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Abstract—Software-based attacks exploit bugs or vulnerabili-
ties to get unauthorized access or leak confidential information.
Dynamic information flow tracking (DIFT) is a security technique
to track spurious information flows and provide strong security
guarantees against such attacks. To secure heterogeneous systems,
the spurious information flows must be tracked through all their
components, including processors, accelerators (i.e., application-
specific hardware components) and memories. We present PAGU-
RUS, a flexible methodology to design a low-overhead shell circuit
that adds DIFT support to accelerators. The shell uses a coarse-
grain DIFT approach, thus not requiring to make modifications
to the accelerator’s implementation. We analyze the performance
and area overhead of the DIFT shell on FPGAs and we propose a
metric, called information leakage, to measure its security guaran-
tees. We perform a design-space exploration to show that we can
synthesize accelerators with different characteristics in terms of
performance, cost and security guarantees. We also present a case
study where we use the DIFT shell to secure an accelerator run-
ning on a embedded platform with a DIFT-enhanced RISC-V core.

Index Terms—Hardware Accelerators, Dynamic Taint Analysis,
Dynamic Information Flow Tracking, Software Attacks, Security.

I. INTRODUCTION

HETEROGENEOUS systems-on-chip (SoCs) include mul-
tiple processor cores and application-specific hardware

components, known as hardware accelerators, to reduce power
consumption and increase performance [1]–[4]. Several accel-
erators and accelerator-rich architectures have been developed
for different applications, including neural networks [5], [6],
database processing [7], [8], graph processing [9], [10], and
biomedical applications [11]. There exist two main models of
accelerators [12]. Tightly coupled accelerators are embedded
within the processor cores as application-specific functional
units [13]. They are well-suited for fine-grain computations on
small data sets. They require to extend the instruction set archi-
tecture of the processor cores to include special instructions and
manage their execution. Loosely coupled accelerators, instead,
reside outside the processor cores. They typically achieve high
speed-ups with coarse-grain computations on big data sets [14].
They are called by software applications through device drivers.

Software-based attacks can exploit security vulnerabilities or
bugs in software applications, e.g., buffer overflows and format
strings, to obtain unauthorized control of applications, inject
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malicious code, etc. [15]. Dynamic information flow tracking
(DIFT), also known as dynamic taint analysis in the literature,
has been proposed as a promising security technique to protect
systems against software attacks [16], [17]. DIFT is based on
the observations that (1) it is impossible to prevent the injection
of untrustworthy data in software applications (e.g., data coming
from software users), and (2) it is very difficult to cover all the
possible exploits that use such data. It is better to monitor, i.e.,
track, the suspicious data flows during the application execution
to ensure that they are not exploited and do not cause a security
violation. In such a protection scheme, the data flows from the
untrustworthy sources are marked as spurious. A security policy
imposes what the system is allowed to do with spurious data.
For example, a policy can enforce that spurious data values are
never used as pointers, thus avoiding buffer-overflow attacks.

Several implementations of DIFT have been proposed in
the literature. DIFT has been implemented in hardware [16],
[18]–[20] as well as software [21], [22]. DIFT has been shown
to be effective in protecting systems against several software-
based attacks, including leakage of information [23] and code
injection [24]. DIFT is now implemented on different types of
architectures [19], [25], including smartphones [23], [26]. Most
of the approaches on hardware-based DIFT focused only on
securing processor cores and the associated logic, i.e., tightly
coupled accelerators, memories and communication channels.
Loosely coupled accelerators, however, have been shown to be
vulnerable to attacks [27], [28] and to date there have been only
two works [29], [30] on DIFT considering such accelerators.
We propose PAGURUS as a methodology to extend the support
of DIFT to loosely coupled accelerators in heterogeneous SoCs.

Contributions. We make the following contributions:

(1) we present PAGURUS, a flexible methodology to design
a low-overhead DIFT shell that secures loosely coupled
accelerators; a shell is a hardware circuit whose design is
independent from the design of the accelerators, thus sim-
plifying the integration of DIFT in heterogeneous SoCs;
we analyze the performance and cost overhead of the shell
by synthesizing and running it on FPGAs: the shell has a
low impact on execution time and area of the accelerators;

(2) we define the metric of information leakage for acceler-
ators to quantitatively measure the security of the DIFT
shell: we show that, for any given accelerator, it is possible
to find the minimum number of tags (required by DIFT)
so that no information leakage is possible; we also show
that few tags interleaved in the accelerators data are often
sufficient to guarantee the absence of information leakage;
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Fig. 1. Example of a simple stack-based buffer-overflow attack.

(3) we perform a design-space exploration where we consider
performance, cost and information leakage as optimization
goals for the accelerators design: this study shows how to
strengthen the security of hardware-accelerated applica-
tions in exchange of lower performance and higher cost;

(4) we present a case study where the DIFT shell has been
used to protect an accelerator integrated on a embedded
SoC [31] we extended with DIFT: this shows why a holis-
tic DIFT approach is necessary for heterogeneous SoCs.

II. PRELIMINARIES

This section provides the background. We first describe how
DIFT prevents a buffer-overflow attack in practice. Then, we
present the architecture of the SoCs and accelerators we target.
Finally, we discuss our assumptions and the attack model.

