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Abstract—In real-time systems, the application’s behavior has
to be predictable at compile-time to guarantee timing constraints.
However, modern streaming applications which exhibit adaptive
behavior due to mode switching at run-time, may degrade system
predictability due to unknown behavior of the application during
mode transitions. Therefore, proper temporal analysis during
mode transitions is imperative to preserve system predictabil-
ity. To this end, in this paper, we initially introduce Mode
Aware Data Flow (MADF) which is our new predictable Model
of Computation (MoC) to efficiently capture the behavior of
adaptive streaming applications. Then, as an important part of
the operational semantics of MADF, we propose the Maximum-
Overlap Offset (MOO) which is our novel protocol for mode
transitions. The main advantage of this transition protocol is
that, in contrast to self-timed transition protocols, it avoids timing
interference between modes upon mode transitions. As a result,
any mode transition can be analyzed independently from the
mode transitions that occurred in the past. Based on this tran-
sition protocol, we propose a hard real-time analysis as well to
guarantee timing constraints by avoiding processor overloading
during mode transitions. Therefore, using this protocol, we can
derive a lower bound and an upper bound on the earliest starting
time of the tasks in the new mode during mode transitions in
such a way that hard real-time constraints are respected.

I. Introduction

TO handle the ever-increasing computational demands and
meet hard real-time constraints in streaming applications,

where the huge amount of streaming data should be processed
in a short time interval, embedded systems have relied on Multi-
Processor System-on-Chip (MPSoC) platforms to benefit from
parallel processing. To efficiently exploit the computational
capacity of MPSoCs, however, streaming applications must
be expressed primarily in a parallel fashion. The common
practice for expressing the parallelism in an application is
to use parallel Models of Computation (MoCs) [1]. Within a
parallel MoC, a streaming application is modeled as a directed
graph, where graph nodes represent actors (i.e., tasks) and
graph edges represent data dependencies. Actors are executed
concurrently and communicate data explicitly via FIFOs. For
example, Synchronous Data Flow (SDF) [2] and Cyclo-Static
Data Flow (CSDF) [3] are two popular parallel MoCs because
of their compile-time analyzability. Due to the static nature of
SDF and CSDF MoCs, the actors are restricted to produce and
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consume data with fixed rates per firing or, in case of CSDF,
with fixed periodic patterns.

Nowadays, many modern streaming applications, in the do-
main of multimedia, image, and signal processing, increasingly
show adaptive behavior at run-time. For example, a computer
vision system processes different parts of an image continuously
to obtain information from several regions of interest depending
on the actions taken by the external environment. This adaptive
behavior, however, cannot be effectively expressed with an
SDF or CSDF model due to their limited expressiveness. As
a result, more expressive models, e.g., Scenario-Aware Data
Flow (SADF) [4], Finite State Machine (FSM)-based Scenario-
Aware Data Flow (FSM-SADF) [5], Variable-rate Phased Data
Flow (VPDF) [6], and Mode-controlled Data Flow (MCDF) [7],
have been proposed and deployed as extensions of the (C)SDF
model. These MoCs are able to capture the behavior of an
adaptive streaming application as a collection of different static
behaviors, called scenarios or modes, which are individually
predictable in performance and resource usage at compile-time.

Moreover, to guarantee tight timing constraints in modern
streaming applications with adaptive behavior nature, proper
temporal analysis for application execution during mode
transitions, when the application’s behavior is switching from
one mode to another mode, is imperative at compile-time.
However, such analysis can be difficult due to the fact that
different actors in different modes are concurrently executing
during mode transitions. This difficulty comes directly from
the protocol adopted for the mode transitions. In the existing
adaptive MoCs, like MCDF [7] and FSM-SADF [5], a protocol,
referred as self-timed transition protocol, has been adopted
which specifies that actors are scheduled as soon as possible
not only in each mode individually, but also during mode
transitions. This protocol, however, introduces interference
of one mode execution with another one, as explained in
Section IV-C1. As a consequence, the temporal analysis of a
mode transition is tightly dependent on the mode transitions
that occurred in the past. Another consequence of the incurred
interference between modes is the high time complexity of
analyzing mode transitions, as the mode transitions cannot be
analyzed independently, e.g., see the state-space exploration
approach proposed in [5].

Therefore, to overcome the aforementioned interference
issue and consequent problems caused by the self-timed
transition protocol, in this paper, we propose a new MoC called
Mode Aware Data Flow (MADF) to model adaptive streaming
applications, that is armed by a novel transition protocol called
Maximum-Overlap Offset. This transition protocol enables an
independent analysis for mode transitions. The specific novel
contributions of this paper are the following:
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• We propose a new MoC, Mode-Aware Data Flow (MADF),
that has the advantages of SADF [4] and VPDF [6].
Inspired by SADF, we characterize the behavior of
adaptive streaming applications with individual modes and
transitions between them. Similar to VPDF, the length
of production/consumption sequences for an actor varies
from one mode to another. The length is only fixed when
the mode is known. Then, based on the clear distinction
between modes and transitions, we define analyzable
operational semantics for MADF;

• As an important part of the operational semantics of
MADF, we propose the Maximum-Overlap Offset (MOO)
which is our novel protocol for mode transitions. The
main advantage of this transition protocol is that, in
contrast to the self-timed transition protocol, adopted
in [5], [7], it avoids timing interference between modes
upon mode transitions. As a result, this transition protocol
enables an independent analysis for mode transitions. This
means, the analysis of any mode transition is independent
from the mode transitions that occurred in the past. This
independent analysis significantly reduces the complexity
of the analysis as the complexity merely depends on
the number of allowed transitions. This is crucial for
applications with a large number of modes and possible
transitions;

• Based on the novel MOO transition protocol, we propose
a hard real-time analysis approach to guarantee the
timing constraints by avoiding processor overloading,
i.e., avoiding that the total utilization of allocated tasks
on a processor exceeds its capacity, during mode transi-
tions. Our analysis is much simpler and faster than the
computationally intensive state-of-the-art timing analysis
approaches such as [5].

The remainder of this paper is organized as follows: Section
II gives an overview of the related work. Section III introduces
the background needed for understanding the contributions of
this paper. Our novel adaptive MoC and transition protocol are
then introduced in Section IV. Based on the novel transition
protocol, in Section V, we present our hard real-time analysis
approach to guarantee the timing constraints during mode
transitions. In Section VI, two case studies are presented to
illustrate the practical applicability of our proposed MADF
mode, transition protocol, and real-time analysis. Finally,
Section VII ends the paper with conclusions.

II. RelatedWork

To model the adaptive behavior of modern streaming applica-
tions while having certain degree of compile-time analyzability,
different MoCs such as Scenario-Aware Data Flow (SADF) [4],
Finite State Machine (FSM)-based Scenario-Aware Data Flow
(FSM-SADF) [5], Variable-rate Phased Data Flow (VPDF) [6],
Mode-controlled Data Flow (MCDF) [7], and Parameterized
SDF (PSDF) [8] have been already proposed in the literature.

In SADF [4] and FSM-SADF [5], detector actors are
introduced to parameterize the SDF model. All valid scenarios
and their possible order of occurrence, which is shown either
by using a Markov chain [4] or finite state machine [5], must

be predefined at compile-time. Each scenario consists of a set
of valid parameter combination that determines a scenario of
SADF. This guarantees the consistency of SADF in individual
scenarios, therefore, no run-time consistency check is required.
In a scenario, the SADF model behaves the same way as the
SDF model. Therefore, an SADF graph can be seen as a set
of SDF graphs. In the initial FSM-SADF definition, all the
production and consumption rates of the data-flow edges are
constant within a graph iteration of a scenario.

For the FSM-SADF MoC [5], the authors proposed an
approach to compute worst-case performance among all
mode transitions, assuming the self-timed transition protocol.
Although it is an exact analysis, the approach has inherently
exponential time complexity. Moreover, this approach leads to
timing interference between modes upon mode transitions. In
contrast, our approach does not introduce interference between
modes due to the novel MOO transition protocol proposed
in Section IV-C2. The timing behavior of individual modes
and during mode transitions can be analyzed independently.
In addition, our approach considers allocation of actors on
processors, which by itself is a harder problem than the one
addressed in [5].

In [9], the author proposes to use a linear model to capture
worst-case transition delay and period during scenario transi-
tions of FSM-SADF. Our transition protocol is conceptually
similar to the linear model. However, we obtain the linear
model in a different way, specifically simplified for the adopted
hard real-time scheduling framework. For instance, finding a
reference schedule is not necessary in our case, but being crucial
in the tightness of the analysis proposed in [9]. Moreover, our
approach solves the problem of changing the application graph
structure during mode transitions, which was not studied in
[9].

For VPDF [6], the analysis has been limited to computing
buffer sizes under throughput constraints so far. The execution
of a VPDF graph on MPSoC platforms under hard real-time
constraints has not been studied. In particular, the allocation
of actors and how to switch from one mode to another one
are not discussed. Moreover, delay due to mode transitions has
not been investigated. Our approach, on the other hand, takes
these important factors into account. Therefore, our analysis
results are directly reflected in a real implementation.

MCDF [7] is another adaptive MoC which properties
can be partly analyzed at compile-time. The MCDF MoC
primarily focuses on Software-Defined Radio applications,
where different sub-graphs need to be active in different
modes. This is achieved by using switch and select actors.
The author implicitly assumes self-timed scheduling during
mode transitions. Based on this assumption, a worst-case timing
analysis is developed. Similar to the case of SADF, the use
of the self-timed scheduling introduces timing interference
between modes. As a consequence, the analysis must take into
account the sequence of mode transitions of interest. Although
the author provides an upper bound of timing behavior for a
parameterized sequence of mode transitions, the accuracy is
still unknown. In contrast, our approach results in a timing
analysis of mode transitions that is independent from already
occurred transitions. Moreover, the analysis results are directly
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reflected in the final implementation. In this sense, our analysis
is exact in the timing behavior of mode transitions.

