N

N

Hybrid-DBT: Hardware/Software Dynamic Binary
Translation Targeting VLIW

Simon Rokicki, Erven Rohou, Steven Derrien

» To cite this version:

Simon Rokicki, Erven Rohou, Steven Derrien. Hybrid-DBT: Hardware/Software Dynamic Binary
Translation Targeting VLIW. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2018, pp.1-14. 10.1109/TCAD.2018.2864288 . hal-01856163

HAL Id: hal-01856163
https://hal.science/hal-01856163
Submitted on 9 Aug 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01856163
https://hal.archives-ouvertes.fr

Hybrid-DBT: Hardware/Software Dynamic Binary
Translation Targeting VLIW

Simon Rokicki, Erven Rohou, Steven Derrien
Univ Rennes, Inria, CNRS, IRISA

Abstract—In order to provide dynamic adaptation of the
performance/energy trade-off, systems today rely on heteroge-
neous multi-core architectures (different micro-architectures on
a chip). These systems are limited to single-ISA approaches to
enable transparent migration between the different cores. To
offer more trade-off, we can integrate statically scheduled micro-
architecture and use Dynamic Binary Translation (DBT) for task
migration. However, in a system where performance and energy
consumption are a prime concern, the translation overhead has to
be kept as low as possible. In this paper we present Hybrid-DBT,
an open-source, hardware accelerated DBT system targeting
VLIW cores. Three different hardware accelerators have been
designed to speed-up critical steps of the translation process.
Experimental study shows that the accelerated steps are two
orders of magnitude faster than their software equivalent. The
impact on the total execution time of applications and the quality
of generated binaries are also measured.

I. INTRODUCTION

Maximizing energy efficiency while ensuring sufficient per-
formance levels is a key issue for embedded system designers.
This can only be achieved if the underlying hardware platforms
exposes energy/performance trade-offs. This is done with Dy-
namic Voltage and Frequency Scaling (DVFES), which trades
performance (clock speed) for energy efficiency (supply volt-
age). DVFS enables fine-grain control of energy/performance
trade-off at the processor core level, with only modest per-
formance overhead, and is available in many embedded com-
puting platforms. However, with the end of Dennard scaling,
DVES is becoming inefficient: energy savings are obtained at
the price of an unacceptable loss of performance.

Because of this, computer designers now also rely on ar-
chitectural heterogeneity to expose energy/performance trade-
off, and this heterogeneity can take many different forms.
For example, it is possible to combine different type of
architectures (CPU, GPU, DSP...) on the same device. Since
each type of architecture has its own performance/energy ratio,
the designer can determine the mapping of tasks that best fits
its requirements. The problem with this approach is the lack
of flexibility, as this mapping must be chosen at design time,
and cannot be changed at run-time, due to the difference in
programming models and/or instructions sets between cores.

A solution to this problem is to use single-ISA hetero-
geneous architectures, as proposed by the Arm big.LITTLE
architecture [1], which uses two distinct micro-architectures
to run Arm binaries. One is an aggressive Out-of-Order
(0O00) processor capable of delivering high-performance at
the expense of energy-efficiency, the other is a simple in-
order core favoring energy efficiency over performance. Since
both micro-architectures share the same ISA, dynamic task
migration from one core to the other becomes possible: when
an application requires higher performance levels, it is run on

the OoO architecture. As soon as performance requirements
become low enough, the task is migrated to the in-order core.

The strength of OoO architectures is that they guarantee
good performance levels regardless of the target application.
The downside is that, for many applications, the use of a
simpler, statically scheduled, hardware architecture (such as
a VLIW core) could have achieved similar performance levels
with a much lower energy budget. The problem is that VLIW
exposes instruction level parallelism directly in their ISA,
which prevents from providing direct binary compatibility with
the other cores in the platform. This issue can be circumvented
through the use of Dynamic Binary Translation (DBT).

DBT consists in executing binaries targeting a guest ISA
onto a host machine with a different instruction set. This is
made possible by performing the translation on-the-fly, each
instruction being translated right before its execution. DBT
was originally used for fast simulation of an architecture
and/or for providing inter-system compatibility, but is now also
used in the context of heterogeneous architectures. In this case,
DBT is used to support architectures with different ISA while
giving the illusion of a single-ISA system.

This idea was initially demonstrated by Transmeta Code
Morphing Software [2] and was more recently revived with
NVidia’s Denver [3] architecture. In these approaches, DBT is
used to execute x86 or Arm binaries on a VLIW-like architec-
ture to reduce the overall energy consumption (compared to
an 000 core) without impacting performance. In this case, the
performance/energy overhead caused by the DBT stage must
be as small as possible to make the approach viable.

In this paper we introduce Hybrid-DBT, a hardware-
software DBT framework capable of translating RISC-V into
VLIW binaries. Since the DBT overhead has to be as small
as possible, our implementation takes advantage of hardware
acceleration for performance critical stages (binary translation,
dependency analysis and instruction scheduling) of the flow.

Thanks to hardware acceleration, our implementation is two
orders of magnitude faster than a pure software implementa-
tion and enable an overall performance improvements by 23 %
on average, compared to a native RISC-V execution.

In addition, and to the difference of others industrial DBT
tools targeting VLIW (e.g. Transmeta CMS and NVidia’s
Denver), Hybrid-DBT is open source and is meant to serve
as an open platform for academic research on the topic.

The remainder of this paper is organized as follows. The
global organization of Hybrid-DBT framework and its run-
time management are presented in Section II and III. Section
IV presents the different hardware accelerators used in the
framework and Section V presents the experimental study.

II. HYBRID-DBT FRAMEWORK

In this section, we provide an overview of the system and
describe its hardware organization as well as the intermediate
program representation used by our DBT framework.

A. Overview of the system

VLIW core _ | Data Cache
Branch Unit
Decode [Dest
b [——3 Execute |
Dest

Execute Memory

—

Execute

arith, mem |0p
Decode [pesy

arith, mult |op
Decode [Dest

Execute

arith o Execute
1.0
Register File :I
Instr Cache 64 regs =
T

DBT processor

—] Scheduler

IR Generator

FirstPass
Translator

DBT memory
Register File

Instr Cache —_—
[
Decode L-----I% Execute

Decode [Pt LI

arith mult oo Execute = Execute
Decode [Pest -_:I%

] 8 Execute = Memory
arith, mem |90 1

Decode [Pest
arith, branch {Op
Dest

'I% Execute

Branch Unit | Data Cach
ata Cache
VLIW core
Fig. 1. Overview of the Hybrid-DBT system coupled with two execution
VLIWs

Hybrid-DBT system is a hardware software co-designed
DBT framework. It translates RISC-V binaries into VLIW
binaries and uses dedicated hardware accelerators to reduce
the cost of certain steps of the translation/optimization process.
Figure 1 gives an overview of the DBT system with the
following components:

e« The VLIW cores are custom VLIW implementations
loosely based on the ST200 processor. This is a 4-
issue processor with 64 x 64 bits registers. Pipelines are
organized in two different ways: general purpose ways
have 3 steps while specific ways, which perform memory
accesses and/or multiplications, have 4 pipeline steps.
Contrary to the ST200, the VLIW has no forwarding or
stall logic. This core has been modified to add custom
instructions to profile the execution. These cores have
been designed specifically for this work using High-Level
Synthesis. Consequently, they can be modified and/or
extended easily if we want new features.

o The DBT processor is a low-footprint in-order core that
manages the DBT process and performs optimizations
while the VLIW core is busy executing the application.

