
ETH Library

XNOR Neural Engine: a Hardware
Accelerator IP for 21.6 fJ/op Binary
Neural Network Inference

Journal Article

Author(s):
Conti, Francesco; Schiavone, Pasquale D.; Benini, Luca 

Publication date:
2018-11

Permanent link:
https://doi.org/10.3929/ethz-b-000279119

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37(11), https://doi.org/10.1109/
TCAD.2018.2857019

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000279119
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


	
	
	
	
	
	
	

	
	
	
	
©	2018	IEEE.	Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	other	uses,	in	any	current	or	
future	media,	including	reprinting/republishing	this	material	for	advertising	or	promotional	purposes,	creating	new	collective	
works,	for	resale	or	redistribution	to	servers	or	lists,	or	reuse	of	any	copyrighted	component	of	this	work	in	other	works	

This	is	the	post	peer-review	accepted	manuscript	of:	
	
F.	Conti,	P.	D.	Schiavone	and	L.	Benini,	"	XNOR	Neural	Engine:	A	Hardware	Accelerator	IP	for	21.6-fJ/op	Binary	
Neural	Network	Inference",	in	IEEE	Transactions	on	Computer-Aided	Design	of	Integrated	Circuits	and	Systems,	
vol.	37,	no.	11,	pp.	2940-2951,	Nov.	2018.	doi:	10.1109/TCAD.2018.2857019	
	
The	published	version	is	available	online	at:	https://ieeexplore.ieee.org/abstract/document/8412533	
	



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

XNOR Neural Engine: a Hardware Accelerator IP
for 21.6 fJ/op Binary Neural Network Inference

Francesco Conti, Member, IEEE, Pasquale Davide Schiavone, Student Member, IEEE,
and Luca Benini, Fellow, IEEE

Abstract—Binary Neural Networks (BNNs) are promising to
deliver accuracy comparable to conventional deep neural net-
works at a fraction of the cost in terms of memory and energy.
In this paper, we introduce the XNOR Neural Engine (XNE),
a fully digital configurable hardware accelerator IP for BNNs,
integrated within a microcontroller unit (MCU) equipped with
an autonomous I/O subsystem and hybrid SRAM / standard
cell memory. The XNE is able to fully compute convolutional
and dense layers in autonomy or in cooperation with the core
in the MCU to realize more complex behaviors. We show post-
synthesis results in 65nm and 22nm technology for the XNE IP
and post-layout results in 22nm for the full MCU indicating that
this system can drop the energy cost per binary operation to
21.6fJ per operation at 0.4V, and at the same time is flexible and
performant enough to execute state-of-the-art BNN topologies
such as ResNet-34 in less than 2.2mJ per frame at 8.9 fps.

Index Terms—Binary Neural Networks, Hardware Accelerator,
Microcontroller System

I. INTRODUCTION

TODAY, deep learning enables specialized cognition-
inspired inference from collected data for a variety of

different tasks such as computer vision [1], voice recogni-
tion [2], big data analytics [3], financial forecasts [4]. However,
this technology could unleash an even higher impact on
ordinary people’s life if it was not limited by the constraints of
data center computing, such as high latency and dependency
on radio communications, with its privacy and dependabil-
ity issues and hidden memory costs. Low-power, embedded
deep learning could potentially enable vastly more intelligent
implantable biomedical devices [5], completely autonomous
nano-vehicles [6] for surveillance and search&rescue, cheap
controllers that can be “forgotten” in environments such as
buildings [7], roads, and agricultural fields. As a consequence,
there has been significant interest in the deployment of deep
inference applications on microcontroller-scale devices [8] and
internet-of-things endnodes [9]. This essentially requires to fit
the tens of billions of operations of a net such as ResNet-
18 [10] or Inception-v3/v4 [1] [11] on devices with a power
budget of a few mW costing less than 1$ per device.

To meet these constraints, researchers have focused on
reducing i) the number of elementary operations, with smaller
DNNs [12] and techniques to prune unnecessary parts of the
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network [13]; ii) the cost of an elementary compute operation,
by realizing more efficient software [8] and hardware [14]
and lowering the complexity of elementary operations [15]
[16]; and iii) the cost of data movement, again by reducing
the size of DNNs and taking advantage of locality whenever
possible [17].

An emerging trend to tackle ii) and iii) is that of fully
binarizing both weights and activations in Binary Neural
Networks (BNNs) [18] [19]. Their classification capabilities,
together with the greatly reduced computational workload,
represent a promising opportunity for integration in devices
“at the edge”, and even directly inside sensors [20]. Dropping
the precision of weights and activations to a single bit enables
the usage of simple XNOR operations in place of full-blown
products, and greatly reduces the memory footprint of deep
learning algorithms.

Software-based implementations of BNNs require special
instructions for the popcount operation to be efficient and -
more significantly - they require temporary storage of non-
binary partial results either in the register file (with strong
constraints on the final performance) or in memory (partially
removing the advantage of binarization). In this paper, we
contribute the design of the XNOR Neural Engine (XNE),
a hardware accelerator IP for BNNs that is optimized for
integration in a tiny microcontroller (MCU) system for edge
computing applications. While being very small, it allows to
overcome the limitations of SW-based BNNs and execute fast
binarized convolutional and dense neural network layers while
storing all partial results in its internal optimized buffer. We
show that integrating the XNE within a MCU system leads to
a flexible and usable accelerated system, which can reach peak
efficiency of 21.6 fJ per operation but at the same time can
be effectively used in real-world applications as it supports
commonplace state-of-the-art BNNs such as ResNet-18 and
ResNet-34 at reasonable frame rates (>8 fps) in less than
2.2 mJ per frame – a third of a millionth of the energy
stored in an AAA battery. Finally, we show that even if
binarization reduces the memory footprint and pressure with
respect to standard DNNs, memory accesses and data transfers
still constitute a significant part of the energy expense in the
execution of real-world BNNs – calling for more research at
the algorithmic, architectural and technological level to further
reduce this overhead.

II. RELATED WORKS

The success of Deep Learning and, in particular convolu-
tional neural networks, has triggered an exceptional amount of
interest in hardware architects and designers who have tried
to devise the most efficient way to deploy this powerful class
of algorithms on embedded computing platforms. Given the
number of designs that have been published for CNNs, we
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Dataset / Network Top-1 Acc. CONV / FC weights

MNIST / fully connected BNN [18] 99.04 % - / 1.19MB

SVHN / fully connected BNN [18] 97.47 % 139.7 kB / 641.3 kB
CIFAR-10 / fully connected BNN [18] 89.95 % 558.4 kB / 1.13MB

ImageNet / ResNet-18 XNOR-Net [19] 51.2 % 1.31MB / 2.99MB

ImageNet / ResNet-18 ABC-Net M=3,N=3 [21] 61.0 % 3.93MB / 8.97MB

ImageNet / ResNet-18 ABC-Net M=5,N=5 [21] 65.0 % 6.55MB / 14.95MB

ImageNet / ResNet-34 ABC-Net M=1,N=1 [21] 52.4 % 2.51MB / 2.99MB

ImageNet / ResNet-34 ABC-Net M=3,N=3 [21] 66.7 % 7.54MB / 8.97MB

ImageNet / ResNet-34 ABC-Net M=5,N=5 [21] 68.4 % 12.57MB / 14.95MB

TABLE I: BNNs proposed in literature, along with the related top-1 accuracy and weight memory footprint.

will focus on a more direct comparison with accelerators that
explicitly target a tradeoff between accuracy and energy or per-
formance, keeping in mind that state-of-the-art accelerators for
“conventional” fixed-point accelerators such as Orlando [22]
are able to reach energy efficiencies in the order of a few
Top/s/W.

The approaches used to reduce energy consumption in
CNNs can be broadly categorized in two categories, sometimes
applied simultaneously. The first approach is to prune some
calculations to save time and energy, while performing the rest
of the computations in “full precision”. One of the simplest
techniques is that employed by Envision [23] by applying
Huffman compression to filters and activations, therefore sav-
ing a significant amount of energy in the transfer of data on-
and off-chip. A similar technique, enhanced with learning-
based pruning of “unused” weights, has been also proposed
by Han et al. [13] and employed in the EIE [14] architecture.
NullHop [24] exploits activation sparsity to reduce the number
of performed operations by a factor of 5-10× (for example, up
to 84% of input pixels are nil in several layers of ResNet-50).

