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ABSTRACT
One major issue that hinders the use of performance analysis in

industrial design processes is the pessimism inherent to any analy-

sis technique that applies to realistic system models. Indeed, such

analyses may conservatively declare unschedulable systems that

will in fact never miss any deadlines. We advocate the need to

compute not only tight upper bounds on worst-case behaviors, but

also tight lower bounds. As a first step, we focus on uniprocessor

systems executing a set of sporadic or periodic hard real-time task

chains. Each task has its own priority, and the chains are scheduled

according to the fixed-priority preemptive scheduling policy. Com-

puting the worst-case end-to-end latency (WCEL) of each chain

is complex because of the intricate relationship between the task

priorities. Compared to the state of the art, our analysis provides

upper bounds on the WCEL in the more general case of asynchro-

nous task chains, and also provides lower bounds on the WCEL

both for synchronous and asynchronous chains. Our computed

lower bounds correspond to actual system executions exhibiting

a behavior that is as close to the worst case as possible, while all

other approaches rely on simulations. Extensive experiments show

the relevance of lower bounds on the worst-case behavior for the

industrial design of real-time embedded systems.
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1 INTRODUCTION
Timing is crucial for the correct execution of hard real-time sys-

tems with strict requirements on worst-case end-to-end latencies

(WCEL). Verifying these timing requirements becomes more and

more challenging due to the increasing complexity of systems. Over

approximations are thus mandatory, resulting in pessimistic upper

bounds on WCEL. The problem is that the end user has no idea

about how pessimistic such upper bounds are. We therefore advo-

cate the need to compute also a lower bound on WCEL
1
, computed

from execution scenarios guaranteed to be feasible. Such lower

bounds can of course also be obtained by simulating the system

with thousands of execution scenarios and keeping the largest value.

Our experiments show that, in general, the lower bounds obtained

through simulation are lower than our computed ones.

In this paper, we apply this principle to hard real-time systems

consisting of chains of tasks executed on a single core processor

under the Fixed-Priority Preemptive (FPP) policy. Our task chains

follow a periodic or a sporadic activation model, have arbitrary

deadlines and can be synchronous or asynchronous. This system

model is common to many industrial systems, e.g. On-Board Soft-
Ware (OBSW) in satellites or Flight Management Systems (FMS) in

avionics: OBSW and FMS are both uniprocessor systems executing

periodic and sporadic task chains. The FMS is scheduled according

to the ARINC653 standard [1] that defines time partitions in which

tasks are scheduled under FPP. For both systems, the strict certi-

fication constraints (DO178C for avionics [3] and ECSS-E-ST-40C

for space [2]) impose demonstrating the correctness of the timing

behavior.

When tasks are independent and scheduled with FPP, computing

the worst-case response time of each task is a well understood

problem because the interference that each task may be subject

to is limited to its higher-priority tasks. In the case of task chains

however, the problem is a lot more complex: A given task chain

σ will be subject to the interference of any other task chain that

contains at least one task of a priority higher than the lowest priority

of the tasks in σ .
Recent work on the analysis of task chains [15] proposes a so-

lution to this problem, but with significant over-approximation.

Earlier work provides upper bounds [8] for synchronous chains

but is restricted to synchronous chains. We propose here a novel

solution that is both tighter than [15] and that applies to synchro-
nous and asynchronous task chains. We define a priority order on

chains that allows us to reason about latency analysis in a way that

is similar to the response-time analysis of [7] for Fixed-Priority

Non-Preemptive scheduling of independent tasks (FPNP). Finally,

1
A lower bound on the WCEL must not be confused with the best-case end-to-end

latency (BCEL).

https://doi.org/
https://doi.org/


EMSOFT’18, September 2018, Torino, Italy A. Girault, R. Henia, C. Prévot, S. Quinton, N. Sordon

and most importantly, we are able to compute also lower bounds on
the WCEL of task chains. Interestingly, computing lower bounds

turns out to be a much more complex problem for periodic task

chains than for sporadic ones. Based on the computed lower bounds,

we can estimate the precision of the computed upper bound on the

latency of each task chain.

The paper is organized as follows. Section 2 discusses related

work and how our analysis improves over it. Section 3 introduces

our system model. Sections 4, 5, 6, and 7 formalize our approach to

compute upper bounds on the latency of task chains. Section 8 de-

velops our method to compute lower bounds on task chain latencies.

Section 9 provides extensive experiments that show the usefulness

of the combined use of upper and lower bounds on worst-case

latencies. Section 10 concludes and discusses future work.

2 RELATEDWORK
There exists a huge body of literature dealing with the real-time

scheduling of tasks and the computation of worst-case response

times and latencies. We focus in this section on the particular case

of tasks with precedence constraints.

The two papers that are most closely related to our paper are [8]

and [15]. Although [8] uses a different terminology (namely, tasks

and subtasks instead of chains of tasks), the underlying model used

in these two papers and ours is identical. Moreover, both papers

address the problem of computing the WCEL of task chains on a

single-core processor under the FPP scheduling policy, but they

only focus on providing upper bounds and do not discuss at all the

tightness of their bounds.

In [8], Gonzalez Harbour et al. propose a framework to analyze

the schedulability of a real-time system consisting of a set of pe-

riodic synchronous tasks, where each task is itself a sequence of

subtasks. They introduce a canonical form where consecutive sub-

tasks have increasing priorities, and they prove that the latency of

the task under study remains the same if it is put under canonical

form.We improve their analysis in three directions. (1) We present a

very precise formalization and we formally prove its correctness ([8]
provides no formal proof of correctness). (2) Our analysis applies

both to synchronous and to asynchronous chains with arbitrary dead-
lines, i.e., chains with self-interference of forthcoming instances

(while Assumption 3 in [8] excludes this case). (3) And we compute

also lower bounds on the WCEL.

In [15], Schlatow and Ernst extend the Compositional Perfor-

mance Analysis (CPA) of [9] to chains of tasks. Compared to CPA,

this reduces significantly the pessimism of the computed upper

bounds on latencies. Still, the drawback of [15] is to use the same

definition for the two distinct concepts of busy window and q-event
busy time (see Section 4), which hinders the comprehension of the

underlying mechanisms of the analysis. As we demonstrate in our

paper, this incurs a significant pessimism. Compared to [15], we

greatly improve the WCEL analysis by computing tighter upper

bounds and by providing also lower bounds (which allow the tight-

ness of the WCEL to be measured).

As presented in [17] and then extended to more complex sys-

tems in [13], offsets may be used to model precedence constraints:

tasks are grouped into transactions such that tasks of the same

transaction do not interfere with each other. Offset-based latency

analysis, which builds on top of task response time analysis, im-

proves over standard latency analysis without dependencies. Still,

[15] shows through experiments that the analysis in [15] (over

which we improve) outperforms offset-based analysis.