The DBT processor has access to the VLIW memories:
the translated binaries are written in the VLIW instruction
cache and the profiling information are read from the
VLIW data memory. In order to reduce the cost of some
optimizations, the DBT processor has access to three
different hardware accelerators.

o The Hardware Accelerators are a set of three hardware
components that have been developed for specific tasks
of the DBT process: IR Scheduler, IR Generator and
Firstpass Translator. These accelerators have access to
small scratchpads which are used to provide memory
bandwidth. These scratchpads can also be accessed by
the DBT processor which is in charge of initializing them.
Accelerators are controlled through a custom instruction
of the DBT processor. These different accelerators are
described in Section IV.

In this work, we use a dedicated core to manage the DBT
process and perform optimization. This helps reducing the
translation overhead on the execution time, as the VLIW core
is only used to execute code. In the big.LITTLE platform
described in Figure 1, one of the LITTLE core could be used
as a DBT processor to save some area.

B. Hardware/Software partitioning

As we said previously, Hybrid-DBT uses three different
hardware accelerators to reduce the cost of the translation
and optimization process. During the development, we had to
choose the partitioning between hardware and software parts
of the process. Several ideas were used to drive our decisions:

o If hardware accelerators can deliver higher performance
and higher energy efficiency than software, it is also less
flexible. If a transformation has many context-specific
conditions, it is not suitable for hardware. Transforma-
tions that have been mapped into hardware are simple
and regular algorithms and strong assumptions have been
made to keep them as regular as possible.

o Dynamic compilation is based on the idea that every
cycle/joule spent optimizing binaries has to be recouped
by the benefits of this optimization. Consequently, while
executing cold-code, the framework has no idea of how
often the generated binaries will be used and tries to
spend as little time as possible optimizing it.

In the system, the accelerator called First-Pass Translator is
used in the first optimization level to perform a first translation
that needs to be as cheap as possible. The IR Generator is
then used at the next optimization level to generate a higher
level representation of the translated binaries, which is used
by the IR Scheduler to generate VLIW binaries by performing
instruction scheduling and register allocation.

Other optimizations done in the DBT framework are more
complex and more data dependent. Moreover, these transfor-
mations are done only on hotspots, which ensure that the time
spent optimizing is paid back. For these two reasons, other
optimizations are done in software by the DBT processor.

A complete description of Hybrid-DBT transformation and
optimization flow can be found on Section III and more details
on the hardware accelerators are given on Section IV.

C. The Intermediate Representation

Hybrid-DBT optimization flow is based on the use of
an Intermediate Representation (IR). Designing this IR was
important and we answered two challenges while doing so:
i) the IR is generated and used by hardware accelerators,
consequently the structure has to be as regular as possible
and may not use object/pointers structures; ii) the IR has to
be designed in order to reduce the cost of some software
optimizations (unrolling, construction of traces for trace-based
scheduling, register allocation, etc.).

As the IR is mainly designed for performing instruction
scheduling, the data-flow graph is directly encoded inside:
each instruction of a block knows which instruction has
produced its operands and also which instruction has to be
executed before it. These last dependencies are used to ensure
that the control-flow is correct while scheduling a trace or that
memory accesses are done in the same order than in original
sources. Figure 2 provides an overview of the IR bit-encoding:

o The field nbRead contains the number of times the result
of an instruction is used as an operand in the current
block. This value will be used by register allocation.

o Fields nbPred and nbDPred correspond to the number
of predecessors and to the number of data predecessors
on the block data-flow graph.

o Fields predNames are a list of predecessor IDs (their
index in the current block) which has to be scheduled
before the current instruction.

o Field dest is an ID of the destination register and bit
alloc controls if the dest has to be renamed or not.

o Field instr encode all the necessary information about
the instruction (type, opcode and immediate values).

In the following, we discuss the different assumptions
taken on the IR structure. We present the different types
of dependencies used inside a block, the way registers are
allocated and finally we give an idea of how control-flow is
represented in the IR.

a) Data and control dependencies: Inside a block of the
IR (e.g. basic block or trace), each instruction has access to
its predecessors in the data-flow graph. There are two kinds of
dependencies that can be encoded in the IR: data-dependencies
and control-dependencies. Data-dependencies mean that the
current instruction needs the result of another instruction and
consequently, satisfying a data dependency depends on the
latency of the predecessor.

Control-dependencies are used to ensure that some instruc-
tions are scheduled in a given order. For example, in the
firsts optimization levels of Hybrid-DBT, we add control-
dependencies to ensure that memory accesses are scheduled in
the same order as in the original program. Satisfying a control-
dependency does not depend on the instruction latency.

At the bottom of Figure 2, data-dependencies are repre-
sented using plain arrows while control dependencies are rep-
resented using dashed arrows. A control dependency ensures
that store number O is executed before load number 1, which
is also constrained to be scheduled before store number 4.

As we will see in next paragraph, register allocation is
partially solved at schedule time. Consequently, name depen-

dencies (e.g. Write-after-Read and Write-after-Write) are not
encoded in the IR. The scheduler will have to ensure that they
are satisfied, according to the effective allocation.

b) Local and global values: In the IR, we made sev-
eral assumptions on the register allocation, which eases the
scheduling and several software optimizations while main-
taining performance. When an instruction reads a value, it
can read a local value (i.e. a value created in the same
block) or a global value (i.e. a value created in another
block). Similarly, when an instruction writes a value, it can be
written in a temporary register or in a global register. The
temporary register is usable only in the current block while
the global register may be used as a global value in another
block. Temporary register are allocated to physical register at
schedule time.

By default, each instruction has a global register allocated.
These registers represent a valid register allocation and can
be used by the scheduler if it fails at building a different
allocation. In practice, this register allocation is first derived
from the original register allocation in the RISC-V binaries.

However, each instruction has a alloc field that means
the scheduler can store the value in a temporary register.
At schedule time, it allocates, if possible, a physical register
where to store the value. When an instruction has a data
dependence, it knows the ID of the instruction that created
the local value and can find out the physical register used to
store it. Of course, a value used in another block (e.g. used as
a global value) cannot be stored in a temporary register.

The advantage of allocating a temporary register is to
remove name dependencies while scheduling instructions. For
example, in Figure 2, two interpretations of the data-flow graph
are given, depending on whether instructions 2 and 3 have
alloc bit or not. On the left-most graph, instructions 2 and 3
do not have the alloc bit set to one and consequently writes
in registers 8 and 9. As those registers are also written by
instructions 5 and 6, there are register dependencies between
those instructions (instruction 2 has to write its result before
instruction 6 does and instruction 3 has to read it before
instruction 6 erases it). The right most graph corresponds to
the same block where a new register has been allocated to
store the local values created by instructions 2 and 3. The
register based dependencies is removed and the critical path
of the graph is reduced.

Using this representation, we can have a default register
allocation for the first stages of the translation process and
update it through the alloc bit of each instruction that writes
a value which is only accessed in current block. In case a more
complex register allocation is needed, it is possible to modify
the global register assigned to each instruction and stop using
the alloc bit.

c) Control-flow graph: The intermediate representation
also uses an object representation for representing function
and block as well as control flow graph of a given function.
As this information is only used for software transformation,
we now use a pointer representation: each block of a function
has pointers to its successors in the control-flow graph.