In [8], a meta-modeling technique is proposed to augment the
expressive power of wide range of existing data-flow models
which have the graph iteration concept. In [8], the proposed
technique is especially applied to the SDF model which is
called Parameterized SDF (PSDF). In PSDF, separate init and
sub-init graphs are proposed to reconfigure the body graph
in a hierarchical manner. In this model, functional properties
can only be partially decided at compile-time, and thus run-
time verification is needed. To this end, for all configurations,
computing a schedule and verifying consistency for both graphs
and specifications need to be fulfilled at run-time which is pretty
complex procedure. In addition, temporal analysis to find the
worst-case system reconfiguration delay to preserve model
predictability is not proposed. In contrast, our MADF model
does not require run-time consistency check as every mode in
our model is predefined at compile-time and represented as a
CSDF graph. In addition, our MADF provides the temporal
analysis of the mode transitions at compile-time using the
MOO transition protocol.

In [10], [11], an analysis is proposed to reason about
worst-case response time of a task graph in case of a mode
change. However, the task graph has very limited expressiveness
and is not able to model the behavior of adaptive streaming
applications. Instead, in our paper, we define a more expressive
MoC that is amenable to adaptive application behavior and
real-time analysis.

In [12], [13], the authors focus on timing analysis for mode
changes of real-time tasks. The starting times of new mode
tasks need to be delayed to avoid overloading of processors
during mode changes. In [12], [13], however, it is assumed
that tasks are independent. The proposed algorithms are thus
not applicable to adaptive MoCs, since the starting times of
tasks in adaptive MoCs depend on each other due to data
dependencies. Moreover, the algorithms in [12], [13] involve
high computational complexity because fixed-point equations
must be solved at every step in the algorithms. In contrast,
in our paper, we propose an adaptive MoC and analysis for
applications with data-dependent tasks, which is more realistic
and applicable to wider range of real-life streaming applications.
Moreover, our analysis is simpler with low computational and
time complexity.

III. Background

In this section, we provide a brief overview of our system
model, the CSDF MoC, and the scheduling framework pre-
sented in [14]. This background is needed to understand the
novel contributions of our work.

A. System Model

The considered MPSoC platforms in this work are homo-
geneous, i.e., they may contain multiple, but the same type
of programmable Processing Elements (PEs) with distributed
memories. Moreover, the platform must be predictable, which
means timing guarantees are provided on the response time of
hardware components and OS schedulers. The precision-timed

(PRET) [15] platform is such an example. On the software side,
we assume partitioned scheduling algorithms, i.e, no migration
of tasks between PEs is allowed. The considered scheduling
algorithms on each PE include Fixed-Priority Preemptive
Scheduling (FPPS) algorithms, such as RM [16], or dynamic
scheduling algorithms, such as EDF [16].

B. Cyclo-Static Data Flow (CSDF)

An application modeled as a CSDF [3] is defined as a
directed graph G = (A,E) that consists of a set of actors
A which communicate with each other through a set of
edges E. Actors represent computation while edges represent
data dependency due to communication and synchronization.
In CSDF, every actor Ai ∈ A has an execution sequence
Ci = [c1, c2, . . . , cφi ] of length φi. This means, the x−th time
that actor Ai is fired, it performs the computation Ci(((x − 1)
mod φi) + 1). Similarly, production and consumption of data
tokens are also sequences of length φi in CSDF. The token
production of actor Ai to edge E j is represented as a sequence
of constant integers PRD j = [prd1, prd2, . . . , prdφi ], called
production sequence. Analogously, token consumption from
every input edge Ek of actor Ai is a predefined sequence
CNS k = [cns1, cns2, . . . , cnsφi ], called consumption sequence.
The x−th time that actor Ai is fired, it produces PRD j(((x − 1)
mod φi)+1) tokens to channel E j and consumes CNS k(((x−1)
mod φi) + 1) tokens from channel Ek.

An important property of the CSDF model is the ability to
derive a schedule for the actors at compile-time. In order to
derive a valid static schedule for a CSDF graph at compile-time,
it has to be consistent and live.

Theorem 1 (From [3]). In a CSDF graph G, a repetition
vector ~q = [q1, q2, · · ·, q|A|]T is given by

~q = Θ · ~r with Θ j,i =

{
φi i f j = i
0 otherwise

(1)

where ~r = [r1, r2, ..., r|A|]T is a positive integer solution of
the balance equation Γ · ~r = ~0 and where the topology matrix
Γ ∈ Z|E|×|A| is defined by

Γ j,i =


∑k=φi

k=1 PRD j(k) i f actor Ai produces to edge E j

−
∑k=φi

k=1 CNS j(k) i f actor Ai consumes f rom edge E j

0 otherwise.

A CSDF graph G is said to be consistent if a positive integer
solution ~r = [r1, r2, ..., r|A|]T exists for the balance equation in
Equation (1). If a deadlock-free schedule can be found, G is
said to be live. Each consistent CSDF graph has a non-trivial
repetition vector ~q = [q1, q2, · · ·, q|A|]T ∈ N|A|. An entry qi ∈ ~q
denotes how many times an actor Ai ∈ A has to be executed
in every graph iteration of G. For more details, we refer the
reader to [3].

C. Strictly Periodic Scheduling of CSDF

In [14], a real-time strictly periodic scheduling (SPS)
framework for CSDF graphs is proposed. In this framework,
the actors in a CSDF graph are converted to a set of real-time
implicit-deadline periodic tasks. Therefore, such a real-time
task corresponding to a CSDF actor is associated with two
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A1 A2 A3 A5
[1[1], 1[0]]

OP1:
[p2[1]]

A4

IP2:
[1[0], 1[p6]]

IP1:
[1[p5], 1[0]]

[1[0], 1[p1]]

Ac

OP1:
[1[1], 1[0]]

IP1:
[p2[1]]

E1

[1[p4]]
OP1:
[1[p4]]

[1[1]][1[1]]

IP3:
[1[0], 1[1]]

IC

E22

E2 E3

E4 E5

E6

E44 E11

E55

IC5IC2

Fig. 1. An example of MADF graph (G1).

parameters, namely period T and earliest starting time S , where
the deadline of the task is equal to its period (i.e., implicit
deadline). The minimum period Ti [14] of any actor Ai ∈ A

under SPS can be computed as:

Ti =
lcm(~q)

qi

⌈maxAi∈A{µiqi}

lcm(~q)

⌉
, (2)

where qi is the number of repetitions of actor Ai per graph
iteration, and µi is the worst-case execution time (WCET) of
actor Ai. In general, the derived period vector ~T must satisfy
the condition q1T1 = q2T2 = · · · = qnTn = H, where H is
the iteration period, also called hyper period, that represents
the duration needed by the graph to complete one iteration.
The minimum period of the sink actor for a CSDF graph
determines the maximum throughout that this graph can achieve.
In addition, the utilization of any actor Ai ∈ A, denoted by ui,
can be computed as ui = µi/Ti, where ui ∈ (0, 1].

To sustain a strictly periodic execution with the period
derived by Equation (2), the earliest starting time S i [14]
of any actor Ai ∈ A can be obtained as:

S i =

0 i f prec(Ai) = ∅

maxA j∈prec(Ai)(S j→i) otherwise,
(3)

where prec(Ai) represents the set of predecessor actors of Ai

and S j→i is given by:

S j→i = min
t∈[0,S j+H]

{
t : Prd

[S j,max{S j,t}+k)
(A j, Eu)

≥ Cns
[t,max{S j,t}+k]

(Ai, Eu), ∀k ∈ [0,H], k ∈ N
} (4)

where Prd[ts,te)(A j, Eu) is the total number of tokens pro-
duced by A j to edge Eu during the time interval [ts, te) and
Cns[ts,te](Ai, Eu) is the total number of tokens consumed by Ai

from edge Eu during the time interval [ts, te]. Equation (4)
considers the dependency between actors A j and Ai, over
directed channel Eu. It calculates the earliest starting time
S j→i such that Ai is never blocked on reading data tokens
from Eu during its periodic execution. This is ensured by
checking that at each time instant, actor Ai can be fired such
that the cumulative number of tokens produced by A j over Eu

is greater than or equal to the number of tokens Ai consumes
from Eu. Start times S j→i are computed for each actor A j in
the predecessor set of Ai, i.e., A j ∈ prec(Ai). Then, when actor
Ai has several predecessors, the earliest starting time S i has
to be set to the maximum of starting times S j→i considering
each predecessor in isolation, as captured by Equation (3). For
more details, we refer the reader to [14].

A1
1 A2

1 A3
1 A5

1
[1, 0] [1, 1] [2, 0]

Ac

[0, 1]

[1, 0][1, 1]

A4
1[0] [0]

[1] [1]

[0, 0][0, 0]

(a) CSDF graph G1
1 of mode SI1.

A1
2 A2

2 A3
2 A5

2
[1, 0]

A4
2

[0, 1]

[1, 0]

[0, 1]

Ac

[0, 1]

[1, 0]

[1] [1]

[1] [1][1] [1]

(b) CSDF graph G2
1 of mode SI2.

Fig. 2. Two modes of the MADF graph in Fig. 1.

