 3 4 2 3 4

1

2 3 4

1

1

MOV

2 3 4

Memorization

node

Assignment

node

(a) Sample DFG (b) Operation

splitting

(c) Memorization

routing

(d) Assignment

Routing

Figure 8: Graph transformation

Only the previous set of solutions that have been kept, location
constraints (RLC (see definition IV.3) and TLC (see defini-
tion IV.2)) are used to find every possibility to add this couple
of nodes without considering the non-yet scheduled nodes. If
no solution is found, there is absolutely no possibility to bind
this couple in all the previous partial solutions because Levi’s
algorithm provides a complete exploration of the solution
space. In that case, graph transformation is required.

2) Graph transformation: DFG is transformed dynamically
when no binding solution is found. The three graph transfor-
mations are used in our compilation flow (Figure 8).

• Operation splitting duplicates an operation node by keep-
ing its same inputs and distributing output edges to reduce
the number of successors of the original operation node.

• Memorization routing adds a memorization node and its
associated data node to delay one operation and to keep
data dependencies

• Assignment routing adds an assignment node (mov oper-
ation node) to increase the physical distance between the
source and sink of symbol variables by one. Due to TLC
or RLC, when the physical distance between the source
and sink of the symbol variable becomes more than one,
the compiler dynamically adds one mov operation node
to the DFG.

3) Stochastic pruning: The exactness of the placement
approach leads to very large number of partial mappings.
And it grows exponentially if not pruned. Hence, we use the
stochastic pruning approach described in [8].

4) Basic block selection: Once all the nodes of the BB
have been scheduled and bound, the compiler selects one
mapping among the several mappings generated, and selects
the next basic block to be mapped. As discussed previously, it
is necessary to maintain data integrity over several basic block
mappings. The data mapping problem for CDFG mapping
is now described before going into the detailed basic block
selection step.

4.a: Definition and problem formulation
Data in an application is separated into two categories. (i)

The standard input and output data (mostly the array inputs
and outputs) are mapped as memory operands. The inputs and
outputs are allotted by load-store operations. In our sample
program in Figure 6, m, n are the input arrays and p is the
output array, which are managed by load and store operations.
(ii) The internal variables of a program are mapped onto
the registers of the processing elements, and managed by the
register allocation based approach [7]. Following, we introduce
several definitions concerning register allocation approach:

Definition IV.1. [Symbol Variables and location constraints]
In compilation, the recurring variables (repeatedly written
and read) are managed in local register files of the PEs to
avoid multiple access of local memory. The recurring variables
which have occurrences in multiple basic blocks need special
attention since the integrity of these variables must be kept
intact throughout the mapping process for different basic
blocks. These variables are defined as Symbol variables. The
register locations for the symbol variables are referred to as
location constraints. For instance, variable c in the CDFG
(Fig. 6) is written in BB 3, and read in BB 4, BB 5 and
BB 6. The register location for c must be same for all the
mappings of these basic blocks. Similarly, X1, X2, X3, X4,
X5, i, a and b must be location constrained. In the rest of
the paper, the locations for such symbol variables are denoted
with an overline, as variable name.

Depending on the order of the basic blocks mapped (i.e.
traversing the CDFG), some location constrains may be reused
in the mapping process or may be kept reserved for later use.
These two types of location constraints are discussed in the
following.

Definition IV.2. [Target Location Constraints (TLC)] We
consider a scenario scenario 1, where BB 6 is mapped first,
BB 3 is mapped next and so on. While mapping BB 6,
variables c and X5 are placed at c̄ and X5. While mapping
BB 3, c and X5 which are already mapped in BB 6, must
be considered because c will be used to map c in BB 3. In
other words, the placement of the variables in the registers
must be respected. Also, a, b, X1 and X2 must not reuse
X5. Otherwise, X5 will have wrong value when executing
BB 6. Let’s consider scenario 2 with another order of basic
blocks mapped, like first BB 3 and then BB6 and so on.
In this order of mapping, it is necessary to pass c and X5
from BB 3 to BB 6 mapping. To keep c and X5 alive in
BB 6 both c and X5 must be used in mapping of BB 6.
The placement or binding information which are passed from
the mapping of one basic block to the mapping of the other
basic block is referred to as constraint (e.g. scenario 1: c and
X5 passed from BB 6 to BB 3). The location constraints
related to the data that are used within a basic block mapping
phase (e.g. scenario 1: c in BB 3 mapping) are referred to
as target location constraints (TLC).

Definition IV.3. [Reserved Location Constraints (RLC)] As
we have seen in the previous examples, some of the location
constraints must be reserved in the mapping of basic blocks for
the sake of data integrity. To keep the symbol variables alive, it
is necessary to exclude the memory elements from placement.
Accordingly, these resources will not override while mapping
the basic block (e.g. scenario 1: X5 in BB 3 mapping).
These are referred to as reserved location constraints (RLC).

4.b: Selection approach
If the number of RLC and TLC is high, mapping becomes

complex. As TLC will force to use resources, and RLC will
force to exclude resources from placement. Hence, the primary
goal for our compiler is to minimize the number of TLCs and
RLCs by choosing an efficient traversal of the CDFG.

