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Abstract. Runtime verification (RV) is a pragmatic and scalable, yet
rigorous technique, to assess the correctness of complex systems, including
cyber-physical systems (CPS). By measuring how robustly a CPS run
satisfies a specification, RV allows in addition, to quantify the resiliency
of a CPS to perturbations. In this paper we propose Algebraic Runtime
Verification (ARV), a general, semantic framework for RV, which takes
advantage of the monoidal structure of runs (w.r.t. concatenation) and
the semiring structure of a specification automaton (w.r.t. choice and
concatenation), to compute in an incremental and application specific
fashion the resiliency measure. This allows us to expose the core aspects
of RV, by developing an abstract monitoring algorithm, and to strengthen
and unify the various qualitative and quantitative approaches to RV, by
instantiating choice and concatenation with real-valued functions as dic-
tated by the application. We demonstrate the power and effectiveness of
our framework on two case studies from the automotive domain.

1 Introduction

Verification of realistic cyber-physical systems is still a challenge, as CPS exhibit
both discrete and continuous dynamics, software and hardware components,
complex communication between sub-systems, and sophisticated interactions
with the physical environment. Runtime verification provides a pragmatic, yet
rigorous solution, for assessing CPS correctness at runtime.

RV for CPS [7], centered around Signal Temporal Logic (STL) [30], has
recently achieved noticeable success. STL extends Metric Temporal Logic (MTL)
[29] with predicates over real-valued variables. The monitoring algorithms for
STL were first developed in [30,31] and implemented in a tool [34], giving thus
STL a practical purpose in the analysis of realistic CPS.

In a CPS context, RV measures the satisfaction robustness of a CPS run
with respect to a specification [1,18,4]. Most measures were associated to STL
specifications [23,21,20,18,1,4,19,36,22] and to its variants or extensions [9,3].
The general approach was to first develop the measure, based on the STL syntax,
and then use the measure for monitoring. This resulted in a plethora of measures,
assessing space [23,21], time [21], and averaging [3] robustness, respectively. A
discrete-time, weighted, edit-distance measure was proposed in [28], and a space-
robustness measure for Signal Regular Expressions (SRE) in [5].
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The proliferation of measures reflects the various needs of different applica-
tions, and the limitations of STL-based measure definitions. We propose Alge-
braic Runtime Verification (ARV), as a general, semantic approach to measuring
a run, with respect to a specification automaton. The main idea is to use the
monoidal structure of a run (with respect to concatenation), and the semiring
structure of a specification (with respect to choice and concatenation), to defin-
ing a measure in an incremental and application specific way, by allowing to
associate arbitrary real-valued functions to choice and concatenation.

ARV simplifies and unifies qualitative and quantitative approaches to the
RV of CPS. It exposes the core of the RV problem, and its underlying structure,
allowing us thus to develop an abstract monitoring algorithm, that we instanti-
ate with different specification languages, as well as qualitative and quantitative
semantics. The use of automata, admits semantic and precise monitoring pro-
cedures, that are invariant to different syntactic representations of the same
specification. In addition, it opens the door for flexible code generation which
can directly translate the abstract monitoring procedure into real-time monitors,
implemented in either software, embedded software, or hardware.

ARV starts from a regular specification formalism that admits an effective
translation into symbolic automata. It then decorates the symbolic acceptor with
weights and associates a semiring to the resulting symbolic weighted automa-
ton (SWA). The weights in the SWA measure the distance at a given point in
time between the current trace observation and the constraints induced by the
specification. ARV defines the monitoring procedure over the SWA as a dynamic
programming algorithm that computes the shortest path induced by an input
trace. By instantiating the semiring, it provides various qualitative and quanti-
tative semantics to the monitoring procedure without changing the underlying
algorithms. We study the basic properties of our generic ARV framework and
evaluate it with two case studies from the automotive domain.

The rest of the paper is organized as follows. In Section 2 we discuss related
work. In Section 3 we introduce the theoretical background for formalizing ARV
in Section 4. Section 5 includes two case studies performed on scientific bench-
marks, as well as a precision comparison between ARV and tools that implement
syntactic-based robustness degree. In Section 6 we draw conclusions and discuss
numerous possibilities for future work. Theorem proofs and STL and SRE se-
mantics are given in the appendices.

2 Related Work

The theoretical and practical concerns regarding symbolic automata and trans-
ducers are studied in [14,13,41]. In our work, we use the theory developed for
symbolic automata to develop our ARV framework.

An algebraic framework for the basic properties of the weighted automata is
studied in [33]. The shortest-distance problem in weighted automata is investi-
gated in [32]. It generalizes the Bellman-Ford algorithm [8] to non-idempotent
semirings. We are interested in a Hausdorff measure and hence restrict our at-
tention to additively idempotent semirings. In constrast to fixed edge weights,
we use SWA with dynamic weights which depend on current trace valuation.



Quantitative semantics for temporal logics based on the (spatial) infinite
norm were studied in [37,23,21]. Spatial robustness monitoring is implemented
in S-TaLiRo [4] and Breach [19] tools. The spatial robustness was complemented
with time robustness in [21] and with a combined time-space robustness based
on (ε, τ)-similarity in [2]. In [3], the authors extend STL with averaged tem-
poral operators. Determining robustness of hybrid systems using self-validated
arithmetics is shown in [24]. The weighted Hamming and edit distances between
behaviors are proposed in [40], where the authors use it to develop procedures for
reasoning about the Lipshitz-robustness of Mealy machines and string transduc-
ers. The authors of [11] propose an online monitoring procedure where semantics
describe the relation between input and output streams. In [6] the authors used
an algebraic approach to define the robustness for a spatio-temporal extension
of STL considering only the MinMax semiring. Their approach works at the syn-
tax level of the specification, resulting to be less precise than the one proposed
here. Similarly to our work, [38] explores different interpretation of temporal
logic operators. In contrast to ARV, these interpretations are applied directly
on the syntax and semantics of the logic, with the aim to demonstrate a re-
lation between temporal logic operators and convolution. We also mention the
work on quantitative languages [10] that is studied over infinite words and is
complementary to our work.

The problem of online robustness monitoring was studied more recently
in [17,16]. The authors of [17] propose a predictor-based online monitoring ap-
proach, in contrast to our black-box view of monitoring. In [16], the authors
propose an interval-based approach of online evaluation that allows estimating
the minimum and the maximum robustness with respect to both the observed
prefix and unobserved suffix of the trace. Instead, our robustness gives the dis-
tance of the observed prefix from the of the specification at every point in time.

3 Background

We first introduce the background needed to develop our algebraic runtime verifi-
cation algorithm. In particular, we define semirings, metric spaces and distances,
specification languages, and symbolic automata and SWA.

3.1 Semirings

Semirings are one of the most important algebraic structures, laying the founda-
tion to both continuous and discrete mathematics. They help finding similarities
between the two domains, even in places where these are not at all obvious.