IV. Mode-Aware Data Flow (MADF)

In this section, we introduce our new MoC called Mode-
Aware Data Flow (MADF). MADF can capture multiple modes
associated with an adaptive streaming application, where each
individual mode is a CSDF graph [3]. Details and formal
definitions of the MADF model and its operational semantics
are given later in this section. Here, we explain the MADF
intuitively by an example. Throughout this paper, we use graph
G1 shown in Fig. 1 as the running example to illustrate the
definition of MADF and the hard real-time scheduling analysis
related to MADF. This graph consists of 5 computation actors
A1 to A5 that communicate data over edges E1 to E5. Also,
there is an extra actor Ac which controls the switching between
modes through control edges E11, E22, E44, and E55 at run-
time. Each edge contains a production and a consumption
pattern, and some of these production and consumption patterns
are parameterized. Having different values of parameters and
worst-case execution times (WCET) of the actors determine
different modes. For example, to specify the consumption
pattern with variable length on edge E1 in graph G1, the
parameterized notation [p2[1]] is used on edge E1 that is
interpreted as a sequence of p2 elements with integer value 1,
e.g., [2[1]] = [1, 1]. Similarly, the notation [1[p4]] on edge E4
is interpreted as a sequence of 1 element with integer value
p4, e.g., [1[2]] = [2]. Assume in this particular example that
parameter vector (p1, p2, p4, p5, p6) can take only two values
(0, 2, 0, 2, 0) and (1, 1, 1, 1, 1). Then, Ac can switch the
application between two corresponding modes SI1 and SI2 by
setting the parameter vector to value (0, 2, 0, 2, 0) and (1, 1,
1, 1, 1), respectively, at run-time. Fig. 2(a) and (b) show the
corresponding CSDF graphs of mode SI1 and SI2.

A. Formal Definition of MADF

Definition 1 (Mode-Aware Data Flow (MADF)).
A Mode-Aware Data Flow (MADF) is a multi-graph defined
by a tuple (A, Ac,E,Π), where
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TABLE I
Mapping relation M2 for actor A2

in Fig. 1.

~p2 = [p2] φ C̄2

2 2 [c1, c2]
1 1 [c3]

TABLE II
Function MC5 defined for actor

A5 in Fig. 1.

S N2

SI1 [2, 0]
SI2 [1, 1]

• A = {A1, . . . , A|A|} is a set of dataflow actors;
• Ac is the control actor to determine modes and their

transitions;
• E is the set of edges for data/parameter transfer;
• Π = {~p1, . . . , ~p|A|} is the set of parameter vectors, where

each ~pi ∈ Π is associated with a dataflow actor Ai.

For G1, A = {A1, A2, A3, A4, A5} is the set
of dataflow actors. Ac is the control actor.
E = {E1, E2, E3, E4, E5, E6, E11, E22, E44, E55} is the set
of edges. For actor A5, ~p5 = [p5, p6] is the parameter vector.
The input port IP1 of actor A5 has a consumption sequence
[1[p5], 1[0]], which can be interpreted as [p5, 0].

Definition 2 (Dataflow Actor). A dataflow actor Ai is described
by a tuple (Ii, ICi, Oi,Ci,Mi), where
• Ii = {IP1, . . . , IP|Ii |} is the set of data input ports of actor

Ai;
• ICi is the control input port that reads parameter vector
~pi for actor Ai;

• Oi = {OP1, . . . ,OP|Oi |} is the set of data output ports of
actor Ai;

• Ci = {c1, . . . , c|C|} is the set of computations. When actor
Ai fires, it performs a computation ck ∈ Ci;

• Mi : ~pi → {φ, C̄i} is a mapping relation, where ~pi ∈ Π,
φ ∈ N+, and C̄i ⊆ Ci is a sequence of computations
[C̄i(1), . . . , C̄i(k), . . . , C̄i(φ)] with C̄i(k) ∈ Ci, 1 ≤ k ≤ φ.

Actor A2 in Fig. 1 has a set of one input port I2 = {IP1}, a
set of one output port O2 = {OP1} as well as a control input
port IC2. A set of computations C2 = {c1, c2, c3} is associated
with A2. The mapping relation M2 is given in Table I. It can be
interpreted as follows: If p2 = 2, actor A2 repetitively performs
computations according to sequence C̄2 = [c1, c2] every time
when firing A2. When p2 = 1, firing A2 performs computation
c3.

Definition 3 (Control Actor). The control actor Ac is described
by a tuple (IC,Oc,S,Mc), where
• S = {SI1, . . . , SI|S|} is a set of mode identifiers, each of

which specifies a unique mode;
• IC is the control input port which is connected to the

external environment. Mode identifiers are read through
the control input port from the environment;

• Oc = {OC1, . . . ,OC|A|} is a set of control output ports.
Parameter vector ~pi is sent through OCi ∈ Oc to actor Ai;

• Mc = {MC1, . . . ,MC|A|} is a set of functions defined for
each actor Ai ∈ A. For each MCi ∈ Mc, MCi : S → N|~pi |

is a function that takes a mode identifier and outputs a
vector of non-negative integer values.

For G1 in Fig. 1, we have two mode identifiers S = {SI1, SI2}.
At run-time, control actor Ac reads these mode identifiers

through control port IC (black dot in Fig. 1). For actor A5,
MC5 ∈ Mc is given in Table II. As explained previously, the
parameter vector for actor A5 is ~p5 = [p5, p6]. Therefore, MC5
takes a mode identifier and outputs a 2-dimensional vector as
shown in the second column in Table II. For instance, mode
SI1 results in a non-negative integer vector [2, 0].

To further define production/consumption sequences with
variable length, we use the notation n[m] for a sequence of n
elements with integer value m, i.e.,

n[m] = [
n times︷    ︸︸    ︷

m, . . . ,m].

Definition 4 (Input Port). An input port IP of an actor is
described by a tuple (CNS, MIP), where
• CNS = [φ1[cns1], . . . , φK[cnsK]] is the consumption se-

quence with φ phases, where φ =
∑K

i=1 φi is deter-
mined by the mapping relation M in Definition 2, and
cns1, . . . , cnsK ∈ N;

• MIP : ~pi → ψIP is a mapping relation, where ~pi ∈ Π and

ψIP = {φ1, . . . , φK , cns1, . . . , cnsK}. (5)

Definition 5 (Output Port). An output port OP of an actor is
described by a tuple (PRD,MOP), where
• PRD = [φ1[prd1], . . . , φK[prdK]] is the production se-

quence with φ phases, where φ =
∑K

i=1 φi is deter-
mined by the mapping relation M in Definition 2, and
prd1, . . . , prdK ∈ N.

• MOP : ~pi → ψOP is mapping relation, where ~pi ∈ Π and

ψOP = {φ1, . . . , φK , prd1, . . . , prdK}. (6)

The consumption/production sequence defined here is a
generalization of that for the CSDF MoC (see Section III-B).
We can see that a CSDF actor has a constant φ phases in its
consumption/production sequences, whereas the length of the
phase of an MADF actor is parameterized by φ =

∑K
i=1 φi. In

addition, the mapping relation MIP/MOP must be provided by
the application designer. Consider the two input ports IP1 and
IP2 of actor A5 in Fig. 1. The mapping relations MIP1 and MIP2

are represented as follows:

MIP1 : ~p5 = [p5, p6]→ ψIP1 = {φ1, φ2, cns1, cns2} = {1, 1, p5, 0},
(7)

MIP2 : ~p5 = [p5, p6]→ ψIP2 = {φ1, φ2, cns1, cns2} = {1, 1, 0, p6}.
(8)

It can be seen that parameter p5 is mapped to cns1 of IP1,
parameter p6 is mapped to cns2 of IP2, and φ1 and φ2 both
are constant equal to 1. Therefore, the consumption sequence
of IP1 is CNS = [1[p5], 1[0]] = [p5, 0] and the consumption
sequence of IP2 is CNS = [1[0], 1[p6]] = [0, p6]. Similarly
considering output port OP1 of actor A4, its mapping relation
MOP1 is given as:

MOP1 : ~p4 = [p4]→ ψOP1 = {φ1, prd1} = {1, p4}. (9)

In this case, parameter p4 is mapped to prd1 and φ1 = 1.
Therefore, production sequence PRD = [1[p4]] = [p4] is
obtained for OP1 of A4.

Definition 6 (Edge). An edge E ∈ E is defined by a tuple(
(Ai,OP), (A j, IP)

)
, where
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(a) Mode SI1 in Fig. 2(a).
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(b) Mode SI2 in Fig. 2(b).

Fig. 3. Execution of two iterations of both modes SI1 and SI2 under self-timed
scheduling.

• actor Ai produces a parameterized number of tokens to
edge E through output port OP;

• actor A j consumes a parameterized number of tokens from
E through input port IP.

Considering edge E5 in Fig. 1, it connects output port OP1
of actor A4 to input port IP2 of actor A5.

Definition 7 (Mode of MADF). A mode SIi of MADF is a
consistent and live CSDF graph, denoted as Gi, obtained by
setting values of Π in Definition 1 as follows:

∀~pk ∈ Π : ~pk = MCk(SIi), (10)

where function MCk is given in Definition 3.

Definition 8 (Mode of MADF Actor). An actor Ak in mode SIi,
denoted by Ai

k, is a CSDF actor obtained from Ak as follows:

~pk = MCk(SIi). (11)

Fig. 2(a) shows the CSDF graph of mode SI1 and Fig. 2(b)
shows the CSDF graph of mode SI2. Consider function MC5
for actor A5 in Table II with parameter vector ~p5 = [p5, p6].
For instance, mode SI1 results in ~p5 = [p5, p6] = [2, 0], where
parameter values p5 = 2 and p6 = 0. Consequently, according
to mapping relations MIP1 and MIP2 given in Equation (7) and
Equation (8), cns1 = p5 = 2 can be obtained for input port IP1
and cns2 = p6 = 0 for IP2. This determines actor A1

5 shown in
Fig. 2(a) for mode SI1.

Definition 9 (Inactive Actor). An MADF actor Ak
i is inactive

in mode SIk if the following conditions hold:
1) ∀IP ∈ Ii : CNS = [0, . . . , 0];
2) ∀OP ∈ Oi : PRD = [0, . . . , 0].