The basic solution to deal with the symbol variables is to

9

Table IV: Comparison of RLC and TLC numbers between different CDFG traversal

Kernels
Forward Traversal Backward Traversal

Breadth First Search DepthFirst Search Breadth First Search DepthFirst Search
RLC # TLC # RLC # TLC # RLC # TLC # RLC # TLC

Seperable 2D Filter 22 35 17 35 22 35 17 35
sobel Filter 64 85 35 85 69 85 35 85

introduce memory operations. The symbol variables are stored
in the memory where they are written and are loaded from the
memory when read. In the rest of the paper this basic solution
is referred to as systematic load-store based approach. This
method is presented in the Figure 5(d). For the symbol variable
c in the CDFG shown in Figure 5(c), it stores variable c in
the memory in BB 3, and loads in BB 4, BB 5 and BB 6.
Figure 5 refers to the mapping of the transformed CDFG in
this approach. This basic solution reduces the complexity of
the mapping as there are no constraints to be dealt with while
mapping the basic block. However, it requires a huge memory
bandwidth, significantly reducing the energy efficiency of the
system. As the compilation is built on register allocation
approach, the symbol variables are stored in the register files
when they are produced, and retrieved from the registers when
used as operands. While doing so, the effects of the constraints
in mapping are unavoidable. RLC restrict the use of some
resources, and TLC force to reuse some resources. If there is
only a single TLC in a basic block mapping, it becomes easier
to start mapping from the known place. But several TLC and
RLC complicates the mapping. Forced and blocked placements
by these constraints induce extra routing effort (dynamically
transforming the graph in compilation).

As the selection of the basic blocks during the mapping
is important, we compare the number of TLC and RLC for
several CDFG traversal in this section. Table IV presents the
comparison between the number of different constraints in
the forward and backward CDFG traversal for Breadth First
Search (BFS) and Depth First Search (DFS) strategies. As the
trend is similar for other kernels we present the results for
sobel and seperable 2D filter only. The numbers show that
DFS strategy generates a lower number of RLC than the BFS
in both forward and backward traversal. The number of RLC
for sobel filter is much higher in BFS due to several sequential
loops present in the kernel. The numbers of TLC are similar in
both the strategies for different traversal mechanisms. Also for
the different search strategies forward and backward traversal
perform similarly. The DFS strategy is thus used.

5) Backtracking: For a basic block to be mapped (except
the first one), this stage selects the first map out of several
mappings generated for the last basic block mapped. The
selected map updates the constraints for the current basic block
mapping. If one basic block does not find a mapping due to the
constraints, this stage selects the second map from previous
basic block to update the constraints and restart mapping of
the new basic block. The process continues up to the first basic
block mapped until a valid mapping is found for the current
basic block.

6) Update Constraints: In this stage, the compiler creates
and updates a constraint database. This database is used in the
placement algorithm, to place the data nodes and correspond-
ing operation nodes according to the TLC and RLC. When

mapping a current basic block, new variables cannot be placed
in RLCs, while TLCs are used to map the symbol variables. If
the symbol variable in the current basic block mapping is not
present in the constraint database, then the variable is mapped
using available resources, and the respective placement is used
to update the constraint database prior to next basic block
mapping. Once all the basic blocks are mapped the compiler
generates the assembly file containing a single map for the
whole CDFG.

C. Assembler

Assembler holds the key to differentiate from the PEA
model used in the compiler and the actual hardware implemen-
tation. The assembler takes the ASCII text assembly generated
by the compiler and the instruction set architecture (ISA) and
produces machine code, which can then be used to configure
the PEs in the hardware. The ISA provides the added hardware
information to the PEA model used in the compiler. As an
example, the PEs in the IPA use an added constant register file
(CRF) for storing the constants. The introduction of the CRF in
the PEA model minimizes the instruction length by storing the
immediates of the instruction into the internal registers, giving
a low power solution. That is how the assembler separates the
model used in the compiler from the actual implementation of
the hardware. One can define their own PEA model and derive
an architecture from that for actual implementation. Thus, the
compiler can be used for a wide range of PEA variations.

V. EXPERIMENTAL RESULTS

This section analyses the implementation results, providing
performance, area, and energy consumption on several signal
processing kernels. We carry out experiments to show the
efficiency of the register allocation approach compared to the
state of the art predication techniques, considering a wide
range of control dominated kernels. We also perform an
architectural exploration to find the optimal configuration in
terms of number of load-store units and number of TCDM
banks for a IPA with 4x4 PE array. Performance, area and
energy efficiency are also compared with that of the or1k
CPU [26].

A. Implementation Results

This section describes the implementation results for the
IPA accelerator, providing a comparison with the or1k CPU.
Both the designs were synthesized with Synopsys design
compiler 2014.09-SP4 using STMicroelectronics 28nm UTBB
FD-SOI technology libraries. Synopsys PrimePower 2013.12-
SP3 was used for timing and power analysis at the supply
of 0.6V, 25◦C temperature, in typical process conditions.
The cycle information was achieved simulating the RTL with
Mentor Questa Sim-64 10.5c. In the following, the exploration

10

Table V: Code size and the maximum depth of loop nests for the different kernels in the IPA

Kernels FIR MatM Conv Sep
Filter

Non Sep
Filter FFT DC

Filter cordic sobel gcd sad deblock manh-
dist

Code
size (KB) 0.568 0.704 0.704 0.720 0.784 0.696 1.16 0.496 0.336 1.448 0.600 2.016 0.624