Definition 1 (Semiring). A semiring is the tuple S = (S,⊕,⊗, e⊕, e⊗), where
S is a set equipped with two binary operations, addition (⊕) and multiplication
(⊗), and two identity elements, e⊕ and e⊗, such that:

– (S,⊕, e⊕) is a commutative monoid with identity element e⊕;
– (S,⊗, e⊗) is a monoid with identity element e⊗;
– ⊗ distributes over ⊕; and
– e⊕ is an annihilator element for ⊗.



We say that a semiring is commutative if the ⊗-multiplication operation is
commutative. A semiring is said to be additively (multiplicatively) idempotent
if for all s ∈ S, we have that s ⊕ s = s (s ⊗ s = s). We say that a semiring
is idempotent if it is both additively and multiplicatively idempotent. We say
that a semiring is bounded if e⊗ is an annihilator element for ⊕. We note that a
bounded semiring is also additively idempotent [32].

Example 1. We depict in Table 1 several examples of semiring structures that
we use in this paper. We note that the Boolean and the MinMax semirings
are both commutative and idempotent. The tropical semiring is commutative
and additively idempotent. All three semirings are bounded. Note that we use
a non-standard definition of the Boolean and MinMax semirings, in which ⊕
corresponds to ∧ and min, while ⊗ corresponds to ∨ and max, respectively.

Semiring S ⊕ ⊗ e⊕ e⊗
Boolean {0, 1} ∧ ∨ 1 0
MinMax R+ ∪ {∞} min max ∞ 0
Tropical R+ ∪ {∞} min + ∞ 0

Table 1. Examples of semirings.

Additively idempotent semirings defined over sets of Booleans, naturals and
reals admit a natural order between the elements in the set.

Definition 2 (Natural order on S). Let (S,⊕,⊗, e⊕, e⊗) be an additively
idempotent semiring. We define the natural order on S as the relation v: (a v b)
↔ (a ⊕ b = a). If (S,⊕,⊗, e⊕, e⊗) is also multiplicatively idempotent, we addi-
tionaly require: (a v b) ↔ (a⊗ b = b).

Lemma 1 ([32]). Let (S,⊕,⊗, e⊕, e⊗) be an additively idempotent semiring.
The natural order v on S defines a partial order.

We now define the monotonicity of semirings, an important property that
will allow us factoring and thus simplifying our RV operations.

Definition 3 (Negative and monotonic semirings). Let (S,⊕,⊗, e⊕, e⊗) be
a semiring. We say that S is negative if e⊗ v e⊕. We say that S is monotonic
if for all a, b, c ∈ S:

1. a v b→ (a⊕ c) v (b⊕ c)
2. a v b→ (a⊗ c) v (b⊗ c)
3. a v b→ (c⊗ a) v (c⊗ b)

Lemma 2 ([32]). Let S be an additively idempotent semiring (S,⊕,⊗, e⊕, e⊗)
equipped with the natural order v on S. Then S is both negative and monotonic.

Lemma 3. Let S = (S,⊕,⊗, e⊕, e⊗) be an additively idempotent, negative and
monotonic semiring. Then, for all a ∈ S, e⊗ v a v e⊕.



3.2 Metric Spaces and Distances

A metric space is a setM possesing a distance among its elements. The distance
d(m1,m2) between two elements m1,m2 ∈M is a positive real value in R+.

Definition 4 (Metric space and distance). Given a set S, let d : M×M→
R+ be a distance. Then M is a metric space with the distance measure d, if:

1. d(m1,m2) ≥ 0 for all m1,m2 in M;
2. d(m1,m2) = 0 if and only if m1 = m2;
3. d(m1,m2) = d(m2,m1) for all m1,m2 in M; and
4. d(m1,m2) ≤ d(m1,m) + d(m,m2) for all m,m1,m2 in M.

Since we reason about real-valued behaviors and the distances between them,
we are interested in semirings defined over (subsets of) reals, see Example 1.
Given m ∈ M and M ⊆ M, we can lift the above definition to reason about
the distance1 between an element m of M and the subset M of M to define a
Hausdorff-like measure. We use the ⊕-addition to combine individual distances
between m and the elements in M and fix e⊗ to 0. We also need a special value
when we compare m to an empty set and define d(m, ∅) = e⊕.

d(m,M) =

{
e⊕ if M is empty
⊕m′∈Md(m,m′) otherwise

We define the robustness degree ρ(m,M) of m w.r.t. the set M as follows:

ρ(m,M) =

{
d(m,M\M) if m ∈M
−d(m,M) otherwise

3.3 Traces and Specification Languages

Let X denote a set of variables defined over a domain D. We denote by v : X →
D the valuation function that maps a variable in X to a value in D. We denote
by τ = v1, . . . , vn a trace over X and by T (X) the set of all traces over X.

A specification ϕ over a set of variables X, regardless of the formalism used,
defines a language L(ϕ) ⊆ T (X) that partitions the set of all traces over X.

Definition 5 (Trace-specification distance). Let v and v′ be two valuations
over D|X|, τ and τ ′ two traces over X of size m and n and ϕ a specification
over X. We then have:

d(v, v′) = ⊗x∈Xd(v(x), v′(x))

d(τ, τ ′) =

{
e⊕ if m 6= n
⊗1≤i≤md(vi, v

′
i) otherwise

d(τ, ϕ) = ⊕τ ′|=ϕd(τ, τ ′)

.
In this paper, we consider specification languages defined over discrete time

and real-valued variables that are regular. Examples of specification languages
that fall into this category are Signal Temporal Logic (STL) and Signal Regular
Expressions (SRE), both interpreted over discrete time. We briefly recall the
syntax of STL and SRE and refer to their semantics in Appendix A.

1 Since d(m,M) is comparing an element to a set, strictly speaking it is not a distance.



We consider STL with both past and future operators interpreted over digital
signals of final length. We assume that D is a metric space equipped with a
distance d. The syntax of a STL formula ϕ over X is defined by the grammar2:

ϕ := x ∼ u | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U Iϕ2 | ϕ1 S Iϕ2

where x ∈ X, ∼∈ {<,≤}, u ∈ D, I is of the form [a, b] or [a,∞) such that a, b ∈ N
and 0 ≤ a ≤ b. The other standard (Boolean and temporal) operators are derived
from the basic ones. For instance, eventually �Iϕ is defined as >U Iϕ, while
always �Iϕ corresponds to ¬ �I¬ϕ.

The syntax of a SRE formula ϕ over X is defined by the grammar:

b := x ∼ u | ¬b | b1 ∨ b2
ϕ := ε | b | ϕ1 · ϕ2 | ϕ1 ∪ ϕ2 | ϕ1 ∩ ϕ2 | ϕ∗ | 〈ϕ〉I

where x ∈ X, ∼∈ {<,≤}, u ∈ D, I is of the form [a, b] or [a,∞) such that a, b ∈ N
and 0 ≤ a ≤ b. Although we interpret SRE over discrete time, we interpret its
operators following the style of continuous time TRE. As a consequence, a signal
segment that matches a predicate such as x ≤ 5 means that it matches it for
a strictly positive duration. The time duration operator 〈ϕ〉I is matched by a
segment if it has a duration in I.