There is a body of research on parallel applications, where tasks

are split into subtasks with precedence constraints that form a

graph, in particular the fork-join model [11], the synchronous par-

allel task model [14] and the DAG-based task model [4]. Corre-

sponding analyses thus address more complicated systems and their

computed upper bounds are very conservative. We have found no

contributions presenting a formal analysis of lower bounds for such

systems. It would indeed be interesting to provide such an analysis.

In this paper, we focus on functional task chains, where the end

of a task activate the upcoming one, in contrast to cause-effect

chains as in [5], where the dependencies between tasks are data

dependencies. In a cause-effect chain, each task is activated inde-

pendently but reads data produced by the previous task in the chain

before executing. The systems we target ultimately are multipro-

cessor with functional chains on a processor and data dependencies

between processors. In future work, we plan to extend our analysis

to handle jointly functional and data dependencies.

3 SYSTEM MODEL
Unless otherwise specified, all the parameters defined in the follow-

ing have positive integer values. In particular, we assume a discrete
time clock. We consider a uniprocessor real-time system S consisting

of a finite set ofm task chains scheduled with the FPP scheduling

policy. All task chains are independent, meaning that two chains

cannot share a task and there is neither task fork nor task join.

Definition 3.1 (Task). A task τ ia is defined as a pair (π ia ,C
i
a ) with

π ia the priority andCia the worst-case execution time (WCET) of τ ia .

Definition 3.2 (Task chain). A task chain σa ∈ S , a ∈ {1, . . . ,m},

is defined by:

• A finite sequence of na distinct tasks denoted (τ 1a ,τ
2

a , . . . ,τ
na
a )

with precedence relations such that, for each i ∈ {1, . . . ,na − 1},

τ i+1a is activated at the completion time of τ ia .
• An activation model (see Defs. 3.3 and 3.4) that specifies the

activation instants of the first task in the chain τ 1a .
• A relative deadline Da (see Def. 3.5 below).

• A synchronous or asynchronous execution policy (see Def. 3.6).

All priorities are assumed to be distinct. We use the convention

that π ia > π
j
b means that τ ia has a higher priority than τ

j
b . As a

result, τ ia may preempt τ
j
b when it arrives.

Task chains are activated from external sources, which can be

either periodic timers or various types of sensor devices. We model

the activation patterns of chains using arrival functions, or their
pseudoinverses called distance functions. These functions can be

used to model sporadic as well as periodic activations [9].

Definition 3.3 (Arrival function). A maximum (resp. minimum)
arrival function η+a : N→ N (resp. η−a ) returns, for any time inter-

val ∆, an upper (resp. lower) bound on the number of activations

of chain σa that can arrive within any time interval [t , t + ∆[.

Definition 3.4 (Distance function). A minimum (resp. maximum)
distance function δ−a : N→ N (resp. δ+a ) returns, for any q ∈ N, a
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lower (resp. upper) bound on the length of any time interval that

contains q activations of chain σa .

Without loss of generality, in the rest of this paper we use the

above notations for both periodic and sporadic chains. Note that

sporadic chains do not have maximum distance functions: two

sporadic activations can be arbitrarily far apart. In contrast, periodic

activations are exactly separated by a period.

Definition 3.5 (Deadline). We distinguish two types of relative

deadlines for a chain σa : Constrained deadline: Da ≤ δ−a (2). Arbi-
trary deadline: no constraint on Da .

The timing behavior of a task chain σa is an infinite sequence

of instances, each of them made of one instance of each task in the

chain, such that: (i) the arrival time of τ 1a is defined by η+a ; (ii) the
arrival time of τ i+1a is the completion time of τ ia . Task chains may

behave differently in presence of multiple instances [15].

Definition 3.6 (Synchronous, asynchronous chain). We distinguish:

• Synchronous chains: an instance of chain σa cannot start

execution until previous instances of σa have completed.

• Asynchronous chains: an instance of chain σa may preempt

previous instances of σa .

Instances of an asynchronous chain σa can thus suffer from

interferences due to (i) other chains; (ii) previous instances of σa ;
and (iii) later instances of σa . A synchronous chain will only suffer

from (i) and (ii). This distinction is irrelevant if all deadlines are

constrained, as two instances of a chain cannot overlap in that case

(unless there is a deadline miss). We now introduce a few notations.

Notation 1. Given a chain σa , the sequence of tasks (τ
p
a , . . . ,τ

m
a ),

1 ≤ p ≤ m ≤ na , is denoted σa[p ..m] and called a subchain.

Notation 2. Given a chain σa ,Ca denotes
∑na
i=1C

i
a , the execution

time of σa . We extend this notation to all subchains,Ca[p ..m] denoting
the execution time of σa[p ..m].

Priorities can be in any order, not necessarily ascending or de-

scending. The following example provides some intuition regarding

the complexity of the resulting timing behavior of task chains.

τ 1a
τ 1d
τ 3d
τ 3a
τ 4b
τ 4a
τ 2d
τ 2b
τ 1c
τ 2a
τ 2c
τ 3b
τ 1b

Figure 1: A system with four task chains. Task priorities are
decreasing from top to bottom.

Example 3.7. Fig. 1 shows an execution of a system with four

task chains that interfere according to complex patterns because

their priorities are interleaved. For example, task τ 2a has a priority

lower than τ 2b , so the activation of τ 3a is indirectly delayed by the

lower-priority task τ 2b . Handling such interferences is the main

challenge when computing the WCEL of task chains.

Definition 3.8 (End-to-end latency). The end-to-end latency of an

instance of a task chain σa is the duration between the arrival of

τ 1a and the completion time of τnaa of the same instance.

The worst-case end-to-end latency (WCEL) ℓa of σa is the maxi-

mum latency over all possible instances of σa .

Definition 3.9 (Schedulable). A system is schedulable if and only

if all instances of all chains are guaranteed to meet their deadline.

Notation 3. For any value V , V and V denote respectively an
upper and a lower bound on V .

The schedulability of a real-time system S = {σa }
m
a=1 is usu-

ally assessed by computing, for each chain σa , an upper bound ℓa
on its WCEL, and checking that ℓa ≤ Da . Computing a widely

over-estimated ℓa results in many systems being declared as non

schedulable. The problem we address in this paper is therefore

twofold. First, we provide a framework to compute upper bounds

that are as tight as possible given the complexity of the analysis.

Second, we compute, for each chain, a scenario (chosen to be close

to the worst case) that exhibits a realizable value for its latency.
This value constitutes a lower bound on its WCEL. We can thus

measure the pessimism of our WCEL analysis.