Max depth
loop nests 2 3 3 3 4 2 2 1 1 1 2 3 2

Table VI: Specifications of memories used in TCDM and each
PE of the IPA

Name Type Size
Global context memory SRAM 8KB
TCDM SRAM 32KB
Instruction Register File (IRF) Registers 0.08KB
Regular register file (RRF) Registers 0.032KB
Constant register fie(CRF) Registers 0.128KB

considers a 4×4 array with 16 PEs, each one including 20×32-
bit instruction register file, a 32×8-bit regular register file and
32×16-bit constant register file, as shown in Table VI. For
area comparison, the CPU includes 32kB of data memory, 4kB
of instruction memory, and 1 kB of instruction cache, which
is equivalent to the design parameters of the IPA. Table V
presents the code-size (instructions and constants) of all the
kernels used in the following experiments. The cost of the
IRF is considered both in size and power. Thanks to the
simpler architecture and tiny processing elements, at the target
operating voltage of 0.6V, the IPA runs at 100 MHz while or1k
can only reach 45MHz in the same operating point.

Figure 9 shows the area of the whole array and memory with
different numbers of TCDM banks, where the total amount
of memory is kept constant at 32kB. As the area of LSUs is
negligible if compared to the overall system area, we show the
area results for the worst-case scenario with maximum number
of LSUs present in the PE array (i.e. 16). As shown in Figure 9,
in the minimal configuration with 4 TCDM banks, the IPA area
is dominated by that of the array (60%) and by the local data
storage (35%), while the remaining 5% is consumed by the
interconnect. Increasing the number of TCDM banks imposes
a significant area overhead on the size of the interconnect.
Also, the area of the TCDM increases as well due to the higher
area/bit of small SRAM cuts necessary to implement 32kB
of memory with several banks. Hence, it is fundamental to
properly balance the number of LSUs and TCDM banks with
the bandwidth requirements of applications.

B. Comparison of the proposed compilation approach with
state of the art predication techniques

To evaluate the efficiency of the register allocation approach
to handle the control flow we compare the execution of six
control intensive kernels compared to the state of the art
partial and full predication techniques. The results, presented
in Table VII, show that the register based approach achieves
a maximum of 1.33× (with minimum of 1.04× and average
of 1.13×) and 1.8× (with minimum of 1.37× and average
of 1.59×) performance gain compared to partial predication
and full predication techniques. The maximum gain achieved
over existing methods are highlighted in bold in the table. The
smaller number of executed instructions allows the register al-
location approach to outperform the partial and full predication

50000

1000004banks 8banks 16banks

IPA controller INTERCONNECT

GLOBAL CONTEXT MEMORY TCDM

PE ARRAY CPU including memory

0

50000

100000

150000

200000

250000

300000

350000

4banks 8banks 16banks 32banks

ar
ea

 i
n

 µ
m

2

IPA controller

TCDM

GLOBAL CONTEXT

MEMORY

INTERCONNECT

PE ARRAY

CPU including memory

Figure 9: Synthesized area of IPA for different number of
TCDM banks

techniques by an average of 1.54× (with min 1.35×, max 2×)
and 1.71× (with min 1.44×, max 2×) respectively in terms of
energy efficiency. The table also presents a comparison with
respect to or1k CPU and C64 DSP processor [22] from TI. The
register allocation approach achieves a maximum of 3.94×,
15.8× performance gain and 7.52×, 32.77× energy gain over
or1k and C64 processor, respectively. Due to the abundance of
branches in these kernels, the DSP processor performs worst.
Finally, we compare with the basic systematic load-store (SLS)
based approach for control mapping. It is depicted from the
Table VII that the register allocation approach performs an
average of 1.16× (with max of 1.46×, min of 1.05×) better
than the SLS based approach, while gaining an average of
1.31× energy efficiency with a maximum gain of 2× and
minimum gain of 1.07×.

C. Architectural Exploration
This section provides an extensive comparison with respect

to the CPU computational model and an evaluation of the
performance of the IPA while varying the number of LSUs
and TCDM banks, a critical parameter for data-hungry accel-
erators. To carry out the exploration, we selected 7 compute
intensive signal processing kernels featuring a high bandwidth
towards the TCDM.

1) Performance: Generally speaking, the IPA performs well
when significant parallelism can be extracted from a kernel.
This concept is well shown in Figure 10, which compares the
performance of the IPA with that of the or1k processor on a
matrix multiplication when growing the size of the matrices
from 2×2 to 32×32. It is possible to note that the increase
of the kernel size increases the average utilization of the
PEs as well, which in turn helps to enhance performance. It
also demonstrates that the initial configuration time, which is
dominant for small kernel size is well amortized for larger
kernels, further contributing to improve performance.