The other popular approach is to drop the arithmetic preci-
sion of weights or activations, to minimize the energy spent
in their computation. Up to now, this approach has proven
to be very popular on the algorithmic side: DoReFaNet [15],
BinaryConnect [25], BinaryNet [18] and XNOR-Net [19] have
been proposed as techniques to progressively reduce the preci-
sion of weights and activations by quantizing it to less than 8
bits or outright binarizing it, at the cost of retraining and loss
of accuracy. More recently, methods such as ABC-Net [21]
and Incremental Network Quantization [26] have demonstrated
that low-precision neural networks can be trained to an accu-
racy decreased < 5% with respect to the full precision one.
Table I lists some of the BNNs proposed in the state-of-the-art,
along with their accuracy and memory footprint. Naturally, this
approach lends itself well to being implemented in hardware.
The Fulmine SoC [9] includes a vectorial hardware accelerator
capable of scaling the precision of weights from 16 bits
down to 8 or 4 bits, gaining increased execution speed with
similar power consumption. Envision [23] goes much further:
it employs dynamic voltage, frequency and accuracy scaling to
tune the arithmetic precision of its computation, reaching up to
10 Top/s/W. YodaNN [27] drops the precision of weights to a
single bit by targeting binary-weight networks (activations use
“full” 12-bit precision), and can reach up to 61 Top/s/W using
standard cell memories to tune down the operating voltage.

To reach the highest possible efficiency, binary and ternary
neural networks are perhaps most promising as they minimize
the energy spent for each elementary operation, and also the

amount of data transferred to/from memory, which is one of
the biggest contributors to the “real” energy consumption. One
of the first architectures to exploit these peculiarities has been
FINN [28], which is able to reach more than 200 Gop/s/W
on a Xilinx FPGA, vastly outperforming the state-of-the-art
for FPGA-based deep inference accelerators. Recent efforts
for the deployment of binary neural networks on silicon,
such as BRein [29], XNOR-POP [30], Conv-RAM [31] and
Khwa et al. [32] have mainly targeted in-memory computing,
with energy efficiencies in the range 20-55 Top/s/W. However,
the advantage of this methodology is not yet clear, as more
“traditional” ASICs such as UNPU [33] and XNORBIN [34]
can reach a similar level of efficiency of 50-100 Top/s/W.
Finally, mixed-signal approaches [35] can reach 10× higher
efficiency, with much steeper non-recurrent design and verifi-
cation costs.

Our work in this paper tries to answer a related, but distinct
question with respect to the presented state-of-the-art: how to
design a BNN accelerator tightly integrated within a microcon-
troller (so that SW and HW can efficiently cooperate) – and
how to make so while taking into account the system level
effects related to memory which inevitably impact real-world
BNN topologies such as ResNet and Inception. Therefore, we
propose a design based on the tightly-coupled shared memory
paradigm [36] and evaluate its integration in a simple, yet
powerful, microcontroller system.

III. ARCHITECTURE

A. Binary Neural Networks primer

In binary neural networks, inference can be mapped to a
sequence of convolutional and densely connected layers of the
form

y(kout) = bin±1

(
bkout +

∑
kin

(
W(kout, kin)⊗ x(kin)

))
(1)

where W, x, y are the binarized (∈ ±1) weight, input and out-
put tensors respectively; b is a real-valued bias; ⊗ is the cross-
correlation operation for convolutional layers and a normal
product for densely connected ones. bin±1(·) combines batch
normalization for inference with binarization of the integer-
valued output of the sum in Equation 2:

bin±1(t) = sign

(
γ
t− µ
σ

+ β

)
(2)

where β, γ, µ, σ are the learned parameters of batch normal-
ization.
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for k_out in range(0, N_out):
for k_in in range(0, N_in):
for i in range(0, h_out):
for j in range(0, w_out):
y[k_out,i,j] = 0
for u_i in range(0, fs):
for u_j in range(0, fs):
y[k_out,i,j] += W[k_out,k_in,u_i,u_j]

* x[k_in,i+u_i,j+u_j]

Listing 1: Baseline loops of a BNN convolutional layer1.

(i.e., counting the number of bits set to 1):

y(kout ) = binarize0,1
©≠́’

kin

⇣
W(kout ,kin ) ⌦ x(kin )

⌘™Æ̈ (4)

3.2 XNE operating principles
The XNOR Neural Engine we propose in this work has been

designed to be able to execute both binarized convolutional and
binarized dense layers. Convolutional layers consist of six nested
loops on output feature maps, input feature maps, two output spatial
dimensions, and two �lter spatial dimensions; Listing 1 shows a
naïve implementation of a convolutional layer in Python pseudo-
code. Densely connected layers can be considered as a limit case
of the convolutional layer for a 1 ⇥ 1 �lter on a single pixel in the
spatial dimensions, i.e. h_out=w_out=fs=1.

In modern topologies [10][11], deeper convolutional layers have
N_out,N_in>h_out,w_out; in other words, layers become “less convolu-
tional” and more similar to densely connected layers. This leads
towards choosing an architecture where pixel- or feature map-
level parallelism is favored over �lter-level parallelism (contrary
to designs based on sliding windows). This is particularly true for
BNNs, where energy e�ciency can be attained only by operating
on tens/hundreds of binary pixels in parallel – which cannot be
done with �lter-level parallelism on deeper layers.

A second fundamental consideration is that, since intermediate
values of the popcount operation are integer, it is highly preferable
to perform the operation of Equation 4 without storing them in
memory. In other words, the accelerator has to be weight- and
output-stationary [28] or input- and output- stationary. In the re-
mainder on this paper, we focus exclusively on the latter case,
although the XNE can arguably be used in both modes by swapping
the roles of weights and inputs.

We designed the XNE around a lean hardware engine focused
on the execution of the feature loops of Listing 1. We execute these
as hardwired inner loops, operating in principle on a �xed-sized
input tiles in a �xed number of cycles2. A design-time throughput
parameter (TP) is used to de�ne the size of each tile, which is also
the number of simultaneous XNOR operations the datapath can
execute per cycle; every TP cycles, the accelerator consumes one set
of TP input binary pixels and TP sets of TP binary weights to produce
one set of TP output pixels.

Listing 2 shows how the convolutional layer is reorganized by
dividing the two feature loops in an inner part (cycling on a tile of
1The * and += operators indicate XNOR and popcount-accumulation respectively.
2The XNE can actually be con�gured to operate on smaller tiles when it is necessary,
with a proportional decrease in loop latency.

for i in range(0, h_out):
for j in range(0, w_out):
for k_out_major in range(0, N_out/TP):

for k_out_minor in range(0, TP):
k_out = k_out_major*TP + k_out_minor
y[k_out,i,j] = 0

for u_i in range(0, fs):
for u_j in range(0, fs):
for k_in_major in range(0, N_in/TP):
for k_out_minor in range(0, TP):
for k_in_minor in range(0, TP):
k_out = k_out_major*TP + k_out_minor
k_in = k_in_major*TP + k_in_minor
y[k_out,i,j] += W[k_out,k_in,u_i,u_j]

* x[k_in,i+u_i,j+u_j]

Listing 2: Reordered DNN layer loops; the innermost loops
(highlighted in light blue) are hardwired in the XNE engine,
while the others can be implemented in the XNE microcode.
Remainder loops are left out for simplicity.
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Figure 1: XNOR Neural Engine overall architecture for
TP=128.

TP iterations) and an outer part (cycling on nif/TP or nof/TP tiles). If
nif and/or nof are not whole multiples of TP, “remainder” iterations
have to be executed; these are left out of the listing for the sake
of brevity. The innermost loops, which are shown highlighted in
blue, are hardwired in the engine datapath as previously introduced
and fully explained in Section 3.3.3, which details the datapath
micro-architecture. The outermost loops, instead, are implemented
by means of a tiny microcode processor embedded in the XNOR
Neural Engine, as detailed in Section 3.3.2.

3.3 Accelerator architecture
Figure 1 shows the overall architecture of the XNE. The controller,
which can be targeted in a memory-mapped fashion via a target port
using the AMBA APB protocol, is responsible of coordinating the
overall operation of the accelerator. It contains a latch-based register
�le, a central controller �nite-state machine (FSM), and a microcode
processor (further detailed in Section 3.3.2) that is responsible of
implementing the outer loops of Listing 2. The engine contains
the streaming datapath, which executes the inner loop operation

output feature maps loop
input feature maps loop

spatial rows loop

filter rows loop

spatial columns loop

filter columns loop

Listing 1: Baseline loops of a BNN convolutional layer1.

A more convenient representation of the BNN layer can be
obtained by mapping elements of value +1 to 1-valued bits
and those of value −1 to 0-valued bits, and moving the bias
inside the binarization function. Equation 2 can be reorganized
into

bin0,1(t) =

{
1 if t ≥ −κ/λ .

= τ, else 0 (when λ > 0)
1 if t ≤ −κ/λ .

= τ, else 0 (when λ < 0)
(3)

where λ
.
= γ/σ, κ .