Example 2. Consider the requirement ‘’There must be a point in time within
the trace where (1) x is smaller or equal than 3, and (2) both x is smaller
or equal than 5 and y is greater or equal than 6 for the duration of at least
two time steps. We formalize the above requirement as the STL specification
ϕ1 ≡ �(x ≤ 3∧�[0,1](x ≤ 5∧y ≥ 6)) and the SRE specification ϕ2 ≡ >· ((x ≤
3) · >) ∩ 〈x ≤ 5 ∧ y ≥ 6〉[1,1]) · >.

3.4 Symbolic and Symbolic Weighted Automata

Let D = R be the domain of reals and X the set of variables defined over D.
We now define predicates over variables in X.

Definition 6 (Predicate). We define the syntax of a predicate ψ over X with
the following grammar: ψ := ⊥ | > | x � k | ¬ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 , where �∈
{<,≤}, x ∈ X and k ∈ D.

We denote by Ψ(X) the set of all predicates over X. We say that a valuation
v models the predicate ψ, denoted by v |= ψ, iff ψ evaluates to true under v.
We note that x � k plays the role of basic propositions. In our framework, the
predicates come from specifications, hence we allow predicates in arbitrary form.
In order to define the subsequent RV algorithms, we need to transform arbitrary
predicates into (minimal) disjunctive normal form (DNF).

Definition 7 (Predicate in Disjunctive Normal Form (DNF)). A predi-
cate in disjunctive normal form is generated by the following grammar:
ψ := ψc | ψc ∨ ψ ψc := ψl | ψl ∧ ψc ψl := > | ⊥ | (x � k) | ¬(x � k)

where �∈ {<,≤}, x ∈ X and k ∈ D. The predicate has the following structure:

2 STL interpreted over discrete time is equivalent to LTL extended with predicated
over real-valued variables.



ψ =

h∨
i=1

ψci , ψci =

m(i)∧
h=1

ψli,h

where h is the number of clauses, each clause i is a conjunction of m(i) literals
and each literal can be either a basic proposition, its negation, true or false.

Definition 8 (Predicate in ∧-minimal DNF). A predicate ψ is expressed in
a ∧-minimal DNF if it satisfies the following properties:

h∧
i=1

m(i)∧
s=1,r=1,s6=r

(ψli,s → ψli,r) = ⊥

Example 3. The predicate ψ1 ≡ (x ≤ 3 ∧ x ≤ 5 ∧ y ≤ 5) ∨ (z > 0) is in DNF,
while the predicate ψ2 ≡ (x ≤ 3 ∧ y ≤ 5) ∨ (z > 0) is in ∧-minimal DNF.

We lift the definition of a distance between two valuations to the distance
between a valuation and a predicate by ⊕-summing the distances between the
valuation and the set of valuations defined by a predicate.

Definition 9 (Valuation-predicate distance). Given a valuation v ∈ D|X|
and a predicate ψ ∈ Ψ(X), we have that: d(v, ψ) = ⊕v′|=ψ⊗x∈X d(v(x), v′(x)).

This completes our definitions for computing the distance between an ob-
servation and a specification at a single point in time. We now concentrate on
the dynamic (temporal) aspect of the specification. We first define symbolic and
symbolic weighted automata.

Definition 10 (Symbolic and Symbolic Weighted Automata). A sym-
bolic automaton (SA) A is the tuple W = (X,Q, I, F,∆), where X is a finite
set of variables defined over a domain D, Q is a final set of locations, I ⊆ Q is
the set of initial states, F ⊆ Q is the set of final states and ∆ ⊆ Q× Ψ(X)×Q
is the transition relation. A symbolic weighted automaton W is the pair (A, λ),
where A is a symbolic automaton and λ : ∆×D|X| → D is the weight function.

In the following, we assume that the weights are elements of the semiring
(S,⊕,⊗, e⊕, e⊗). We use ⊗ to compute the weight of a path by ⊗-multiplying
the weights of the transitions taken along that path. We use ⊕ to ⊕-sum the
path weights induced by an input trace. We now formalize the above notions.

A path π in A is a finite alternating sequence of locations and transitions π =
q0, δ1, q1, . . . , qn−1, δn, qn such that q0 ∈ I and for all 1 ≤ i ≤ n, (qi−1, δi, qi) ∈
∆. We say that the path π is accepting if qn ∈ F . We say that that a trace
τ = v1, v2, . . . , vn induces a path π = q0, δ1, q1, . . . , qn−1, δn, qn in A if for all
1 ≤ i ≤ n, vi |= ψi, where δi = (qi−1, ψi, qi). We denote by Π(τ) = {π | π ∈
F and τ induces π in A} the set of all accepting paths in A induced by trace τ .

Definition 11 (Path and trace value). The path value µ(τ, π) of a path π
induced in A by a trace τ is defined as: µ(τ, π) = ⊗1≤i≤nλ(vi, δi). The trace
value α(τ,W) of a trace τ in W is defined as: α(τ,W) = ⊕π∈Π(τ)µ(τ, π).



4 Algebraic Monitors for Correctness and Robustness

In this section, we develop ARV, a novel procedure for abstract computation
of the robustness degree of a discrete signal with respect to a specification ϕ.
The proposed methods consists of several steps, illustrated in Figure 1. We first
translate the specification ϕ into a symbolic automaton Aϕ that accepts the
same language as the specification. The automaton Aϕ treats timing constraints
from the formula in an enumerative fashion, but keeps symbolic guards on data
variables. We then decorate Aϕ with weights on transitions, thus obtaining the
symbolic weighted automaton Wϕ. We propose an abstract algorithm for com-
puting the distance between a trace τ and a specification ϕ by reducing it to the
problem of finding the shortest path inWϕ induced by τ . Computing the robust-
ness degree between the trace τ and the specification ϕ follows from combining
the computed distance from the specification ϕ and its negation ¬ϕ.

Regular Specification
Symbolic Weighted

Automaton

Wϕ

Symbolic
Automaton

Aϕϕ

Distance

d(τ, ϕ)
Trace

τ

Fig. 1. Computation of d(τ, ϕ).

4.1 From Specification to Symbolic Weighted Automaton

We assume in this paper an effective translation T of a regular specification
language ϕ to symbolic automata Aϕ that accepts the language of ϕ. For STL
and SRE defined over discrete time, such translation is a moderate adaptation of
standard methods, including on-the-fly tableau construction [26] and temporal
testers [35]. During the translation, we decorate the transitions in the symbolic
automaton with weight functions that measure the distance between observed
valuations and the predicate ψ associated to the transition, i.e. we set instantiate
the weight function λ to λ(δ, v) = d(v, ψ), for all δ = (q, ψ, q′) ∈ ∆.