Figure 11 presents the total execution time (clock cycles)
of seven compute-intensive kernels. The execution time is

11

Table VII: Performance comparison between the register allocation approach and the state of the art approaches
Performance (cycles) Energy(µJ)

Kernels #
loops

#
condi
tionals

CGRA CPU C64
DSP

CGRA CPU C64
DSP

reg
based

SLS
based

partial
pred

full
pred

reg
based

SLS
based

partial
pred

full
pred

cordic 1 2 328 408 396 542 513 286 0.001 0.002 0.002 0.002 0.004 0.002
sobel 4 11 179617 262282 188253 245583 454028 669794 0.736 1.102 1 1.058 3.531 5.656
gcd 1 1 55312 58596 73747 92852 67545 92184 0.227 0.246 0.392 0.4 0.525 0.778
sad 2 1 15962 16824 16573 28776 62932 252193 0.065 0.071 0.088 0.124 0.489 2.13
deblocking 5 7 472258 495081 518722 727243 834683 1310220 1.936 2.079 2.754 3.134 6.492 11.064
manh-dist 1 1 6288 6826 6738 9522 15394 55317 0.026 0.029 0.036 0.041 0.12 0.467

max gain 1.46× 1.33× 1.8× 3.94× 15.8× 2× 2× 2× 7.52× 32.77×

2X2 4X4 8X8 16X16 32X32

0

10

20

30

40

50

60

70

Speedup

utilization percentage

Percentage of

configuration time wrt

execution time

Figure 10: Performance of IPA executing matrix multiplication
of different size

normalized with respect to that of or1k processor, where
the kernels are compiled with -O3 optimization flag. The
IPA outperforms the CPU by up to 20.3×, with an average
speed-up of 9.7×. A quantitative performance comparison
with respect to the CPU is presented in Table VIII. The table
presents the configuration and execution cycles in the IPA
for different kernels. It also presents the average utilization
of PEs over the total execution period and total number of
instructions executed in the IPA. The instruction count includes
the instructions that are replicated on all the active PEs for
keeping the PE in synch across conditionals and jumps. It
also includes NOPs that are used when some PEs are stalled
due to manipulation of index variables. However, during NOP
execution PEs are clock gated and do not consume dynamic
power. The IPA achieves a maximum of 18× and an average
of 9.23× energy gain over the CPU.

To establish the impact of the memory bandwidth over
performance and energy efficiency, we vary the number of
LSUs in the PE array from 4 to 16 and the number of
TCDM banks from 4 to 32. The number of LSUs defines
the available bandwidth from the TCDM to the array, while
increasing the number of TCDM banks reduces the banking
conflict probability, improving performance. To perform the
exploration without any bias towards configurations, the in-
nermost loops of the kernels are unrolled to get a maximum
of 16 load-store operations in one cycle (as the highest number
of LSUs considered is 16, in the exploration). In Figure 11,
each configuration is represented as a 2-dimensional number,
where the first one represents the number of LSUs, and the
second one represents the number of TCDM banks.

Results show that, as opposed to tightly coupled clusters of
processors which require a banking factor of 2 (i.e. number
of TCDM banks is twice the number of cores) [47], IPA
performance is almost insensitive to the number of TCDM
banks, and a configuration with a banking factor of 0.5 is

sufficient to minimize the impact of contention on the shared
memory banks for most applications. Indeed, while the typical
processor execution requires several load/store operations for
variables exceeding the size of the register file, direct CDFG
mapping on the IPA does not add extra memory operations
except primary inputs and outputs, since all the temporary
variables are stored in the register file of the PEs. Moreover,
flexible point-to-point connections within the array allow to
efficiently exchange data among PEs, further reducing the
pressure on the TCDM. This concept is well explained in
Figure 4 and Figure 1, which show the typical mapping of
an application on the IPA.

2) Energy Efficiency: Figure 12 shows the average break-
down of power consumption for different configurations of the
IPA. As expected, the PE array is the most dominant power
consumer for all the configurations. The configurations with
4 TCDM banks achieve the best power advantages in each
group, since increasing the number of TCDM banks increases
the complexity of the interconnect, causing timing pressure on
the array, which increases the sizing of the cells, hence power
consumption.

Figure 13 shows the average energy efficiency (MOPS/mW)
for different configurations. Million Operations Per Second
(MOPS) only considers the active PEs during execution, since
a PE may be idle due to TCDM bank access conflicts,
consecutive NOPs, or not mapped (not used in the application
execution). Executions with high number of active PEs/cycle
achieve large MOPS. As depicted in Figure 13, for different
number of LSUs in the PE array, the configuration with
4 TCDM banks achieves the best energy efficiency, since
this is the least number of banks in each configuration, it
causes lowest power consumption. At the same time, the active
number of PEs/cycle does not get significantly impacted due
to the least memory access policy of the compilation. As a
result, the best efficiency is achieved at 2306 MOPS/mW for
matrix multiplication, in a configuration with 8 LSUs and 4
TCDM banks. The minimum energy efficiency is achieved at
1112 MOPS/mW for separable filter in a configuration with 4
LSUs and 16 TCDM banks.

To investigate the power gain in the fine-grained clock
gating we present the energy consumption of the clock gated
IPA and the non clock gated IPA in Table VIII. In an average,
the clock gated design consumes an average of 2× less power
compared to that of the non clock gated design. Due to the
regular architecture of the PE array, fine grained power man-
agement is much more suitable to implement than a processor.
Moreover, thanks to the efficient execution of CDFG on the

12

Table VIII: Overall instructions executed and energy consumption in IPA vs CPU
Kernels FIR MatM (16×16) Convolution SepFilter NonSepFilter FFT DC Filter

IPA

Configuration cycles 71 88 88 90 98 87 145
Execution cycles 6071 11940 56241 827685 1852382 8076 4748
Total number
of instructions executed 44294 110946 531815 7349843 17486486 76310 28868