Otherwise, Ak
i is called active in mode SIk.

For actor A1
4 shown in Fig. 2(a), it has consumption and

production sequence [0]. Therefore, actor A4 is said to be
inactive in mode SI1.

B. Operational Semantics

During execution of a MADF graph, it can be either in a
steady-state or mode transition.

Definition 10 (Steady-state). A MADF graph is in a steady-
state of a mode SIi, if it satisfies Equation (10) with the same
SIi for all its actors.

TABLE III
Actor parameter for G1 in Fig. 1.

Mode SI1 SI2

Actor A1
1 A1

2 A1
3 A1

5 A2
1 A2

2 A2
3 A2

4 A2
5

WCET (µi) 1 4 1 1 1 8 1 3 1
period (Ti) 2 4 4 4 4 8 8 8 4

starting time (S i) 0 2 6 14 0 4 12 8 20
utilization (ui) 1

2 1 1
4

1
4

1
4 1 1

8
3
8

1
4

Definition 11 (Mode Transition). A MADF graph is in a mode
transition from mode SIo to SIl, where o , l, if some actors
have SIo for Equation (11) and the remaining active actors
have SIl for Equation (11).

In the steady-state of a MADF graph, all active actors execute
in the same mode. As defined previously in Definition 7 and
shown in Fig. 2(a) and Fig. 2(b), the steady-state of the MADF
graph has the same operational semantics as a CSDF graph.
We use 〈Ak

i , x〉 to denote the x-th firing of actor Ai in mode
SIk. At 〈Ak

i , x〉, it executes computation C̄i
(
((x − 1) mod φ) +

1
)
, where C̄i is given in Definition 2. The number of tokens

consumed and produced are specified according to Definitions 4
and 5, respectively. For instance, the x-th firing of Ak

i produces
PRD

(
((x−1) mod φ)+1

)
tokens through an output port OP. In

each mode SIk, the MADF graph is a consistent and live CSDF
graph and thus has the notion of graph iterations with a non-
trivial repetition vector ~qk ∈ N|A| resulting from Equation (1).
Next, we further define mode iterations.

Definition 12 (Mode Iteration). One iteration Itk of a MADF
graph in mode SIk consists of one firing of control actor Ac

and qk
i ∈ ~q

k firings of each MADF actor Ak
i .

Consider the two modes shown in Fig. 2(a) and Fig. 2(b).
Repetition vectors ~q1 and ~q2 are:

~q1 = [4, 2, 2, 0, 2], ~q2 = [2, 1, 1, 1, 2]. (12)

For any mode of a MADF graph, i.e., a live CSDF
graph, under any valid schedule, it has (eventually) periodic
execution in time. This holds for CSDF graphs under self-
timed schedule [17], K-periodic schedule [18], and SPS [14].
The length of the periodic execution, called iteration period,
determines the minimum time interval to complete one graph
iteration (cf. Definition 12). The iteration period, denoted by
Hk, is equal for any actor in the same mode SIk. During a
periodic execution, the starting time of each actor Ak

i , denoted
by S k

i , indicates the time distance between the start of source
actor Ak

src and the start of actor Ak
i in the same iteration period.

Based on the notion of starting times, we define iteration
latency Lk of a MADF graph in mode SIk as follows:

Lk = S k
snk − S k

src, (13)

where S k
snk and S k

src are the earliest starting times of the sink
and source actors, respectively. Fig. 3 illustrates the execution
of both modes SI1 and SI2 given in Fig. 2 under the self-timed
schedule. A rectangle denotes the WCET of an actor firing.
The WCETs of all actors in both modes are given in the third
row of Table III. Now, it can be seen in Fig. 3 that iteration
period H1 = H2 = 8. Based on the starting time of each actor,
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A5
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Fig. 4. An execution of G1 in Fig. 1 with two mode transitions under the
ST transition protocol. MCR1 at time tMCR1 denotes a transition request from
mode SI2 to SI1, and MCR2 at time tMCR2 denotes a transition request from
mode SI1 to SI2.

we obtain iteration latencies L1 = S 1
5 − S 1

1 = 10 − 0 = 10 and
L2 = S 2

5 − S 2
1 = 10 − 0 = 10 as shown in Fig. 3.

C. Mode Transition

While the operational semantics of a MADF graph in steady-
state are the same as that of a CSDF graph, the transition of
MADF graph from one mode to another is the crucial part
that makes it fundamentally different from CSDF. The protocol
for mode transitions has strong impact on the compile-time
analyzability and implementation efficiency. In this section, we
propose a novel and efficient protocol of mode transitions for
MADF graphs.

During execution of a MADF graph, mode transitions may
be triggered at run-time by receiving a Mode Change Request
(MCR) from the external environment. We first assume that
a MCR can be only accepted in the steady-state of a MADF
graph, not in an ongoing mode transition. This means that
any MCR occurred during an ongoing mode transition will
be ignored. Consider a mode transition from SIo to SIl. The
transition is accomplished by the control actor reading mode
identifier SIl from its control input port (see the black dot
in Fig. 1) and writing parameter values of ~pi to the control
output port connected to each dataflow actor Al

i according
to function MCi given in Definition 3. Then, Al

i reads new
parameter values ~pi from its control input port and sets the
sequence of computations according to mapping relation Mi

in Definition 2. The production and consumption sequences
are obtained in accordance with MIP and MOP in Definition 4
and Definition 5, respectively. We further define/require that
mode transitions are only allowed at quiescent points [19].

Definition 13 (Quiescent Point of MADF). For mode SIl, a
quiescent point of MADF actor Ai is firing 〈Al

i, x〉 in mode
iteration Itl that satisfies

¬∃〈Al
i, y〉 ∈ Itl : y < x. (14)

Definition 13 simply refers to the first firing of actor Ai

in each iteration Itl of mode SIl. Recall that each iteration
of mode SIl consists of ql

i firings of actor Ai. Therefore, our
requirement that a mode transition is only allowed at a quiescent
point implies that a transition from mode SIl to SIo of actor
Ai happens when all firings of actor Ai are completed in the
iteration of SIl when MCR occurs. Fig. 4 shows an execution
of G1 in Fig. 1 with two mode transitions. For instance, the

MCR at time tMCR1 = 1 denotes a transition request from mode
SI2 to SI1. The mode transition of actor A1 happens when all
firings of actor A1 are completed, that is at time 2 in Fig. 4 in
this particular example.

Definition 13 defines mode transitions of MADF graphs as
partially ordered actor firings. However, it does not specify at
which time instance a mode transition actually starts. Therefore,
below, we focus on the transition protocol that defines the points
in time for occurrences of mode transitions. To quantify the
transition protocol, we introduce a metric, called transition
delay, to measure the responsiveness of a protocol to a MCR.

Definition 14 (Transition Delay). For a MCR at time tMCR

calling for a mode transition from mode SIo to SIl, the transition
delay ∆o→l of a MADF graph is defined as

∆o→l = σo→l
snk − tMCR, (15)

where σo→l
snk is the earliest starting time of the sink actor in

the new mode SIl.

In Fig. 4, we can compute the transition delay for MCR1
occurred at time tMCR1 = 1 as ∆2→1 = 18 − 1 = 17.

1) Self-timed Transition Protocol: In the existing adaptive
MoCs like FSM-SADF [5], a protocol, referred here as Self-
Timed (ST) transition protocol, is adopted. The ST protocol
specifies that actors are scheduled in the self-timed manner not
only in the steady-state, but also during a mode transition. For
FSM-SADF upon a MCR, a firing of a FSM-SADF actor in
the new mode can start immediately after the firing of the actor
completes the old mode iteration. The only possible delay is
introduced due to availability of input data. One reason behind
the ST protocol is that the ST schedule for a (C)SDF graph
(steady-state of FSM-SADF1) leads to its highest achievable
throughput. However, the ST protocol generally introduces
interference of one mode execution with another one. The
time needed to complete mode transitions also fluctuates as
the transition delay of an ongoing transition depends on the
transitions that occurred in the past. We consider this as
an undesired effect because mode transitions using the ST
protocol become potentially slow and unpredictable. Another
consequence of the incurred interference between modes using
the ST transition protocol is the high time complexity of
analyzing transition delays, because transition delays cannot
be analyzed independently for each mode transition. The
analysis proposed in [5] uses an approach based on state-space
exploration, which has the exponential time complexity.

Consider G1 in Fig. 1 and an execution of G1 with the
two mode transitions illustrated in Fig. 4. The execution is
assumed under the ST schedule for both steady-state and mode
transitions of G1. After MCR1 at time tMCR1, the transition
from mode SI2 to SI1 introduces interference to execution of
the new mode SI1 from execution of the old mode SI2. The
interference increases the iteration latency of the new mode
SI1 to L1 = S 1

5 − S 1
1 = 18 − 2 = 16 from initially 10 as shown

in Fig. 3(a) when G1 is only executed in the steady-state of

1The steady-state of SADF is defined similarly to that of MADF. The only
difference is that a scenario of FSM-SADF is a SDF graph, whereas a mode
of MADF is a CSDF graph.
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Fig. 5. An illustration of the Maximum-Overlap Offset (MOO) calculation.

mode SI1. Even worse, the interference is further propagated
to the second mode transition after MCR2 at time tMCR2. In
this case, the iteration latency L2 = S 2

5 − S 2
1 = 42 − 23 = 19

is increased from initially 10 as shown in Fig. 3(b) when
G1 is only executed in the steady-state of mode SI2. This
example thus clearly shows the problem of the ST protocol.
That is, it introduces interference between the old and new
modes due to mode transitions, thereby increasing the iteration
latency of the new mode in the steady-state after the transition.
Furthermore, the increase of iteration latency also potentially
increases transition delays as it will be shown in the next
section.