= β + γ/σ(b − µ), and τ
.
= −κ/λ

is a threshold defined for convenience in Section III-C3.
Multiplications in Equation 1 can be replaced with XNOR
operations, and sums with popcounting (i.e., counting the
number of bits set to 1):

y(kout) = bin0,1

(∑
kin

(
W(kout, kin)⊗ x(kin)

))
(4)

B. XNE operating principles

The XNOR Neural Engine we propose in this work has been
designed to be able to execute both binarized convolutional
and binarized dense layers. Convolutional layers consist of six
nested loops on output feature maps, input feature maps, two
output spatial dimensions, and two filter spatial dimensions;
Listing 1 shows a naı̈ve implementation of a convolutional
layer in Python pseudo-code. Densely connected layers can
be considered as a limit case of the convolutional layer for
a 1 × 1 filter on a single pixel in the spatial dimensions, i.e.
h_out=w_out=fs=1.

In modern topologies [10] [11], deeper convolutional layers
have N_out,N_in>h_out,w_out; in other words, layers become
“less convolutional” and more similar to densely connected
layers. This leads towards choosing an architecture where
pixel- or feature map-level parallelism is favored over filter-
level parallelism (contrary to designs based on sliding win-
dows). This is particularly true for BNNs, where energy
efficiency can be attained only by operating on tens/hundreds
of binary pixels in parallel – which cannot be done with filter-
level parallelism on deeper layers.

A second fundamental consideration is that, since interme-
diate values of the popcount operation are integer, it is highly
preferable to perform the operation of Equation 4 without
storing them in memory. In other words, the accelerator has
to be weight- and output-stationary [28] or input- and output-
stationary. In the remainder on this paper, we focus exclusively
on the latter case, although the XNE can arguably be used in
both modes by swapping the roles of weights and inputs.

1The * and += operators indicate XNOR and popcount-accumulation
respectively.
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for k_out in range(0, N_out):
for k_in in range(0, N_in):
for i in range(0, h_out):
for j in range(0, w_out):
y[k_out,i,j] = 0
for u_i in range(0, fs):
for u_j in range(0, fs):
y[k_out,i,j] += W[k_out,k_in,u_i,u_j]

* x[k_in,i+u_i,j+u_j]

Listing 1: Baseline loops of a BNN convolutional layer1.

(i.e., counting the number of bits set to 1):

y(kout ) = binarize0,1
©≠́’

kin

⇣
W(kout ,kin ) ⌦ x(kin )

⌘™Æ̈ (4)

3.2 XNE operating principles
The XNOR Neural Engine we propose in this work has been

designed to be able to execute both binarized convolutional and
binarized dense layers. Convolutional layers consist of six nested
loops on output feature maps, input feature maps, two output spatial
dimensions, and two �lter spatial dimensions; Listing 1 shows a
naïve implementation of a convolutional layer in Python pseudo-
code. Densely connected layers can be considered as a limit case
of the convolutional layer for a 1 ⇥ 1 �lter on a single pixel in the
spatial dimensions, i.e. h_out=w_out=fs=1.

In modern topologies [10][11], deeper convolutional layers have
N_out,N_in>h_out,w_out; in other words, layers become “less convolu-
tional” and more similar to densely connected layers. This leads
towards choosing an architecture where pixel- or feature map-
level parallelism is favored over �lter-level parallelism (contrary
to designs based on sliding windows). This is particularly true for
BNNs, where energy e�ciency can be attained only by operating
on tens/hundreds of binary pixels in parallel – which cannot be
done with �lter-level parallelism on deeper layers.

A second fundamental consideration is that, since intermediate
values of the popcount operation are integer, it is highly preferable
to perform the operation of Equation 4 without storing them in
memory. In other words, the accelerator has to be weight- and
output-stationary [28] or input- and output- stationary. In the re-
mainder on this paper, we focus exclusively on the latter case,
although the XNE can arguably be used in both modes by swapping
the roles of weights and inputs.

We designed the XNE around a lean hardware engine focused
on the execution of the feature loops of Listing 1. We execute these
as hardwired inner loops, operating in principle on a �xed-sized
input tiles in a �xed number of cycles2. A design-time throughput
parameter (TP) is used to de�ne the size of each tile, which is also
the number of simultaneous XNOR operations the datapath can
execute per cycle; every TP cycles, the accelerator consumes one set
of TP input binary pixels and TP sets of TP binary weights to produce
one set of TP output pixels.

Listing 2 shows how the convolutional layer is reorganized by
dividing the two feature loops in an inner part (cycling on a tile of
1The * and += operators indicate XNOR and popcount-accumulation respectively.
2The XNE can actually be con�gured to operate on smaller tiles when it is necessary,
with a proportional decrease in loop latency.

for i in range(0, h_out):
for j in range(0, w_out):
for k_out_major in range(0, N_out/TP):

for k_out_minor in range(0, TP):
k_out = k_out_major*TP + k_out_minor
y[k_out,i,j] = 0

for u_i in range(0, fs):
for u_j in range(0, fs):
for k_in_major in range(0, N_in/TP):
for k_out_minor in range(0, TP):
for k_in_minor in range(0, TP):
k_out = k_out_major*TP + k_out_minor
k_in = k_in_major*TP + k_in_minor
y[k_out,i,j] += W[k_out,k_in,u_i,u_j]

* x[k_in,i+u_i,j+u_j]

Listing 2: Reordered DNN layer loops; the innermost loops
(highlighted in light blue) are hardwired in the XNE engine,
while the others can be implemented in the XNE microcode.
Remainder loops are left out for simplicity.
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TP iterations) and an outer part (cycling on nif/TP or nof/TP tiles). If
nif and/or nof are not whole multiples of TP, “remainder” iterations
have to be executed; these are left out of the listing for the sake
of brevity. The innermost loops, which are shown highlighted in
blue, are hardwired in the engine datapath as previously introduced
and fully explained in Section 3.3.3, which details the datapath
micro-architecture. The outermost loops, instead, are implemented
by means of a tiny microcode processor embedded in the XNOR
Neural Engine, as detailed in Section 3.3.2.

3.3 Accelerator architecture
Figure 1 shows the overall architecture of the XNE. The controller,
which can be targeted in a memory-mapped fashion via a target port
using the AMBA APB protocol, is responsible of coordinating the
overall operation of the accelerator. It contains a latch-based register
�le, a central controller �nite-state machine (FSM), and a microcode
processor (further detailed in Section 3.3.2) that is responsible of
implementing the outer loops of Listing 2. The engine contains
the streaming datapath, which executes the inner loop operation

output feature maps tile loop
input feature maps tile loop

filter rows loop
filter columns loop

input feature maps outer loop

output feature maps outer loop
spatial columns loop

spatial rows loop

Listing 2: Reordered DNN layer loops; the innermost loops
(highlighted in light blue) are hardwired in the XNE engine,
while the others can be implemented in the XNE microcode.
Remainder loops are left out for simplicity.

We designed the XNE around a lean hardware engine
focused on the execution of the feature loops of Listing 1. We
execute these as hardwired inner loops, operating in principle
on a fixed-sized input tiles in a fixed number of cycles2. A
design-time throughput parameter (TP) is used to define the
size of each tile, which is also the number of simultaneous
XNOR operations the datapath can execute per cycle; every
TP cycles, the accelerator consumes one set of TP input binary
pixels and TP sets of TP binary weights to produce one set of
TP output pixels.

Listing 2 shows how the convolutional layer is reorganized:
i) the loops are reordered, bringing spatial loops to the outer-
most position, feature-map loops to the innermost position and
filter loops in the middle; ii) the two feature loops are tiled and
therefore split in a tile loop (cycling on a tile of TP iterations)
and an outer loop (cycling on nif/TP or nof/TP tiles); ii) the
output feature maps outer loop is moved outwards with respect
to the filter loops. If nif and/or nof are not whole multiples of
TP, “remainder” iterations have to be executed; these are left
out of the listing for the sake of brevity. The innermost loops,
which are shown highlighted in blue, are hardwired in the
engine datapath as previously introduced and fully explained in
Section III-C3, which details the datapath micro-architecture.
The outermost loops, instead, are implemented by means of
a tiny microcode processor embedded in the XNOR Neural
Engine, as detailed in Section III-C2.