Example 4. We illustrate this step on specifications ϕ1 and ϕ2 from Example 2:
ϕ1 ≡ �(x ≤ 5 ∧ �[0,1](x ≤ 3 ∧ y > 6))
ϕ2 ≡ > · ((x ≤ 5 · >) ∩

〈
x ≤ 3 ∧ y ≥ 6

〉
[1,1]

) · >
In Figure 2 we depict the SWA that accepts the language of ϕ1 and ϕ2. The
∧-minimal predicates are shown in the boxes above the transitions.

q0 q1 q2

>

x ≤ 5 ∧ x ≤ 3 ∧ y ≥ 6

δ1

x ≤ 3 ∧ y ≥ 6

x ≤ 3 ∧ y ≥ 6

x ≤ 3 ∧ y ≥ 6

δ2

>

Fig. 2. SWA W that accepts the language of ϕ1 and ϕ2.



4.2 Valuation-Predicate Distance Computation

We propose an effective procedure for computing the distance between a valu-
ation v and a predicate ψ. The procedure is shown in Algorithm 1 and works
as follows. The input to the procedure is a valuation v and a predicate ψ in
DNF. The computation of the distance between v and ψ is done inductively in
the structure of ψ. In the base case when ψ is an atomic predicate, the distance
between v and ψ is e⊗ if v satisfies ψ, and it is equal to d(v(x), k) otherwise. We
compute logic ∨ and ∧ by interpreting them as ⊕-addition and ⊗-multiplication.

Algorithm 1 vpd(v, ψ)

Require: Predicate ψ ≡
∨
i

∧
j pij

1: if (ψ is UNSAT) then return e⊕
2: end if
3: if (ψ = x � k) or (ψ = ¬(x � k))

then
4: if (v(x) |= ψ) then return e⊗
5: else return d(v(x), k)
6: end if
7: else if (ψ = ψ1 ∨ ψ2) then
8: return vpd(v, ψ1)⊕ vpd(v, ψ2)
9: else if (ψ = ψ1 ∧ ψ2) then

10: return vpd(v, ψ1)⊗ vpd(v, ψ2)
11: end if

Algorithm 2 ∧-min(v, ψ)

Require: Predicate ψ ≡
∨
i

∧
j pij

1: Let Pi = {pi1, . . . , pij}
2: Let P = {P1, . . . , Pi}
3: for all P ∈ P do
4: for all p1, p2 ∈ P s.t. p1 6= p2 do
5: if p1 → p2 then
6: P ← P\{p2}
7: end if
8: end for
9: end for

10: return
∨
P∈P

∧
p∈P p

The procedure presented in Algorithm 1 indeed computes the distance from
Definition 9 for (1) idempotent semirings and (2) additively idempotent semir-
ings with the predicate given in ∧-minimal DNF. The transformation of arbitrary
predicates to DNF is standard, while we present the ∧-minimization of a pred-
icate in DNF in Algorithm 2. In the following example, we give intuition why
predicates must be in ∧-minimal DNF if the semiring is only ⊕-idempotent.

Example 5. Consider the term x ≤ 3 ∧ x ≤ 5 from the transition δ1 in Figure 2
that defines the set of valuations {v(x) | v(x) ≤ 3}, its semantically equivalent
∧-minimal representation x ≤ 3 and the valuation v(x) = 6. It is clear that
d(v, x ≤ 3 ∧ x ≤ 5) = d(v, x ≤ 3) = 3. Let us consider the tropical semiring and
the computation of vpd. We illustrate the need for the ∧-minimal predicate in
Figure 3. We have that vpd(v, x ≤ 3) = 3, but vpd(v, x ≤ 3 ∧ x ≤ 5) = 1 ⊗ 3 =
1 + 3 = 4. Due to the non-minimality of the term and the additive nature of +,
we incorrectly accumulate the distance from v(x) to the atomic predicate x ≤ 5.

2 3 4 5 6

1

3

3

x

v(x)

0 1

x ≤ 3

x ≤ 5

x ≤ 3 ∧ x ≤ 5

Fig. 3. Example of a distance between v and ψ.



Theorem 1. Given a predicate ψ in DNF, a valuation v and the distance d(v, ψ)
defined over a bounded semiring S, we have that vpd(v, ψ) = d(v, ψ) if: (1) S is
idempotent; or (2) ψ is in ∧-minimal DNF.

4.3 Trace Value Computation

In this section, we present a dynamic programming procedure (see Algorithm 3)
for computing the value of a trace τ = v1, . . . , vn in a symbolic weighted au-
tomaton W. We assume that the weights are defined over a semiring S. The
algorithm first assigns to every state q the initial cost, depending whether q is
initial or not. At every step i ∈ [1, n] and for every state q of W, the procedure
computes the cost of reaching q with the i-prefix of τ . The procedure uses the
⊗-multiplication to aggregate the valuation-predicate distances collected along
every path π induced by τ and thus compute the path weight and the ⊕-addition
to combine the weights of all the accepting paths induced by τ .

Algorithm 3 val(τ,W)

1: for all q ∈ Q do
2: c(q, 0)← (q ∈ I) ? e⊗ : e⊕
3: end for
4: for i = 1 to n do
5: c(q, i)← ⊕(s,ψ,q)∈∆(c(s, i−1)⊗vpd(vi, ψ))
6: end for
7: return ⊕q∈F c(q, n)

Algorithm 4 rob(τ, ϕ)

1: Wϕ ← T(ϕ)
2: W¬ϕ ← T(¬ϕ)
3: v1 ← val(τ,Wϕ)
4: v2 ← val(τ,W¬ϕ)
5: if v1 = e⊗ then return v2
6: else return −v1
7: end if

We now state that Algorithm 3 correctly computes the value of τ inW, which
corresponds to the distance d(τ, ϕ).

Theorem 2. Given a specification ϕ, its associated SWA W defined over a
semiring S and a trace τ , we have that val(τ,W) = α(τ,W) = d(τ, ϕ).

We finally build the monitor that measures the robustness degree between the
trace τ and a specification ϕ by computing the value of τ in Wϕ and W¬ϕ. This
procedure is summarized in Algorithm 4 that trivially implements the robustness
measure ρ. We show that our abstract computation of ρ is sound and complete.

Theorem 3 (Soundness and completeness). Given traces τ and τ ′, a spec-
ification ϕ and distances d(τ, τ ′), d(τ,¬ϕ) defined over a bounded semiring S,

ρ(τ, ϕ) > 0→ τ |= ϕ
ρ(τ, ϕ) < 0→ τ 6|= ϕ

τ |= ϕ and d(τ, τ ′) < d(τ,¬ϕ)→ τ ′ |= ϕ.

We first observe that if ρ(τ, ϕ) = 0, then we do not know (only from that
number) whether τ satisfies ϕ. We illustrate this observation with the formula
x > 0 and the trace τ = 0 of size one. It is clear that τ 6|= ϕ but the actual
distance between the element in {v | v > 0} that is closest to 0 and 0 is in-
finitesimally close to 0. In order to have both directions of the implications in
the soundness proof and to guarantee that the robustness degree is never equal
to 0, we would need to introduce non-standard reals. Note that even with the
current setting, we can easily say whether τ |= ϕ, even when ρ(τ, ϕ) = 0. Second,



we do not need to explicitly compute the complement automaton W¬ϕ if Wϕ

is deterministic. In that case, it is sufficient to apply a slight modification of
Algorithm 3 on Wϕ only. The modification consists in reporting either the min-
imum value of an accepting or the minimum value of a non-accepting location,
depending on whether the trace satisfies ϕ.