This graph is then used to perform inter-block optimization
such as loop unrolling and trace building.

96 bits IR instructions

RISC-V binaries

nbDPred

alloc nbRead nbPred
96 64 32 0
0-00812023 sw s0,0(sp) ./...\\.Il./..‘.‘.
101012403 W 50,16(30) desinst P A et
2-00150493 addis1,a0,1 0-sw - @g2+0=0 0 00 I
3-40848433 sub s0,s1,s0 1-Iw g8 =@g3+16 1 01 ' ‘ ! "o
4 o0stams aweorem ™ g © =gov1 1 00 - - -
5- 00450413 addi s0,a0,4 s | oo ™ P
6 - 00458493 addi sl,al,4 - : . .
) e 4 - sw - @g3 + 16 =v3 0 12 i ‘ ‘ . 0
7 - 40940533 sub a0,s0,s1 5 add 6 —gl0a T ®o | ‘ ‘ ‘
6 - addi g9 =gli4 1 00 - | ‘ ‘ ‘
7 - sub gl0 =v5-Vv6 0 22 6 , 5
Ji0 1 93 92 0 4 (}%1 Jdio 1 [oF] 02 0
4 e R N A e A
2
" 5 Id <O st 6 + 2 + X ld < 9 st
6YY .- WA
+ : i 910 4 \j
"""""""" Wap..... 3) 3
Retvosemeen D) _ 93 With alloc = 0 With alloc = 1 ‘1 r’ _ O3
T 4 Q f, i for all for2 and 3 5 +
1" — !
4
5 + : ----------- ATV EE—— S [4 (] SRR
v v
- J10 — 3 Data Dependencies
+ — — 3 Control Dependencies
J10 — —» Name Dependencies

Fig. 2. Illustration of the structure of the Intermediate Representation and its interpretation in terms of data-flow graph. The two graphs pictured also show
the impact of the bit "alloc’ on the dependencies. Left-most graph has a critical path of 5 while right-most graph has 3.

III. TRANSLATION AND OPTIMIZATION FLOW
In this section, we present the translation and optimization
flow which is used in Hybrid-DBT. We will first give an

overview of the different steps involved and we will describe
them in depth.

Source VLIW o
ISA .| Instruction | Binaries 4
RISC-V » : > @

oor1om010 Translation 01100001001 <

100010110 3=
e A 3
— ~ Jump g
— Resolution o
(@]
(a)

7 c
IR 2 _

H ©
IR Builder V. » |RScheduler |~ g
£E3
= 2

1 A OQ-

c

A 4 o
Block Profiling < ter-block =R
M Inter-bloc - o 23
optimizations = :[- £3

(c) =Y

D Software S

In-memory representations

D Hardware accelerated
(binaries or IR)

[

Fig. 3. Hybrid-DBT translation and optimization flow

Hybrid-DBT is organized as a three-step translation and
optimization flow. A schematic view of the flow is provided
on Figure 3. The three steps are the following:

o Translation of instructions is the optimization level

0. When executing cold-code, the DBT framework tries
to spend as little time/energy as possible to translate

binaries. In the framework, we first perform a naive
translation of each source instruction into one or several
instructions from the VLIW ISA. This optimization step
does not try to exploit ILP at all.

¢ Block building and scheduling is the optimization level
1. When a block has more than a certain number of
instructions, it is considered as a candidate for optimiza-
tion level 1: an intermediate representation of the block
is built and used for performing instruction scheduling.
This optimization level is triggered aggressively, without
any profiling information because of the use of hardware
accelerators that reduces its cost. Scheduled blocks are
then profiled to trigger further optimizations.

« Inter-block optimization are performed at optimization
level 2. When a given block has been executed enough,
it triggers the inter-block optimization. This optimization
level analyzes the control flow (place and destination of
each jump instruction) to build a control-flow graph of the
function (i.e. all blocks that are accessed through direct
branches except calls). Then inter-block optimizations are
performed on this function to extract more ILP.

A. Instruction Translation

When a portion of code is first encountered, the execution
have to start as soon as possible and the framework cannot
know if the number of executions will be high enough to
recoup any optimization performed.

For these reasons, it performs a naive translation of each
source instruction into VLIW ISA without trying to ex-
ploit ILP at all. To reduce even more the cost of this first
translation, a hardware accelerator (named First-pass
Translator) has been designed to translate a fragment with

a very high throughput. See Section IV-A for more details on
this accelerator.

During this translation, the accelerator extracts two kinds of
information:

« the location and the destination of each jump

o the divergence between source binaries and translated

binaries (e.g. places where an instruction is translated into
two VLIW instruction or where nop cycles are inserted
to handle instruction latency). This information can be
used to translate an address in source binaries into the
equivalent address in VLIW binaries.

Using this information the DBT framework is able to
build block boundaries, which are stored for later use. In
Figure 3 this information is represented as IR (a). The
translation framework also handles direct and indirect jumps.
During the translation, all jumps go through system code that
computes the correct destination using the initial destination
(e.g. destination in source binaries) and the divergence infor-
mation. During the execution, the translation framework solves
all direct jumps by computing the effective destination and
modifying the jump instruction.

Indirect branches are branches that can only be solved at
run-time. For those, the execution always goes through the
calculation of the effective destination.

Hiser et al. [4] evaluated how to efficiently handle those
indirect branches. In our work, we use a small hashtable
containing previous initial and effective destinations.

This first translation is the only one exposed to the source
ISA. Consequently, if we want to handle a new ISA in the
framework, we just have to design a new first translation.
Current flow already handles MIPS and RISC-V ISAs.

B. Block building and scheduling

During the first translation, the DBT framework build a list
of basic blocks from the jump locations and destinations. At
this step of the translation process, these blocks only contains
start/end addresses and the translated code does not exploit
instruction parallelism. During this optimization level, the
DBT framework optimizes basic blocks by building a higher
level representation of the binaries and uses it to perform
instruction scheduling. Generated binaries exploit the VLIW
capabilities to execute several instructions per cycle.

To generate the Intermediate Representation presented in
Section II-C, the framework uses a hardware accelerator called
IR Builder. This accelerator reads the translated VLIW
binaries and generates the data-flow information accordingly.
Details on this accelerator can be found on subsection I'V-B.

Once the IR has been built for a block, the DBT framework
uses another hardware component called IR Scheduler.
This accelerator is in charge of performing instruction schedul-
ing and register allocation on the intermediate representation
of the block. This scheduling follows the assumptions taken
on the IR design: it ensures that data-flow and control flow
dependencies represented in the IR are satisfied and that name-
dependencies (which are not encoded) are correctly handled.
This accelerator also support the use of the alloc bit which
enable register renaming. More details on the accelerator can
be found in subsection IV-C.

Finally, the generated binaries are inserted in place of the
first translation and other jump instructions do not need to be
modified. If the optimized block contains a backward jump
(i.e. if it is in a loop), the DBT process profiles it to trigger
further optimization: profiling instructions are inserted in the
IR before the scheduling step.

Note that this optimization level does not need any profiling
information to be triggered: it is applied on any block that is
bigger than a certain threshold. This aggressiveness is made
possible by the use of hardware accelerators which drastically
reduce the cost of this optimization level. These results will
be seen in the experimental study on Section V.