A. Dynamic Information Flow Tracking (DIFT)

DIFT is a security technique implemented either in hardware
or software to prevent software-based attacks [16], e.g., buffer
overflows. It has been also used, for instance, to avoid leakage
of information [23] and secure Web applications [32]. The key
idea is to use tags to mark as spurious the data generated by
untrustworthy channels, e.g., the input provided by the user to
the application. DIFT decouples the concepts of policy (what to
do) and mechanism (how to do it). The security policy defines
which are the untrustworthy channels and the restrictions to
apply on using the data marked as spurious. The mechanism
ensures that the untrustworthy data are marked as spurious and
the tags are propagated in the rest of the system. The presence
of tags is transparent to both software users and programmers.

Example II.1. Consider the stack-based buffer-overflow attack
of Fig. 1. While there are other ways to prevent such attack,
e.g., non-executable stack, this simple example illustrates a
possible application of DIFT. If the user specifies a number of
iterations num higher than 10, then the function pointer func
can be overwritten. In this case, another function (foo) can be
executed (see the stack reported on the right) instead of the one
intended (bar) in a normal execution (stack on the left). The
figure reports the commands used to run the program in the
two cases. DIFT can prevent this kind of attacks by marking
the input of the program (argv) as spurious and by enforcing
a policy to avoid using spurious data as pointers. When such
violations are detected the processor raises an exception.

Fig. 2. Architecture of the tile-based systems-on-chip targeted in this work.

Several implementations of DIFT have been proposed in
the state of the art, as reported in Section IX. Most of these
implementations target only processor cores, rather than entire
SoCs. Among them, two schemes can be used to manage the
tags [29]. With the coupled scheme, the tag is stored physically
with its associated data (same address), i.e., the memory word
is extended to accommodate the tag. Thus, registers, caches
and communication channels are also extended [18]. With the
decoupled scheme, instead, the tags are stored separately from
the data (different addresses). Typically, the tags are stored in
a protected region in memory [19]. In our case, as we move to
SoCs, we define a variation of the decoupled scheme where the
tags are interleaved with the data. The tags have the same bit
width of a memory word. They are inserted by the operating
system and the software programmers remain unaware of their
presence. With respect to a coupled scheme, an interleaved
scheme allows designers to analyze the effect of changing the
tag offset, i.e., the number of words between two consecutive
tags in memory. This affects the security guarantees as well
as the performance and cost of the accelerators (Section V).
In addition, this scheme does not require a major modification
of the underlying architecture to accommodate the tags. Thus,
in this paper, we focus mainly on such interleaved scheme. To
show the flexibility of our design methodology, however, we
present the case study of an embedded platform that has been
extended with DIFT by using a coupled scheme (Section VII).

B. Systems-on-Chip (SoCs) and Accelerators

System-on-Chip Architecture. We target a tile-based archi-
tecture [1] as the one shown in Fig. 2. Each tile implements a
processor core (e.g., SPARC V8, RISC-V), a loosely coupled
accelerator, or some accessory functionality such as a memory
controller. We assume that the processor core supports DIFT as
described, for example, in [16]. We aim at extending DIFT to
loosely coupled accelerators by leveraging prior works on pro-
cessor cores. The components in our target SoC communicate
by means of a network-on-chip or a bus. The accelerators are
managed by the operating system (Linux) trough device drivers.

Accelerator Architecture. This paper focuses on loosely
coupled accelerators that have an architecture similar to the
one reported in [14]. We designed our accelerators in SystemC,
an IEEE-standard object-oriented programming language based
on C++ [33]. Fig. 3 shows the architecture, which is common
across all the accelerators we have implemented. An accelerator
is specified as a SystemC module (i.e., SC_MODULE), and the
logic is divided into four components (i.e., SC_CTHREAD). The
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Fig. 3. Architecture of the loosely coupled accelerators targeted in this work.

configuration logic is used to setup the accelerator by means
of a set of configuration registers. These registers are memory
mapped, and they are managed by the software application
through the device driver of the accelerator. They define where
the input and the output of the accelerator are in main memory
and other parameters that are relevant for the specific accelerator
(e.g., the number of pixels of the images for an accelerator that
processes images). The load logic reads the input data from
main memory by interacting with a DMA controller. The store
logic writes the results of the accelerator back in main memory
in a similar way. Finally, the compute logic implements the
specific computational kernel of the accelerator. The accelerator
architecture includes also a private local memory (PLM), or
scratchpad, which holds the data during the computation [34],
[35]. PLMs are usually multi-bank memory architectures that
provide multiple read and write ports to allow accelerators to
perform multiple accesses in parallel (in the same clock cycle).
PLMs occupy a large portion of the accelerator logic, and their
size is a key parameter for design-space exploration. Typically,
loosely coupled accelerators work by dividing the computation
into multiple bursts since the workload size is much bigger
than the capacity of the PLM [36]. Note that several software
applications can offload parts of their computation to the same
accelerator at different times. Thus, the PLM is reset at every
invocation of the accelerator to guarantee that a process cannot
leak data from the PLM previously used by another process.