2) Maximum-Overlap Offset Transition Protocol: To address
the problem of the ST transition protocol explained above, we
propose a new transition protocol, called Maximum-Overlap
Offset (MOO).

Definition 15 (Maximum-Overlap Offset (MOO)). For a
MADF graph and a transition from mode SIo to SIl, Maximum-
Overlap Offset (MOO), denoted by x, is defined as

x =

maxAi∈A
o∩Al (S o

i − S l
i) if maxAi∈A

o∩Al (S o
i − S l

i) > 0
0 otherwise,

(16)
where Ao ∩Al is set of actors active in both modes SIo and
SIl.

Basically, we first assume that the new mode SIl starts
immediately after the source actor Ao

src of the old mode SIo

completes its last iteration Ito. All actors Al
i of the new mode

execute according to the earliest starting times S l
i and iteration

period Hl in the steady-state. Under this assumption, if the
execution of the new mode overlaps with the execution of the
old mode in terms of iteration periods Ho and Hl, we then need
to offset the starting time of the new mode by the maximum
overlap among all actors. In this way, the execution of the
new mode will have the same iteration latency as that of the
new mode in the steady-state, i.e., no interference between the
execution of both old and new modes.

Consider MCR1 at time tMCR1 shown in Fig. 4. Obtaining
MOO x is illustrated in Fig. 5. We first assume that the new
mode SI1 starts at the time when the source actor A2

1 completes
the last iteration at time 8 (see bold, dashed line in Fig. 5).
Actors A1

i in the new mode start as if they executed in the

Actors

A1

A2

A3

A5

5 10 15

A4

20 25 30

x=4

35 Time

L1 L2

Start of mode SI1

H2 H1

Start of mode SI2

Δ2→1 Δ1→2

tMCR1 tMCR2

Fig. 6. The execution of G1 with two mode transitions under Maximum-
Overlap Offset (MOO) protocol.

steady-state of mode SI1. Then, we can see that, for actor A3, the
execution of A1

3 in the new mode SI1 according to S 1
3 in Fig. 3(a)

overlaps 4 time units (solid bar in Fig. 5) with the execution
of A2

3 in the old mode SI2 in terms of iteration periods H2 and
H1. This is also the maximum overlap between the execution
of actors in modes SI2 and SI1. According to Definition 15, x
can be obtained through the following equations:

S 2
1 − S 1

1 = 0 − 0 = 0, S 2
2 − S 1

2 = 1 − 1 = 0,

S 2
3 − S 1

3 = 9 − 5 = 4, S 2
5 − S 1

5 = 10 − 10 = 0.

Therefore, it results in an offset x = max(0, 0, 4, 0) = 4 to
the start of mode SI1 and is shown in Fig. 6. The starting
time of the new mode SI1, namely the source actor A1

1, must
be first delayed to the time when A1

2 completes the iteration
period H2 in the last iteration, namely time 8 shown as the
first bold dashed line in Fig. 6. In addition, the MOO x = 4
must be further added to the starting time of A1

1 (the second
bold dashed line in Fig. 6). Fig. 6 also shows another transition
from mode SI1 to SI2 with a MCR occurred at time tMCR2 = 23.
The starting time of the source actor A2

1 in the new mode SI2

must be first delayed to the time 28 (the third bold dashed
line in Fig. 6), namely the time when A1

1 completes the last
iteration in the old mode SI1. To calculate the MOO x for this
transition, the following equations hold:

S 1
1 − S 2

1 = 0 − 0 = 0, S 1
2 − S 2

2 = 1 − 1 = 0,

S 1
3 − S 2

3 = 5 − 9 = −4, S 1
5 − S 2

5 = 10 − 10 = 0.

Thus, the equations above result in x = max(0, 0,−4, 0) = 0.
For this transition, the new mode SI2 starts at time 28 as shown
in Fig. 6.

The MOO protocol offers several advantages over the ST
protocol. Essentially, the MOO protocol retains the iteration
latency of the MADF graph in the new mode the same as
the initial value, thereby avoiding the interference between the
old and new modes. For instance, after MCR1 and MCR2 in
Fig. 6, mode SI1 and SI2 still have the initial iteration latency
L1 = 10 and L2 = 10 as shown in Fig. 3. Therefore, efficiently
computing the starting time of MADF actors in the new mode
becomes feasible and it plays an important role in deriving
a hard-real time schedule for the MADF actors. As a result,
analysis of the worst-case transition delay is much simpler (see
Theorem 2) than that of the ST protocol, because the transition
delay does not depend on the order of the transitions that
occurred previously.
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Concerning the transition delay, it may be the case that the
MOO protocol results in initially longer transition delay than
the ST protocol does due to the offset given in Definition 15.
For MCR1 occurred at time tMCR1, the transition delay of the
MOO protocol is ∆2→1 = 22 − 1 = 21 as shown in Fig. 6,
whereas the transition delay of the ST protocol is equal to
∆2→1 = 18 − 1 = 17 as shown in Fig. 4. On the other hand,
let us consider the same transition request MCR2 occurred at
time tMCR2 = 23 shown in Fig. 4 and Fig. 6. For MCR2, the
ST protocol results in transition delay ∆1→2 = 42 − 23 = 19 as
shown in Fig. 4. In contrast, the transition delay for the MOO
protocol is ∆1→2 = 38− 23 = 16 as shown in Fig. 6. The MOO
protocol could provide shorter transition delay than the ST
protocol, thereby faster responsiveness to a mode transition.

V. Hard Real-Time Analysis and Scheduling ofMADF

Based on the proposed MOO protocol for mode transitions,
in this section, we propose a hard real-time analysis and
scheduling framework for MADF. More specifically, we
propose an analysis technique for mode transitions in MADF
to reason about transition delays, such that timing constraints
can be guaranteed. The hard real-time scheduling framework
for MADF graphs is an extension of the SPS [14] framework
initially developed for CSDF graphs.

As explained in Section III-C, the key concept of the SPS
framework is to derive a periodic taskset representation for a
CSDF graph. Since the steady-state of a mode can be considered
as a CSDF graph according to Definitions 7 and 10, it is thus
straightforward to represent the steady-state of a MADF graph
as a periodic taskset and schedule the resulting taskset using
any well-known hard real-time scheduling algorithm. Using
the SPS framework, we can derive the two main parameters
for each MADF actor in mode SIk, namely the period (T k

i in
Equation (2)) and the earliest starting time (S k

i in Equation (3)).
Under SPS, the iteration period in mode SIk is obtained as
Hk = qk

i T k
i , ∃Ak

i ∈ A. Below, we focus on determining the
earliest starting time of each actor in the new mode upon
a transition. From the earliest starting time, we can reason
about the transition delay to quantify the responsiveness of a
transition.

Upon a MCR, a MADF graph can safely switch to the new
mode if all of its actors have completed their last iteration
in the old mode upon synchronous protocol. In this case, the
firings of MADF actors in the new mode do not overlap with
the firings of actors in the old mode. This is called synchronous
protocol [12] in real-time systems with mode change. One of its
advantages is the simplicity, i.e., the synchronous protocol does
not require any schedulability test at both compile-time and run-
time. However, other protocols lead to earlier starting times
than the synchronous protocol. Therefore, the synchronous
protocol sets an upper bound on the earliest starting time for
each MADF actor in the new mode.

Lemma 1. For a MADF graph G under SPS and a MCR from
mode SIo to SIl at time tMCR, the earliest starting time of actor
Al

i, σ̂
o→l
i , is upper bounded by

σ̂o→l
i = Fo

src + S o
snk + S l

i, (17)

Actors

A1

A2

A3

A5

A4

SI2 SI1

H2

8 13 18 23 28 33 38 42 47 52
Time

Δ2→1
⌃ S21

S31

S51S52

tMCR

Fig. 7. Upper bounds of earliest starting times for transition from mode SI2

to SI1.

where Fo
src indicates the time when the source actor Ao

src
completes its last iteration Ito of the old mode SIo and is
given by

Fo
src = to

S +

⌈ tMCR − to
S

Ho

⌉
Ho. (18)

to
S is the starting time of mode SIo and Ho is the iteration

period of mode SIo.

Proof. As explained previously for a transition from mode SIo

to SIl, the upper bound of the earliest starting time for each
actor Al

i is computed in such a way that no firings of actors
Ao

i and Al
i occur simultaneously. This means, the start of an

actor Al
i must be later than all actors Ao

i have completed the
last iteration Ito of the old mode SIo. Given that mode SIo

starts at time to
S , the completion time of all actors Ao

i in the
last iteration Ito can be thus computed as

Fo
snk = to

S +

⌊ tMCR − to
S

Ho

⌋
Ho + S o

snk + Ho. (19)

where Fo
snk is the time when the old mode SIo completes the

last iteration Ito. It is assumed that the sink actor Ao
snk is the

last actor to complete the iteration, i.e., ∀Ao
i ∈ A, S

o
i ≤ S o

snk.
Given Equation (18), Equation (19) can be rewritten as

Fo
snk = to

S +

⌈ tMCR − to
S

Ho

⌉
Ho + S o

snk = Fo
src + S o

snk.