C. Accelerator architecture

Figure 1 shows the overall architecture of the XNE. The
controller, which can be targeted in a memory-mapped fashion
via a target port using the AMBA APB protocol, is responsible
of coordinating the overall operation of the accelerator. It
contains a latch-based register file, a central controller finite-
state machine (FSM), and a microcode processor (further
detailed in Section III-C2) that is responsible of implementing
the outer loops of Listing 2. The engine contains the streaming
datapath, which executes the inner loop operation of Listing 2.
It operates on streams that use a simple valid-ready handshake
similar to that used by AXI4-Stream [37]. Finally, the streamer
acts as a transactor between the streaming domain used by

2The XNE can actually be configured to operate on smaller tiles when it
is necessary, with a proportional decrease in loop latency.
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GET

FEAT

GET 

WEIGHT

GET 

WEIGHT

REG

FEAT

XNOR

ACCUM

XNOR

ACCUM

GET

FEAT

GET 

WEIGHT

GET 

WEIGHT

REG

FEAT

XNOR

ACCUM

XNOR

ACCUM

PUSH

CONV

UPDATE

IDX

XNOR

CLEAR

UPDATE

IDX

GET

FEAT

GET 

WEIGHT

REG

FEAT

UPDATE

IDX

PROG
CONTROLLER

REG FILE

UCODE

PROCESSOR

XNOR

POPCOUNT

FEAT

REGISTER

STREAMER

Fig. 2: Example of XNE operation divided in its main phases.

the internal engine and the memory system connected to the
accelerator. It is capable of transforming streams of width
multiple of 32 bits into byte-aligned accesses to the cluster
shared memory, and vice versa.

Figure 2 shows a high-level view of how the XNE op-
erates. The controller register file is first programmed with
the DNN layer parameters (e.g. nif, nof, fs, etc.) and with
the microcode byte code. The central controller FSM then
orchestrates the operation of the XNE, which is divided in
three phases: FEATURE LOADING, ACCUMULATION, THRESH-
OLDING/BINARIZATION. In the FEATURE LOADING phase, the
i-th feature TP-vector is loaded from the streamer, while at the
same time the microcode processor starts updating the indeces
used to access the next one. In the ACCUMULATION, for TP

iterations a new weight TP-vector is loaded and multiplied by
the feature vector, and the result is saved in an accumulator. In
the THRESHOLDING AND BINARIZATION phase, TP threshold
values are loaded from memory and used to perform the
binarization, then the binarized outputs are streamed out of the
accelerator. These three phases are repeated as many times as
necessary to implement the full loop of Listing 2.

1) Interface modules: The interface that the XNE exposes
follows the paradigm of shared-memory, tightly coupled Hard-
ware Processing Engines [36]. The XNE has a single APB
target port, which allows memory mapped control of the XNE
and access to its register file, and TP/32 master ports (each 32
bits wide) enabling access to the shared memory system via
word-aligned memory accesses. Finally, a single event wire is
used to signal the end of the XNE computation to the rest of
the system.

The controller module, which is the direct target of the slave
port, consists of the memory-mapped register file, a finite-
state machine used to implement the main XNE operation
phases as shown in Figure 2, and a microcode processor to
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of Listing 2. It operates on streams that use a simple valid-ready
handshake similar to that used by AXI4-Stream [37]. Finally, the
streamer acts as a transactor between the streaming domain used
by the internal engine and the memory system connected to the
accelerator. It is capable of transforming streams of width multiple
of 32 bits into byte-aligned accesses to the cluster shared memory,
and vice versa.

Figure 2 shows a high-level view of how the XNE operates. The
controller register �le is �rst programmed with the DNN layer pa-
rameters (e.g. nif, nof, fs, etc.) and with the microcode byte code.
The central controller FSM then orchestrates the operation of the
XNE, which is divided in three phases: ������� �������, �����
��������, ������������/������������. In the ������� �������
phase, the i-th feature TP-vector is loaded from the streamer, while
at the same time the microcode processor starts updating the in-
deces used to access the next one. In the ������������, for TP

iterations a new weight TP-vector is loaded and multiplied by the
feature vector, and the result is saved in an accumulator. In the
������������ ��� ������������ phase, TP threshold values are
loaded from memory and used to perform the binarization, then
the binarized outputs are streamed out of the accelerator. These
three phases are repeated as many times as necessary to implement
the full loop of Listing 2.

3.3.1 Interface modules. The interface that the XNE exposes
follows the paradigm of shared-memory, tightly coupled Hardware
Processing Engines [36]. The XNE has a single APB target port,
which allows memory mapped control of the XNE and access to
its register �le, and TP/32 master ports (each 32 bits wide) enabling
access to the shared memory system via word-aligned memory
accesses. Finally, a single event wire is used to signal the end of the
XNE computation to the rest of the system.

The controller module, which is the direct target of the slave
port, consists of the memory-mapped register �le, a �nite-state
machine used to implement the main XNE operation phases as
shown in Figure 2, and a microcode processor to implement the
loops in Listing 2 (as described in Section 3.3.2). The memory-
mapped register �le uses standard cell memories implemented with
latches to save area and power with respect to conventional �ip-
�ops. It includes two sets of registers: generic ones, used to host
parameters that are assumed to be static between the execution of
multiple jobs, and job-dependent ones, for parameters that normally
change at every new job (such as base pointers). The latter set of
registers is duplicated so that one new job can be o�oaded from
the controlling processor to the XNE even while it is still working
on the current one.

loop_stream_inner: # for k_in_major in range(0, N_in/TP)
- { op : add, out : W, in : TPsquare }
- { op : add, out : x, in : TP }

loop_filter_x: # for u_j in range(0, fs)
- { op : add, out : W, in : nif }
- { op : add, out : x, in : nif }

loop_filter_y: # for u_i in range(0, fs)
- { op : mv, out : x, in : x_major }
- { op : add, out : x, in : w_X_nif }

loop_stream_outer: # for k_out_major in range(0, N_out/TP)
- { op : add, out : W, in : TPsquare }
- { op : add, out : y, in : TP }

loop_spatial_x: # for j in range(0, w_out)
- { op : add, out : y, in : nof }
- { op : add, out : x_major, in : nif }
- { op : mv, out : W, in : zero }
- { op : mv, out : x, in : x_major }

loop_spatial_y: # for i in range(0, h_out)
- { op : add, out : y, in : nof }
- { op : add, out : x_major, in : nif }

Listing 3: Microcode speci�cation for the six loops shown in
Listing 2. W, x, y and x_major are mnemonics for the four R/W
registers; TPsquare, TP, nif, nof, w_X_nif, ow_X_nof, zero are mnemon-
ics for the R/O registers used in this implementation.

The streamer module contains the blocks necessary to move data
in and out of the accelerator through its master ports, and transform
the memory accesses into coherent streams to feed the accelerator
inner engine. To this end, each logical stream (one for weights and
thresholds, one for input activations, one for output activations) has
its own address generation block to start the appropriate memory
transaction. The streamer also includes realigners, to be able to
transform vectors that start from a non-word-aligned base into
well-formed streams, without assuming that the memory system
outside of the accelerator can natively support misaligned accesses.

3.3.2 Microcode processor. Instead of relying on an external
processor to compute the new o�sets for memory access, to iterate
the inner loop execution, and to maintain overall state, the XNE
can use a small internal microcode processor to implement the six
nested outer loops shown in Listing 2. The microcode processor
has four R/W registers, used to compute the i,j, k_out_major, u_i, u_j,
k_in_major indeces of Listing 2; and can access sixteen R/O registers.
The latter are used to store loop ranges and iteration values, com-
ing from the register �le directly or indirectly, i.e. computed from
register �le values using simple sequential multipliers to minimize
hardware overhead.

The microcode processor uses a custom tiny ISA with two “im-
perative” instructions, ADD (add/accumulate) and MV (move). They
use one of the R/W registers as output and one R/O or R/W register
as input; the ADD instruction implicitly uses the output register
as a second input. The microcrode ISA also includes one “declara-
tive” LOOP instruction, containing the iteration range of each loop
and the base address and number of micro-instructions associated
to it. The hardware implementation of this ISA is a single-stage
execution pipeline controlled by four simple �nite-state machines
operating in lockstep; they compute the address of the next micro-
instruction to execute, its index within the current loop, the next
iteration index of the current loop, and the next loop to be taken
into account.

W ← W + TP2

x ← x + TP

W ← W + nif
x ← x + nif

x ← xmajor

x ← x + width × nif

W ← W + TP2

y ← y + TP

y ← y + nof
xmajor ← xmajor + nif

W ← 0
x ← xmajor

y ← y + nof
xmajor ← xmajor+nif

Listing 3: Microcode specification for the six loops shown in
Listing 2. W, x, y and x_major are mnemonics for the four R/W
registers; TPsquare, TP, nif, nof, w_X_nif, ow_X_nof, zero are
mnemonics for the R/O registers used in this implementation.

implement the loops in Listing 2 (as described in Section
III-C2). The memory-mapped register file uses standard cell
memories implemented with latches to save area and power
with respect to conventional flip-flops. It includes two sets
of registers: generic ones, used to host parameters that are
assumed to be static between the execution of multiple jobs,
and job-dependent ones, for parameters that normally change
at every new job (such as base pointers). The latter set of
registers is duplicated so that one new job can be offloaded
from the controlling processor to the XNE even while it is
still working on the current one.