Active PEs/cycle (%) 46.1 58.5 59.2 55.5 59 59.7 39.5
Energy (µJ) 0.022 0.043 0.202 2.98 6.669 0.032 0.017
Energy (µJ) in
non-clock-gated IPA 0.047 0.077 0.479 7.152 11.704 0.063 0.045

CPU Execution cycles 37677 96256 616805 5982730 9084101 164480 50085
Energy (µJ) 0.132 0.337 2.159 20.94 31.794 0.576 0.175
Speed-up 6.21x 8.06x 10.97x 7.23x 4.9x 20.3x 10.55x
Energy-gain 6x 7.84x 10.69x 7.03x 4.77x 18x 10.29x

0

0.05

0.1

0.15

0.2

0.25

FIR MatM Convolution SepFilter NonSepFilter FFT DC Filter

C
y
cl

es
 n

o
rm

al
iz

ed
 t

o
 c

p
u

p
er

fo
rm

an
ce

[4][4] [4][8] [4][16] [4][32] [8][4] [8][8] [8][16] [8][32] [16][4] [16][8] [16][16] [16][32]

Figure 11: Latency performance in different configurations ([#LSUs][#TCDM Banks])

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
g
 P

o
w

er
 c

o
n

su
m

p
ti

o
n

 i
n

m
W

PE Array Interconnect TCDM

Figure 12: Average power breakdown in different configura-
tions ([#LSUs][#TCDM Banks])

array, the smaller energy required to execute an instruction in
the IPA with respect to a CPU (5.6E-07 µJ vs 3.49E-06 µJ),
and the effectiveness of the fine-grained power management
the IPA outperforms the or1k CPU’s energy efficiency by up
to 18× (Table VIII). The energy per instruction execution in
the IPA is much less than that of the CPU due to its simple
instruction set architecture. Also, the lower number of memory
operations executed in the IPA helps reducing on the average
energy consumption.

D. Comparison with low-power CGRA architectures

Table IX shows a comparison with low-power existing
CGRAs. For some papers, energy efficiency figures could not
be extracted, so ’NA’ is put in the corresponding cell. The
energy efficiency figures of the other architectures are provided
both in the original manufacturing technology node and scaled

3PEs perform 8-bit operations, hence energy efficiency is normalized
to equivalent 32-bit operations, does not include the power of controlling
processor.

Figure 13: Average energy efficiency for different configura-
tions ([#LSUs][#TCDM Banks])

to the 28nm technology, according to the power scaling
factor C ∗ V 2. C and V represent the effective capacitance
(approximated with the channel length of the technology)
and the supply voltage of the designs, normalized to the
nominal parameters of the 28nm technology node. It should be
noted that this simplified scaling factor penalizes our design,
since deep-submicron technologies such as 28nm, where the
load capacitance of gates is typically dominated by wires
require much more buffering than mature technology nodes,
which penalizes energy efficiency. Nevertheless, IPA provides
leading-edge energy efficiency, surpassing by more than one
order of magnitude other architectures (ADRES, Morphosys,
XPP, AsAP) featuring a C based mapping flow. The driving
factors for this gain are (a) architectural simplicity with
less complex interconnect network, (b) low power instruction
processing, (c) lowest possible number of memory operations
in application execution, (d) fine grained power management
architecture, described in previous sections. Compared to ultra-
low power targets (that fit in a power envelope of 3mW), the
IPA presents a much better energy efficiency over [33] and [36]
for which information could be extracted from the papers. One

13

Table IX: Comparison with the state of the art low power targets

Ref Arch Maps Source
Access
local

memory

Tech
[nm]

Supply
voltage

Area
[mm2]

Power
[mW]

Freq
[MHz]

Area
eff

[MOPS

/mm2]

Energy
eff

[MOPS

/mW]

Energy
eff

scaled
to 28nm

tech
[MOPS/mW]

Perf
[MOPS]

High performance targets
[6] Morphosys DFG ANSI C PE 150 1.8V 256 4000 450 113 7.20 150 28800
[6] Imagine DFG NA PE 150 1.5V 144 4000 296 165 12.40 150 23700

[54] RAW CDFG ANSI C PE 150 1.8V 256 2288 100 NA NA NA NA
[50] TRIPS DFG NA PE 130 1.0V 336 35868 366 NA NA NA NA
[6] ReMAP CDFG NA PE 180 1.62V 8.28 312 200 386 10.30 173 3200

Low power targets
[25] TCPA CDFG Customized VLIW 90 1.0V 15 12.48 200 106 112.00 360 1587
[46] Layers CDFG NA PE 65 1.0 0.35 44.45 488 2786 21.94 72 975
[29] SmartCell CDFG Customized PE 130 1.0V 8.2 160 100 13.04 37.8 176 6048
[17] PipeRench DFG Customized PE 180 1.8V 55.5 675 120 NA NA NA NA
[41] SYSCORE CDFG NA PE 90 1.0V 5.73 18.5 100 NA NA NA NA
[2] ADRES DFG ANSI C VLIW 90 1.0V 15 80 100 94 17.51 56 1409
[3] XPP CDFG ANSI C PE 90 1.0V 42 93 150 310 10.00 32 13000

[56] AsAP CDFG ANSI C PE 180 1.8V 23.76 84 116 40 11.00 229 942
[49] MUCCRA-3 DFG Customized VLIW 65 1.2V 8.82 11 41.4 NA NA NA NA