Complexity of the translation and the algorithm The number of locations
in the symbolic automaton Wϕ is exponential in the size of the formula ϕ for
both STL and SRE (we recall that we use SRE with the intersection operator).
The size of the predicates decorating the transitions inWϕ is also exponential in
the number of propositions appearing in the formula, due to the translation of
the predicate to DNF form. The algorithm val(τ,W) applied to a trace τ of size
l, andW with n locations, m transitions, and maximum size p of the predicates,
takes in the order of l · p · (max(m,n)) iterations.

4.4 Instantiating Monitors

In Sections 4.2 and 4.3, we presented an abstract monitoring procedure that
measures a robustness degree of a trace τ with respect to a specification ϕ. We
give concrete semantics to these monitors by instantiating the semiring and the
distance function. Here we consider three instantiations of the procedure:

1. Boolean semiring with d(a, b) = 1 if a 6= b and 0 otherwise
2. Minmax semiring with d(a, b) = |a− b|
3. Tropical semiring with d(a, b) = |a− b|

The instantiation 1 gives the monitors classical qualitative semantics, where the
distance of τ from ϕ is 0 if τ is in the language of ϕ and 1 otherwise. The
instantiation 2 gives the computation of the robustness degree based on the
infinite norm, as defined in [23]. The instantiation 3 gives the computation of
the robustness degree based on the Hamming distance lifted to the sets.

Example 6. We illustrate our monitoring procedure instantiated to different se-
mantics in Table 2. We choose the trace τ = (4, 2)·(5, 3)·(2, 5)·(3, 5) that violates
the specifications ϕ1 and ϕ2 from Example 2. We instantiate Algorithm 3 to the
specific semirings and apply each instantiation to the τ and W from Figure 2.
We mark in bold the accepting state and the trace value.

semiring state init v0 = (4, 2) v1 = (5, 3) v2 = (2, 5) v3 = (3, 5)

Boolean
q0 0 0 0 0 0
q1 1 1 1 1 1
q2 1 1 1 1 1

MinMax
q0 0 0 0 0 0
q1 ∞ 4 3 1 1
q2 ∞ ∞ 4 3 1

Tropical
q0 0 0 0 0 0
q1 ∞ 5 5 2 1
q2 ∞ ∞ 10 7 3

Table 2. val(τ,W) computed on SWA from Figure 2 with different semirings.



We note that by Theorem 2, our computation of robustness is precise with
respect to the semantics of the specification, regardless of the instantiated semir-
ing. This is in contrast to the syntactic approaches to robustness [23,21] that
under-approximate the robustness value. In case we instantiate MinMax sem-
iniring in ARV, we do not demonstrate imprecision shown in Examples 17,18
from [23]. The comparison results from section 5.1 confirm this observation.

5 Case Studies

We implemented our approach (ARV) in a prototype tool in Java. In order to
determine satisfiability of SWA transition constraints, we used the Z3 solver [15].
We evaluate our framework on two case studies from the automotive domain: The
Autonomous Vehicle Control Stack model [39] and the Automatic Transmission
System model [27]. In the first case study we also compare the precision of ARV
with relevant tools developed by the RV community.

5.1 Autonomous Vehicle Control Stack

The first benchmark is a model of an autonomous vehicle control stack, which
is used to solve the trajectory planning problem. The stack consists of three
layers, starting from the top: Behavioral Planner (BP), Trajectory Planner (TP)
and Trajectory Tracker (TT). The BP provides the coarse-grain trajectory way-
points for the Autonomous Vehicle (AV), and supplies them to the underlying
TP which calculates fine grain trajectory points, using cubic spline trajectory
generation. The lowest layer is the TT which actuates the AV based on the
trajectory points in order to steer it towards the requested path.

Fig. 4. Robustness degree ρ(τ[0,t], ϕ1), where ϕ1 = �(vego ≤ vlimit), based on
three different semiring instantiations.



The benchmark supports three distinct layouts: a room with obstacles, a
curved road and a roundabout. The obstacles and undesired areas are determined
by assigning the specific cost. The autonomous vehicles can simulate 4 scenarios:
parallel driving, paths crossing without collision and collision avoidance by either
the first or the second vehicle. We ran the scenario of AVs performing parallel
driving on roundabout layout and we obtained the traces for the speed vx and
acceleration ax. We specified two requirements, which model normal operation
(w.r.t. acceleration) and traffic rules (speed limit).

In Fig 4 we demonstrate various robustness degrees for the following require-
ment: “The ego vehicle travels at a velocity less than or equal to the speed limit”.
We formalize this requirement in STL: ϕ1 =�(vego ≤ vlimit). In Fig 5 we mon-
itor the following requirement “If the autonomous vehicle started to accelerate,
then it will not start decelerating in the very near future”. We formalize this
requirement in STL: ϕ2 =�((ax ≥ θ)→�(0,ε]¬(ax ≤ 0)). We select θ = 5 and
ε = 3. For the clarity of the graph, some values are (down)scaled.

Comparison with S-TaLiRo and Breach Both S-TaLiRo and Breach imple-
ment robustness monitoring algorithms, in which robustness is measured with
infinite norm. The algorithms implemented in these tools are syntactic, i.e. they
work directly (and inductively) on the structure of the formula without pass-
ing via automata. In this section, we intend to demonstrate the preciseness of
our semantic automata-based approach. We note that in contrast to our setting,
these two tools work with continuous time. In order to enable the comparison,
we instantiate our monitors to the MinMax semiring and we simulate the Au-

Fig. 5. Robustness degree ρ(τ[0,t], ϕ2), where ϕ2 = �((ax ≥ θ) → �(0,ε]¬(ax ≤
0)), based on different semiring instantiations.



tonomous Vehicle Control Stack model with fixed sampling, thus ensuring that
the discrete versus continuous discrepancy does not affect the results.

In ψ1 and ψ2 we test the sensitivity of the robustness degree algorithm w.r.t.
to the minimal set representation. The formula ψ1 defines the acceptable range
[−30, 30] of values for a, while ψ2 is a semantically equivalent formula that
represents the same set as a disjoint union [−30, 0)∪ [0, 30]. Similarly, ψ3 and ψ4

represent two semantically equivalent temporal formulas. Finally, both ψ5 and
ψ6 represent formulas that are unsatisfiable. We can observe that our approach
produces results that are invariant to the syntactic representation of the formula.
In particular, our monitoring algorithm is able to detect unsatisfiable formulas.
In contrast, neither S-TaLiRo nor Breach can detect unsatisfiable specifications.
We can also observe that in some cases, these two tools are also sensitive to the
syntactic representation of the specification. This is visible in the computation of
the robustness for ψ1 and ψ2, where S-TaLiRo computes the inconclusive result
0 for a specification that is satisfied by the trace, while Breach correctly finds
that the formula is satisfied, but assigns it a very low robustness degree.