The streamer module contains the blocks necessary to move
data in and out of the accelerator through its master ports,
and transform the memory accesses into coherent streams to
feed the accelerator inner engine3. These are organized in
separate hardware modules, two sources for incoming streams
(one for weights/thresholds, one for input activations) and one
sink for the outgoing one (output activations). Both the two
sources and the sink include an own address generation block
to start the transaction in memory and a realigner to transform
vectors that start from a non-word-aligned base into well-
formed streams, without assuming that the memory system
outside of the accelerator can natively support misaligned
accesses. The memory accesses produced by the source and
sink modules are mixed by two static mux/demux blocks; the
controller FSM ensures that only one is active at any given
cycle and that no transactions are lost.

2) Microcode processor: Instead of relying on an external
processor to compute the new offsets for memory access, to
iterate the inner loop execution, and to maintain overall state,
the XNE can use a small internal microcode processor to
implement the six nested outer loops shown in Listing 2.
The microcode processor has four R/W registers, used to
compute the i,j, k_out_major, u_i, u_j, k_in_major indeces
of Listing 2; and can access sixteen R/O registers. The latter
are used to store loop ranges and iteration values, coming
from the register file directly or indirectly, i.e. computed

3 Controller and streamer IPs are available as open-
source at github.com/pulp-platform/hwpe-ctrl and
github.com/pulp-platform/hwpe-stream respectively.
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Fig. 3: XNE datapath for XNOR, popcounting, accumulation
and thresholding (TP=8).

from register file values using simple sequential multipliers
to minimize hardware overhead.

The microcode processor uses a custom tiny ISA with
two “imperative” instructions, ADD (add/accumulate) and MV
(move). They use one of the R/W registers as output and one
R/O or R/W register as input; the ADD instruction implicitly
uses the output register as a second input. The microcrode ISA
also includes one “declarative” LOOP instruction, containing
the iteration range of each loop and the base address and
number of micro-instructions associated to it. The hardware
implementation of this ISA is a single-stage execution pipeline
controlled by four simple finite-state machines operating
in lockstep; they compute the address of the next micro-
instruction to execute, its index within the current loop, the
next iteration index of the current loop, and the next loop to
be taken into account.

The microcode associated to the functionality presented
in Listing 2 (six loops) occupies 28B in total (22B for the
imperative part, 6B for the declarative one) which are mapped
directly within the XNE register file. The final microcode,
which is specified in a relatively high-level fashion by means
of a description in the YAML markup language, can be seen
in Listing 3. This description can be compiled into a bitstream
using a simple Python script and added to the preamble of an
application; the microcode is stored in the “generic” section
of the register file and is kept between consecutive jobs unless
explicitly changed.

3) Datapath micro-architecture: The XNE datapath is com-
posed by the blocks responsible of performing vector binary
multiply (realized by means of XNOR gates), accumulation
(within a latch-based register file) and thresholding to deter-
mine normalized binary outputs. The datapath is fed with the
weight/threshold and the input activation streams coming from
the streamer sources through two-element FIFOs; it produces
an output activation stream into a decoupling two-element
FIFO, which on turn is connected with the streamer sink.
Figure 3 illustrates the structure of the datapath in a case
where TP is 8. The input feature TP-vector is stored in a feature
register to be reused for min(TP,N_out) cycles (one for each
accumulator used). Once an output feature vector has been
produced by the XNE datapath, it is completely computed and
never used again. With the microcoding strategy proposed in
Listing 3, a single input feature vector has to be reloaded fs2

times, and afterwards it is completely consumed.
The weight TP-vector stream produced by the streamer is

decoupled from the main datapath by means of a four-element
FIFO queue; at each cycle in the main binary convolution
execution stage, the feature vector is “multiplied” with the
weight stream by means of TP XNOR gates, producing the
binary contributions of all TP input feature elements to a single
output feature element. These contributions are masked by
means of an array of AND gates to allow the XNE to work
even when the number of input features is smaller than TP. A
combinational reduction tree is used to perform the popcount
operation, i.e. to count the number of 1’s in the unmasked
part of the product vector. The output is accumulated with
the current state of an accumulator register; there are in total
TP accumulators, one for each output computed in a full
accumulation cycle. Accumulated values are computed with
16 bit precision and saturated arithmetic.

To implement the binarization function of Equation 3, the
value stored in the accumulators is binarized after a threshold-
ing phase, which encapsulates also batch normalization. The
binarization thresholds are stored in a vector of TP bytes, and
loaded only when the accumulated output activations are ready
to be streamed out. Each byte is composed of 7 bits (one
for sign, six for mantissa) representing τ , plus 1 bit used to
represent sign(λ) (used to decide the sign of the comparison).
The 7-bit τ is left-shifted of a configurable amount of bits Sτ ,
to enable the comparison with the 16-bit accumulators. The
output of the thresholding phase is saved in a FIFO buffer,
from which it is sent to the streamer module (see Figure 1)
so that it can be stored in the shared memory.

4) Impact of accumulator and threshold truncation: Ac-
cording to our experiments, the impact of truncating accumu-
lators (to 16 bits) and thresholds (to 7 bits) is very small. Errors
due to accumulator truncation can happen only on bigger
layers than what is found in most BNN topologies (e.g., even
a layer with nif=1024, fs=5 does not have enough accumula-
tions per output pixel to hit the accumulator dynamic range),
and only in consequence of unlikely imbalances between 0’s
and 1’s; saturation provides a mitigation mechanism for many
of these cases.

For what concerns the truncation of batch-normalization
thresholds to 7 bits, if a shift Sτ > 0 is being used, a super-
set of the accumulator values that could be affected (i.e. that
could be binarized incorrectly) is given by the worst-case error
interval

[
τ ± 2Sτ−1

]
. The probability that accumulator values

reside within this interval (i.e., they are near the threshold
between providing a +1 or -1) depends on the layer size and the
training methodology, as well as the actual input of the BNN.
In our experiments of Section IV-B3 using the training method
of Courbariaux et al. [18], we did not observe any accuracy
degradation with Sτ values (between 0 and 2) adequate to
represent all the dynamic range of the thresholds.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the energy and area efficiency
of the proposed XNE accelerator design taken “standalone”
with several choices of the TP parameter; then we showcase
and evaluate a full microcontroller system augmented with the
XNE accelerator.
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TP 32 64 128 256 512

µcode 5.2 (12%) 5.2 (9%) 5.2 (6%) 5.2 (3%) 5.2 (1%)
regfile 16.8 (40%) 16.8 (29%) 16.8 (18%) 16.8 (10%) 16.8 (5%)
engine 11.8 (28%) 21.8 (37%) 41.2 (44%) 82.8 (49%) 165.9 (52%)
streamer 8.5 (20%) 15.2 (25%) 29.5 (32%) 63.2 (38%) 133.9 (42%)

(a) Area in 103 µm2 in 65nm technology (target 300MHz@1.2V WC 125C).

TP 32 64 128 256 512

µcode 0.8 (11%) 0.8 (7%) 0.8 (5%) 0.8 (3%) 0.8 (1%)
regfile 3.0 (40%) 3.0 (29%) 3.0 (18%) 3.0 (10%) 3.0 (6%)
engine 2.2 (29%) 4.0 (39%) 7.6 (47%) 15.7 (54%) 31.9 (57%)
streamer 1.5 (20%) 2.6 (25%) 4.8 (30%) 9.7 (33%) 20.2 (36%)

(b) Area in 103 µm2 in 22nm technology (target 800MHz@0.8V WC 125C).
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Fig. 4: Stand-alone XNE results in terms of area and power in nominal operating conditions for the two target technologies.
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Fig. 5: Architecture of the microcontroller system (MCU) and its layout in 22nm technology.

A. Standalone XNE

The main architectural parameter of the XNE, the through-
put parameter TP, can be used to choose the amount of
hardware parallelism exploited by the accelerator, and the
related required number of master ports on the memory
side. In this section, we make a first evaluation on how
changing this parameter can influence the area and power of
the accelerator. We implemented the XNE in synthesizable
SystemVerilog HDL using TP as a design-time parameter,
sweeping from TP=32 to TP=512 in geometric progression.

The various versions of the XNE were synthesized
using Synopsys Design Compiler 2017.09 targeting
300MHz@0.59V, 125C and 800MHz@1.08V, 125C in
65nm and 22nm, respectively (in worst case). Afterwards, we
performed a place & route run of the block using Cadence
Innovus 16.10. We targeted 65% utilization on a square
area; as the XNE is synthesized stand-alone instead of in
coupling with a multi-banked memory, this P&R does not
accurately model all effects present when deploying an XNE
in a real platform. However, it enables vastly more accurate
power prediction with respect to post-synthesis results after
clock tree synthesis and the extraction of wiring parasitics.
Moreover, the 65% utilization target is conservative enough
so that it is possible to check that the XNE does not introduce
congestion when routed on a more realistic design For power
estimation, performed with Synopsys PrimeTime PX 2016.12,
we used activity dumps from post-layout simulation and
we targeted the typical corner. After P&R, all XNEs are

able to work at up to 400MHz@1.25V, 25C (in 65nm) /
950MHz@0.72V, 25C (22nm) in the typical corner.