4 UPPER BOUNDS ON CHAIN LATENCIES
In this section, we develop the main concepts needed for computing

upper bounds on task chain latencies. We start with an observa-

tion: Any chain σa has na different priority levels (remember that

na denotes the number of tasks in σa ), but for most of our WCEL

analysis, we only need to consider the lowest priority task of each

chain. These notations can also be applied to subchains. Note that

neither [8] nor [15] use chain priorities, which makes their devel-

opments much harder to read.

Definition 4.1 (Priority of a chain). The priority of task chain σa ,
denoted πa , is the priority of its lowest priority task:

πa = min

i=1..na
{π ia }

Task τ
j
b has a lower priority than a chain σa if and only if π

j
b < πa .

Since all task priorities are different, chain priorities define a

total order over task chains.

Notation 4. We use ℓp(a), resp. hp(a), to denote the set of chains
with a strictly lower, resp. strictly higher, priority than σa . Also,
hpe(a) = hp(a) ∪ {σa }. We denote ℓpb (a) the set of tasks of σb
that have lower priority than σa , i.e., ℓpb (a) = {τ

j
b ∈ σb |π

j
b < πa }.

4.1 Upper bounds on busy windows
Most response time analyses for uniprocessor systems rely on some

notion of busy window (or busy period) and this paper is no ex-

ception. We use here the same notion as in [8], which extends the

original concept of [12] to task chains.

This article was presented in the International Conference on Embedded Software 2018 and appears as part of the ESWEEK-TCAD special
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Definition 4.2 (σa -busy window). A σa -busy window is a maximal

time interval during which there is always (at least) one instance

of a task with priority higher than or equal to σa that is pending,

i.e., it has been previously activated but has not finished yet.

In particular, a σa -busy window cannot be closed until all pend-

ing instances of σa and higher-priority chains have finished their

execution. Among lower-priority chains, only tasks with a priority

higher than σa are considered as part of a σa -busy window.

Example 4.3. Our running example of Fig. 1 shows two σa -busy
windows: the first one starts with the activation of σa and ends

with the completion of the second instance of σd . The second one

spans the execution of τ 4b .

We will see that, similar to busy-window approaches such as [7],

task instances (of any chain) can only interfere with instances of

σa that are in the same σa -busy-window. It is therefore useful to
have an upper bound on the length of a σa -busy-window.

Definition 4.4 (Lower-priority interference). We call lower-priority
interference and denote ℓpIa (∆) the maximum amount of time that

chains with priority lower than σa may execute in any prefix of

length ∆ of a σa -busy window.

The function ℓpIa can be used to provide an upper bound on the

amount of time σa may be delayed by lower-priority chains inside

a σa -busy window. We will show in Section 6.1 how to compute

such an interference.

Theorem 4.5. Let σa be a task chain. The length of any σa -busy
window is upper bounded by the least fixed point BWa of Eq. (1):

BWa = ℓpIa (BWa ) +
∑

σb ∈hpe(a)

η+b (BWa ) ×Cb (1)

Proof. By definition, lower-priority chains execute for at most

ℓpIa (BWa ) in any prefix of a σa -busy window of length BWa .

Besides, there cannot be any instance of σa or of a higher-priority

chain pending at the beginning of a σa -busy-window; and any such
instance that is activated within a σa -busy-window is by definition

guaranteed to fully execute before the end of that σa -busy-window.
Each chain σb ∈ hpe(a) therefore accounts forCb times its maximal

number of instances activated within BWa , that is, η
+
b (BWa ). □

Property 1. Let σa be a task chain. The number of activations of
σa in a σa -busy-window is upper bounded by Ka = η+a (BWa ).

Proof. The proof follows directly from Theorem 4.5. □

The above results still hold if an upper bound is used for the

lower-priority interference. In contrast, proving that the upper

bound on the length of a σa -busy-window is reachable (i.e., there

exists a σa -busy-window not greater than that length) requires

to prove that the maximum lower-priority interference and the

maximum interference from higher-priority chains can be achieved

in one single execution scenario (see Section 8).

4.2 Upper bounds on busy times
In order to upper bound the latency of σa , and similar to e.g. [7],

we need to first focus on the time it may take to finish executing

q instances of σa within a σa -busy-window, for q ∈ [1,Ka ]. The
following definition is the adaptation to task chains of the concept

with the same name introduced in [16]. A σa -busy-window does

not necessarily close when a σa instance finishes executin because

there may be, e.g., pending instances of higher-priority chains. This

implies that, although two instances of σa cannot overlap in a

schedulable system with constrained deadlines, they may still be

part of the same σa -busy-window.

Definition 4.6 (q-event busy time). The q-event busy time of a
chain σa (resp. a task τ ia ), denoted Ba (q) (resp. B

i
a (q)), is the max-

imum time duration it may take to finish processing the first q
instances of σa (resp. τ ia ) within any σa -busy-window that contains

at least q instances of σa .

To upper bound the q-event busy time of σa for q ∈ {1, . . . ,Ka },
we will upper bound the q-event busy time of some tasks in σa ,
depending their priority w.r.t. the priority of the chains in hp(a).

Theorem 4.7. The q-event event busy time of chain σa is equal to
the q-event event busy time of its last task: Ba (q) = Bnaa (q).

Proof. This directly follows from the definitions. □

We can thus focus on upper bounding the q-event event busy
time of the tasks in σa . For that, we distinguish between the inter-

ference due to lower- and higher-priority chains, as well as possible

interference from subsequent activations of σa .

Definition 4.8 (q-event interference). The q-event lower-priority
(resp. higher-priority) (resp. self) interference wrt a task τ ia , denoted
ℓpIi,q

a (∆) (resp. hpIi,q
b→a (∆)) (resp. self I

i,q
a (∆)) is the maximum

amount of time that chains with priority lower than σa (resp. a

chain σb with πa < πb ) (resp. forthcoming instances of σa ) may

execute in any prefix of length ∆ of a σa -busy window that finishes

at the end of the q-th execution of τ ia .

Remember that if deadlines are constrained, or for synchronous

chains, self-interference cannot happen.