Accelerator Execution. To offload the computation to an
accelerator, its device driver is called. The software application
prepares the input data for the accelerator in main memory
and uses the Linux system call ioctl() to invoke the device
driver. The device driver writes the memory-mapped registers
and runs the accelerator. The accelerator raises an interrupt after
completing its execution so that the processor can resume the
execution of the software application. An example of accelerator
execution is shown in Fig. 4, which also reports the layout
in main memory of the accelerator data. The accelerator first
loads a subset of the input data by operating with bursts of a
fixed length, called burst size. The accelerator loads the data
autonomously into its PLM via DMA, without any intervention
of the processor core. Each burst is defined by the index in
memory from which the data must be read (or must be written
to) and the length of the burst in terms of memory words (in
Fig. 4, these values are indicated as pairs above each burst).
The burst size is limited by the amount of data that can be
stored in the PLM, and it has been shown to be important for
design-space exploration [36]. Then, the accelerator computes

Fig. 4. Example of execution of a loosely coupled accelerator.

the results for the given load burst, and it writes them into
main memory with a store burst. These three phases can be
pipelined by increasing the PLM size. For a given accelerator,
it is not necessarily the case that each load burst is followed
by one store burst. Some accelerators need multiple load bursts
to produce one store burst. For instance, in the case of matrix
multiplication, the accelerator needs to load one row from the
first input matrix and all the columns from the second input
matrix in order to calculate a single row of the output matrix
(assuming that the burst size corresponds to the size of a row).

C. Assumptions and Attack Model

We make the following assumptions regarding the hardware
architecture, the software environment and the attacker’s capa-
bilities1. We assume to have a processor extended with DIFT
and that the hardware (including the accelerators) is trusted,
i.e., no hardware Trojans. We assume that the communication
infrastructure that connects the hardware components (Fig. 2)
supports the tags. We aim at extending the security guarantees
provided by DIFT to accelerators. The architecture may include
some common hardware defenses, e.g., non-executable memory.
In this paper we address software-based attacks, e.g. buffer-
overflow attacks, return-to-libc attacks, etc. We target user-
space applications that offload parts of their computation to
accelerators. The applications are executed either in the context
of the Linux operating system (Section VI) or in bare metal
(Section VII). In the first case, we assume that the device
drivers run in kernel space, or that they are trusted if they run
in user space. We assume that the applications have one or more
vulnerabilities, e.g., buffer overflows, format string bugs, etc.
The attacker exploits these vulnerabilities through common I/O
interfaces, with the goal of affecting the integrity and/or con-
fidentiality of the hardware-accelerated software applications.

III. NEED OF A HOLISTIC DIFT IMPLEMENTATION

Heterogeneous SoCs consist of multiple processor cores and
accelerators. To guarantee the security of such systems with
DIFT, we need to implement a holistic approach: DIFT must
be supported in both processors and accelerators. This ensures
that (1) the tags are propagated from the processor cores to the

1We assume that a hardware implementation of DIFT is available for the
processor and the communication infrastructure. A equally valid alternative
would be having a hybrid approach where the accelerators are protected in
hardware while the software applications are protected by a software-based
DIFT approach within the operating system (see Section IX for related work).
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Fig. 5. Example of leakage of information if gray is executed in hardware.

accelerators and vice versa, and (2) the policies are enforced
(i.e., the tags are checked) in both processors and accelerators.

Example III.1. Consider the code reported in Fig. 5 that can
be used, for example, in a video-surveillance system. Suppose
that ref contains a face image that is compared with the image
passed through argv. We want to enforce a DIFT policy that
ensures that ref cannot be leaked for any reason. Before the
comparison, ref is converted to the same format of the input
image, e.g., from RGB to grayscale. The function for the con-
version is initially implemented in software (gray_software).
The processor, which supports DIFT, guarantees that when this
image is manipulated it is properly tagged. In other words, the
tags are propagated and no leaks are possible. Suppose that the
conversion is now implemented with an equivalent accelerator
to improve performance (gray_hardware). If the accelerator
is not extended with DIFT, ref is vulnerable to leaks.

IV. DIFT SHELL FOR ACCELERATORS

We designed the DIFT shell to be double decoupled with
respect to the accelerator, and to be flexible. In this section,
we first discuss the shell architecture and how it encapsulates
the accelerator. Then, we discuss such design choices.

A. Implementation of the DIFT Shell

Shell Architecture. We designed the DIFT shell in SystemC
with an architecture similar to the accelerators. Fig. 6 shows
how the shell encapsulates the accelerator and distinguishes the
data flows (black solid arrows) from the tag flows (red dashed
arrows). The logic is divided into three main components. The
configuration logic (configuration shell in Fig. 6 to distinguish
it from the configuration logic of the accelerator of Fig. 3) sets
up the shell through a set of configuration registers. The shell
has 2×N+2 memory-mapped registers, where N is the number
of registers of the accelerator. Each register of the accelerator
is tagged to ensure that it cannot be easily compromised by
an attacker since it can contain sensitive information such as
the addresses in main memory where the inputs and outputs
of the accelerator reside. Note that the registers containing the
tags are not visible to the software applications and they are
managed by the device driver. We have also two additional
configuration registers. The register src_tag is used to specify
the value of the tags interleaved in the input of the accelerator
and in the configuration registers. The register dst_tag has

Fig. 6. Architecture of the DIFT shell.

the value of the tags to be interleaved in the output of the
accelerator. The values of these two registers are not visible
to the software applications. They are managed by the device
driver of the accelerator. In particular, these values are passed
from the processor when the device driver is called. In this way
the tags can be propagated similarly to the case in which the
accelerator functionality is executed in software. This is a form
of coarse-grain DIFT, where the output tags of the accelerators
are determined solely on the basis of the input tags2. There are
other two components in the shell of Fig. 6. The load logic
(load shell) receives the read requests of the accelerator and it
modifies them to consider the tags, i.e., the shell modifies the
base address in memory and the length of the requests to include
the tags if necessary. Then, it passes the values to the accelerator
while checking that the tag values interleaved with input data in
main memory match the value specified in src_tag. In case of
mismatch, it immediately stops the execution of the accelerator.
The store logic (store shell) intercepts the write requests of
the accelerator in a similar way and writes the results of the
accelerator by interleaving the tags with the value in dst_tag.