Ultra-low power targets
[33] Lopes et al DFG NA PE 90 1.0V 0.45 3.47 100 222 28.8 92.6 100
[36] CMA DFG Customized µC 65 0.5V 25 1.6 85 33 3186 3430 374
[14] SIMD-CGRA DFG ANSI C PE 65 0.9 0.59 NA 1 NA NA NA NA
[23] ULP-SRP DFG ANSI C VLIW 40 0.5V NA 0.21 7 NA NA NA NA
This

paper IPA CDFG ANSI C PE 28 0.6V 0.25 0.49 100 3036 1617 1617 759

distinguishing characteristic of the proposed accelerator is the
flexible execution model capable of implementing CDFG on
the array without the need of a host processor, coupled with
a fully automated mapping flow that starts from a plain ANSI
C description of the application. Moreover, the memory archi-
tecture, based on a shared multi-banked TCDM enables easy
integration within ultra-low-power tightly coupled clusters
of processors, while fine-grained power management allows
improving energy efficiency by up to 2×. The average power
consumption on the IPA is 0.49mW, which is compatible with
the ultra-low power target.

VI. CONCLUSION

This work presents an ultra-low power coarse grained
reconfigurable array accelerator for near-sensor processing.
The proposed Integrated Programmable-Array (IPA) is a 2-
D array of NxN processing elements (a 4x4 configuration
is used in this paper), and leverages a multi-banked tightly
coupled data memory for data storage, to ease the integration
in clustered multi-core architectures. We present a compilation
flow targeting the mapping of both control and data flow
portions of kernels onto the array of processing elements,
aimed at reducing the pressure on the shared data memory,
along with an architectural exploration of the memory ar-
chitecture parameters. The results of the exploration show
that a configuration of the IPA with 8 load-store units and 4
TCDM banks achieves the optimal performance/energy trade-
off featuring an average speed-up of 9.7× (max 20.3×, min
4.9×) compared to a general-purpose processor. With respect
to state of the art partial and full predication techniques, the
proposed compilation flow improves performance by 1.54×
on average (min 1.35×, max 2×) and energy efficiency by

1.71× on average (min 1.44×, max 2×). Thanks to the opti-
mized architecture and mapping flow, the proposed accelerator
achieves an average energy efficiency of 1617 MOPS/mW over
a wide range of sensor signal processing kernels, surpassing
other CGRA architectures featuring a C based mapping flow
by more than one order of magnitude.

ACKNOWLEDGEMENTS

This work was funded by the ERC MultiTherman Project
(ERC-AdG-291125), and by the OPRECOMP Project funded
from the European Unions Horizon 2020 Research and Innova-
tion Programme under grant agreement No. 732631. We also
thank STMicroelectronics for granting access to the FDSOI
28nm technology libraries.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[2] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev. Archi-
tectural exploration of the adres coarse-grained reconfigurable array.
In Proceedings of the 3rd International Conference on Reconfigurable
Computing: Architectures, Tools and Applications, ARC’07, pages 1–13,
Berlin, Heidelberg, 2007. Springer-Verlag.

[3] F. Campi, R. König, M. Dreschmann, M. Neukirchner, D. Picard,
M. Jüttner, E. Schler, A. Deledda, D. Rossi, A. Pasini, M. Hübner,
J. Becker, and R. Guerrieri. RTL-to-layout implementation of an
embedded coarse grained architecture for dynamically reconfigurable
computing in systems-on-chip. In 2009 International Symposium on
System-on-Chip, pages 110–113, Oct 2009.

[4] L. Chen and T. Mitra. Graph minor approach for application mapping
on cgras. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 7(3):21, 2014.

[5] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman.
Charm: A composable heterogeneous accelerator-rich microprocessor.
In Proceedings of the 2012 ACM/IEEE international symposium on Low
power electronics and design, pages 379–384. ACM, 2012.

14

[6] P. Dai, X. Wang, X. Zhang, Q. Zhao, Y. Zhou, and Y. Sun. A high power
efficiency reconfigurable processor for multimedia processing. In 2009
IEEE 8th International Conference on ASIC, pages 67–70, Oct 2009.

[7] S. Das, K. J. M. Martin, P. Coussy, D. Rossi, and L. Benini. Ef-
ficient mapping of CDFG onto coarse-grained reconfigurable array
architectures. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 127–132, Jan 2017.

[8] S. Das, T. Peyret, K. Martin, G. Corre, M. Thevenin, and P. Coussy.
A scalable design approach to efficiently map applications on CGRAs.
In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 655–660, July 2016.

[9] S. Das, D. Rossi, K. Martin, P. Coussy, and L. Benini. A 142 mops/mw
integrated programmable array accelerator for smart visual processing.
In 2017 IEEE International Symposium of Circuits and Systems (ISCAS),
page Accepted, 2017.

[10] B. De Sutter, P. Raghavan, and A. Lambrechts. Coarse-grained recon-
figurable array architectures. In S. S. Bhattacharyya, E. F. Deprettere,
R. Leupers, and J. Takala, editors, Handbook of Signal Processing
Systems, pages 449–484. Springer US, 2010.

[11] M. Dehyadegari, A. Marongiu, M. R. Kakoee, S. Mohammadi, N. Yaz-
dani, and L. Benini. Architecture support for tightly-coupled multi-core
clusters with shared-memory hw accelerators. IEEE Transactions on
Computers, 64(8):2132–2144, 2015.