Property 2. The q-event busy time of τ ia is upper bounded by

Bia (q) = (q − 1) ×Ca +Ca[1..i] + ℓpI
i,q
a (Bia (q))+∑

σb ∈ hp(a)

hpIi,q
b→a (B

i
a (q)) + self I

i,q
a (Bia (q)) (2)

Proof. The maximum time it may take to fully process the first

q instances of τ ia within a σa -busy-window is upper bounded by

the sum of the maximum time it takes to: (1) compute σa entirely

q − 1 times; (2) compute the q-th instance of σa until task τ ia (i.e.,

the WCET of the subchain σa[1..i]); (3) account for the interference
due to (i) chains with lower priority than σa ; (ii) chains with higher

priority than σa ; (iii) subsequent activations of σa . □

This results holds also if one or several of the interference delays

is upper bounded. To upper bound such q-event busy times, one

needs to upper bound the corresponding interference. We will show

in the next sections how to achieve this. Before that, let us show
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how upper bounds on q-event busy times are used to upper bound

the latency of task chains.

4.3 Upper bounds on latencies
Once the busy times are upper bounded, upper bounds on theWCEL

of task chains are easily obtained.

Theorem 4.9 (Worst-case latency). The WCEL of task chain
σa is bounded by

ℓa = max

q∈[1,Ka ]
{Ba (q) − δ−a (q)} (3)

Proof. Consider any instance σxa of σa . As a consequence of
the definition of σa -busy-window, σ

x
a is part of a (unique) σa -busy-

window. Thanks to Prop. 1, we know that there exists q ∈ [1,Ka ]
such that σxa is the q-th instance in its σa -busy-window. It follows
directly from the definition of the q-event busy time that σxa cannot

finish later than Ba (q) after the beginning of the σa -busy-window.
Besides, σxa cannot be activated earlier than δ−a (q) after the begin-
ning of the σa -busy-window. Hence the result. □

The above result stands even if Ba (q) is upper bounded. The
next sections focus on upper bounding the lower-priority, higher-

priority and self-interference.

5 SEGMENTS
Like lower-priority tasks in [7], lower-priority chains in our context

may interfere in complex ways, as we discuss at the end of this

section. To discuss lower- and higher-priority interference, we

develop (and formalize) the concept of segment introduced in [15].

Intuitively, a segment of a chain σb w.r.t. a chain σa such that

πb < πa is a maximal subchain of σb that may delay σa . The task
immediately before or immediately after a segment of σb w.r.t. σa
has lower priority than σa , i.e., the task belongs to ℓpb (a).

Definition 5.1 (Inner segment sb→a ). An inner segment of σb wrt

σa is a subchain (τ ib , . . . ,τ
j
b ) of σb s.t. 1 < i ≤ j < nb , τ

i−1
b ,τ

j+1
b ∈

ℓpb (a) and ∀k ∈ i ..j, τkb < ℓpb (a).

Definition 5.2 (Head segment sheadb→a ). If τ
1

b <ℓpb (a), (τ
1

b , . . . ,τ
i−1
b )

is the head segment of σb wrt σa , where τ
i
b is the first task in σb

that is in ℓpb (a).

Definition 5.3 (Tail segment stailb→a ). If τ
nb
b <ℓpb (a), (τ

j+1
b , . . . ,τ

nb
b )

is the tail segment of σb wrt σa , where τ
j
b is the last task in σb that

is in ℓpb (a).

Definition 5.4 (Circular segment scircb→a ). If τ
1

b < ℓpb (a) and τ
nb
b <

ℓpb (a) then the circular segment of σb wrt σa is the concatenation

of the tail and the head segment of σb wrt σa .

Definition 5.5 (Critical segment scritb→a ). The critical segment of σb
wrt σa is the segment of σb wrt σa with the longest execution time.

Example 5.6. In our running example of Fig. 1, σb has wrt σa
one inner segment (τ 2b ), no head segment, one tail segment (τ 4b ), no

circular segment and its critical segment is (τ 2b ).

Intuitively, the critical segment of σb wrt σa is the segment

of σb that can interfere the most with σa . We can now state one

key property regarding segments, which will allow us to compute

precisely the interference of lower-priority chains. This result does

not appear in [15], which leads to pessimistic results. In contrast,

this result is used in [8], but without a formal proof, and only in

the synchronous case.

Property 3. Let σa , σb , and σc be three task chains such that
πa > πb > πc . Any two segments sb→a and sc→a that are not head
segments cannot execute (and therefore delay σa ) within the same

σa -busy window.

Proof. The proof is by contradiction. Consider a σa -busy win-

dow in which both segments sb→a and sc→a execute. Let τkb (resp.

τ
j
c ) be the task that precedes sb→a (resp. sc→a ) in σb (resp. σc ).

According to Def. 5.1, τkb ∈ ℓpb (a) and τ
j
c ∈ ℓpb (a).

τkb and τ
j
c have a lower priority than all tasks in σa and therefore

also a lower priority than all tasks in chains with higher priority

than σa . As a result, neither τ
k
b nor τ

j
c can execute within the con-

sidered σa -busy window (which “closes” before they can execute).

sb→a and sc→a execute within this busy window so τkb and τ
j
c

must execute before the considered σa -busy window.

Let us assume that τkb finishes executing before τ
j
c and thus

activates sb→a . Remember that tasks in sb→a and sc→a have a

higher priority than πa , while τkb and τ
j
c have a lower priority

than πa . As a result, sb→a will execute before τ
j
c can execute. This is

a contradiction since τ
j
c must execute before the considered σa -busy

window and sb→a within that same window. The same argument

applies to the case where τkc finishes executing before τ
j
b . □

The above result does not make any assumption wrt deadlines

(constrained or not) or execution policy (synchronous or asynchro-

nous). Other results are however simpler if constrained deadlines

can be assumed. For that reason, we first present the constrained

deadline case before providing the general results in Section 7.

6 THE CONSTRAINED DEADLINE CASE
In this section, we assume that deadlines are constrained (see

Def. 3.5) s.t. the distinction between synchronous and asynchronous

chains is irrelevant (since two instances of the same chain cannot be

pending at the same time). We provide formulas for lower-priority

as well as higher-priority interference. The general case where

deadlines are arbitrary is dealt with in the next section.

6.1 Lower-priority interference
A first key property on segments that is used to bound the interfer-

ence from lower priority task chains on σa is that only one segment

per lower priority chain may interfere in any σa -busy-window.

Property 4. Suppose that deadlines are constrained. Let σa and
σb be task chains s.t. πb < πa . In any σa -busy-window, σb executes
at most one segment, possibly circular.

Proof. A task between two segments of σb is such that πkb < πa ,
so after executing a segment of σb , the task that follows the segment

will be preempted until the end of the σa -busy-window. □
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Prop. 4 only holds for constrained deadlines. If deadlines are

arbitrary, for asynchronous chains, header segments of later in-

stances can also execute. Prop. 4 allows us to bound by a constant

the interference incurred on chain σa by its lower priority chains,

supposing that deadlines are constrained.