C. Function building and inter-block optimizations

When the profiling shows that a block has been executed
often enough, the DBT framework will trigger the second
optimization level that consists in inter-block transformations.
First, the framework will use the aforementioned information
on jump location and destination to build a control-flow graph
of the function containing the block. It also profile different
blocks to have information on loops and branches taken.

Once the IR of the function has been built, the software may
apply different kind of software optimizations, which increase
the available ILP after scheduling.

These software optimization can affect the control-flow
graph of the function. This is the case for loop unrolling, trace
construction and function inlining. These transformations
rely on a process that merges two IR blocks to form one
larger block. This process requires to update the data-flow
graph inside the block. This is made simple by the IR design:
merging two blocks only require to bind the first access to
global values of the second block with the last write to a
global register in first block. Dependencies have to be inserted
to ensure that the last and first memory instruction of first and
second blocks are scheduled in a correct order.

Other software transformations modify the register alloca-
tion in the function to increase the ILP available or perform
a memory disambiguation by removing some of memory
dependencies.

IV. HARDWARE ACCELERATORS

In this section, we describe the structure of the different ac-
celerators we developed. All these components have been de-
signed using High-Level Synthesis: we developed a behavioral
description of the algorithm in C and used Mentor Catapult to
generate the VHDL. To increase performance of the hardware
component, we made the following optimizations:

« rewriting algorithms with regular data-structures;

e memory partitioning to provide more access ports;

« loop pipelining to increase throughput;

o explicit forwarding of memory values to remove inter-
iteration dependencies.

The performance of HLS generated VHDL is often con-
sidered as less efficient than what a designer could do in
RTL. However, we do not have the resources to to develop
the accelerator manually. The rest of this section will describe
the accelerators used in Hybrid-DBT framework.

lastWriter IR
@1| @Zl inl | |out1|out2 |@1| @2|out1|out2| in2 | inl |
N 1 I
kel — N
|‘ pred1 £ & _To_1_ generatedinstr
e w7 2 2
@ [rd £ 2
o°
8 ra —pred1
8 opcode—> id> —pred2)
imm—> —opcodey 2
fm instrld pimm 8
Q
2D 0> e S
s+
id id — =2
| isLoad isStore
lastLoads! lastStore

Fig. 4. Simplified representation of the IRBuilder datapath.

A. The First-pass translator

The goal of the first-pass translator is to translate blocks of
instruction at the lowest price possible. This translation does
not have to generate optimized code.

We developed an accelerator that reads RISC-V instruction,
extract the different fields (opcode, funct3, funct7, rsl, rs2 and
rd) and use them to create one or several VLIW instructions.
Standard instruction like additions are straightforward to trans-
late because they have there equivalent in VLIW ISA. Some
RISC-V instructions may require several VLIW instructions
to preserve the original semantic. It is the case for conditional
branch instructions: RISC-V offers many different branch
operations (bne, bge, blt) while our VLIW ISA only offers
two (beqz and bnez). These RISC-V instructions will have to
be translated using two different instructions.

Concerning register allocation, our VLIW has 64 general
purpose register allowing us to keep a one to one mapping of
the 32 registers used in RISC-V ISA.

The hardware accelerator we developed can be seen has a
simple pipelined finite state machine: a new VLIW instruction
is generated at each cycle. Because RISC-V ISA and our
VLIW ISA are similar, this accelerator is small. However,
the same idea could be applied for more complex translations,
keeping similar throughput. Only the size of the translator may
increase due to the more complex input ISA.

Note that the accelerator keeps track of the insertions (when
one input instruction is translated into two or more VLIW
instructions) as well as jump locations and destinations. This
information can be computed easily during the translation
process and are stored in dedicated scratchpads. It will be
used by the DBT framework to solve jump destinations, as
described in III-A.

B. The IR builder

The goal of the IR builder is to analyze VLIW binaries
in order to build the Intermediate Representation described in
Section II-C. The accelerator goes through all instructions in
sequential order and build the data-flow graph while recording
dependencies. Dependencies will be added between memory
stores and memory loads to ensure the memory coherency.

Figure 4 is a simplified representation of the hardware
accelerator. We can see the following components:

t t+1 | t+2 [t+3 | t+44 | t+5 | t+6 | t+7
lastWrit read read write read read write read read
as rieer ra rb rd ra rb rd ra rb

IR1 write | write read write | write read write | write
pl Instr pl pl Instr pl pl Instr
IR2 write read write read write
p2 p2 p2 p2 p2
Iteration i-1 Iteration i
Iteration i+1 Iteration i+2

Fig. 5. Representation of the pipeline organization of irBuilder.

e A memory called lastWriter where we store the ID
of the last instruction that wrote a given register. At the
beginning of the block, the value is initialized with -1.

o A memory called IR will contains the IR being generated.

e A register called 1last store hold the ID of the last
store instruction in the current block while lastRead
is a shifted register storing the last three memory loads
in current block.

Adding an instruction in the IR consists in five steps,
which are presented below. Figure 5 represents a possible
schedule of all memory accesses needed to perform these
steps. These memory accesses are the performance bottleneck
of the accelerator.

o The instruction uses at most two registers for its operands.
For each of them, the value of the last instruction
that modified it in the current block are read from the
lastWrite memory. If the value is -1 then the IR will
be built with a global value; otherwise it use the ID of
the instruction that created the value.

o The instruction may create a value that is stored in a
register. The accelerator stores the ID of the current
instruction as the last writer of this physical register.
Any other instruction that accesses this register before
any modification depends on this instruction.

o The accelerator then handles data dependencies. Current
instruction have a reference to the two data predecessors;
these two predecessors will have one more read. To
handle this last modification, the accelerator reads IR
memory to get the IR instruction corresponding to each
predecessor. It then increments the field nbRead and
write back the IR instruction.

« Finally, if the instruction is a memory instruction (e.g.
load or store), the accelerator adds control dependencies
to handle memory coherency.

— If the instruction is a load, a dependency is added
from the last store and the instruction is added to the
list lastLoads. If this list is full, a dependency is
added from the older load instruction to the new one.
This old instruction is then replaced by the new one.

— If the instruction is a store, all last three loads
instructions are marked as control predecessor of the
instruction. The instruction is then stored as the last
store instruction.

o Finally, the IR instruction is generated using all the
information gathered and it is stored in the IR memory.

To ensure the memory coherency, control dependencies are
inserted between load and store instructions. For example, a
store instruction has to be scheduled after all previous load

instructions in RISC-V binaries. However, since the maximum
number of predecessor that can be encoded in the IR is 5, only
the three last load instructions are treated. If there are more
than 3 loads, dependencies are inserted between those loads
to maintain the coherency. When a store occurs, all three last
loads are marked as predecessors.

As shown on Figure 5, the accelerator is pipelined with an
initiation interval of three. It means that a new instruction is
generated every three cycles. Figure 5 represents three of these
iterations overlapping.

C. The Instruction Scheduler

The instruction scheduler is the most complex hardware
accelerator of the Hybrid-DBT system. This accelerator is in
charge of scheduling each IR instruction in an execution unit of
the VLIW at a given cycle. It ensures that IR dependencies and
name dependencies are satisfied. Moreover, the scheduler is
in charge of performing basic register renaming when needed.
The rest of this Section is divided in two parts: first we give a
behavioral definition of the algorithm used and then we give
the intuition of the accelerator organization.

1) Scoreboard Scheduling algorithm: The algorithm used
for instruction scheduling is the scoreboard scheduling. It is a
greedy heuristic that tries to place each instruction in a win-
dow, ensuring that all its predecessors are already scheduled.
This algorithm has been modified to detect name dependencies
and support register renaming when needed.