Now, starting the source actor Al
src at any time later than Fo

snk
is valid without introducing simultaneous execution of actors
Ao

i and Al
i. Therefore, the earliest starting time of source actor

Al
src is σ̂o→l

src = Fo
snk. For any actor Al

i ∈ A \ Al
src, its earliest

starting times must satisfy Equation (3) imposed by the SPS
framework. That is, the earliest starting time σ̂o→l

i of actor Al
i

can be obtained by adding S l
i to σ̂o→l

src . �

Let us consider the actor parameters given in Table III
for G1 in Fig. 1. The third row shows the WCET for each
actor in modes SI1 and SI2. Based on WCETs, the period
(fourth row in Table III) and the earliest starting time (fifth
row in Table III) for each actor in the steady-state of both
modes are obtained according to Equation (2) and Equation (3),
respectively. Given ~q2 in Equation (12), we can also compute
iteration period H2 = q2

1T 2
1 = 2 × 4 = 8. Now consider the

mode transition from mode SI2 to SI1 shown in Fig. 7. Assume
that the MCR occurs at time tMCR = 13 and mode SI2 starts
at time t2

S = 8. The completion time of the last iteration It2 is
equal to the completion time of the sink actor A2

5 computed as

F2
snk = t2

S +

⌈ tMCR − t2
S

H2

⌉
H2 + S 2

5 = 8 +

⌈13 − 8
8

⌉
8 + 20 = 36.
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Fig. 8. Earliest starting times for transition from mode SI2 to SI1 with the
MOO protocol.

In Fig. 7, F2
snk corresponds to the earliest starting time of the

source actor A1
1 (bold dashed line). Finally, we can compute

the earliest starting time for each actor in the new mode SI1

by adding S 1
i . Considering for instance the sink actor A1

5 in
the new mode with S 1

5 = 14, the upper bound of its earliest
starting time can be obtained as

σ̂2→1
5 = F2

src + S 2
5 + S 1

5 = F2
snk + S 1

5 = 36 + 14 = 50.

We can thus compute the transition delay (cf. Definition 14) as

∆̂2→1 = σ̂2→1
5 − tMCR = 50 − 13 = 37.

Although the upper bound of the earliest starting times is
easy to obtain for MADF actors in the new mode, it does not
provide a responsive mode transition. Therefore, here we aim
at deriving a lower bound of the earliest starting times with
the proposed MOO protocol.

Lemma 2. For a MADF graph under SPS and a MCR from
mode SIo to SIl at time tMCR, the earliest starting time of actor
Al

i using the MOO protocol is lower bounded by σ̌o→l
i given

as
σ̌o→l

i = Fo
src + x + S l

i, (20)

where Fo
src is given in Equation (18) and x is given in

Equation (16).

Proof. Under the MOO protocol, the start of actor Al
i must be

later than the time when Ao
i , if any, completes its last iteration

in the old mode SIo. We assume that the source actor Al
src is the

first actor to start in the new mode SIl, i.e., ∀Al
i ∈ A, S

l
i ≥ S l

src.
Thus, the starting time of the source actor Al

src is at least equal
to the completion time of the last iteration of Ao

src, denoted by
Fo

src. Given Fo
src in Equation (18), it thus holds σ̌o→l

src ≥ Fo
src.

Then, the offset x because of the MOO protocol given in
Equation (16) must be taken into account. Consequently, the
earliest starting time of Al

src is lower bounded by σ̌o→l
src = Fo

src+x.
For any actor Al

i ∈ A \ Al
src, its earliest starting times must

satisfy Equation (3) imposed by the SPS framework. Hence,
the earliest starting time σ̌o→l

i of actor Al
i can be obtained by

adding S l
i to σ̌o→l

src . �

Let us consider again the transition from mode SI2 to SI1.
With the MOO protocol, the mode transition is illustrated in
Fig. 8. Upon the MCR at time tMCR = 13 and t2

S = 8, source

actor A2
1 completes its last iteration It2 in the old mode SI2 at

the time (cf. Equation (18)) given as

F2
src = F2

1 = t2
S +

⌈ tMCR − t2
S

H2

⌉
H2 = 8 +

⌈13 − 8
8

⌉
8 = 16.

This is the earliest possible time at which mode transition
is allowed. For MOO, x can be computed according to
Equation (16). Therefore, the following equations hold:

S 2
1 − S 1

1 = 0 − 0 = 0, S 2
2 − S 1

2 = 4 − 2 = 2,

S 2
3 − S 1

3 = 12 − 6 = 6, S 2
5 − S 1

5 = 20 − 14 = 6.

It thus yields x = max(0, 2, 6, 6) = 6, i.e., an offset x = 6 is
added to F2

src. It can be seen in Fig. 8 that the source actor A1
1

starts at time F2
src + x = 16+6 = 22. Finally, the earliest starting

times of actors in mode SI1 can be determined by adding S 1
i .

Considering for instance A1
5 in the new mode, the lower bound

of its earliest starting time can be obtained as:

σ̌2→1
5 = F2

src + x + S 1
5 = 16 + 6 + 14 = 36.

Now, the transition delay (cf. Definition 14) can be obtained as

∆̌2→1 = σ̌2→1
5 − tMCR = 36 − 13 = 23.

A. Scheduling Analysis under a Fixed Allocation of Actors

During a mode transition of a MADF graph according to the
MOO protocol, actors execute simultaneously in the old and
new modes. The derived starting time in Lemma 2 for each actor
is only the lower bound because the allocation of actors on PEs
is not taken into account yet. That means, the derived starting
times according to Lemma 2 can be only achieved during mode
transitions when each actor is allocated to a separate PE. In
a practical system where multiple actors are allocated to the
same PE, the PE may be potentially overloaded during mode
transitions. To avoid overloading of PEs, the earliest starting
times of actors may be further delayed.

Lemma 3. For a MADF graph under SPS, a MCR from mode
SIo to SIl, and a m-partition of all actors Ψ = {Ψ1, . . . ,Ψm},
where m is the number of PEs, the earliest starting time of an
actor Al

i without overloading the underlying PE is given by

σo→l
i = Fo

src + δo→l + S l
i, (21)

where Fo
src is computed by Equation (18) and δo→l is obtained

as

δo→l = min
t∈[x,S o

snk]
{t : U j(k) ≤ UB, ∀k ∈ [t, S o

snk]∧∀Ψ j ∈ Ψ}. (22)

UB denotes the utilization bound of the scheduling algorithm
used to schedule actors on each PE. Ψ j contains the set of
actors allocated to PE j. U j(k) is the total utilization of PE j

at time k demanded by both mode SIo and SIl actors, and is
given by

U j(k) =
∑

Ao
d∈Ψ j

(
uo

d − h(k − S o
d) · uo

d

)
︸                           ︷︷                           ︸

Uo
j (k)

+
∑

Al
d∈Ψ j

(
h(k − S l

d − t) · ul
d

)
︸                         ︷︷                         ︸

U l
j(k)

,

(23)
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Fig. 9. Allocation of all MADF actors in Fig. 1 to 3 PEs.

Ao
d ∈ Ψ j is an actor active in the old mode SIo and allocated

to PE j. Al
d ∈ Ψ j is an actor active in the new mode SIl and

allocated to PE j. h(t) is the Heaviside step function.

Proof. Lemma 2 shows the lower bound of the earliest starting
time for actor Al

i in the new mode SIl. However, starting Al
i at

time σ̌o→l
i may overload PE j, i.e., the resulting total utilization

of PE j, denoted by U j(σ̌o→l
i ), exceeds UB. Therefore, in this

case, the earliest starting time σo→l
i must be delayed by δo→l

such that U j(σo→l
i ) ≤ UB holds. From Equation (21) and

Equation (20), we can see that δo→l is lower bounded by x
which corresponds to the MOO protocol. In addition, δo→l

is upper bounded by S o
snk if we consider Equation (21) and

Equation (17).
δo→l of interest is the minimum time t in the bounded interval

[x, S o
snk] that satisfies two conditions.

Condition 1: For each PE j, the total utilization cannot exceed
UB at time t, i.e., U j(t) ≤ UB. The total utilization U j(t) in
Equation (23) consists of two parts, namely Uo

j (t) and U l
j(t).

Uo
j (t) denotes the PE capacity occupied by the actors in mode

SIo that are not completed yet. Additional PE capacity U l
j(t) is

demanded by the already released actors in the new mode SIl.
Condition 2: We need to check all time instants k > t in the

interval [t, S o
snk], such that U j(k) ≤ UB, to guarantee that each

PE j is not overloaded during the mode transition.
�

Fig. 9 shows all actors of G1 in Fig. 1 allocated to 3 PEs and
let us assume that the actors allocated to each PE are scheduled
using the EDF scheduling algorithm [16]. The utilization bound
of EDF is given in [16] as UB = 1. Given this allocation and
the transition from mode SI2 to SI1 shown in Fig. 8, the lower
bound of the earliest starting time σ̌2→1

1 = 22 for actor A1
1

cannot be achieved. At time 22, only actor A2
1 has completed

the last iteration It2 on PE1. Starting the new mode SI1 at time
22 corresponds to δ2→1 = x = 6. The total utilization of PE1
demanded by the actors in the old mode SI2 at time 22, i.e.,
U2

1(6), can be computed as follows:

U2
1 (6) =

∑
A2

d∈Ψ1

u2
d − h(6 − S 2

d) · u2
d , d ∈ {1, 3, 4, 5}

= u2
1 − h(6) · u2

1 + u2
3 − h(−6) · u2

3 + u2
4 − h(−2) · u2

4 + u2
5 − h(−14) · u2

5

= 0 + u2
3 + u2

4 + u2
5 =

1
8

+
3
8

+
1
4

=
3
4
.

Enabling A1
1 in the new mode SI1 at time 22 would yield

U1(6) = U2
1(6) + u1

1 =
3
4

+
1
2
> UB = 1,

Actors

A1

A2

A3

A5

A4

8 13 18 23 28 33 38 42

x
δ

SI1SI2

Time

tMCR

2→1

S21

S31

S51

Fig. 10. Earliest starting times for transition SI2 to SI1 on 3 PEs shown in
Fig. 9.

thereby leading to being unschedulable on PE1. In this case,
the earliest starting times of all actors in mode SI1 must be
delayed by δ2→1 = 8 to time 24 as shown in Fig. 10. At time
24, the total utilization demanded by mode SI2 actors is

U2
1 (8) =

∑
A2

d∈Ψ1

u2
d − h(8 − S 2

d) · u2
d , d ∈ {1, 3, 4, 5}

= u2
1 − h(8) · u2

1 + u2
3 − h(−4) · u2

3 + u2
4 − h(0) · u2

4 + u2
5 − h(−12) · u2

5

= 0 + u2
3 + 0 + u2

5 =
1
8

+
1
4

=
3
8
.