Tag Interleaving. We use an interleaved scheme to handle
the tags (Section II-A): the tags are interleaved in memory with
a fixed tag offset. However, interleaving the tags uniformly in
memory by starting always from the same location is not secure.
An attacker could infer the locations of the tags, for instance
by executing the accelerator repeatedly. The attacker could
then replace the input of the accelerator with malicious data by
skipping the tag locations. Therefore, in our implementation of
the DIFT shell, we keep a fixed distance (in words) between
two consecutive tags in memory, but we randomize the location
of the first tag interleaved in the input data at every execution
of the accelerator to make it not predictable. The DIFT shell
needs to know the offset of the first tag embedded in the input
in order to check the tags and pass only the data values to the
accelerator. To do that, we add another configuration register to
the shell of Fig. 6. The location of the first tag is generated with
a pseudo-random number generator. We chose to use a single
tag value for the input (src_tag) and a single tag value for the
output (dst_tag) of the accelerator. However, (1) the pattern
with which the tags are interleaved in the input and output of the
accelerator and (2) the number of different values for the tags
can be customized to offer stronger security guarantees without

2In Section VIII we compare coarse-grain and fine-grain DIFT approaches.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Fig. 7. Example of execution of the DIFT shell.

requiring any modification to the accelerator implementation.
Alternatively, it is possible to use data-dependent tags instead
of a randomized approach, i.e., the values of src_tag and
dst_tag can be calculated by applying a crypto hash function
to the inputs and outputs of a specific accelerator execution.

Shell Execution. Fig. 7 shows an example of execution of
the DIFT shell encapsulating an accelerator. We consider the
case where the tag offset is equal to one, i.e., the size of the
input and output of the accelerator is doubled to add to each
value a tag in the next memory location. This corresponds
to the case where we have the maximum number of tags in
memory. The load requests of the accelerator consist of two
memory words. The shell modifies such requests by doubling
the amount of data to include the tags. While doing so, the
shell verifies that the tags from the main memory contain the
value specified in src_tag. Similarly, the store requests from
the accelerator (two memory words) are modified to interleave
the tags with the value in dst_tag, thus marking the outputs.

B. Adaptability of the DIFT Shell

Double Decoupling. Inspired by the principles of latency-
insensitive design [37], we designed the DIFT shell to be double
decoupled from the accelerator implementation, i.e., the design
of the accelerator is independent from the design of the shell,
and the design of the shell is independent from the design of the
accelerator. Besides the I/O interface, the shell needs to know
only the number of configuration registers of the accelerator,
which is usually decided at design time. This allows designers
to rapidly integrate DIFT in their accelerators. Designers can
also easily extend third-party intellectual property (IP) cores
with DIFT in their SoCs, simplifying the implementation of a
holistic DIFT approach. For example, the generation of the shell
and the connection with the accelerator, in our implementation,
is done automatically. This design choice makes the design
of the shell be independent from the accelerators design as
well, which guarantees the reusability of the shell. Note that
the tags are not propagated into the logic of the accelerators,
which remain completely unaware of the tags. This guarantees
a minimal area overhead, but it could limit the set of policies
a designer may want to support, as discussed in Section VIII.

Flexibility. The DIFT shell is flexible because the interface
to communicate with the network-on-chip or bus (Section II-B)

is decoupled from the internal logic. In addition, the shell and
the accelerator expose the same interface, allowing designers to
easily replace an accelerator with its encapsulated version. Note
also that the shell can be easily customized to the needs of the
specific accelerator, for example to (1) improve performance or
(2) strengthen security. In Section IV-A we presented an imple-
mentation of the shell that uses an interleaved scheme for the
tags. The shell can be adapted to work with different schemes as
well. We show an example of this customization in Section VII.

V. A SECURITY METRIC FOR ACCELERATORS

In this section we define a security metric for accelerators
to quantitatively evaluate the security guarantees provided by
the DIFT shell. This metric is a valuable parameter for a multi-
objective design-space exploration of accelerators, where not
only performance and cost but also security is a critical aspect.

A. Information Leakage: Metric Definition
Definition V.1. The information leakage is the amount of data
that can be produced as output by an accelerator before its
shell realizes that the input has been corrupted by an attacker.

Example V.1. To calculate the information leakage for a given
accelerator execution, we consider the worst-case scenario: the
first tag is inserted in the farthest location in main memory,
according to the value of the tag offset, from the beginning of
the input data of the accelerator. In other words, the tag is at
the memory location with address base_addr+tag_offset,
where base_addr is the first address in main memory where
the input of the accelerator is stored. This scenario is depicted
in Fig. 8 (a). An attacker could try to corrupt the input data of
the accelerator in memory. However, in doing so, the attacker
would inadvertently overwrite the first tag as well (Fig. 8 (b)).
In fact, the attacker cannot easily determine the exact distance
between two consecutive tags in memory and the initial offset
of the tags, thanks to the randomized approach we adopted for
the DIFT shell (Section IV). Thus, the information leakage is
the percentage of output values (produced by the accelerator
before the shell realizes that it has been compromised) with
respect to the total amount of values the accelerator would
generate if it was not compromised. This corresponds to the
amount of output produced by the accelerator before the shell
stops its execution (Fig. 8 (c)). The shell realizes that it has
been compromised when it reads the first tag, which has been
overwritten by the attacker3. This calculation represents an
upper bound to the information leakage. Note that the same
reasoning can be applied when the attacker tries to corrupt the
input of the accelerator not by starting from base_addr.