Theorem 6.1. Suppose that all deadlines are constrained and let
σa be a chain. In any σa -busy window, the set of chains with a lower
priority than σa execute for at most

ℓpIa = max

σb ∈ ℓp(a)

{
Cs critb→a

+
∑

σc ∈ℓp(a) ∧ c,b

Csheadc→a

}
(4)

Proof. According to Prop. 4, a chain with lower priority than σa
can execute in a σa -busy window at most one segment. According

to Prop. 3, no two chains with lower priority than σa can execute

a non-head segment in any σa -busy window. It follows that the

largest interference due to the |ℓp(a)| lower-priority task chains is

the maximum among all combinations of 1 critical segment and

|ℓp(a)|−1 head segments, which is formalized by Eq. (4). □

Example 6.2. In our running example, Fig. 1 shows theworst-case

lower-priority interference on chain σa (from σb and σc ).

6.2 Higher-priority interference
In [15], higher-priority chains are conservatively assumed to inter-

fere for their entire execution time when they are activated during

the execution of a chain σa . In fact, the exact interference of higher-

priority chains is more complex and we can provide tighter bounds

than this, as illustrated in the following example.

Example 6.3. Refer to Fig. 1, and consider the interference of

σd on σa . Even if πa < πd , the second activation of σd cannot

arrive before part of σa has finished executing, and it will thus only

partially interfere with σa .

We exploit this observation in the following to propose tighter

bounds on higher-priority interference. Throughout this section,

we assume given two chains σa and σb s.t. πa < πb .

Notation 5. For a given chain σb ∈ hp(a), we denote by τℓta (b)
the last task of σa that has lower priority than σb . We denote τℓta the
last task of chain σa that has lower priority than all chains in hp(a).

The following properties state that if all activations of σb within

a prefix [t1, t2] of a σa -busy-window arrive before the q-th instance

of τ
ℓta (b)
a is guaranteed to have finished, then we consider that they

may execute entirely before σa may complete its q-th instance. If

σb is activated after that, then its interference can only be partial.

Property 5. If ℓta ≤ i ≤ ℓta (b) then the q-event interference of
σb on τ ia can be bounded by

hpIi,q
b→a (∆) = η

+
b (∆) ×Cb (5)

Proof. Let [t1, t2] be a time interval of length ∆ that starts at the

same time as a σa -busy window and finishes at the end of the q-th
execution of τ ia , as in the definition of interference. By definition

there are no activations of σb pending at t1. In addition, no more

thanη+b (∆) activations ofσb may arrivewithin [t1, t2], which cannot
execute for longer than Cb each. Hence the result. □

Property 6. If i > ℓta (b) and deadlines are constrained, the q-
event interference of σb on τ ia for ∆ > Bi−1a (q) is bounded by:

hpIi,q
b→a (∆) = η

+
b (B

ℓta (b)
a (q)) ×Cb + I

i,q
a,b (6)

where I
i,q
a,b =

{
0 if η+b (B

ℓta (b)
a (q)) = η+b (∆)

Csheadb→a[k . .i ]
otherwise

and k = min

(
i, min

k ∈{ℓta (b)+1, ...,i−1}
{η+b (B

k−1
a (q)) , η+b (B

k
a (q))}

)
Proof. If η+b (B

ℓta (b)
a (q)) = η+b (∆) then the proof proceeds as for

Prop. 5. Let us now suppose that η+b (B
ℓta (b)
a (q)) < η+b (∆). Let [t1, t2]

be a prefix of length ∆ of a σa -busy window that finishes at the end

of the q-th execution of τ ia , as in the definition of interference. The

proof proceeds as follows:

• All activations of σb that arrive within [t1, t1+B
ℓta (b)
a (q)[

may fully execute.
• The first activation of σb after t1+B

ℓta (b)
a (q)may execute

for up toCsheadb→a[k . .i ]
: Let us consider the first activation of σb after

t1+B
ℓta (b)
a (q). By definition of k , it cannot arrive before t1+B

k−1
a (q)

but it may arrive before t1 + Bka (q) resp. t1 + ∆. That is, τk−1a is

guaranteed to have finished its q-th execution before that activation

of σb , which means that τka is guaranteed to have been activated

before it. The task of σb that is just after the segment sheadb→a[k ..i]
has, by definition, a lower priority than all tasks in the subchain

σa [k ..i]. It will therefore not execute before the end of the q-th
execution of τ ia , i.e., before t1 + ∆ = t2.

• If σb is schedulable, then there are no other activations
of σb that may arrive before t2: As we have just shown, the first
activation of σb after t1 + B

ℓta (b)
a (q) cannot finish its execution

before t2. Hence the result if deadlines are constrained.
□

Prop. 6 implicitly entails an order in which busy times should be

computed:

(1) Compute an upper bound on lower-priority interference

ℓpIa as in Eq. (4).

(2) Compute an upper bound on the longest σa -busy-window us-

ing Eq. (1) and derive from it an upper bound on the maximum num-

ber Ka of activations of σa in any σa -busy-window as in Prop. 1.

(3) For q ∈ {1, . . . ,Ka }, compute Ba (q) as follows:

• Compute Bℓtaa (q) by using Eq. (6) inside of Eq. (2). This involves

a fixed point iteration which can be initialized with (q− 1)×Ca +
Ca[1..i] + ℓpIa , as usual.

• For i ∈ {ℓta + 1, . . . ,na }, initialize the fixed point iteration with

Bi−1a (q)+Ci , and then iteratively compute Bia (q) by using Eq. (6)

inside Eq. (2).

Example 6.4. In our running example, Fig. 1 shows the worst-

case higher-priority interference on chain σa . Note that the second
instance of σd does not entirely interfere with σa .

This article was presented in the International Conference on Embedded Software 2018 and appears as part of the ESWEEK-TCAD special

issue.



Precision of Bounds on the Worst-Case Latency of Task Chains EMSOFT’18, September 2018, Torino, Italy

7 THE ARBITRARY DEADLINE CASE
When deadlines are arbitrary, interferences depend on the nature

of chains, i.e., whether they are synchronous or asynchronous. In

this section, we first discuss our upper bound on higher-priority

interference, which is a fairly simple generalization of our upper

bound on higher-priority interference for constrained deadlines.

7.1 Higher-priority interference
Let us show how arbitrary deadlines affect our upper bound on

higher-priority interference.

Theorem 7.1. If σb is synchronous then the q-event interference
of σb on τ ia can be upper bounded using the same bound as for con-

strained deadlines, i.e.: hpIi,q
b→a
sync
= hpIi,q

b→a .