Now, enabling A1
1 in the new mode at time 24 results in the

total utilization of PE1 as

U1(8) = U2
1(8) + u1

1 =
3
8

+
1
2
< 1.

Next, assuming that the new mode SI1 starts at time 24, we
need to check that the remaining actors in the new mode
SI1, namely A1

3 and A1
5, can start with S 1

3 and S 1
5 respectively

without overloading PE1. For instance, enabling A1
3 at time 24

results in starting time σ2→1
3 = 24 + S 1

3 = 24 + 6 = 30. At time
30, the total utilization of PE1 can be obtained according to
Equation (23) as follows:

U2
1 (8 + 6) =

∑
A2

d∈Ψ1

u2
d − h(14 − S 2

d) · u2
d , d ∈ {1, 3, 4, 5}

= u2
1 − h(14) · u2

1 + u2
3 − h(2) · u2

3 + u2
4 − h(6) · u2

4 + u2
5 − h(−6) · u2

5

= 0 + 0 + 0 + u2
5 =

1
4
,

U1
1 (8 + 6) =

∑
A1

d∈Ψ1

(
h(14 − S 1

d − 8) · u1
d

)
, d ∈ {1, 3, 5}

= h(6)u1
1 + h(0)u1

3 + h(−8)u1
5 =

1
2

+
1
4

=
3
4
,

U1(8 + 6) = U2
1 (8 + 6) + U1

1 (8 + 6) = 1 = UB.

Hence, actors A2
5, A1

1, and A1
3 are schedulable on PE1 using

EDF. Similarly, starting A1
5 at time σ2→1

5 = 24 + S 1
5 = 38 still

keeps the resulting set of actors schedulable on PE1.
Using Lemma 3, we can quantify the maximum and

minimum transition delays for any transition from mode SIo

to SIl.

Theorem 2. For a MADF graph under SPS, a fixed allocation
of all MADF actors Ψ = {Ψ1, . . . ,Ψm} to m PEs, and a MCR
from mode SIo to SIl, the minimum transition delay is given by

∆o→l
min = δo→l + S l

snk (24)

and the maximum transition delay is given by

∆o→l
max = δo→l + S l

snk + Ho, (25)
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Fig. 11. MADF graph of Vocoder.
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Fig. 12. Allocation of dataflow actors of Vocoder to 4
PEs. The control edges are omitted to avoid cluttering.

where δo→l is computed by Lemma 3, S l
snk is the starting time

of the sink actor in the new mode SIl, and Ho is the iteration
period of the old mode SIo.

Proof. For a MCR from mode SIo to SIl, the transition delay
∆o→l of a MADF graph is given in Definition 14 as ∆o→l =

σo→l
snk − tMCR, where the earliest starting time of the sink actor

is calculated as σo→l
snk = Fo

src + δo→l + S l
snk according to Lemma

3. Therefore, ∆o→l can be rewritten as ∆o→l = Fo
src + δo→l +

S l
snk − tMCR. Essentially, ∆o→l is composed of three parts. In

the first part, the MOO transition protocol together with a fixed
allocation of the MADF actors determine δo→l. The second
part S l

snk results from the SPS framework. These two parts thus
can be determined at compile-time. The third part Fo

src − tMCR
depends on when the MCR occurs, namely at tMCR, which can
only be determined at run-time. In the following, we distinguish
two cases for tMCR:

Case 1: Assume that the MCR occurs at the end of an
iteration of the source actor in the old mode SIo, i.e., tMCR =

Fo
src. Then, the source actor shall be only delayed by δo→l

to start in the new mode SIl according to Lemma 3, thereby
guaranteeing the fastest possible start of the new mode SIl. As
a consequence, it results in the minimum possible transition
delay. Therefore, substituting tMCR = Fo

src, we obtain

∆o→l
min = Fo

src + δo→l + S l
snk − Fo

src = δo→l + S l
snk.

Case 2: Assume that the MCR occurs at the beginning of an
iteration of the source actor in the old mode SIo, i.e., tMCR =

Fo
src −Ho. Then, the source actor cannot start in the new mode

before it completes the whole iteration in the old mode SIo

followed by the delay δo→l according to Lemma 3. Therefore,
the maximum transition delay is computed as follows:

∆o→l
max = Fo

src + δo→l + S l
snk − (Fo

src − Ho) = δo→l + S l
snk + Ho.

�

It can be seen from Theorem 2 that the maximum and
minimum transition delays solely depend on the allocation
of MADF actors and the old and new modes in question,
irrespective of the previously occurred transitions. The old
and new modes determine Ho and S l

snk, respectively, while the
allocation of MADF actors determines the value of δo→l. Here,
the offset x due to our MOO protocol is captured in δo→l and
can be considered as performance overhead if x , 0. The other
parts, namely Ho and S l

snk, in the maximum and minimum
transition delays cannot be avoided as they will be present in
any transition protocol.

VI. Case Studies

To evaluate our proposed MADF MoC and MOO protocol,
in this section, we present two case studies. In the first case
study, we model a real-life adaptive streaming application,
called Vocoder, with our MADF MoC proposed in Section IV
and apply the hard real-time analysis proposed in Section V.
With this case study, we show that the MADF MoC is
capable of capturing different application modes and the
transitions between them. Then, in the second case study,
we model another real-life adaptive streaming application,
called MP3decoder, with MADF and we focus on analyzing
the transition delays and demonstrating the effectiveness of
our MADF model armed with the proposed MOO transition
protocol compared to the well-known FSM-SADF model [5]
which also can capture modes/scenarios. In this case study,
we adopt self-timed scheduling for both our MADF and FSM-
SADF models in the steady-state. The major difference between
these models in this case study is their transition protocol which
is the MOO protocol in our MADF model and the self-timed
protocol in FSM-SADF. Another example of the application
of our MOO protocol can be found in [20].

A. Case Study 1

In this section, we consider a real-life adaptive application
from the StreamIT benchmark suit [21], called Vocoder,
which implements a phase voice encoder and performs pitch
transposition of recorded sounds from male to female. We
modeled Vocoder using a MADF graph with 4 modes, which
capture different workloads. The MADF graph of Vocoder is
shown in Fig. 11. Depending on the desired quality of audio
encoding and various performance requirements, the resource
manager as a middle-ware or OS-like component for the
MPSoC may switch between four different modes of Vocoder
at run-time. The four modes S = {SI8, SI16, SI32, SI64} specify
different lengths of the Discrete Fourier Transform (DFT),
denoted by dl ∈ {8, 16, 32, 64}. Mode SI8 (dl = 8) requires the
least amount of computation at the cost of the worst voice
encoding quality among all DFT lengths. Mode SI64 (dl = 64)
produces the best quality of voice encoding among all modes,
but is computationally intensive. The other two modes SI16 and
SI32 explore the trade-off between the quality of the encoding
and computational workload. The resource manager, therefore,
can take advantage of this trade-off and adjust the quality of
the encoding according to the available resources, such as
energy budget and number of PEs, at run-time. A transition
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TABLE IV
WCETs of all actors in Vocoder (in clk. cycles).
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SI8 3704 16775 16 90 359 7168 1093 3 236 3660
SI16 3704 35121 35 183 691 1163 138 260 644 3660
SI32 3704 71337 75 366 1393 1392 210 507 988 3660
SI64 3704 144531 150 1156 2346 1696 426 1056 3630 3660

TABLE V
Performance results of four modes of Vocoder in the steady-state.

Mode Period (T in clk.) Total utilization (U) Iteration latency (L)

SI8 917504 1.24 7339608
SI16 148864 2.36 1191436
SI32 178176 3.19 1425448
SI64 300288 3.4 2402550

from one mode to any other one is possible, thereby resulting
in totally 12 possible transitions. At run-time, reconfiguration
of the parameter dl is triggered by the environment, e.g., the
resource manager in this case. Subsequently, control actor Ac

propagates dl to the data-flow actors shown in Fig. 11 through
the dashed-lined edges.

We measured the WCETs of all dataflow actors in Fig. 11
in the four modes on an ARM Cortex-A9 [22] proces-
sor. All dataflow actors were compiled using the compiler
arm-xilinx-eabi-gcc 4.7.2 with the vectorization option.
The WCETs of all actors in all four modes are given in Table IV.
It is worth to note that in mode SI8, actors Spec2Env and
male2female exhibit exceptionally high WCETs. It is because
parameter dl represents the size of the inner-most loop in the
computation of actors Spec2Env and male2female. Small dl
(in this case dl = 8) leads to the fact that the inner-most loop
cannot be vectorized by the compiler. In the other modes from
SI16 to SI64, larger sizes of the inner-most loop (dl equal to
16, 32, and 64, respectively) lead to full vectorization of the
computation of actors Spec2Env and male2female. Therefore,
in these three modes, the WCETs of actors Spec2Env and
male2female are even smaller than the ones in mode SI8.
The dataflow actors of Vocoder are allocated to 4 PEs as
shown in Fig. 12. This allocation guarantees that the shortest
periods (maximum throughput) in the steady-states of all modes
can be achieved.