The generic security concept of “information leakage” has
been adapted to our context with Definition V.1. Note that this
definition applies to the decoupled scheme that we discussed in
Section II-A, where the tags are interleaved in memory with the
data. This definition does not apply to the coupled scheme since
each data is stored with its tag. For such a scheme we can adopt
the concept of security proportionality [29]. Next, we describe
how information leakage is influenced by different factors.

3In this example, without loss of generality, we are assuming that the
accelerator starts to read the input from the first memory location (base_addr).



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Fig. 8. The metric of information leakage for loosely coupled accelerators.

B. Information Leakage: Metric Analysis

We perform a quantitative information-flow analysis [38] to
measure the information leakage caused by the accelerators
when protected with the DIFT shell. In our analysis, we found
that information leakage depends on the following factors.

(1) Tag Density. The more tags we interleave in the input data
of the accelerator, the higher is the likelihood that the shell
hits a tag that has been corrupted before producing an output.

The information leakage is expected to decrease as the tag
density increases. The tag density is thus a key parameter for
a multi-objective design-space exploration that considers cost,
performance, and security of accelerators. In fact, by increasing
the number of tags in memory we guarantee potentially a lower
information leakage because it is more likely that the attacker
replaces a tag (as shown in Fig. 8). This, however, negatively
affects the performance (more input/output to process) and cost
(overhead for the tags in memory) of executing the accelerator.

(2) Algorithm. The algorithm implemented by the accelerator
defines the amount of inputs needed to calculate an output.
This affects the memory access pattern, and thus the security.

Example V.2. Consider two algorithms: (1) image conversion
from RGB to grayscale values, and (2) matrix multiplication.
For (1) to calculate one grayscale value we need only the RGB
value in the corresponding position in the input image. For
(2), instead, we need to load a row and a column of the input
matrices to calculate a single value of the output matrix.

The information leakage is expected to be higher for those
accelerators that require fewer input values to calculate the
corresponding output value. In fact, accelerators usually work
in bursts. If an accelerator needs fewer input to calculate an
output, a lower number of load bursts is required to produce
a corresponding store burst. Thus, it is more likely that the
accelerator produces outputs before the shell finds an invalid tag.

(3) Implementation. The specific way in which the accelerator
implements the algorithm can affect the information leakage.

Example V.3. Consider an accelerator performing the conver-
sion from RGB to grayscale. If it operates in bursts of 16
pixels, each load burst of 16 pixels produces a store burst of
16 pixels (for an efficient use of the PLM). Similarly, if the
accelerator uses bursts of 1024 pixels, each load of 1024 pixels
produces a store burst of 1024 pixels. Assume there is one tag

Table I
WORKLOADS OF THE ACCELERATORS.

small medium large

MEAN 128×128 512×512 2048×2048
GRAY 128×128 512×512 2048×2048

MULTS 128×128 512×512 2048×2048

every 1024 pixels in the input image in main memory: in the
first case, the accelerator leaks data before encountering a tag
that has been compromised (in the worst-case scenario), while,
in the second case, the accelerator does not cause leakage.

The information leakage is expected to decrease as the burst
size increases. In fact, the larger are the bursts, the higher is the
probability of finding a tag. The burst size affects performance
and cost as well. Larger bursts require larger PLMs for storing
data during the computation (higher cost), but they improve the
efficiency of data transfers because few large bursts via DMA
are generally much more efficient than many small bursts [36].

(4) Workload Size. The workload size determines the total
amount of data the accelerator needs to process. This affects
the memory access pattern, and thus the information leakage.

If the accelerator works on relatively small inputs, the input
set can be entirely stored in the PLM. The accelerator does not
need to work in bursts and it cannot cause information leakage
(if there is at least one tag in the input). If the accelerator works
on relatively large inputs (the common case for loosely coupled
accelerators), then it is necessary to work in bursts, and the
leakage is affected by the burst size as described in Example V.3.

VI. EXPERIMENTAL EVALUATION

This section presents the results. We first describe the setup
for the experiments (Section VI-A). Then, we discuss the results
of three design-space explorations that show how the informa-
tion leakage (VI-B), the space overhead (VI-C), and the perfor-
mance and cost of accelerators (VI-D) vary depending on the
accelerator, the tag density, the burst size and the workload size.