Proof. The only part of the correctness proof for hpIi,q
b→a that

uses the constrained deadline hypothesis is to justify that only

one activation of σb that arrives after the completion of τ ℓtaa (q)
may interfere with σa . We also show that this interference is only

partial, i.e., σb cannot complete this execution before the end of the

q-th instance of τ ia . If σb is synchronous, an activation cannot start

executing before the previous instance has completed. The same

conclusion as for constrained deadlines thus follows. □

Theorem 7.2. If i > ℓta (b) and σb is asynchronous, the q-event
interference of σb on τ ia for ∆ > Bi−1a (q) can be upper bounded by:

hpIi,q
b→a
async

(∆) = η+b (B
ℓta (b)
a (q)) ×Cb + I

i,q
a,b (7)

where I
i,q
a,b =

∑
k ∈{ℓta (b)+1, ...,i−1}

n=η+b (B
k
a (q))−η

+
b (B

k−1
a (q))

n ×Csheadb→a[k . .i ]

+
(
η+b (∆) − η+b

(
Bi−1a (q)

) )
×Csheadb→a[i . .i ]

Proof. The difference with Prop. 6 is that now all activations
of σb that arrive after the completion of τ

ℓta (b)
a may interfere, for

a duration obtained as in Eq. (6). □

7.2 Lower-priority interference
The bound on lower-priority interference that is given in Eq. (4)

for the constrained deadline case can be easily adapted to take

into account the fact that asynchronous lower-priority chains can

interfere for more than one header based on their arrival function.

Theorem 7.3. The lower-priority interference on a chain σa in
any prefix of length ∆ of a σa -busy window is bounded by:

ℓpIa (∆) = max

σb ∈ ℓp(a)

{
Cs∗b→a

+
∑

σc ∈ℓp(a)∩SC ∧ c,b

Csheadc→a

+
∑

σc ∈ℓp(a)∩AC

η+c (∆) × Csheadc→a

}
(8)

where

s∗b→a =


scritb→a if the critical segment is not circular
scritb→a if the critical segment is circular and σb ∈ SC

stailb→a otherwise

Proof. This is the same formula as in Eq. (4), except that asyn-

chronous chains can execute several headers. Note that if the critical

segment is circular for an asynchronous chain σb , then its header

part is already included in the last term of the sum. □

Following the same reasoning as the one presented for higher-

priority interference, we can refine this upper bound by noticing

that activations of asynchronous chains that arrive within the in-

terval may not be able to execute their full header. We therefore

use the finer-grained notion of q-event lower-priority interference,

as opposed to the lower-priority interference used above, which

considers interference at the chain level instead of the task level.

Theorem 7.4. The q-event lower-priority interference wrt task τ ia
for ∆ > Bi−1a (q) is upper bounded by:

ℓpIi,q
a (∆) = max

σb ∈ ℓp(a)

{
Cs∗b→a

+
∑

σc ∈ℓp(a)∩SC ∧ c,b

Csheadc→a

+
∑

σc ∈ℓp(a)∩AC

hpIi,q
sheadc→a→a
async

(∆)

}
(9)

Proof. As in Eq. (8), only one chain in hp(a) may execute an

inner segment and all other chains execute their header. For asyn-

chronous chains, several headersmay interfere. The header segment

sheadc→a of an asynchronous, lower-priority chain σc interferes with
σa exactly like a higher-priority chain does. □

7.3 Self-interference
In the case of asynchronous chains, self-interference self Ii,q

a (∆) is
the interference of the header of σa on σa itself. This is the same

principle as the header interference of lower priority chains on σa .
Note that two instances of the same task τ ia may be pending at the

same time. In this case, we apply a FIFO policy.

Theorem 7.5. If σa is asynchronous, the q-event self-interference
of σa on τ ia for i ≤ ℓta and ∆ > Bi−1a (q), denoted self Ii,q

a (∆), can
be upper bounded by:

self Ii,q
a (∆) =

(
η+a (B

ℓta
a (q)) − q

)
×Csheada→a[1. .ℓta ]

+ I
i,q
a (10)

where I i,qa =
(
η+a (∆) − η+a (B

i−1
a (q))

)
×Csheada→a[i . .i ]

+
∑

k ∈{ℓta+1, ...,i−1}
n=η+a (B

k
a (q))−η

+
a (B

k−1
a (q))

n ×Csheada→a[k . .i ]

Proof. All activations of σa , after the q-th one, that may arrive

before τ ℓtaa has completed, can interference up to the header of σa
on itself. Subsequent activations can only interfere less, depending

on how early theymay arrive andwhich task are guaranteed to have

completed by then. The reasoning is similar to previous proofs. □
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8 PRECISION OF THE ANALYSIS
We now focus on quantifying the precision of the upper bound on

the latency. For that, we discuss now how to compute, for each

chain σa , a lower bound ℓa on its WCEL — not to be confused with

its BCEL: ℓa expresses that there exists an actual system execution
2

in which the observed WCEL of σa is equal or larger than ℓa . If ℓa

and ℓa are close, this means that the computed upper bound is a

good approximation of the worst-case behavior of the system. For

simplicity, we assume first that all deadlines are constrained.

Property 7. Consider a σa -busy-window [t1, t2] in which all
chains in hp(a) are activated together at t1, then again as early as
permitted by their activation model, and all task executions take their
worst-case execution time to complete. Suppose that lower bounds
B̃
j
a (q) are given on the actual finishing time of tasks for j < i . Then

the higher-priority interference of σb on σa for ∆ > B̃i−1a (q) is at least

hpIi,q
b→a (∆), where hpI

i,q
b→a (∆) is computed using B̃ ja (q) instead of

B
j
a (q) for j < i in Eq. (6).

Proof. 1. The result holds for ℓta ≤ i ≤ ℓta (b) based on Prop. 5:

chain σb is in our scenario activated exactly η+(∆) times between

t1 and t1 + ∆ and since all these activations arrive before τ
ℓta (b)
a

has completed, they execute entirely before the q-th instance of τ ia
completes.

2. Consider i > ℓta (b).
• If η+(∆) = η+(B̃

ℓta (b)
a (q)), the above argument still holds.

• The remaining case is η+b (B̃
ℓta (b)
a (q)) < η+b (∆). Let k be as

in Eq. (6). Because we are now working with lower bounds on

the actual completion time of tasks, τka is the first task in σa that

cannot finish its q-th execution before the first activation of σb after

t1 + B̃
ℓta (b)
a (q). That instance interferes for at least Csheadb→a[k . .i ]

.

□

Prop. 7 indicates a strategy for finding lower bounds on worst-

case latencies, assuming that there is a way to lower bound lower-

priority interference.