S-TaLiRo Breach ARV

ψ1 = a ≥ −30 ∧ a ≤ 30 30 30 30

ψ2 = (a ≥ −30 ∧ a < 0) ∨ (a ≥ 0 ∧ a ≤ 30) 0 10−13 30

ψ3 = �(a ≥ −10) 69 69 69

ψ4 = �((a ≥ −10 ∧ a ≤ 60) ∨ (a ≥ 55)) 35 35 69

ψ5 = �(a ≥ 5 ∧ a < 5) -64 -59 −∞
ψ6 = ¬( �ψ1 ∨ �(a < −30 ∨ a > 30)) -30 -30 −∞

Table 3. Precision comparison between syntactic and semantic approach.

5.2 Automatic Transmission System

We first consider the Automatic Transmission deterministic model [27] as our
system-under-test (SUT). It is a model of a transmission controller that exhibits
both continuous and discrete behavior. The system has two inputs – the throttle
ut and the break ub. The break allows the user to model variable load on the
engine. The system has two continuous-time state variables – the speed of the
engine ω (RPM), the speed of the vehicle v (mph) and the active gear gi.

The system is initialized with zero vehicle and engine speed. It follows that
the output trajectories depend only on the input signals ut and ub, which can
take any value between 0 and 100 at any point in time. The Simulink model
contains 69 blocks including 2 integrators, 3 look-up tables, 2 two-dimensional
look-up tables and a Stateflow chart with 2 concurrently executing finite state
machines with 4 and 3 states, respectively. The benchmark [27] defines 8 STL
formalized requirements that the system must satisfy.

We select the following requirement for our case study: “The engine and
the vehicle speed never reach ωmax and vmax”. We use STL to formalize this
requirement as follows: ϕ3 =�((ω ≤ ωmax) ∧ (v ≤ vmax)).



Fig. 6. Robustness degree ρ(τ[0,t], ϕ3), where ϕ3 = �((ω ≤ ωmax) ∧ (v ≤ vmax)),
based on different semiring instantiations.

We translate ϕ3 into a SWA and instantiate it with three semirings – Boolean,
MinMax and Tropical, thus obtaining monitors for qualitative, ∞-norm and
Hamming distance based quantitative semantics. We note that the qualitative
semantics yields the binary verdicts. In contrast, the quantitative semantics
based on the ∞-norm is obtained by instantiating MinMax idempotent semir-
ing. Therefore the robustness degree based of this semantics relies on maximum
pointwise distance, without accumulating it over time. For this reason we find
it useful for performing worst-case analysis. Finally, the quantitative semantics
based on Tropical semiring accumulates the pointwise distances over the entire
trace due to non-idempotent ⊗ (addition). Thus, the robustness degree in each
time instance depends on the robustness of the entire trace prefix, ensuring that
no information on robustness is lost over time. We can finally observe that all
the quantitative semantics are consistent with qualitative semantics, as stated
in Theorem 3. This is observable in Fig 6, before time reaches 200.

6 Conclusions and Future Work

We presented ARV, our generic algebraic approach to monitoring correctness
and robustness of CPS applications. We demonstrated the flexibility of ARV
with respect to specification languages and semantics. We showed that ARV,
which relies on the use of automata, enables a precise robustness measurement of
a trace with respect to a specification. We also believe that defining the abstract
RV algorithm over the automaton structure will facilitate code generation of
real-time monitors for various platforms, including software and FPGAs.

We believe that the results presented in this paper may open many new
research and development avenues. In this paper, we have an enumerative ap-



proach to real-time. We will investigate the effect of symbolic representation of
time to our automata-based approach.

We have seen that the precision of our semantic approach comes at a price –
an exponential blow up in the number of locations and the size of the transition
predicates. In this paper, we studied the worst-case complexity of our transla-
tion. However, we believe that for many applications the effective translation will
yield monitors that are much smaller from the worst case. This requires a com-
prehensive experimental study with an optimized implementation. To achieve
this goal, we will explore different optimization strategies, including the use of
the algorithms implemented in the symbolic automata library3 such as its mini-
mization procedure [12]. We will integrate our robustness monitoring approach to
the existing falsification testing frameworks and quantify the improvements due
to the preciseness of our algorithms. We will implement several code generators
(interpreted Java, Simulink S-functions, embedded C, FPGA, etc.) and investi-
gate the reuse of specifications and monitors across stages in the development
cycle.

In this paper, we restricted ourselves to Hausdorff-like measures, and additive
idempotent semirings. We would like to study in the future, the extension of
our framework to non-idempotent ⊕-addition, and its application to RV: For
instance, to a probabilistic semiring. We would also like to investigate whether
we can use our approach to support other types of semantics. For instance, we
will study whether we can generalize ARV to enable measuring weighted edit
distance measure between a trace and a specification as proposed in [28].
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A Specification Languages

In this appendix, we recall the syntax and semantics of STL and SRE, both
interpreted over discrete time.

A.1 Signal Temporal Logic

We consider STL with both past and future operators interpreted over digital
signals of final length. We assume that D is a metric space equiped with a
distance d. The syntax of a STL formula ϕ over X is defined by the grammar:

ϕ := x ∼ u | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U Iϕ2 | ϕ1 S Iϕ2

where x ∈ X, ∼∈ {<,≤}, u ∈ D, I is of the form [a, b] or [a,∞) such that
a, b ∈ N and 0 ≤ a ≤ b. The other standard operators are derived as follows:
true = p ∨ ¬p, false = ¬true, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), �Iϕ = trueU Iϕ,
�Iϕ = ¬ �I¬ϕ, –�Iϕ = trueS Iϕ, –�Iϕ = ¬ –�I¬ϕ, #ϕ = falseU [1,1]ϕ and
�ϕ = falseS [1,1]ϕ.

The semantics of a STL formula with respect to a signal s of length l is
described via the satisfiability relation (s, i) |= ϕ, indicating that the signal
s satisfies ϕ at the time index i, according to the following definition where
T = [0, l).

(s, i) |= x ∼ u ↔ s(i, x) ∼ u
(s, i) |= ¬ϕ ↔ (s, i) 6|= ϕ
(s, i) |= ϕ1 ∨ ϕ2 ↔ (s, i) |= ϕ1 or (s, i) |= ϕ2

(s, i) |= ϕ1 U Iϕ2 ↔ ∃j ∈ (i+ I) ∩ T : (s, j) |= ϕ2 and ∀i < k < j, (s, k) |= ϕ1

(s, i) |= ϕ1 S Iϕ2 ↔ ∃j ∈ (i− I) ∩ T : (s, j) |= ϕ2 and ∀j < k < i, (s, k) |= ϕ1

We note that we use the semantics for S I and U I that is strict in both argu-
ments and that we allow punctual modalities due to the discrete time semantics.
Given an STL formula ϕ, we denote by L(ϕ) the language of ϕ, which is the set
of all signals s such that (s, 0) |= ϕ.