A. Experimental Setup

We designed three accelerators (Section II-B): GRAY, MEAN,
and MULTS. GRAY converts a RGB image into a grayscale image.
MEAN calculates the arithmetic mean over the columns of a
two-dimensional matrix. MULTS performs the multiplication
of a two-dimensional matrix by its transpose. All the inputs
and outputs of the accelerators are 64-bit fixed points, except
for the GRAY input values that are three 16-bit integer values
(RGB). We chose to implement and analyze these accelerators
since they exhibit different input/output behaviors. In particular,
GRAY needs a single load burst to produce a store burst since
it operates in streaming. In contrast, MEAN and MULTS require
multiple load bursts. MULTS differ from MEAN because it needs
to access the same data multiple times (at maximum two rows,
or a portion of two rows depending on the burst size, can be
stored in the PLMs), and it needs the entire input to produce few
output values. We designed the accelerators in SystemC. We
performed high-level synthesis with Cadence Stratus HLS 17.20
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Fig. 9. Measurements of information leakage for the three accelerators and workloads reported in Table I. The legend indicates the values of the tag offset.

and logic synthesis with Xilinx Vivado 2017.4. We targeted
a Virtex-7 XC7V2000T FPGA. We adopted the same system-
level design flow for synthesizing the DIFT shell.

B. Quantitative Security Analysis

We performed a design-space exploration of the three ac-
celerators by considering three metrics: information leakage,
burst size and tag density. For each accelerator we considered
three workloads, whose characteristics are reported in Table I.
Note that the size of the workloads determines the number of
bursts of the specific accelerator. For example, in the case of
MEAN with burst size of 27 bytes, 1024 bursts are necessary
to load the input matrix for the workload “small” (size: 217

bytes). The results are reported in Fig. 9. Each graph reports
the results for a specific accelerator and workload. The x-
axis of each graph reports the burst size in bytes (log scale).
The y-axis reports the percentage of information leakage. The
colors/shapes indicate the distance between two consecutive
tags in memory, i.e., the tag offset (the larger is the tag offset,
the lower is the tag density). We calculated the information
leakage as described in Example V.1 (the worst-case scenario).
For this, we did not randomize the location of the first tag
in memory to determine an upper bound of the information
leakage. For each accelerator and workload we can identify the
maximum value of tag offset that guarantees 0% of information
leakage. This corresponds to the case where we interleave at

least one tag in the sequence of load bursts that are necessary
to calculate a single store burst. Note that the tag offset for
all the accelerators is relatively high compared to what we
would expect for software applications, due to the fact that the
accelerators work in bursts. From these experiments we can
also determine the minimum value of tag offset that produces
100% of information leakage. This corresponds to the case
where there are no tags in the input of the accelerator. Between
the maximum and the minimum values of the tag offset, the
information leakage depends on the burst size. The larger is
the burst size, the lower is the information leakage because it
is more likely to find a tag in main memory. The information
leakage gradually decreases by increasing the burst size until
it reaches 0%, where the total size of the load bursts necessary
to produce a store burst has become large enough to hit a
tag in the input. By looking at the behaviors of the different
accelerators we notice that: for MEAN, the information leakage
quickly decreases since it is a reduction operation; for GRAY, we
have more information leakage because for one store burst we
need only a single load burst; MULTS exhibits the lowest leakage
because the algorithm needs to access most of the input matrix
to produce the first store burst. In fact, to produce the first row of
the output matrix, MULTS needs to read all the rows of the input
matrix, i.e., the entire input. Therefore, it can leak only few
output values before realizing that a tag has been overwritten.

Remarks. This experiment shows that, for any given accel-
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Fig. 10. Measurements of space overhead for the three accelerators and workloads reported in Table I. The legend indicates the values of the tag offset.

erator with a certain burst size, it is possible to determine the
tag offset that guarantees a target information leakage. This
can be determined automatically and permits to choose the tag
offset for the DIFT shell depending on the characteristics of
the specific accelerator and the workload it needs to execute.

C. Space Overhead Analysis

We performed a design-space exploration of the accelerators
and workloads of Table I by considering three metrics: infor-
mation leakage, space overhead and tag density. We measured
the space overhead in terms of number of tags added to the
input and output of the accelerators in main memory. The
results are reported in Fig. 10. Each graph reports the results
for a specific accelerator and workload. The x-axis reports the
number of tags added to the input and output of the accelerator
(log scale), the y-axis reports the percentage of information
leakage, and the colors/shapes indicate the tag offset. Since
the information leakage depends on the burst size (Fig. 9), we
reported the information leakage for the smallest and the largest
bursts considered in Fig. 9, i.e., 26 and 213 bytes respectively.
Protecting MULTS requires the lowest space overhead since
the accelerator accesses quickly the entire input and few tags
embedded in the input are sufficient to reduce significantly the
information leakage. MEAN exhibits similar space overheads
because it is a reduction operation. However, MEAN presents
much higher information leakage due to its access pattern. GRAY

is more difficult to protect compared to the other accelerators
because it needs a single load burst for each store burst. Thus,
a higher number of tags must be embedded in the input of the
accelerator to reduce the information leakage. Another aspect to
note is that for GRAY and MULTS there is no much difference of
information leakage for the smallest and the largest bursts, while
for MEAN the burst size highly affects the information leakage.

Remarks. This experiment shows that few tags embedded
in the input and output of the accelerators are often sufficient
to reduce significantly the information leakage of accelerators.