Corollary 8.1. If there exists a σa -busy-window as in the above
property such that the q-event interference of lower-priority chains is
lower bounded by ℓpIi,q

a then

Bia (q) = (q − 1) ×Ca +Ca[1..i]

+ ℓpIi,q
a

(
Bia (q)

)
+

∑
σb ∈ hp(a)

hpIi,q
b→a

(
Bia (q)

)
(11)

is a lower bound on the q-event busy time of task τ ia .

Proof. Assume that σa executes for its worst-case execution

time. It cannot complete its q-th instance of τ ia before t1 + B
i
a (q)

as it suffers at least ℓpIi,q
a (Bia (q)) interference from lower-priority

chains aswell as at least hpIi,q
b→a (B

i
a (q)) fromhigher-priority chains

(from Prop. 7). □

2
Note that by actual execution, we mean an execution that is allowed by the model.

Of course the model is an abstraction of the real system, so such an execution may

still not be possible on the real platform.

This result naturally extends to lower bounds on latencies if we

further assume that chain σa is activated at t1 and then again as

early as permitted by its activation model. To compute these lower

bounds, as higher priority interference is exact, we need to provide

a lower bound ℓpIi,q
a (Bia (q)) on lower priority interference.

The rest of this section will be is devoted to computing ℓpIi,q
a .

The principle is to exhibit a scenario that is guaranteed to be fea-

sible, and to compute the lower bound ℓpIi,q
a from this scenario.

We propose in fact to take the maximum over several scenarios,

resulting in several lower bounds ℓpIa
i,q
(n):

ℓpIai,q = max

n
ℓpIa

i,q
(n) (12)

8.1 All task chains are sporadic
Let us start by assuming that all task chains are sporadic — and

remember that we assume so far that deadlines are constrained.

Indeed, the sporadic case is the simpler one for computing lower

bounds. In order to use Corollary 8.1 we must provide a lower

bound for lower-priority interference for σa -busy-windows [t1, t2]
with the properties required in Corollary 8.1, in particular those

from Prop. 7, i.e.:

• Chain σa is activated at t1, then again as early as permitted by

its activation model (such that the result extends to lower bounds

on latencies).

• The same holds for all chains in hp(a) (for Prop. 7 to hold).

• All task executions in chains of hpe(a) take their worst-case
execution time to complete.

This leaves only room for specifying the activation scenario of

lower-priority chains. To do so, we distinguish two cases, presented

in the following paragraphs.

8.1.1 The critical segment maximizing Eq. (4) is not circular. This
is the most intuitive scenario.

Theorem 8.2. Suppose that the critical segment that maximizes
Eq. (4) is not circular. Then Eq. (4) is also a lower bound on the worst-
case lower-priority interference of chainσa under the above conditions.

Proof. Denote σcrit the chain such that it’s critical segment

maximizes ℓpIa in Eq. (4) and assume that this critical segment is

not circular. Consider now the following activation scenario for

lower-priority chains. All chains in ℓp(a) are activated at t1, except
chain σcrit that is activated at t1 − Ccrit[1..ξcrit ], where ξcrit is the
index of the task that precedes the critical segment. We further

assume that there are no other activation of any chain before t1,
which is a feasible scenario since all chains are sporadic, and that

all chains in ℓp(a) always run for their worst-case execution time.

In such a scenario, the header of each chain in ℓp(a)\{σcrit } is
activated at t1, as well as the critical segment of σcrit . All tasks

in these segments have higher priority than τ ℓtaa and are thus

guaranteed to execute within any prefix of [t1, t2] that finishes with
the completion of a task τ ia for i > ℓta . Hence the result. □

In this case the upper bound on the latency is reachable and thus

the analysis is tight.
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8.1.2 The critical segment maximizing Eq. (4) is circular. When

the critical segment of σcrit is circular, things are more complex.

Indeed, there is an additional condition for this segment to be

guaranteed to fully execute before the end of the σa -busy-window:
the second instance of σcrit must be activated before the end of

τ
ℓta (crit)
a . Otherwise, we are left with various options for:

• proving that the computed upper bound is not feasible and

thus tightening it. This may be the case for example if δ−b (2) is large

compared to Bcritb (1) and B
ℓta (crit)
a (1). Unfortunately, only rather

naive sufficient conditions will scale.

• finding other lower bounds on the WCEL.

In the following, we investigate the latter option.

Definition 8.3 (Non-circular critical segment snocircb→a ). The non-
circular critical segment of σb w.r.t. σa , is the non-circular segment

of σb w.r.t. σa that has the largest worst-case execution time.

Theorem 8.4. When the critical segment is circular, a lower bound
on the lower-priority interference on σa is:

ℓpIa
(1)
= max

σb ∈ ℓp(a)

{
Csnocircb→a

+
∑

σc ∈ ℓp(a) ∧ c,b

Csheadc→a

}
(13)

Proof. The reasoning in the proof of Theorem 8.2 holds for any

lower-priority chain, not only σcrit . This theorem is thus a direct

application of the same principle. □

In order to reduce the difference between lower and upper bound

further, one could also investigate whether the proposed upper

bound can be improved. This requires a much finer-grained analysis,

as the worst-case lower-priority interference may not coincide with

the worst-case higher-priority interference scenario we have been

working with so far. Still, our experiments show that, in most cases,

ℓpIa
(1)

is close to ℓpIa .

8.2 At least one task chain is periodic
Interestingly, the periodic case is the most complex one when com-

puting lower bounds. The reason is that one cannot assume that

there are no activations other than the one from σcrit before t1. Find-
ing an alternative scenario that takes into account the constraints

induced by the periodic activations is far from trivial. We therefore

prefer to rely on the simpler scenario where all chains are activated

at the same instant as σa , and hence all chains in ℓp(a) interfere
with σa with their head segment. In other words, there is no critical

chain anymore. This scenario yields the following lower bound on

the blocking time:

Theorem 8.5. When at least one chain is periodic, a lower bound
on the lower-priority interference on σa is:

ℓpIa
(2)
=

∑
σb ∈ ℓp(a)

Csheadb→a
(14)

Proof. The proof proceeds similarly to that of Theorem 8.2. □

8.3 Lifting the constrained deadline hypothesis
In this section, we briefly sketch how the results under the con-

strained deadline assumptions generalize to the general case of

arbitrary deadlines.

• Prop. 7 and Corollary 8.1 can be directly adapted for higher-

priority interference of chains with arbitrary deadlines by using

the definitions of Section 7.

• Regarding low-priority interference, we have the same prob-

lem as in Section 8.1.2 for all σcrit that are asynchronous, i.e., we
do not know exactly how early a subsequent activation may arrive.

Still, we can use the lower bound provided in Th. 8.5.