In Figure 4, we report the area of the synthesized XNE
with the 65nm and 22nm libraries; the Table shows that the
fixed costs of the microcode processor and register file are
progressively absorbed as the size of the engine and streamer
increase near-linearly with TP. Figure 4 also reports power
estimation results in nominal operating conditions from the
various versions of the XNE (in the active ACCUMULATION
phase), shows similar scaling, with the engine and streamer
modules being responsible for most of the power consumed
by the XNE. The latter point indicates that, as expected, the
XNE shows a high internal architectural efficiency.

B. XNE in a MCU System

The XNE is designed as a tightly-coupled accelerator en-
gine [36] and it can be more completely evaluated when
integrated within a full system-on-chip. To this end, given the
results shown in Section IV-A, we selected the design with
TP= 128 for integration in a HW-accelerated microcontroller
system (MCU). The MCU uses the RISCY [38] RISC-V
ISA core and features also an autonomous I/O subsystem
(uDMA) [39], capable of moving data from/to memory and
to/from selected I/O peripherals (SPI, I2C, I2S, UART, CPI,
and HyperRAM) - and also of marshaling data in the shared
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memory4. We targeted the 22nm technology referred in
Section IV-A; we used the same tools reported in Section IV-A
for synthesis and backend.

Figure 5 shows the architecture of the MCU system and
its floorplan, where the most relevant blocks have been high-
lighted. The MCU is internally synchronous and memories,
core and accelerator belong to a single clock domain. The
MCU has 64 kB of core-coupled memory accessed prior-
itarily by RISCY and 456 kB of memory shared between
RISCY, uDMA and XNE. Both kinds of memory are hybrids
of SRAM banks and latch-based standard-cell-memory [27]
(SCM). Specifically, 8 kB of core-coupled memory are made
of multi-ported SCMs and 8 kB of shared memory are single-
ported SCMs. As will be detailed in the following of this
section, SCMs are essential to keep the MCU operational
below the rated operating voltage for SRAM memories, and
they are also typically more energy-efficient than SRAMs,
although they are much less area-efficient. Finally, all SRAMs

4 The MCU is based on a modified version of PULPISSIMO
(github.com/pulp-platform/pulpissimo), which includes RISCY,
uDMA and an example accelerator.

operate on a separate power domain and can be completely
turned off by an external DC-DC converter.

1) Performance evaluation: To evaluate the performance of
the XNE, we compare with an efficient software implemen-
tation targeted at low-power microcontrollers [40]. A naive
implementation of the binary convolution kernel requires on
average 2 cycles per each xnor-popcount, which is clearly
highly inefficient due to the extremely fine granularity of the
operation. By performing multiple convolutions on adjacent
pixels in a parallel fashion, and the RISCY instructions for
popcount, throughput can be increased by ∼ 9× up to 3.1
op/cycle5.

On the other hand, the XNE integrated in the MCU system
can sustain a throughput of 220 op/cycle under normal con-
ditions (86% of its theoretical peak throughput with TP=128,
with the drop being caused by memory contention and small
control bubbles). This means that the XNE can provide a net
improvement of 71× to throughput for binary convolutions and
densely connected layers with respect to optimized software.
Figure 6a shows the overall sustained throughput at the MCU
system level in various operating points in typical conditions,
with operating frequency extracted from PrimeTime timing
analysis. At the nominal operating point (0.8V), the MCU
works at up to 490MHz and the XNE can reach a throughput
of up to 108 Gop/s.

2) Energy efficiency evaluation: We evaluated separately
the power consumption of the XNE when insisting on the
SRAMs, which are rated for operation between 0.6V and
0.8V, and on the SCMs, which we evaluated down to 0.4V.
Since SRAMs can be entirely switched-off externally, and the
MCU does not depend on them for essential operations, we
evaluated both the case in which they are fully switched off
and the one in which they are simply not used (and therefore
they consume static leakage power).

Figure 7 shows the outcome of this evaluation in terms
of dynamic power at 0.8V, while executing an XNE-based
binary convolution kernel either on data located on SRAM

5Throughout the paper, we count xnor and popcount as separate operations,
therefore 1 xnor + 1 popcount = 2 op



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

64
x1

6x
16

12
8x

16
x1

6
12

8x
8x

8

25
6x

8x
8

mVGG-d
d = depthwise factor (d=1 => standard Conv, d=F => fully depthwise) 

3x
32

x3
2

25
6x

8x
8

25
6x

4x
4

51
2x

4x
4

51
2x

4x
4

d-DWConv 3x3
Pool 2x2
Conv 3x3 + Pool 2x2

(a) mVGG-d topology based on Courbariaux et al. [18].

100

Energy per Inference [uJ]

10

15

20

25

30

35

40

Er
ro

r [
%

]

101 102

mVGG-1
505 KB

mVGG-F
1.7 KB

mVGG-64
8 KB

mVGG-2
253 KB

SCM
SRAM
SCM w/ SRAM marshaling
SRAM+HyperRAM

(b) Energy per inference vs Error.

Fig. 8: mVGG binary neural network energy per inference vs error trade-off on mVGG-D; in the rightmost plot, green triangles,
blue circles, orange squares and red diamonds represent respectively usage modes on pure SCM @0.4V, on SRAM / on SCM
with SRAM marshaling @0.6V, and with HyperRAM marshaling @0.6V. The grey solid line indicates the Pareto frontier.

or on SCM. When executing on the SRAM, the dynamic
power due to memory clearly dominates over computation,
by a factor of 7.1×, taking into account also the power spent
in the system interconnect. Conversely, SCM-based execution
is more balanced, as SCMs consume ∼3× less then SRAMs.
In both cases, memory accesses are largely due to weights,
which are loaded many times and used only once in the XNE
design.

The advantage of working on SCMs is clearer when we
evaluate energy efficiency in terms of femtoJoules per oper-
ation, as shown in Figure 6b. There is a factor of ∼ 2-3×
between SRAM- and SCM-based execution, especially when
the operating voltage is reduced6. SCMs, which are ∼2-3×
less power-hungry and do not stop working at low voltage,
enable the XNE to deliver much better energy efficiency. If we
do not fully switch down the SRAMs, the minimum energy
point is located near the 0.5V operating point, where the MCU
delivers 28 Gop/s and 40.2 fJ per operation are required -
equivalent to a system-level efficiency of 25 Top/s/W. Power-
gating the SRAMs vastly reduces leakage power and moves
the minimum energy point further down in operating voltage:
at 21.6 fJ per operation at 0.4V.

3) Energy-accuracy tradeoff in BNNs: The most efficient
use case for the MCU platform is clearly when entire network
topologies can be fully deployed on the shared memory, and
in particular on the SCM. To fully showcase the impact of
the model memory footprint on the overall efficiency, we
used a simple topology derived from a reduced version of the
popular VGG [41], as proposed by Courbariaux et al. [18];
we trained it on the CIFAR-10 dataset for 150 epochs using
their same binarization strategy, ADAM optimizer, and initial
learning rate 0.005. Figure 8a shows the mVGG-d network.
To scale the number of parameters stored in memory in a
smooth fashion, we kept the network architecture of mVGG-d
fixed, but progressively modified the nature of convolutional
layers from the standard definition of 1 in the direction of
depthwise separable convolutions [42] following the parameter

6According to the SRAM model we used, the internal power which
dominates in SRAMs is less dependent on Vdd than the net switching power
which dominates in most other modules – this is also the reason for which
the energy efficiency in SRAM mode is flatter in Figure 6b.

d. Specifically, we modeled convolutions of the form

y(kout) = bin±1

(d+1)·kout−1∑
kin=d·kout

(
W(kout, kin)⊗ x(kin)

)
(5)

This model is fully supported by the XNE with minor mi-
crocode modifications.

To model power consumption in the various versions of
mVGG-d, we consider several usage modes. When the network
(parameters and partial results) fully fits within the shared
SCM memory, we operate at the most efficient energy point
– 0.4V with power-gated SRAMs, consuming 21.6 fJ per
operation. Conversely, when it does not fit the SCMs but fits
in the SRAMs, we operate at 0.6V, consuming 115 fJ per
operation. As an alternative, we also support a mode in which
weights, which are responsible for the majority of the energy
consumption, are marshaled from SRAM to a temporary SCM-
based buffer. In this case, the energy cost of computation is
reduced to 52 fJ, but there is an overhead of ∼8.7 pJ per
bit to move weights from SRAM to SCM. Finally, when the
SRAM is too small to host the weights, they are stored in
an external memory and loaded to the SRAM when needed
by means of the uDMA. In this case, we considering using
a low-power Cypress HyperRAM 8MB DRAM memory [43]
as external memory, directly connected to the MCU uDMA.
The HyperRAM operates at 125MHz (1 Gbit/s) and 28.6 pJ
per bit read.