D. Performance and Cost Analysis

Performance. In order to analyze performance and cost
we completed a third design-space exploration by considering
three metrics: execution time, burst size and tag density. For
each accelerator we used the workloads in Table I. The results
are reported in Fig. 11. Each graph reports the results for a
specific accelerator and workload. The x-axis of each graph
reports the burst size in bytes (log scale), the y-axis reports
the execution time normalized to the slowest implementation,
and the color/shape indicates the tag offset. The execution
time reported in these experiments corresponds to the time
required by the accelerator to process the given workload in
hardware. To measure the execution time for each combination
of accelerator, burst size and tag offset, we leveraged the
Embedded Scalable Platforms (ESP) methodology [1], [39]
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Fig. 11. Measurements of execution time for the three accelerators and workloads reported in Table I. The legend indicates the values of the tag offset.

to design an SoC that includes a processor core (LEON3), a
memory controller, and the specific accelerator. We ran these
experiments on the FPGA by booting Linux on the processor
core. The accelerators are called through their corresponding
device drivers. We considered three values (1, 64, 4096) as tag
offset and compared the execution time with respect to the case
in which the accelerators do not use the DIFT shell. The graphs
in Fig. 11 show that the overhead in execution time increases
as the tag offset decreases. In fact, having more tags augments
the time required by the accelerator to read the input data from
main memory and store back the results. The overhead of DIFT
is relatively small for all the different workload sizes, and we
expect that with larger tag offsets it would be even smaller.
For workload sizes much smaller than the ones reported in
Table I, we expect that the overhead of DIFT would be higher
since the execution times of the accelerator would be shorter
and using tags would have a more significant impact on such
executions. Note that, however, loosely coupled accelerators
typically work on relatively large data sets, as the ones used in
our experiments, for which DIFT has a low overhead. Note that
in some graphs, the accelerators with DIFT seem to be faster
than the baseline. However, this effect is caused by the noise
of the operating system running system processes concurrently
to the accelerators. Finally, note that by increasing the burst
size, the accelerators become faster since it is more efficient
performing few large bursts rather than many small bursts [36].

Cost. The DIFT shell is independent from the accelerators
design and has a fixed area. For the Xilinx XC7V2000T FPGA,
the shell requires only ∼1600 LUTs and ∼1400 flops/latches.

Remarks. This experiment shows that the area overhead
of DIFT is negligible, while the overhead in execution time
is affected by the tag density and the workload size. The tag
density is thus an optimization parameter for the accelerators
design: designers can strengthen or weaken the security of accel-
erators in exchange of lower or higher performance, respectively.

VII. PULPINO CASE STUDY

To show the flexibility of PAGURUS, we extended an open-
source embedded SoC called PULPino [31] to support DIFT.
We extended the RI5CY processor core in PULPino to support
tagging [20], and we integrated one of our accelerators. We
implemented a buffer-overflow attack and show why a holistic
DIFT approach is needed to prevent software-based attacks.
While more convoluted and critical attacks can be implemented,
the software-based attack discussed here is representative of the
vulnerabilities that can be exploited in heterogeneous SoCs.

A. Extending PULPino with DIFT

We extended RI5CY, which is an in-order single-issue core
with 4 pipeline stages. We modified each stage to propagate
and check the tags. We extended the registers of RI5CY as
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Fig. 12. Buffer-overflow attack on the PULPino SoC [31]. In scenario (1),
mean is executed in software. In scenario (2) and (3), mean is executed in
hardware without the DIFT shell (2) and with the DIFT shell (3).

well. We added new assembly instructions for initializing the
tags stored in the register file and in the data memory. In this
case study, we used a coupled scheme to manage the tags.
We extended the PULPino platform buses to accommodate tag
transfers in parallel with the regular data transfers. We used
four bits as width of the tag to support the byte addressing
mode of RISC-V and to distinguish only the spurious data from
the non-spurious data at the byte level. We also integrated the
MEAN accelerator by adapting its interface to the AXI4 interface
of PULPino. We designed two versions of this platform. In
the first, we did not encapsulate the MEAN accelerator with the
DIFT shell. In the second we added the DIFT shell. We syn-
thesized the platforms by targeting a Xilinx XC7Z020 FPGA.

B. Attacking PULPino with DIFT

We implemented a buffer-overflow attack on the PULPino
platform extended with DIFT. The code is reported in Fig. 12.
A buffer-overflow attack occurs in the function load_input.
Similarly to the attack of Fig. 1, the attacker overwrites the input
(ld_data) with the base address of the function foo. Note
that, differently from the attack of Fig. 1, this attack cannot be
prevented with non-executable stack because the data structures
reside in global memory. Other attacks, such as heap overflow,
can be implemented in a similar way. The attacker calls the
function mean by specifying that the size of the input is 5× 5.
The accelerator produces the output (st_data), but it also
overwrites the function pointer func since the output buffer
can store only 4 values and not 5 (this causes a second buffer
overflow). The function mean can be implemented in hardware
or software. In both cases, we want to enforce a policy that
specifies that spurious values can never be used as pointers. We
tested the following scenarios by running the code in bare metal:
(1) mean is performed in software: the buffer-overflow attack

is capable of overwriting the function pointer func (see
the data in main memory reported on the left); however,
since the data coming from argv are spurious their use as
a pointer is not permitted. Thus, an exception is raised;

(2) mean is performed in hardware with the accelerator MEAN
not protected with the DIFT shell: in this case the tags
are not propagated from the input to the output of the

accelerator (see the data in main memory reported on the
right) and the attack is not prevented (func is not tagged);

(3) mean is performed in hardware with the accelerator MEAN
protected by the DIFT shell: in this case the attack is
prevented as in the first case (memory reported on the
left) thanks to the tag propagation performed by the shell.

VIII. DISCUSSIONS

This section discusses the benefits and limits of PAGURUS.