A.2 Signal Regular Expressions

Signal Regular Expressions (SRE) [5] allow to pattern-match a specification over
a signal. As the authors in [25] mentioned, the fundamental difference between
STL and SREs comes from a fact that the satisfaction of an STL formula is
computed for a time point, while the match of a SRE results in a time interval.
In this work we adapt the definition of SREs from [25] with an assumption of
interpreting SREs over discrete time. The syntax of a SRE formula ϕ over X is
defined by the grammar:

b := x ∼ u | ¬b | b1 ∨ b2
ϕ := ε | b | ϕ1 · ϕ2 | ϕ1 ∪ ϕ2 | ϕ1 ∩ ϕ2 | ϕ∗ | 〈ϕ〉I



where x ∈ X, ∼∈ {<,≤}, u ∈ D, I is of the form [a, b] or [a,∞) such that a, b ∈ N
and 0 ≤ a ≤ b. Although we interpret SRE over discrete time, we interpret its
operators following the style of continuous time TRE. As a consequence, a signal
segment that matches a predicate such as x ≤ 5 means that it matches it for
a strictly positive duration. The time duration operator 〈ϕ〉I is matched by a
segment if it has a duration in I.

The semantics of SRE ϕ with respect to discrete signal w and time instances
i ≤ i′ is given in terms of satisfaction relation (w, i, i′) |= ϕ:

(w, i, i′) |= ε ↔ i = i′

(w, i, i′) |= q ↔ i ≤ i′ and ∀i′′ s.t. i ≤ i′′ < i′, πp(w)[i′′] = 1
(w, i, i′) |= ϕ1 · ϕ2 ↔ ∃i′′ s.t. i ≤ i′′ < i′, (w, i, i′′) |= ϕ1 and (w, i′′, i′) |= ϕ2

(w, i, i′) |= ϕ1 ∪ ϕ2 ↔ (w, i, i′) |= ϕ1 or (w, i, i′) |= ϕ2

(w, i, i′) |= ϕ1 ∩ ϕ2 ↔ (w, i, i′) |= ϕ1 and (w, i, i′) |= ϕ2

(w, i, i′) |= ϕ∗ ↔ (w, i, i′) |= ε or (w, i, i′) |= ϕ · ϕ∗
(w, i, i′) |= 〈ϕ〉I ↔ i′ − i ∈ I and (w, i, i′) |= ϕ



B Proofs

Lemma 3 Let S = (S,⊕,⊗, e⊕, e⊗) be an additively idempotent, negative and
monotonic semiring. Then, for all a ∈ S, e⊗ v a v e⊕.

Proof. Consider an arbitrary a ∈ S. By Definition 3 and assumption that S
is negative, we have that e⊗ v e⊕. By Definition 3 and assumption that S is
monotonic, we have that e⊗⊗ a v e⊕⊗ a and e⊗⊕ a v e⊕⊕ a. By Definition 1,
e⊗ v a and a v e⊕, which concludes the proof.

Theorem 1 Given a predicate ψ in DNF, a valuation v and the distance d(v, ψ)
defined over a bounded semiring S, we have that vpd(v, ψ) = d(v, ψ) if: (1) S is
idempotent; or (2) ψ is in ∧-minimal DNF.

Proof. We prove the theorem by induction on the structure of the predicate. If
ψ is not satisfiable, we have by by Definition 4 and Algorithm 1that d(v, ψ) =
vpd(v, ψ) = e⊕. Hence, from now on, we consider only satisfiable ψ. We first
prove the theorem for an arbitrary term ψc, and then prove it for general DNF
formulas ψ. We start with the proof for ψc.
Base cases: We have 3 base cases to consider - ψl ≡ >, ψl ≡ y � k and
ψl ≡ y � k.

– Case ψl ≡ >:

vpd(v,>) = e⊗ by Algorithm 1
d(v,>) = ⊕v′|=> ⊗x∈X d(v(x), v′(x)) by Definition 9.

= ⊗x∈Xd(v(x), v(x))⊕⊕v′ 6=v ⊗x∈X d(v(x), v′(x)) by semantics of >
= e⊗ ⊕⊕v′ 6=v ⊗x∈X d(v(x), v′(x)) by Definition 4
= e⊗ by Definition 1.

– Case ψl ≡ y � k: We consider two sub-cases, v(y) � k and v(y) � k.

• Case v(y) � k:

vpd(v, y � k) = e⊗ by Algorithm 1
d(v, y � k) = ⊕v′|=y�k ⊗x∈X d(v(x), v′(x)) by Definition 9

= ⊗x∈Xd(v(x), v(x))⊕
⊕v′|=y�k,v′ 6=v ⊗x∈X d(v(x), v′(x)) by associativity of ⊕

= e⊗
⊕v′|=y�k,v′ 6=v′′ ⊗x∈X d(v(x), v′(x)) by Definition 4 ⊕

= e⊗ by boundedness of S.

• Case v(y) � k: Consider arbitrary a � k and b � k, and arbitrary
valuations v such that v(y) = b and v′ such that v′(y) = a and for all
x ∈ X\{y}, v′(x) = v(x). We have that



d(v, v′) = ⊗x∈Xd(v(x), v′(x)) by Definition 9
= d(v(y), v′(y))⊗⊗x∈X\{y}d(v(x), v′(x))
= d(b, a)⊗⊗x∈X\{y}d(v(x), v′(x)) by assumption
= d(b, a)⊗ e⊗ by Definition 4.

Consider an arbitrary valuation valuation v′′ and variable z ∈ X\{, x, y}
such that v′′(x) = v′(x) for all x ∈ X\{z}. We have that:

e⊗ v d(v(z), v′′(z)) by Lemma 3
d(v, v′) = ⊗x∈Xd(v(x), v′(x)) by Definition 9

= d(v(y), v′(y))⊗ d(v(z), v′′(z))⊗x∈X\{y,z} d(v(x), v′(x))
= d(b, a)⊗ d(v(z), v′′(z))⊗⊗x∈X\{y,z}d(v(x), v′(x)) by assumption
= d(b, a)⊗ d(v(z), v′′(z)) by Definition 4.

Combining the facts that e⊗ v d(v(z), v′′(z)) and d(b, a)⊗e⊗ v d(b, a)⊗
d(v(z), v′′(z)) (Definition 3 and Lemma 2), we conclude that d(v, v′) v
d(v, v′′). By Definition 2, it follows that d(v, v′)⊕d(v, v′′) = d(v, v′), and
hence that ⊕v′|=y=as.t. v′(y)=bd(v, v′) = d(b, a) = d(v′(y), a).
Consider two arbitrary a � k and a′ � k such that a < a′. We have that
⊕v′|=y=as.t. v′(y)=bd(v, v′) = d(v′(y), a) and ⊕v′|=y=a′s.t. v′(y)=bd(v, v′) =
d(v′(y), a′). Following the fact that d(v′(y), a′) v d(v′(y), a), we conclude
that d(v, y � k) = d(v(y), k). By Algorithm 1, we have that vpd(v, y �
k) = d(v(y), k), hence vpd(v, y � k) = d(v, y � k).