Figure 8b shows the results of this evaluation in terms of
the Pareto plot of the size/energy versus accuracy trade-off in
mVGG-d BNNs. We scale d with power-of-two values from 1
to 64 and consider also the case of fully depthwise separable
convolutions (mVGG-F). The results clearly show the impact
of memory energy on even small benchmarks such as mVGG-
d. The most accurate model, mVGG-1, is only ∼6% from the
current state-of-the-art for BNNs on CIFAR-10 [18]; however,
this model consumes roughly 10x of mVGG-2, because it
cannot run at all without the external HyperRAM. Increasing
d, we observe that the energy penalty of marshaling data
from SRAMs to SCMs is increasingly reduced up to a point
(mVGG-8) where it becomes less significant than the cost of
operating directly on the SRAMs; hence it becomes convenient



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

to marshal data between the two. Finally, the mVGG-F model
is so small that it can be run entirely on SCMs and consumes
100× less than mVGG-d, but it suffers a significany penalty
in terms of accuracy.

4) Real-world sized BNN execution: The size of real-world
state-of-the-art DNN topologies for most interesting problems
is such that it does not make sense at all to consider fully
localized execution on the 520 kB of on-chip memory of the
MCU system, even with BNNs. Supporting execution aided
by external platforms is, therefore, critical. To minimize the
continuous cost that would be implied by transfer of partial
results, we dimensioned the MCU system so that relatively
big BNN topologies can be run using the external memory
exclusively for storing weights.

As representatives of real-world sized BNNs, we chose
ResNet-18 and ResNet-34 [10], which can be fully binarized
providing a top-5 accuracy of 67.6% and 76.5% respectively
on the ImageNet database [21]. A binarized implementation of
the ResNets requires 128 kB for input, output and partial re-
sults buffering (taking into account also shortcut connections),
plus a maximum of 288 kB for the weights of a single layer;
the final densely connected layer requires more memory, but
it has an extremely small footprint for partial result buffering,
and therefore it is possible to efficiently divide the computation
in filtering tiles executed sequentially. Overall, it is possible to
execute both these topologies on the tiny XNE-equipped MCU
system without any energy cost for moving partial results.

To evaluate how efficient the deployment of such a model
can be, we consider the same system of Section IV-B3, with
an 8 MB HyperRAM connected to the uDMA. We consider
the SRAM-based execution mode for this evaluation. We
consider weights to be transferred asynchronously by means
of the uDMA, performing double buffering to overlap memory
access by the XNE with the fetching of the next set of
weights. ResNet-18 and ResNet-34 require 3.64 × 109 and
7.34×109 operations respectively. In this operating mode, the
compute time dominates for all layers except the last group
of convolutions and the final fully connected layer in both
ResNet-18 and ResNet-34. ResNet-18 inference can be run at
∼14.7 fps, spending 1.45mJ per frame on a standard 224×224
input; for the latter at 8.9 fps, spending 2.17mJ per frame.

In both cases, the contribution of memory traffic to energy
consumption is dominant, mostly due the final layers (espe-
cially the fully connected one, which is memory-bound). The
impact of these layers is more relevant in ResNet-18 than in
ResNet-34, hence memory traffic energy is more dominant in
the former case (by 2.5×) than in the latter (by 60%). Even
if the cost of memory traffic cannot be entirely removed, the
design of the MCU system mitigates this cost by making most
data movements unnecessary, as weights are directly loaded on
the shared SRAM and partial results never have to leave it.

5) Comparison with the state-of-the-art and discussion:
Table II shows a comparison between our work and the
current state-of-the-art in hardware accelerators for Binary
Neural Networks. Contrary to our solution, current systems do
not implement a full microcontroller or System-on-Chip, but
consist either in near-memory computing techniques (BRein,
XNOR-POP) or dedicated ASICs for binary neural networks.

Of all the ASIC accelerators taken into account,
Bankman et al. [35] claims by far the highest energy efficiency
(more than 700 Top/s/W), but they are dependent on full-
custom mixed signal IPs that are known to be delicate with

respect to on-chip variability and difficult to port between tech-
nologies. Moreover, their approach has hardwired convolution
size (2×2), which severely limits their flexibility to implement
different kinds of convolutions.

XNORBIN [34] achieves the second-best result with a much
more traditional fully-digital ASIC architecture, achieving
almost 100 Top/s/W with a 65nm chip. Compared with our
MCU design, the main advantage of XNORBIN is placed in its
custom memory hierarchy, enabling a non-constrained design
for what concerns the accelerator core. This fact accounts
for most of its advantage in terms of raw energy efficiency.
However, XNORBIN does not include enough memory to
implement BNNs bigger than AlexNet and, in general, it
does not have facilities to enable exchange of data with
the external world. Similarly, UNPU [33] targets efficient
execution without particular attention to communication. It is
roughly 16× bigger than XNORBIN, but reaches only half the
energy efficiency.

Compared to UNPU and XNORBIN, the best fully digital
designs currently in the state-of-the-art (to the best of our
knowledge), our work tackles a different problem: not provid-
ing the lowest energy solution as-is, but a methodology and
an accelerator IP for the integration of BNNs within a more
complete System-on-Chip solution, with an eye to system
level problems, in particular the cost of memory accesses.
The XNE has been designed to make efficient use of the
relatively limited memory bandwidth allowed in an MCU-like
SoC (the interfaces are active ∼95% of the overall execution
time in many cases) and to be small and unobtrusive in terms
of area (∼1.5% of the proposed MCU) and timing closure
(30% shorter critical path than the overall MCU system). Con-
versely, the design of an ASIC accelerator deals with different
architectural constraints – in particular, the memory hierarchy
is designed around the accelerator to provide the maximum
effective memory bandwidth. For example, XNORBIN uses an
ad-hoc memory hierarchy in which weights, feature maps and
lines are stored separately (the datapath is fed by a linebuffer)
amounting for improved effective memory bandwidth available
with respect to our design (and hence higher efficiency), at the
expense of flexibility and of area.

To the best of our knowledge, the XNE-accelerated MCU
is the only design that can execute software-defined BNNs in
an efficient way, by taking advantage of the tight integration
between the XNE accelerator, the RISCY core and the uDMA
to speed up nested loops of binary matrix-vector products.
The generality of this mechanism makes the MCU capable of
dealing with all BNNs in which the linear part of convolutional
and fully connected layers is constituted of binary matrix-
vector products (a group which contains most known neural
network topologies), provided that the external memory can
store all weights.

V. CONCLUSION

To the best of our knowledge, this paper is the first to intro-
duce a fully synthesizable ultra-efficient hardware accelerator
IP for binary neural networks meant for integration within
microcontroller systems. We also propose a microcontroller
system (MCU) designed to be flexible and usable in many
application scenarios, but at the same time extremely efficient
(up to 46 Top/s/W) for BNNs. The MCU is the only work
in the current state-of-the-art capable of executing real-world
sized BNN topologies such as ResNet-18 and ResNet-34; the
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Name Technology Maturity Core Area Peak Perf. Energy Eff. On-chip Mem.
[mm2] [Top/s] [Top/s/W] [kB]

BRein [29] 65nm silicon 3.9 1.38 6 -
XNOR-POP [30] 32nm layout 2.24 ∼5.7 ∼24 512
UNPU [33] 65nm silicon 16 7.37 51 256
XNORBIN [34] 65nm layout 1.04 0.75 95 54
Bankman et al. [35] 28nm mixed-signal silicon 4.84 - 722 329

This work (MCU, SCM w/ SRAM off) 22nm layout 2.32 0.11 46 520
This work (MCU, SCM) 22nm layout 2.32 0.11 25 520
This work (XNE TP=128) 22nm - 0.016 0.11 112 -
This work (XNE TP=128) 65nm - 0.092 0.07 52 -

TABLE II: Comparison of Hardware Accelerators and Application-Specific ICs for Binary Neural Networks

latter can be run in 2.2mJ per frame in real time (8.9 fps). As a
third contribution, we also performed an analysis of the relative
costs of computation and memory accesses for BNNs, showing
how the usage of a hardware accelerator can be significantly
empowered by the availability of a hybrid memory scheme.

A prototype based on the MCU system presented in Sec-
tion IV-B has been taped out in 22nm technology at the
beginning of January 2018. Future work includes silicon
measurements on the fabricated prototype; the extension of
this design to explicitly target more advanced binary neural
network approaches, such as ABC-Net [21]; and as more
advanced integration with the SRAM memory system to
reduce power in high-performance modes and enable more
parallel access from the accelerator while keeping the shared
memory approach.