A. Coarse-grain Versus Fine-grain DIFT

We designed the DIFT shell to extend the support of DIFT
to accelerators. The design of the accelerator is independent
from the design of the shell, and the design of the shell remains
independent from the design of the accelerator. Essentially, in
our approach, the accelerator is a black box and the tags are
not propagated inside the accelerator. The shell is responsible
of the tagging. It communicates with the processor core, which
decides the output tags given the input tags (at the accelerator-
level granularity). This implementation can be called coarse-
grain DIFT, by using the same terminology currently used for
processor cores (the tags are computed at the instruction-level
granularity) [16]. The alternative is fine-grain DIFT, where the
internal logic of the accelerator (or the processor) is augmented
to support tagging at the gate-level granularity, e.g., [30], [40].

Both approaches have advantages and disadvantages. On one
hand, fine-grain DIFT allows a significant reduction of the false
positives because it is not necessary to take conservative choices
to implement policies [30]. On the other hand, extending the
logic has a significant impact on both area and power. This is
especially true for accelerators, where up to 90% of the area
is occupied by the PLM [35], which needs to be extended to
support tagging. As a result, up to 31% of additional logic for
accelerators can be necessary [30]. Coarse-grain DIFT causes
more false positives. We showed, however, that the overhead in
area is negligible and no modifications are required to the accel-
erators, i.e., our approach can also be used for third-party IPs.

B. Tightly Coupled Accelerators

In this paper we focused on loosely coupled accelerators.
Tightly coupled accelerators are required to support DIFT as
well to secure heterogeneous SoCs and avoid attacks similar to
the one we implemented on PULPino (Section VII). Similarly
to the case of loosely coupled accelerators, two alternative im-
plementations are possible. With coarse-grain DIFT, the tightly
coupled accelerators are black boxes and the tags are computed
at the instruction-level granularity. With fine-grain DIFT,
instead, the internal logic of the accelerators is extended [30].
We argue that these alternatives have the same advantages
and disadvantages discussed for loosely coupled accelerators.

IX. RELATED WORK

DIFT, also called dynamic taint analysis, is a security tech-
nique to prevent several software-based attacks [16], [21], [41],
[42]. Several variations of DIFT have been proposed. Most of
these approaches focus on supporting DIFT on processor cores.
For example, there are approaches that extend the processor
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cores and propagate the tags through the entire architecture by
extending caches, memories, and communication channels [18],
[20], [25], [41]. They differ on the target architecture, on how
they manage the tags (coupled or decoupled scheme) and on
the bit widths of the tags [29]. Other approaches adopt a co-
processor to decouple the verification and the propagation of
the tags from the main processor core [19], [43], [44]. Some
approaches are optimized for specific types of architectures,
e.g., speculative processors [45], SMT processors [46], and
smarthphones [23], [26]. There exist also software-only imple-
mentations of DIFT [21], [22], [41], [47], whose overhead is
usually high [17]. Finally, there are approaches that explore
the implementation of DIFT for tag propagation at different
design abstraction levels [24], [40] to minimize the number
of false positives. All these approaches are complementary to
PAGURUS. In fact, PAGURUS can be used to easily extend the
support for DIFT, implemented on processors, to accelerators.

Most of the approaches on hardware-based DIFT focus on
supporting DIFT on processor cores rather than entire SoCs.
To the best of our knowledge, there are only two works in the
literature in the direction of a holistic DIFT implementation.
WHISK [29] targets SoCs with loosely coupled accelerators.
WHISK implements fine-grain DIFT on accelerators, differently
from PAGURUS that realizes a coarse-grain DIFT approach.
PAGURUS interleaves the tags with the data, while in WHISK
the tags are stored in a different region of memory. Finally,
while we define the concept of information leakage which is
an accelerator-dependent metric, in WHISK the authors used
the concept of security proportionality, which is the amount of
tags supplied as input to the accelerator. Another work related
to accelerators is TaintHLS [30], which is a methodology to
automatically add support for fine-grain DIFT on accelerators
developed with high-level synthesis. TaintHLS cannot be used
to secure hard IP cores as well as soft IP cores designed at RTL
without licensable high-level descriptions. Also, by using a fine-
grain approach, TaintHLS can incur in significant area overhead
(up to 31%) because the accelerators logic must be extended.

X. CONCLUDING REMARKS

We presented PAGURUS, a flexible methodology to design a
circuit shell that extends DIFT to loosely coupled accelerators.
The design of the DIFT shell is independent from the design of
the accelerators and vice versa. This allows designers to quickly
support DIFT on their accelerators in heterogeneous SoCs. We
studied the effect of the shell on the cost and performance of the
accelerators by running experiments on a FPGA. We showed
that the cost of the shell is negligible compared to the cost of
the accelerators. The performance overhead depends on the tag
density, which is a parameter that can be tuned by designers to
strengthen or weaken the security guarantees of the particular
accelerator. To quantitatively measure such security guarantees,
we defined a metric, called information leakage. We performed
a multi-objective design-space exploration and showed that we
can synthesize implementations of accelerators encapsulated
with the DIFT shell that present different trade-offs in terms
of performance, cost and information leakage. We also showed
that, for any given accelerator, it is possible to determine the

minimum amount of tagging for DIFT that guarantees absence
of information leakage. Finally, we presented a case study
where we extended PULPino to support DIFT and we showed
the effectiveness of the DIFT shell in preventing a buffer-
overflow attack that exploits a loosely coupled accelerator.
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