Algorithm 1 describes the method used for scheduling.
There are six arrays involved in the algorithm:

o The array called IR is the array containing the interme-

diate representation of the block being scheduled.

e The array window is the moving window of the score-
board scheduler. Each time we want to schedule an
instruction, each place of the window will be inspected
to see if a place is available. If the instruction cannot be
placed in the window, the window is shifted so that the
instruction fits at the last place of the window.

e The array placeOfInstr contains the place of each
instruction of the block. It is updated every time a new
instruction is placed.

e Arrays lastRead and lastWrite contain, for each
physical register, the place of the last instruction that
read/write it.

o The array placeReg is a mapping between instructions
of the block and the physical register used to store the
value produced.

e The array nbRead keeps track of how many times a
physical register has to be read before being freed. This
is done using the corresponding value from the IR.

e The array binaries is the place where VLIW binaries
are stored.

Algorithm 1 is divided in three parts. The first part cor-
responds to the first for loop that iterates over all prede-
cessors of the current instruction and calculates the earliest
place where all dependencies are satisfied. The cycle where
a predecessor has been scheduled is found in the array
placeOfInstr and an offset is added according to the type
of the predecessor (e.g. control or data predecessor).

The second loop of the algorithm handles the register re-
naming mechanism: if the IR instruction is marked as alloc,
a new physical register will be picked from a FIFO and the
system will adapt the earliest place by considering the last read
and the last write on this register. The value of nbReads is
then initialized with the value from the IR. If there is no free
register, the scheduler will ignore the renaming.

Finally, the third loop will go through the scoreboard
window to find the earliest slot where an execution unit is
available and where all dependencies are satisfied.

After these three loops, different arrays are updated:
lastRead, lastWrite, placeReg and nbReads are
updated according to used registers; the place in the window
is marked as used and the place of the instruction is stored in
placeOfInstr. Finally, the instruction is assembled and is
stored in generated binaries.

for onelnstruction in IR do
earliestPlace = windowStart;
for onePredecessor in onelnstruction.predecessors do
if onePredecessor.isData then
earliestPlace = min(earliestPlace,
‘ placeOfInstr[onePredecessor] + latency);
else
earliestPlace = min(earliestPlace,
‘ placeOfInstr[onePredecessor] + 1);
end
end
rdest = onelnstruction.getDest();
if onelnstruction.isAlloc then
| rdest = getFreeRegister();

end
earliestPlace = min(earliestPlace, lastRead[rdest],
lastWrite[rdest]);

for oneCycle in window do
for onelssue in oneCycle.issues do
if onelssue.isFree and oneCycle > earliestPlace
then
| place = oneCycle.address
end
end
end
if notFound then
window.move(max(1, earliestPlace - window.end))
place = window.end

end

window[place] = instrld;

placeOfInstr[instrld] = place;

ra = placeReg[pred1];

rb = placeReg[pred2];

placeReg[instrld] = rdest;

lastRead[ra] = place;

lastRead[rb] = place;

lastWrite[rdest] = place;

binaries[earliestPlace] = assemblelnstr(ra, rb, rdest);

end
Algorithm 1: Scheduling algorithm used for the accelerator

Figure 6 illustrates how the algorithm schedules the instruc-
tions on a short example. The targeted architecture is a 3-
issue VLIW where br and arith instruction has one cycle of
latency and mem has 2 cycles. The left-most part of the figure
represents the block being scheduled and its corresponding
data-flow graph. The initial state of the scheduling window is
also depicted, with instructions a to d already scheduled. To

Block to schedule Initial state Insertion of e Insertion of f
a:addirlr2 4 L 5E T Es
b: 1d r3 16(r2) ol€ls S|lE|s reg HEHE
. i 1l a 1|a 1| a
c:addirdr28 pred
d: addi r10 r4 4 2| |bjc 2[[bfel .4 2[[b]e
e:ldr40(r3) alloc=1 3 3| le 3
f:addirdrl5 alloc=0 41d 4ld 4/d o
' h s[2]?]? SHEHE sz [l 8
@@ ®@ ® i I o
7 7 7
® © ° : :

a Instruction placed ? Place already used

— Earliest place possible e Place of the current instruction

Fig. 6. Short example of the behaviour of the scheduler on a 3-issue archi-
tecture where br and arith ways needs 1 cycle of latency and mem needs 2
cycles. left-most part represents the block to schedule, the rest represents the
different states of the reservation table while scheduling instructions e and f.

make our example more complete, we consider a scheduling
window in which earlier instructions have been scheduled
(represented with a question mark).

The first step is to schedule instruction e: to find the
earliest timestamp for which dependencies are satisfied, each
predecessor’s timestamp are considered and an offset is added
according to the instruction latency. In our example, prede-
cessors are scheduled at cycle 2, and have, respectively, a
one and a two cycle latency. As a consequence, the earliest
timestamp for e is 3. The next step is to consider register-
based dependencies. One can observe that instruction e is
to write in register 74 which is also read by instruction d.
However, instruction e also has alloc set. A new register
is therefore allocated and the write after read constraint is
removed. Instruction e is placed at timestamp 3.

The algorithm then proceeds to instruction f, which has
only one predecessor scheduled at timestamp 1. Consequently,
instruction f could be scheduled at timestamp 2. However,
instruction f has a write after read dependency with instruction
d, scheduled at timestamp 4. As alloc is not set, dependency
cannot be removed and the earliest timestamp (register-wise)
for f is 5. The instruction is scheduled at cycle 6 (which is
the first slot available in the scheduling window).

2) Organization of the accelerator: The scoreboard
scheduling algorithm described previously has been imple-
mented in hardware. Figure 7 gives a basic idea of the internal
organization of this component. We can see that most of the
arrays used are mapped into memories while the window is
mapped into registers. This allows to have a parallel access
to all cycles of the window. This enables to unroll the third
loop of Algorithm 1 and to execute it with the lowest overhead
possible.

Other parts of the algorithm are mainly instruction decod-
ing/encoding and memory updating. All this can be done in
parallel at low expense. However, the first loop still requires
to access the memory placeOfInstr for each potential
predecessor. This loop is likely to become the main bottleneck
of the accelerator.

Similarly to other accelerators in the system, the scheduler
has been pipelined to hide the latency of scheduling an
instruction. Figure 8 gives a schedule of the different memory
accesses needed to schedule an instruction. The initiation

interval used in this schedule is 4. As the window has been
implemented using registers instead of memory blocks, there
is no constraint on port utilization. Consequently, the window
is not represented on Figure 8.

We can see that the main bottlenecks of the accelerator are
the accesses on placeOfInstr memory as well as the inter-
iteration dependency inside. Indeed, Figure 8 also represents a
violated dependency: if this instruction scheduled at iteration
i + 1 depends on instruction scheduled at iteration ¢ then the
read on placeOfInstr at cycle ¢ + 5 may collide with the
write schedule at the same cycle. This problem has been solved
using explicit forwarding: the two addresses are compared and
the result of the load is used only if there is no collision.
Otherwise it will use the value which was to be written.

The area used by the accelerator mainly depends on the size
of the window. We used a window of size 16 which appears
to give the best performance while keeping a reasonable area.

V. EXPERIMENTAL RESULTS

This section presents the experimental study we made
as well as the result obtained. In the different subsections,
we demonstrate that our hardware accelerators brings real
improvements in DBT translation process.