Table V shows the performance results for the four modes in
their steady-state under SPS. For instance, the second column
at the first row in Table V indicates that it is guaranteed for
sink actor WriteWave to produce 256 samples per 917451
clock cycles in mode SI8. This is the “worst-case” performance
among all four modes because the Spec2Env actor exhibits
exceptionally high workload (cf. WCETs in Table IV) in mode
SI8. Consequently, actor Spec2Env becomes the “bottleneck”
actor, so that mode SI8 cannot be scheduled with higher
throughput (shorter period). Nevertheless, all mode SI8 actors
as a whole require a total processor utilization (U) of only 1.24
(see the third column in Table V) which is the least among all
modes. From Table V, we can see that MADF together with the
SPS framework brings another advantage of efficiently utilizing

TABLE VI
Performance results for all mode transitions of Vocoder.

Transition ∆o→l
min (in clk.) ∆o→l

max (in clk.) x (in clk.) δo→l (in clk.)
(SIo to SIl)

SI8 → SI64 3636815 4554266 1234264 1234264
SI8 → SI32 2903988 3821439 1478540 1478540
SI8 → SI16 2728479 3645930 1537043 1537043
SI16 → SI64 2402550 2551480 0 0
SI16 → SI32 1425448 1574378 0 0
SI16 → SI8 7339608 7488538 0 0
SI32 → SI64 2402550 2580731 0 0
SI32 → SI16 1425448 1603629 234012 234012
SI32 → SI8 7339608 7517789 0 0
SI64 → SI32 2402550 2702869 977102 977102
SI64 → SI16 2402550 2702869 1211114 1211114
SI64 → SI8 7339608 7639927 0 0

TABLE VII
The period and iteration latency of modes inMP3 decoder in clk. cycles.

Mode s-s s-l l-s l-l m
Period (T ) 5830000 5785970 5830000 4640000 5760000

Iteration latency (L) 9434720 9234570 9278600 7466400 9089900

PE resources. For example, in case that Vocoder is switched
to a mode with lower processor utilization, idle capacity of
PEs can be efficiently utilized by admitting other applications
at run-time without introducing interference to the currently
running Vocoder.

Now, we focus on the performance results of the MOO
protocol, namely transition delays, for all possible transitions
between the four modes of Vocoder. Table VI shows both the
minimum and maximum transition delays in accordance with
Theorem 2 for all transitions. We can see in the second column
of Table VI that, in the best case, the transition delays for 6 out
of 12 transitions remain the same as the iteration latencies of
the new modes. This can be seen as x = 0 shown in the fourth
column. In these 6 transitions, the proposed MOO protocol does
not introduce any extra delay. In the 6 remaining transitions,
as expected, the MOO protocol introduces offset x > 0 to the
transitions from an old mode with a longer iteration latency
to a new mode with a shorter iteration latency. For instance,
the largest x (in bold shown in Table VI) happens in case of a
transition from mode SI8 with the longest iteration latency (see
the fourth column in Table V) to mode SI16 with the shortest
iteration latency. To quantify x, we compute the percentage of
x compared to both minimum and maximum transition delays
as

Ωmin =
x

∆o→l
min

× 100%, Ωmax =
x

∆o→l
max
× 100%.

Ωmin varies from the worst-case 56% to the best case 16% with
an average of 41%, whereas Ωmax varies from the worst-case
44% to the best case 14% with an average of 33%. Therefore,
the increase of the transition delays due to the MOO protocol
is reasonable for this real-life application.

Next, we consider the effect of the actor allocation shown in
Fig. 12 on the earliest starting times of actors in the new mode
upon a transition (cf. Lemma 3). In this particular example,
we find out that no extra delay is incurred to any actor in all
transitions due to the fixed actor allocation. This can be seen
from the fourth and fifth columns in Table VI, where δo→l = x.
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TABLE VIII
Performance results ofMP3 decoder for four different mode transition sequences usingMADF and FSM-SADF models.

Mode Sequence FSM-SADF [5] MADF
Iteration latency Transition delay Iteration latency Transition delay

s-s→s-l→m→l-l Ls-s Ls-l Lm Ll-l ∆s-s→s-l ∆s-l→m ∆m→l-l Ls-s Ls-l Lm Ll-l ∆s-s→s-l ∆s-l→m ∆m→l-l

9434720 9434670 9310400 9310400 9434670 9310400 9310400 9434720 9234570 9089900 7466400 10032600 9261700 9089900

s-s→l-l→s-l→m Ls-s Ll-l Ls-l Lm ∆s-s→l-l ∆l-l→s-l ∆s-l→m Ls-s Ll-l Ls-l Lm ∆s-s→l-l ∆l-l→s-l ∆s-l→m

9434720 9434700 9434670 9217800 9434700 9434670 9217800 9434720 7466400 9234570 9089900 9434700 9234500 9261700

l-s→s-l→m→l-l Ll-s Ls-l Lm Ll-l ∆l-s→s-l ∆s-l→m ∆m→l-l Ll-s Ls-l Lm Ll-l ∆l-s→s-l ∆s-l→m ∆m→l-l

9278600 9278570 9197200 9197200 9278570 9197200 9197200 9278600 9234570 9089900 7466400 9876500 9261700 9089900

s-s→l-s→s-l→l-l Ls-s Ll-s Ls-l Ll-l ∆s-s→l-s ∆l-s→s-l ∆s-l→l-l Ls-s Ll-s Ls-l Ll-l ∆s-s→l-s ∆l-s→s-l ∆s-l→l-l

9434720 9434700 9434670 8661500 9434700 9434670 8661500 9434720 9278600 9234570 7466400 10032600 9876500 9234600

B. Case Study 2

To further evaluate the MOO protocol, presented in Sec-
tion IV-C2, in this section, we performed an experiment with
the MP3 decoder application, which is a real-life adaptive
streaming application, taken from [5]. This MP3 decoder is
a frame-based algorithm that retrieves audio frames from the
incoming compressed bitstream. In the MP3 decoder, each
audio frame can be decoded using a different method. In total,
MP3 decoder has five individual decoding methods for audio
frames that are denoted as {s-s, l-l, l-s, s-l, m}.

Each of these methods can be represented accurately by an
SDF graph. Therefore, the application behavior can be accu-
rately captured using FSM-SADF [5] rather than conservatively
capture these methods in a static dataflow model. Consequently,
a much tighter performance can be guaranteed by FSM-SADF
graph than SDF. Note that since each mode in our MADF
model is represented as a CSDF graph, our MADF is more
expressive than FSM-SADF and therefore, the MP3 decoder
can be also properly modeled with MADF. The period and
iteration latency of each mode are given in Table VII.

Let us now compare the throughput of MP3 decoder modeled
as MADF and FSM-SADF graphs. To compute the throughput
of MP3 decoder modeled by the FSM-SADF, we use the
publicly available SDF3 tool set [23]. Since the type of frames
may change non-deterministically in arbitrary orders, SDF3

detects the worst-case mode transition using the state-space
exploration approach developed in [5] for FSM-SADF to lower
bound the throughput. To compute the worst-case throughput of
the application, we use the sdf3analysis-fsmsadf tool from
SDF3. Similarly, we use the same approach to compute the
throughput of our MADF model that uses the MOO protocol.
For both models, the same throughput of 1.75·10(−7) frame per
clock cycle is achieved. Therefore, both models perform equally
well in terms of the worst-case throughput they can guarantee
and the delay introduced by our MOO protocol during mode
transitions has no impact on the worst-case throughput.

Now, we focus on the performance results of our MADF
and FSM-SADF models in terms of the iteration latency
of the modes and the transition delay. The results of this
comparison for four different mode transition sequences is give
in Table VIII. In this table, for each mode transition sequence,
the iteration latency of each mode and the transition delay of
each mode transition are given for our MADF model that uses
the MOO protocol and the FSM-SADF model that uses the
self-timed protocol. From this table, we can clearly see that our
MADF retains the iteration latency of each mode irrespective of

the mode transition sequences. Using the FSM-SADF model,
however, the iteration latency of modes in the steady-state
is accordingly changed with respect to the order of mode
transitions. For instance, mode l-l has different iteration latency,
Ll-l, of 9310400, 9434700, 9197200, and 8661500 for the
different mode transition sequences, when using FSM-SADF.
In contrast, the same mode l-l has a constant iteration latency
of 7466400 under our MADF model (bolded in Table VIII).
Therefore, the iteration latency of modes in the steady-state
can not be guaranteed under the FSM-SADF model as it is
highly dependent on the order of mode transitions which is
not known beforehand at design-time.

From Table VIII, we can also see that by changing the
iteration latency of the modes, the transition delays are also
changed. Although the transition delays are sometimes shorter
in the FSM-SADF model, the FSM-SADF model is potentially
unpredictable. Our MADF model, however, is completely
predictable because the (minimum) transition delays for all
mode transitions can be computed beforehand at design-time
according to Theorem 2. For instance, the transition from mode
s-l to mode m has different transition delay, ∆s-l→m, of 9310400,
9217800, and 9197200 for different mode transition sequences
under the FSM-SADF model whereas this mode transition has
a constant transition delay of 9261700 under our MADF model
(bolded in Table VIII).

VII. Conclusion

In this paper, we have proposed the novel Mode-Aware
Data Flow (MADF) model which can capture effectively the
adaptive nature of modern streaming applications. Moreover,
as an important part of the operational semantics of MADF,
we have proposed a novel protocol for mode transitions.
The main advantage of this transition protocol is that, in
contrast to the self-timed transition protocol, it avoids timing
interference between modes upon mode transitions. As a
result, any mode transition can be analyzed independently
from others that occurred in the past. Furthermore, based on
the transition protocol, we have proposed a hard real-time
analysis and scheduling framework to reason and guarantee
timing constraints by avoiding processor overloading during
mode transitions. Finally, we evaluate the effectiveness of our
MADF model compared with the well-know FSM-SADF model
by conducting two case studies using two real-life adaptive
streaming applications.
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