[12] G. Donohoe. Reconfigurable data path processor, Apr. 19 2005. US
Patent 6,883,084.

[13] G. W. Donohoe, D. M. Buehler, K. J. Hass, W. Walker, and P.-S.
Yeh. Field programmable processor array: Reconfigurable computing
for space. In 2007 IEEE Aerospace Conference, pages 1–6. IEEE, 2007.

[14] L. Duch, S. Basu, R. Braojos, G. Ansaloni, L. Pozzi, and D. Atienza.
Heal-wear: An ultra-low power heterogeneous system for bio-signal
analysis. IEEE Transactions on Circuits and Systems I: Regular Papers,
64(9):2448–2461, 2017.

[15] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini. Near-Threshold RISC-V
Core With DSP Extensions for Scalable IoT Endpoint Devices. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, PP(99):1–
14, 2017.

[16] M. Gautschi, A. Traber, A. Pullini, L. Benini, M. Scandale, A. Di Fed-
erico, M. Beretta, and G. Agosta. Tailoring instruction-set extensions for
an ultra-low power tightly-coupled cluster of openrisc cores. In 2015
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), pages 25–30, Oct 2015.

[17] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor. Piperench: A reconfigurable architecture and compiler.
Computer, 33(4):70–77, 2000.

[18] M. Hamzeh, A. Shrivastava, and S. Vrudhula. Regimap: register-
aware application mapping on coarse-grained reconfigurable architec-
tures (cgras). In Proceedings of the 50th Annual Design Automation
Conference, page 18. ACM, 2013.

[19] K. Han, J. Ahn, and K. Choi. Power-efficient predication techniques
for acceleration of control flow execution on cgra. ACM Trans. Archit.
Code Optim., 10(2):8:1–8:25, May 2013.

[20] K. Han, J. K. Paek, and K. Choi. Acceleration of control flow on
cgra using advanced predicated execution. In Field-Programmable
Technology (FPT), 2010 International Conference on, pages 429–432,
Dec 2010.

[21] K. Han, S. Park, and K. Choi. State-based full predication for low power
coarse-grained reconfigurable architecture. In 2012 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1367–1372, March
2012.

[22] T. Instruments. Tms320c64x/c64x+ dsp cpu and instruction set reference
guide. Texas Instruments, User manual SPRU732C, 2005.

[23] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim. Ulp-
srp: Ultra low-power samsung reconfigurable processor for biomedical
applications. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 7(3):22, 2014.

[24] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi. Resource sharing
and pipelining in coarse-grained reconfigurable architecture for domain-
specific optimization. In Design, Automation and Test in Europe, pages
12–17. IEEE, 2005.

[25] D. Kissler, A. Strawetz, F. Hannig, and J. Teich. Power-efficient
reconfiguration control in coarse-grained dynamically reconfigurable
architectures. Journal of Low Power Electronics, 5(1):96–105, 2009.

[26] D. Lampret, C.-M. Chen, M. Mlinar, J. Rydberg, M. Ziv-Av,
C. Ziomkowski, G. McGary, B. Gardner, R. Mathur, and M. Bolado.
Openrisc 1000 architecture manual. Description of assembler mnemon-
ics and other for OR1200, 2003.

[27] J. Lee, S. Seo, H. Lee, and H. U. Sim. Flattening-based mapping
of imperfect loop nests for cgras? In 2014 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 1–10, Oct 2014.

[28] G. Levi. A note on the derivation of maximal common subgraphs of
two directed or undirected graphs. Calcolo, 9(4):341–352, 1973.

[29] C. Liang and X. Huang. Smartcell: An energy efficient coarse-grained
reconfigurable architecture for stream-based applications. EURASIP
Journal on Embedded Systems, 2009(1):518659, 2009.

[30] C. Liu, H. Ng, and H. K. So. Automatic nested loop acceleration on
fpgas using soft CGRA overlay. CoRR, abs/1509.00042, 2015.

[31] D. Liu, S. Yin, L. Liu, and S. Wei. Polyhedral model based mapping
optimization of loop nests for cgras. In Design Automation Conference
(DAC), 2013 50th ACM/EDAC/IEEE, pages 1–8. IEEE, 2013.

[32] L. Liu, J. Wang, J. Zhu, C. Deng, S. Yin, and S. Wei. Tlia: Efficient
reconfigurable architecture for control-intensive kernels with triggered-
long-instructions.

[33] J. Lopes, D. Sousa, and J. C. Ferreira. Evaluation of cgra architecture for
real-time processing of biological signals on wearable devices. In 2017
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pages 1–7, Dec 2017.

[34] K. T. Madhu, S. Das, N. S., S. K. Nandy, and R. Narayan. Com-
piling HPC Kernels for the REDEFINE CGRA. In 2015 IEEE 17th
International Conference on High Performance Computing and Com-
munications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems, pages 405–410, Aug 2015.

[35] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings.
A reconfigurable arithmetic array for multimedia applications. In
Proceedings of the 1999 ACM/SIGDA seventh international symposium
on Field programmable gate arrays, pages 135–143. ACM, 1999.