All accelerators mentioned in Section IV and the VLIW
core have been generated using Mentor Graphics Catapult
HLS tool. Entry files are C++ description of the component
behavior as well as constraints on the loops, dependencies
and clock frequency. The sources of Hybrid-DBT toolchain
are available on Github'.

Once the RTL description has been generated by the HLS
tool, we used Synopsis Design Compiler combined with a
28 nm library from STMicroelectronics to generate a gate-level
representation of the component. This representation is used
to get the frequency and the area of the design. To obtain an
average power consumption, we used Modelsim to perform a
gate-level simulation with real input data, derived the average
switching activity of each gate and Design Compiler used it
to give an estimation of the power consumption.

In some experiments we compare our approach with existing
micro-architectures for RISC-V: the Rocket-Core. For these
approaches, we used the Chisel HDL generator to get a RTL
level description of the core that we gave to Synopsis Design
Compiler with the 28 nm gate library.

To measure the performance of the translation tool, we
used several benchmarks from the Mediabench suite. All were
compiled for the RV64IM version of RISC-V ISA using GCC
7.1 with O2 flag. These binaries are given as inputs to the
DBT flow or are used, for some experiments, as input to
Rocket simulator. Table I provides a short description of the
benchmark code size. Numbers provided are the number of
instruction in the application as well as the number of blocks
and functions optimized by our flow. Please note that the
number of functions optimized may depend on the data-set
as our flow relies on profiling to decide whether Level 2 DBT
is triggered or not.

Uhttps://github.com/srokicki/HybridDBT

= aIIooj place
o 8 + [Fopcod
£5 D‘I D‘I D‘I D‘I IR @1 9 lglobalReg—> dataPredl
s out1] S |dataPred2—> dataPred?2 o1
S I—bclnstr 8 ?niig(ﬂe —globalReg FREER
type d inl t1
predecessors out1] n ou
Ne l% e freeReg 21 Tlg
Fifo =
@1|@2 rlu
placeOfinstr ra
L] ?.Y l@ outtlou]] @1
—place b
'H lastRead oi:tll | é |
l@l@l@ S gL g€
A Earliest place @1 7
T sonioie |\ e o
N[(©) [in1] place ——
Earliest place @1]in1
Regalloc
T T binaries
place move
Fig. 7. Simplified representation of the Instruction Scheduler datapath.
t t+1 | t+2 | t+3 | t+4 | t+5 | t+6 | t+7 300x A Speed-up vs. software
IR read read
instr instr
read read read read read read 200x
pIBCEOﬂnSI predl | pred2 | pred4 predl | pred2 | pred4
write read read write read read
laceOfins2 !
place ns place | pred3 | preds place | pred3 | pred5 100x
get get
freeRegFIFO bt s
lastRead write | read write | read 0x
First-Pass Translation IR Generation IR Scheduling
lastWrite write ead rite read . .
! o Fig. 9. Speed-up against software DBT
read read write read read write
placeReg rinl rin2 dest rinl rin2 dest . 3 .
binarics write compared with software implementation. We can see that
: st First-Pass Translation is around 250x faster while
—> Violated Iteration i-1 Iteration i IR Generation and IR Scheduling are 150x faster
dependance Iteration i+1 Iteration i+2

Fig. 8. Schedule of the different memory operations of IRScheduler with
initiation interval at 4.

#Instr. | #Blocks | #Funct.

adpcm | 15129 934 6
epic 29153 1797 33

g721 17028 1057 13

gsm 22842 1414 17

jpeg 42408 2770 18

mpeg | 28063 1725 25

TABLE 1

CHARACTERISTICS OF THE DIFFERENT BENCHMARKS USED IN THE
EXPERIMENTAL STUDY. VALUES DISPLAYED ARE THE NUMBER OF
INSTRUCTION TRANSLATED AND THE NUMBER OF BLOCK AND
FUNCTIONS OPTIMIZED BY THE FLOW.

A. Cost of each optimization level

The first experiment measures the efficiency of the different
hardware accelerators. We executed the different optimization
passes and profiled the execution time for all our benchmarks.
We used two experiments: one running in full software (with
an equivalent implementation of the first translation, the IR
building, and the scheduling), executed on a cycle-accurate
RISC-V simulator (with a micro-architecture similar to the
one of the Rocket core); the other one models the time taken
by accelerators. The results shown here compare the execution
time and the energy cost to perform these optimizations.

a) Performance improvement due to accelerators: Figure
9 shows the improvement from using hardware accelerators

than the software version running on a Rocket core.

8 o Average time taken
(cycles)

IR Scheduling

N

N

First-Pass Translation IR Generation

Fig. 10. Average time taken for performing transformations with Hybrid-DBT

Figure 10 represents the number of cycles required to trans-
form one instruction. For First-Pass Translation it
corresponds to the time taken by the hardware accelerator
divided by the number of RISC-V instruction effectively
translated. For the two others it has been divided by the
number of IR instructions.

We can see that First-Pass Translation needs on
average 1.7 cycles to translate one RISC-V instruction. IR
Generation needs 6 cycles to generate one IR instruction
while IR Scheduling needs 4.2 cycles to schedule it.
Figure 10 also reports the min and max values obtained for
each benchmark. We can see that the variation is low.

b) Energy consumed: Figure 11 shows the gain in energy
consumption coming from the use of hardware accelerators,
compared with a software approach. For these experiments,
we measured the average power consumption of the Rocket
core and of the different accelerators and coupled that with
the time needed to perform the transformation. We consider

that accelerators are power gated when not in use. However
the DBT processor is only stalled while waiting for the result
of an accelerator. Consequently its energy consumption is
included in this experiment. Results shows that First-Pass
Translation consumes on average 200x less energy than
its software counterpart. IR Generation consumes 80x
less energy while IR Scheduling consumes 120x less
energy than the software version running on a Rocket core.
250x A Energy reduction vs. software
200x

150x

100x
0x

IR Scheduling

First-Pass Translation IR Generation

Fig. 11. Improvements in energy consumption vs software DBT

As a dedicated core is used for the DBT process, one
would argue that the time spent optimizing code is not critical.
However, the energy spent doing the transformation is an
important factor, even more in a context of heterogeneous
systems that are meant to offer interesting performance/power
consumption trade-offs.

B. Translation and execution costs

As we have shown in the previous experiment, the use
of hardware accelerators drastically reduces the cost of the
translation process compared with a software implementation.
In this experiment, we show its impact on the overall execution
cost. All benchmarks have been executed with the translation
framework. One first run is made using the different hardware
accelerators and another with the software implementation.

Hybrid-DBT Software DBT

Execution | Energy Time Energy

time (ms) (m]J) | overhead | overhead

adpcm dec 61 32 105% 118%
adpcm enc 11 0.6 117% 154%
epic dec 31 1.3 104% 157%

g721 dec 293 15.4 102% 105%
g721 enc 347 18.2 101% 104%

gsm dec 80 4.2 102% 119%

gsm enc 175 9.2 121% 128%

jpeg dec 5 0.3 151% 315%

mpeg dec 2307 121.4 100% 101%

TABLE II

OVERHEAD COMING FROM THE USE OF SOFTWARE TRANSLATION
INSTEAD OF HARDWARE ACCELERATORS. AS A BASELINE WE RAN THE
APPLICATION IN HYBRID-DBT SYSTEM, USING THE THREE HARDWARE

ACCELERATORS.