9 EXPERIMENTAL EVALUATION
We now describe how we generated our test cases and evaluated

our latency analysis. Our analysis is implemented inside standalone

Python tool. We have generated systems with at least one pe-

riodic and one sporadic chain. Utilization breakdowns are ran-

domly chosen amongst the following values: [0.4, 0.5, 0.6, 0.7] and

the utilization breakdown of sporadic chains is chosen amongst:

[0.001, 0.01, 0.1] (utilization breakdown of periodic chains is the

difference between both previous values). We randomly choose

the number of chains between 2 and 9 and the number of peri-

odic chains between 1 and 8 (there is at least one periodic task

chain). We deduce the number of sporadic task chains. The number

of tasks per chain is also a random value between 1 and 9. For

periodic task chains, the periods are randomly chosen amongst

[10, 20, 50, 100, 200, 500, 1000]. The above parameters have been

chosen as they are considered for many industrial cases [10]. Chain

and task utilizations are generated using U-Unifast [6]. The WCET

of each chain is deduced using periodic utilization and periods. For

sporadic chains, the WCET is a random value between 1 and 100

and the arrival function is defined s.t. it fits the sporadic utiliza-

tion for δ−(100) (which we consider large enough). Priorities of

all tasks are randomly assigned. Altogether, the generated systems

contain 5, 538 chains. These chains have been analyzed first under

the synchronous semantics (Fig. 2) and then under the asynchro-

nous semantics (Fig. 3), except for those chains that took too long

to analyze (which explains why Fig. 3 has only 4, 148 chains).

We have evaluated two criteria: (i) first, we have compared our

analysis to [15], which makes some approximations in the com-

putation of both higher-priority and lower-priority interference;

we did not compare our analysis with that of [8] because, for syn-

chronous chains the two analyses coincide, and for asynchronous

chains [8] does not work; (ii) second, we have evaluated the preci-

sion of our bounds as given by the computed lower bounds.

Figs. 2 and 3 report the experimental results respectively for syn-

chronous and asynchronous chains. To each chain correspond two

points in Figures 2 and 3: a red point that indicates our computed

upper bound and a blue point showing the upper bound computed

using the method proposed in RTAS 2016. In addition, in Fig 2, a

green point showing our computed lower bound. For readability,

all generated chains are sorted according to our computed upper

bound on their WCEL. The exponential shape of our graphs results

from our generation methods for sporadic chain activations, which

may be bursty up to δ−(100). Due to space limitations, Figures 2

and 3 illustrate our results only for the first group of systems. The

trend is similar for both groups of systems, but the precision (i.e.,

the difference between upper and lower bound) is better for the

sporadic case (not shown), as was to be expected from the theoreti-

cal results. For systems with periodic and sporadic chains, however,
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Figure 2: Latency bounds for periodic and sporadic synchro-
nous chains.
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Figure 3: Latency bounds for periodic and sporadic asyn-
chronous chains.

the relative difference between the lower and the upper bound can

be large. Additional experiments have shown that the number of

tasks per chain, the number of chains in the system, the length of

the task chains, or the utilization breakdown do not significantly

influence the precision of the obtained bounds.

Since lower bounds can also be obtained by simulating the sys-

tem, we have simulated the system of Fig. 1 on 1, 000, 000 randomly

generated activation scenarios, and measured the simulated lower

bound for each of its four chains. Table 1 summarizes the results.

For σa and σb , the simulated lower bound is identical to the com-

puted one. For σc and σd , the computed lower bound improves

the simulated one respectively by 95% and 71%. Since these results

were obtained for a single system, more experiments are required

to compare the simulated and the computed lower bounds.

Fig. 4 depicts the evolution of the simulated lower bound in

function of the number of activation scenarios. Table 2 reports an

equivalent simulation but for a tight system consisting of six chains,

again simulated over 1, 000, 000 randomly generated activation sce-

narios. The lower bound obtained by simulation is sometimes tight

(e.g., for chains σa and σe ), but otherwise it can be very far from the

computed lower bound (e.g., for chain σb ). All this demonstrates

the usefulness of our analysis. In both tables, the percentages are

computed as:

computed ℓi − simulated ℓi

simulated ℓi
× 100

chain computed simulated

i ℓi ℓi ℓi diff.

σa 24 16 16 0%

σb 35 34 34 0%

σc 42 41 21 95%

σd 48 48 28 71%

Table 1: Simulated and computed lower bounds for the sys-
tem of Fig. 1, over 1, 000, 000 activation scenarios.
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Figure 4: Evolution of the simulated lower bound ℓd .

chain computed simulated

i ℓi ℓi ℓi diff.

σa 55 55 55 0%

σb 178 178 38 368%

σc 124 124 75 65%

σd 176 176 122 44%

σe 286 286 286 0%

σf 37 37 14 164%

Table 2: Simulated and computed lower bounds for a tight
system over 1, 000, 000 activation scenarios.

In summary, our experimental results show the following:

• Our upper bound analysis significantly improves over [15].

• In most cases, our lower bound analysis is able to guarantee

that the computed upper bound is fairly tight.

• There are, however, quite a few instances for which upper

and lower bounds differ significantly. This underlines the

value of such an information.

• The lower bounds obtained by simulations are sometimes

significantly less than the ones computed by our analysis.

10 CONCLUSION
In this paper, we propose an improved performance analysis tech-

nique allowing the computation of tighter upper bounds for task

chain latencies in uniprocessor systems compared to the state of

the art, and providing an innovative approach to assess the quality
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of the computed bounds by comparing them to lower worst-case

bounds from feasible execution scenarios. We also present a set

of experiments that show the gain obtained in term of analysis

precision when using our solution.

We believe that our analysis represents an important step toward

the acceptance of performance analysis techniques in the industrial

design process of real-time embedded systems. One should take no-

tice that a major reason hindering the use of performance analysis

in the industry is not only the over-dimensioning induced by the

various approximations used in current analyses, but also the lack

of methods to quantify it.

Future work will extend our solution to make it applicable to

more complex industrial real-time systems by adding offsets, equal

priorities and support for multiprocessor systems. In addition, the

analysis technique we propose in this paper also represents an

important step toward the computation of task chain latencies

in multiprocessor systems. Very often in industrial multiprocessor

systems, e.g., in software defined radios, after finishing its execution,

a task will only activate the next task in the chain in case both are

mapped to the same processor. When they are mapped to different

processors, the activation of the next task is instead independent

from the termination of the first task: the first task writes its output

data in a memory, which are then read by the next task upon

activation. The computation of the WCEL for such task chains will

require using our analysis technique to compute the latency of

the sub-chains on each processor, combined with a mechanism to

analyze cause-effect chains between processors.
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