[36] K. Masuyama, Y. Fujita, H. Okuhara, and H. Amano. A 297mops/0.4
mw ultra low power coarse-grained reconfigurable accelerator CMA-
SOTB-2. In 2015 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), pages 1–6. IEEE, 2015.

[37] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. Dresc:
A retargetable compiler for coarse-grained reconfigurable architectures.
In Field-Programmable Technology, 2002.(FPT). Proceedings. 2002
IEEE International Conference on, pages 166–173. IEEE, 2002.

[38] E. Mirsky, A. DeHon, et al. Matrix: a reconfigurable computing
architecture with configurable instruction distribution and deployable
resources. In FCCM, volume 96, pages 17–19, 1996.

[39] N. Ozaki, Y. Yoshihiro, Y. Saito, D. Ikebuchi, M. Kimura, H. Amano,
H. Nakamura, K. Usami, M. Namiki, and M. Kondo. Cool mega-
array: A highly energy efficient reconfigurable accelerator. In Field-
Programmable Technology (FPT), 2011 International Conference on,
pages 1–8, Dec 2011.

[40] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim. Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures. In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pages 166–176. ACM, 2008.

[41] K. Patel, S. McGettrick, and C. J. Bleakley. Syscore: A coarse grained
reconfigurable array architecture for low energy biosignal processing. In
Field-Programmable Custom Computing Machines (FCCM), 2011 IEEE
19th Annual International Symposium on, pages 109–112. IEEE, 2011.

[42] P. G. Paulin and J. P. Knight. Force-directed scheduling for the
behavioral synthesis of asics. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 8(6):661–679, 1989.

[43] T. Peyret, G. Corre, M. Thevenin, K. Martin, and P. Coussy. Efficient
application mapping on cgras based on backward simultaneous schedul-
ing/binding and dynamic graph transformations. In 2014 IEEE 25th
International Conference on Application-Specific Systems, Architectures
and Processors, pages 169–172. IEEE, 2014.

[44] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini. A fully-synthesizable
single-cycle interconnection network for shared-l1 processor clusters. In
2011 Design, Automation & Test in Europe, pages 1–6. IEEE, 2011.

[45] Z. E. Rakossy, A. Acosta-Aponte, T. G. Noll, G. Ascheid, R. Leupers,
and A. Chattopadhyay. Design and synthesis of reconfigurable control-
flow structures for cgra. In 2015 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), pages 1–8, Dec 2015.

[46] Z. E. Rákossy, D. Stengele, G. Ascheid, R. Leupers, and A. Chattopad-
hyay. Exploiting scalable cgra mapping of lu for energy efficiency using
the layers architecture. In Very Large Scale Integration (VLSI-SoC), 2015
IFIP/IEEE International Conference on, pages 337–342. IEEE, 2015.

[47] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak, A. Bartolini,
P. Flatresse, and L. Benini. A 60 GOPS/W, -1.8 V to 0.9 V body bias

15

ULP cluster in 28 nm UTBB fd-soi technology. Solid-State Electronics,
117:170 – 184, 2016.

[48] Y. Saito, T. Sano, M. Kato, V. Tunbunheng, Y. Yasuda, M. Kimura,
and H. Amano. Muccra-3: a low power dynamically reconfigurable
processor array. In Proceedings of the 2010 Asia and South Pacific
Design Automation Conference, pages 377–378. IEEE Press, 2010.

[49] Y. Saito, T. Sano, M. Kato, V. Tunbunheng, Y. Yasuda, M. Kimura,
and H. Amano. Muccra-3: a low power dynamically reconfigurable
processor array. In Proceedings of the 2010 Asia and South Pacific
Design Automation Conference, pages 377–378. IEEE Press, 2010.

[50] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore. Exploiting ilp, tlp, and dlp with
the polymorphous trips architecture. In ACM SIGARCH Computer
Architecture News, volume 31, pages 422–433. ACM, 2003.

[51] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M.
Chaves Filho. Morphosys: an integrated reconfigurable system for data-
parallel and computation-intensive applications. IEEE Transactions on
Computers, 49(5):465–481, May 2000.

[52] Y. Song and Y. Lin. Unroll-and-jam for imperfectly-nested loops in dsp
applications. In Proceedings of the 2000 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, CASES
’00, pages 148–156, New York, NY, USA, 2000. ACM.

[53] H. Su, Y. Fujita, and H. Amano. Body bias control for a coarse
grained reconfigurable accelerator implemented with silicon on thin
box technology. In 2014 24th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–6, Sept 2014.

[54] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, W. Lee, A. Saraf, N. Shnidman, V. Strumpen,
S. Amarasinghe, and A. Agarwal. A 16-issue multiple-program-counter
microprocessor with point-to-point scalar operand network. In Solid-
State Circuits Conference, 2003. Digest of Technical Papers. ISSCC.
2003 IEEE International, pages 170–171 vol.1, Feb 2003.

[55] S. Yin, P. Zhou, L. Liu, and S. Wei. Acceleration of nested conditionals
on cgras via trigger scheme. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design, pages 597–604. IEEE
Press, 2015.

[56] Z. Yu, M. J. Meeuwsen, R. W. Apperson, O. Sattari, M. Lai, J. W.
Webb, E. W. Work, D. Truong, T. Mohsenin, and B. M. Baas. AsAP:
An asynchronous array of simple processors. IEEE Journal of Solid-
State Circuits, 43(3):695–705, 2008.