Table II lists the overheads in execution time and in the
energy consumed while using software translation instead of
the hardware accelerators. We can see that the use of the
software translation process increases execution time from 0%
up to 51% and the energy consumed from 1% up to 215%.
The increase in energy can be explained by two phenomena: i)
for benchmarks where execution time is small or where code
is large, the energy used for translating the code will have an
important impact on the overall energy consumed (see jpeg

dec, adpcm enc and epic dec); ii) for benchmarks
with a longer execution time, the increased translation time
will make all optimizations to happen later than in the hard-
ware accelerated version, which leads to lower performance
and higher energy consumption.

Results presented for this experiment focus on the benefits
of the hardware accelerators compared to a software imple-
mentation. A detailed discussion of the possible benefits of the
hardware accelerated tool-chain is provided in section VII.

C. Performance of the DBT framework

In previous sections, we demonstrated the usefulness of the
different hardware accelerators. The goal of this experiment
is to measure the performance of the generated code. All
benchmarks have been executed with the Hybrid-DBT system
(using hardware accelerators for the translation process) with
different optimization levels. They are also executed on a
Rocket core simulator to provide a baseline. Results of this
experiments are provided on Figure 12. For each benchmark
we can see the normalized execution time obtained for the
different scenarios. We can visualize the impact of the different
optimization levels.

The first observation is that the naive translation gives
performance close to the native execution on a Rocket. For
some benchmarks, the performance of the naive translation
is much lower than the one of the Rocket core. This can
be explained by the fact that some RISC-V instructions are
translated into more than one VLIW instructions. If these
insertions are localized in hotspots, it may have an important
impact on the execution time. The naively translated binaries
can also be faster than a native execution because of small dif-
ferences in the pipeline organization: branches are not resolved
at the same moment and the organization of pipeline lanes are
different. Indeed, the in-order core have a single lane that can
execute every instruction, with forwarding mechanism, while
the VLIW core have specialized lanes.

Performance improvement from optimization levels 1 and 2
shows the impact of instruction scheduling on execution time.
The difference between level 1 and 2 depends on how efficient
the tool is at locating functions and performing inter-block
optimizations. Developing those software transformations on
the tool-chain was not a priority for our work. Consequently
we believe that the performance for optimization level 2 could
be improved with additional work on this part.

We can see that at the highest optimization level, Hybrid-
DBT is on average 22 % faster than the native execution on
the in-order core and up to 29 % for jpeg dec.

D. Area overhead

As we have shown before, the different hardware acceler-
ators brought important speed-ups in the translation process.
However, this is done at the expense of additional silicon.
In this section we present the area cost of the different
components of the design. These results are generated by
Synopsis Design Compiler with a STMicroelectronics 28 nm
technology. All values can be found on Table III.

We can see that the additional area coming from the
different accelerators only represents 25 % of the VLIW area

12 . Normalized execution time ¥ Rocket H Optlevel 0

N Opt level 1 OptLevel 2
1
0.8
0.6
0.4
0.2
0

adpcm enc epic dec g721 dec g721 enc gsm dec gsm enc jpeg dec mpeg dec

adpcm dec

Fig. 12. Normalized execution times with different micro-architectures and different optimization levels.

Component | Area (um?)
VLIW 106 621
First Pass Translator 6146
IR Builder 15374
IR Scheduler 7155
Rocket 30792

TABLE III

AREA OF THE DIFFERENT COMPONENT IN HYBRID-DBT SYSTEM.

and the Rocket core (which is used as a DBT processor in
this setup) represents 30 %. If this DBT system were used
in a multi-VLIW system (as pictured in Figure 1), the area
overhead would be smaller. We believe that in the context of
dark-silicon, this overhead is acceptable in exchange for the
reduction in cost shown in previous experiments.

VI. RELATED WORK

The work presented in this paper lies at the interface of
several topics/fields: processor architecture, run-time systems,
optimizing compiler techniques, etc. In this section, we discuss
how our approach compares with existing work in these differ-
ent fields. We first present several work addressing the issues
raised by multi-ISA heterogeneous multi-core architectures.
We then discuss some of the most relevant works in dynamic
compilation and more specifically DBT. The last part of the
section focuses on the Transmeta and Denver architectures,
which share many similarities with our approach.

A. Heterogeneous architectures

Historically, Dynamic Voltage and Frequency Scaling
(DVES) is used to provide dynamic adaptation. The system
is able to dynamically modify the voltage and the frequency
of the architecture according to the needs in performance. This
method has the interest of being simple to model, as DVFS
has a direct impact on frequency and power consumption.

With the end of Dennard scaling, the use of hardware
heterogeneity (accelerators, DSPs, etc.) has proven to be an
efficient way to adapt the energy/performance of a system.
However, developing applications for these kind of systems
and dynamically mapping tasks to the different execution
resources is challenging.

Kumar et al. proposed to use single-ISA heterogeneous
multi-core [5], [6]. The binary compatibility between the
different cores was the enabling characteristic: development
of applications as well as dynamic task migration became
accessible. This idea has been used in the Arm big.LITTLE

architecture [1], which features an aggressive 3-issue out-of-
order processor for high-performance (called ‘big’) and a 2-
issue in-order core for energy efficiency (called ‘LITTLE’).
More recent architecture proposed up to three different types
of cores to offer more trade-offs to the end-user [7].

Using different kinds of micro-architectures offers different
energy/performance trade-off. This trade-off depends on the
application being executed: for data-intensive applications, the
use of statically scheduled architecture (e.g. VLIWs, CGRAs)
offers high-performance and high-energy efficiency. Some
other applications are more suitable for OoO architectures.
Combining OoO and inO architecture (as for the big. LITTLE)
is convenient as they are both based on the same programming
model (and on the same ISA). However, moving toward other
micro-architectures, such as statically scheduled ones, is more
challenging due to fundamentally different ISAs.

Different approaches have been proposed to enable the use
of different micro-architectures in such a system:

o The first idea consists in reusing the schedule generated
by an OoO processor in a inO processor [8], [9], [10].
This may require to modify the inO core consequently:
for example in DynaMOS cores, the in-order core has
been upgraded with a larger register file, a mechanism
for constrained register renaming and a load-store queue
for detecting errors on memory accesses [9].

« Finally, Dynamic Binary Translation has often been used:
Transmeta Code Morphing Software and NVidia’s Denver
Architectures can execute x86 or Arm binaries respec-
tively on a VLIW architecture [2], [3]. A software trans-
lation and optimization process is in charge of generating
the binaries for this micro-architecture. Similarly, other
approaches proposed to translate binaries toward CGRAs
to increase performance and energy efficiency [11], [12],
[13]. However, as code generation for CGRA architecture
is a difficult task, they use an approach with a tightly
coupled OoO core and a CGRA, mapping only hotspots
on the CGRA. CGRA is not used as a core but as an
accelerator for the OoO architecture.

Task migration overhead may be critical in such system.
Indeed, even if binaries do not need to be translated, task
migration induces a large number of cache misses (qualified as
cold misses) when starting its execution on the new core. Some
authors have therefore investigated polymorphic processors,
that is clusters of processors sharing resources (storage or
execution) between cores [14], [15], [16], [17]. Different

paradigms are used to exploit these architecture: pVex [14],
Voltron [17] and TRIPS [16] rely on specific instruction sets
to support their architectures. The executable binaries can be
used transparently on different configurations. On the other
hand, Ipek et al. exploit OoO mechanisms to generate dynamic
schedules for their configurable core [15].