– Case ψl ≡ ¬(x � k): Symmetric to ψl ≡ x � k.

Inductive hypothesis: ψc ≡ ψc1 ∧ ψl.
We have 3 base cases to consider - ψl ≡ >, ψl ≡ y � k and ψl ≡ ¬(y � k).

– Case ψl ≡ >:

vpd(v, ψc ∧ >) = vpd(v, ψc)⊗ e⊗ by Algorithm 1
= vpd(v, ψc)
= d(v, ψc) by inductive hypothesis
= d(v, ψc ∧ >) by definition of >

– Case ψl ≡ y � k: We consider two sub-cases, v(y) � k and ¬(v(y) � k).
• Case v(y) � k:

vpd(v, ψc ∧ y � k) = vpd(v, ψc)⊗ e⊗ by Algorithm 1
= vpd(v, ψc)
= d(v, ψc) by inductive hypothesis

Consider an arbitrary a � k and b � k. Consider two arbitrary valua-
tions v′ and v′′ such that v′(y) = a, v′′(y) = b and for all x ∈ X\{y},
v′(x) = v′′(y). We have that d(v′(y), y � k) = e⊗ and d(v′′(y), y �
k) = d(v′′(y), k) by the proof of the base cases, hence d(v′(y), y �



k) v d(v′′(y), y � k). By Definition 3, we have that d(v, ψc ∧ y � k) v
d(v, ψc ∧ ¬(y � k)). We also have that:

d(v, ψc) = d(v, ψc ∧ y � k)⊕ d(v, ψc ∧ ¬(y � k)) by simple rewriting
= d(v, ψc ∧ y � k) by d(v, ψc ∧ y � k) v d(v, ψc ∧ ¬(y � k))

• Case ¬(v(y) � k): We consider two cases, when S is multiplicatively
idempotent and when ψc ∧ y � k is in ∧-minimal DNF form.
∗ Case S is multiplicatively idempotent : We first recall that d(v, y �
k) = d(v, y � k) ⊕ d(v, ψc ∧ y � k), hence by Definition 3, d(y �
k) v d(v, ψc ∧ y � k).

vpd(v, ψc ∧ y � k) = vpd(v, ψc)⊗ vpd(v, y � k) by Algorithm 1
= d(v, ψc)⊗ d(v, y � k) by inductive hypothesis
= (d(v, ψc ∧ y � k)
⊕d(v, ψc ∧ ¬(y � k)))
⊗d(v, y � k)

= d(v, ψc ∧ y � k)⊗ d(v, y � k) by assumption that ¬(y � k)
= d(v, ψc ∧ y � k) by ⊗ - idempotence of S

and Definitions 2 and 3

∗ Case ψc is in ∧-minimal DNF: By this assumption, ψc does not
contain any conjunct in the form y � k′, although it might contain
a conjunct of the form ¬(y � k′) for some k′ ≤ k. However, even
if that is the case, by assumption that v(y) � k, we have that the
contribution of y in d(v, ψc) is e⊗. Hence, we have that d(v, ψc∧ y �
k) consists of computing d(v, ψc∧) and ⊗-multiplying it with the
effect of the y � k constraint, that is with d(v, y � k) = d(v(y), k).

– Case ψl ≡ ¬(y � k) : symmetric to the previous case.

We are now ready to prove that vpd(v, ψ ∨ ψc) = d(v, ψ ∨ ψc).
Base case: The first part of the proof establishes that vpd(v, ψc) = d(v, ψc)
Inductive hypothesis:

vpd(v, ψ) = vpd(v, ψ)⊕ vpd(v, ψc) by Algorithm 1
= d(v, ψ)⊕ d(v, ψc) by inductive hypothesis
= ⊕v′|=ψ ⊗x∈X d(v, v′) ⊕
⊕v′|=ψc ⊗x∈X d(v, v′) by Definition 5

= ⊕v′|=ψ∧¬ψc ⊗x∈X d(v, v′) ⊕
⊕v′|=ψ∧ψc ⊗x∈X d(v, v′) ⊕
⊕v′|=ψ∧ψc ⊗x∈X d(v, v′) ⊕
⊕v′|=¬ψ∧ψc ⊗x∈X d(v, v′) by partition of sets

= ⊕v′|=ψ∧¬ψc ⊗x∈X d(v, v′) ⊕
⊕v′|=ψ∧ψc ⊗x∈X d(v, v′) ⊕
⊕v′|=¬ψ∧ψc ⊗x∈X d(v, v′) by idempotence of ⊕

= ⊕v′|=ψ∨ψc ⊗x∈X d(v, v′) by union of disjoint sets
= d(v, ψ ∨ ψc) by Definition 5.



ut

Theorem 2 Given a specification ϕ, its associated SWA W defined over a
semiring S and a trace τ , we have that val(τ,W) = α(τ,W) = d(τ, ϕ).

Proof. The proof follows from the monotonicity of the natural order in additively
idempotent semirings. This propery allow us to merge the values of all paths π
induced by a prefix of size n of the trace τ and ending in a location q into a
single representative value that we represent as the cost c(q, n) of the location
at time n and that is used to compute the value of all the extensions. (we recall
that for all a, b, c ∈ S, if a v b, then a⊗c v b⊗c). Following the definition of the
trace value, the cost c(q, n+1) of q at time n+1 is then the ⊕-summation of the
individual effects of taking all possible transitions (s, ψ, q) from s to q with the
new valuation vn+1 (the cost c(s, n) ⊗-multiplied by the predicate-value distance
vpd(vn+1, ψ)).

ut

Theorem 3 Given traces τ and τ ′, a specification ϕ and distances d(τ, τ ′),
d(τ,¬ϕ) defined over a bounded semiring S,

ρ(τ, ϕ) > 0→ τ |= ϕ
ρ(τ, ϕ) < 0→ τ 6|= ϕ

τ |= ϕ and d(τ, τ ′) < d(τ,¬ϕ)→ τ ′ |= ϕ.

Proof. The proof for the first two implications is trivial from the definitions of
ρ(τ, ϕ) and d(τ, ϕ). We prove the third implication by contradiction. Assume that
τ |= ϕ, d(τ, τ ′) < d(τ,¬ϕ) and τ ′ 6|= ϕ. Then, by definition of the distance, we
have that d(τ ′,¬ϕ) = e⊗. By the additive idempotence of S and the definition
of d(τ ′,¬ϕ), there exists τ ′′ |= ¬ϕ such that d(τ ′, τ ′′) = e⊗, hence τ ′ = τ ′′.
However, in that case we have that d(τ, τ ′) = d(τ,¬ϕ), which is a contradiction.

ut
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