REFERENCES

[1] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the Inception Architecture for Computer Vision,” arXiv:1512.00567 [cs],
Dec. 2015.

[2] Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. L. Y. Bengio, and
A. Courville, “Towards End-to-End Speech Recognition with Deep
Convolutional Neural Networks,” arXiv:1701.02720 [cs, stat], Jan. 2017.

[3] X. W. Chen and X. Lin, “Big Data Deep Learning: Challenges and
Perspectives,” IEEE Access, vol. 2, pp. 514–525, 2014.

[4] M. Dixon, D. Klabjan, and J. H. Bang, “Implementing Deep Neural
Networks for Financial Market Prediction on the Intel Xeon Phi,” in
Proceedings of the 8th Workshop on High Performance Computational
Finance, ser. WHPCF ’15. New York, NY, USA: ACM, 2015, pp.
6:1–6:6.

[5] H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest Editorial
Deep Learning in Medical Imaging: Overview and Future Promise of
an Exciting New Technique,” IEEE Transactions on Medical Imaging,
vol. 35, no. 5, pp. 1153–1159, May 2016.

[6] A. Loquercio, A. I. Maqueda, C. R. del-Blanco, and D. Scaramuzza,
“DroNet: Learning to Fly by Driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1088–1095, Apr. 2018.

[7] M. Manic, K. Amarasinghe, J. J. Rodriguez-Andina, and C. Rieger, “In-
telligent Buildings of the Future: Cyberaware, Deep Learning Powered,
and Human Interacting,” IEEE Industrial Electronics Magazine, vol. 10,
no. 4, pp. 32–49, Dec. 2016.

[8] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural Network
Kernels for Arm Cortex-M CPUs,” arXiv:1801.06601 [cs], Jan. 2018.

[9] F. Conti, R. Schilling, P. D. Schiavone, A. Pullini, D. Rossi, F. K.
Gürkaynak, M. Muehlberghuber, M. Gautschi, I. Loi, G. Haugou,
S. Mangard, and L. Benini, “An IoT Endpoint System-on-Chip for
Secure and Energy-Efficient Near-Sensor Analytics,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2481–
2494, Sep. 2017.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015.

[11] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning,”
arXiv:1602.07261 [cs], Feb. 2016.

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” arXiv:1602.07360 [cs], Feb. 2016.

[13] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and
Connections for Efficient Neural Network,” in Advances in Neural
Information Processing Systems, 2015, pp. 1135–1143.

[14] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in Proceedings of the 43rd International Symposium
on Computer Architecture, ser. ISCA ’16. Piscataway, NJ, USA: IEEE
Press, 2016, pp. 243–254.

[15] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-
Net: Training Low Bitwidth Convolutional Neural Networks with Low
Bitwidth Gradients,” arXiv:1606.06160 [cs], Jun. 2016.

[16] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst,
“Minimum Energy Quantized Neural Networks,” arXiv:1711.00215 [cs],
Nov. 2017.

[17] A. Pullini, F. Conti, D. Rossi, I. Loi, M. Gautschi, and L. Benini,
“A heterogeneous multi-core system-on-chip for energy efficient brain
inspired computing,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. PP, pp. 1–1, 2017.

[18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” arXiv:1602.02830
[cs], Feb. 2016.

[19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,”
in Computer Vision – ECCV 2016. Springer, Cham, Oct. 2016, pp.
525–542.

[20] M. Rusci, L. Cavigelli, and L. Benini, “Design Automation for Binarized
Neural Networks: A Quantum Leap Opportunity?” arXiv:1712.01743
[cs, eess], Nov. 2017.

[21] X. Lin, C. Zhao, and W. Pan, “Towards Accurate Binary Convolutional
Neural Network,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 345–353.

[22] G. Desoli, N. Chawla, T. Boesch, S. p Singh, E. Guidetti, F. D.
Ambroggi, T. Majo, P. Zambotti, M. Ayodhyawasi, H. Singh, and
N. Aggarwal, “A 2.9TOPS/W deep convolutional neural network SoC
in FD-SOI 28nm for intelligent embedded systems,” in 2017 IEEE
International Solid-State Circuits Conference (ISSCC), Feb. 2017, pp.
238–239.

[23] B. Moons, B. D. Brabandere, L. V. Gool, and M. Verhelst, “Energy-
efficient ConvNets through approximate computing,” in 2016 IEEE
Winter Conference on Applications of Computer Vision (WACV), Mar.
2016, pp. 1–8.

[24] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-
Morales, I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco,
S.-C. Liu, and T. Delbruck, “NullHop: A Flexible Convolutional Neural
Network Accelerator Based on Sparse Representations of Feature Maps,”
arXiv:1706.01406 [cs], Jun. 2017.

[25] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
Deep Neural Networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems 28, C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran
Associates, Inc., 2015, pp. 3123–3131.

[26] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental Network
Quantization: Towards Lossless CNNs with Low-precision Weights,”
Nov. 2016.

[27] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An Archi-
tecture for Ultra-Low Power Binary-Weight CNN Acceleration,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. PP, no. 99, pp. 1–1, 2017.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

[28] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’17. New York, NY, USA: ACM, 2017, pp. 65–74.

[29] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara,
S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda, and M. Moto-
mura, “BRein Memory: A Single-Chip Binary/Ternary Reconfigurable
in-Memory Deep Neural Network Accelerator Achieving 1.4 TOPS at
0.6 W,” IEEE Journal of Solid-State Circuits, vol. PP, no. 99, pp. 1–12,
2017.

[30] L. Jiang, M. Kim, W. Wen, and D. Wang, “XNOR-POP: A processing-
in-memory architecture for binary Convolutional Neural Networks in
Wide-IO2 DRAMs,” in 2017 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), Jul. 2017, pp. 1–6.

[31] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An Energy-Efficient
SRAM with Embedded Convolution Computation for Low-Power CNN-
Based Machine Learning Applications,” in Proceedings of 2018 IEEE
International Solid-State Circuits Conference.

[32] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun, R. Liu,
P.-Y. Chen, Q. Li, S. Yu, and M.-F. Chang, “A 65nm 4Kb Algorithm-
Dependent Computing-in- Memory SRAM Unit-Macro with 2.3ns and
55.8TOPS/W Fully Parallel Product-Sum Operation for Binary DNN
Edge Processors,” in Proceedings of 2018 IEEE International Solid-
State Circuits Conference.

[33] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
A 50.6TOPS/W Unified Deep Neural Network Accelerator with 1b-to-
16b Fully-Variable Weight Bit-Precision,” in Proceedings of 2018 IEEE
International Solid-State Circuits Conference.

[34] A. A. Bahou, G. Karunaratne, R. Andri, L. Cavigelli, and L. Benini,
“XNORBIN: A 95 TOp/s/W Hardware Accelerator for Binary Convo-
lutional Neural Networks,” arXiv:1803.05849 [cs], Mar. 2018.

[35] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An
Always-On 3.8µJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor
with All Memory on Chip in 28nm CMOS,” in Proceedings of 2018
IEEE International Solid-State Circuits Conference.

[36] F. Conti and L. Benini, “A Ultra-low-energy Convolution Engine for
Fast Brain-inspired Vision in Multicore Clusters,” in Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition,
ser. DATE ’15. San Jose, CA, USA: EDA Consortium, 2015, pp. 683–
688.

[37] “AMBA 4 AXI4-Stream Protocol Specification.”
[38] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,

E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-Threshold RISC-V
Core With DSP Extensions for Scalable IoT Endpoint Devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, Oct. 2017.

[39] A. Pullini, D. Rossi, G. Haugou, and L. Benini, “uDMA: An autonomous
I/O subsystem for IoT end-nodes,” in 2017 27th International Sym-
posium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), Sep. 2017, pp. 1–8.

[40] M. Rusci, D. Rossi, E. Flamand, M. Gottardi, E. Farella, and L. Benini,
“Always-ON Visual node with a Hardware-Software Event-Based Bi-
narized Neural Network Inference Engine,” in Proceedings of ACM
Computing Frontiers 2018.

[41] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv:1409.1556 [cs], Sep. 2014.

[42] F. Chollet, “Xception: Deep Learning with Depthwise Separable Con-
volutions,” arXiv:1610.02357 [cs], Oct. 2016.

[43] “Cypress 64Mbit - 128Mbit HyperRAM Self-Refresh DRAM.”

Francesco Conti received the Ph.D. degree from
University of Bologna in 2016 and is currently
a post-doctoral researcher at the Integrated Sys-
tems Laboratory, ETH Zürich, Switzerland and
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