B. Dynamic compilation

The idea of dynamic compilation is to translate and optimize
source code into binary instructions at run-time. The most
widely known dynamic compilation framework is probably
Oracle Hostpot, the Java virtual machine Just-in-Time (JIT)
dynamic compiler [18]. Other widely used JIT compilers
include Microsoft CLR [19], for executing .NET applications,
and Google’s v8 compiler for executing Javascript. The first
two are based on a split-compilation process where a first static
compilation stage generates a low-footprint bytecode which is
then translated at run-time. In contrast, Google v8 compiler
operate directly at the source level.

All these tools face the same problem of cold-code execu-
tion: when the tool first translates a code snippet, it cannot
guess whether this snippet will be executed often enough to
recoup the cost of an optimization stage. This problem is often
identified as one of the bottlenecks of dynamic compilation
[20], [21]. To handle this issue, most dynamic compilation
tools are decomposed into several optimization levels which
are triggered whenever a region of binaries becomes hot. Our
approach addresses the cold-code issue by taking advantage
of hardware accelerators to speed-up (by two orders of mag-
nitude) the first steps of the translation.

An interesting approach is the use of a platform specific
bytecode within a split compilation framework: applications
are first analyzed statically by the compiler framework to pro-
duce a custom bytecode embedding additional information (on
memory dependencies, on vectorization opportunities, etc.).
This bytecode is then used as input to the run-time translation
stage, which takes advantage of this information to increase the
performance of generated code. For example, Nuzman et al.
[22] propose to statically compute vectorization opportunities
in the original binary and then encode this information in a
custom bytecode format. Thanks to this, the bytecode can be
optimized for the vector extensions available in the processor.
Our approach is different in its goals: we use DBT to provide
binary compatibility with a preexisting instruction set, as ISA
legacy is a key factor even for embedded systems.

DBT is a subset of dynamic compilation, but where the com-
piler operates directly from binaries. DBT is mainly known
for its use in fast simulation of instruction set architectures
(e.g. QEMU [23]), inter-generation portability (e.g. IBM Daisy
[24], [25]) or inter-ISA portability (e.g. Apple Rosetta). DBT
often translates binaries from an ISA to another one but some
tools perform DBT targeting the same ISA in order to perform
an analysis (e.g. Valgrind) or for continuous optimization (e.g.
DynamoRIO [26]). This is very different from our work which
aims at improving performance.

Dynamic Binary Translation is also used to execute generic
binaries (e.g. ARM, x86) on a different kind of micro-
architecture. There are two famous products exploiting this

idea: Transmeta’s Code Morphing Software (CMS) [2] and
NVidia’s Denver architecture [3]. They both execute x86 or
ARM binaries on a VLIW architecture transparently, in order
to reduce the power consumption. They are also based on a
multi-stage translation and optimization process, but very few
details are given on their actual implementation. Those two
approach will be discussed in details in Section VI-C.

It should be noted that several work have addressed the
problem of dynamic compilation for VLIW architectures. For
example, Agosta et al. [27] propose to translate Java bytecode
into VLIW binaries. Their approach uses a list-based instruc-
tion scheduler combined with a greedy register allocation
(our register allocation stage shares many similarity with their
work). Dupont de Dinechin [28] proposed to translate .NET
bytecode into VLIW binaries, but instead use scoreboard
scheduling algorithm, but only little information is provided on
how register allocation is performed (the paper only suggests
that the register allocation algorithm is more complex than the
greedy heuristic used by Agosta).

C. Hardware acceleration

To the best of our knowledge, there were very few attempts
to accelerate dynamic compilation using a combination of
hardware and software. This subsection discusses Transmeta’s
CMS [2] and NVidia’s Denver [3], which both deploys
HW/SW co-designed platform based on DBT. It also discusses
the work from Carbon et al. [29] which used dedicated
hardware to accelerate LLVM JIT compilation.

Transmeta’s Code Morphing Software has been co-designed
along the VLIW core used as a target [2]. Although no direct
hardware acceleration is provided, they modify their target
processor to simplify speculation in their DBT system. This
was achieved through the use of shadow registers and special
rollback mechanisms to support various style of of speculation.
In our approach, we accelerated the optimization process.

The approach followed by NVidia with the Denver proces-
sor [3] is slightly different. In the Denver system, the host
VLIW architecture is a in-order 7-issue processor. It embeds
a complete ARMS8 ISA hardware decoder which can decode
up to two instructions per cycle. These decoded instructions
are then stored in a dedicated buffer, and later used by the
processor. This decoding bears some similarity with our first-
pass translator. Another difference is that Denver uses an in-
order dynamic instruction scheduler during this translation
step. As a consequence, the system can start exploiting some
ILP right after the first translation. Additional ILP can later
be obtained by the Dynamic Code Optimization engine, which
computes a static schedule to fully exploit the ILP capabilities
of the underlying VLIW core. In our approach, the execution
after the first-pass translation does not take advantage of ILP,
this is compensated by the fact that our IR-scheduler is fast
thanks to hardware acceleration (a new instruction can be
translated/scheduled every 4.2 cycles).

Finally, Carbon et al. studied haw to use specialized hard-
ware to accelerate LLVM JIT compilation [29]. They designed
a specialized interface for using red-black trees and modified
some of LLVM algorithm to use these data-structure as much
as possible.

VII. DISCUSSION

In this work, we have developed from scratch a complete
hardware/software co-designed system for executing RISC-V
binaries on a VLIW processor. Although somewhat similar
approach have been proposed by industry (NVidia Denver,
Transmeta Crusoe), these systems are completely closed with
very little information on their actual implementation. In
contrast, our framework is open-source, and is meant to enable
academic research on the possibility offered by dynamic binary
translation for VLIW.

A. Toward continuous optimizations

The experimental study we have conducted demonstrates
that the use of hardware accelerators reduces the cost of the
translation process by two orders of magnitude. Even on a
system with perfect caching (i.e. where the full translation
can be stored on the translation cache), the use of accelerators
leads to speed-ups as the flow is more aggressive. On a real-
life system, our approach could lead to a higher speed-up.

In their work, McFarlin et al. concluded that the perfor-
mance advantage of OoO processors against statically sched-
uled architectures mainly comes from the ability to speculate
aggressively [30]. Their experimental study shows that, by
replaying dominant schedules as if they were static schedules,
the execution can reach 80% of the performance of normal
000. We believe that this performance gap could be reduced
through a continuous optimization process, at the price of
additional HW mechanisms on the VLIW core. The static
instruction schedule would be iteratively improved by spec-
ulating on memory dependencies and branch resolution.

Such an approach would be impractical in the context of
a software DBT, as the instruction scheduler would quickly
become a performance bottleneck. In contrast, thanks to our
hardware accelerator, our DBT flow can re-schedule a RISC-V
instruction in 4 cycles (compared to roughly 600 cycles for a
software implementation), making such a strategy viable, and
paving the way for very aggressive DBT back-ends.

Other continuous optimizations may benefit from this re-
duced scheduling time. For example, Hybrid-DBT has already
been used to exploit dynamically reconfigurable VLIW proces-
sor [31]. Thanks to power gating, the issue width and the size
of the register file can be modified dynamically. Due to this,
each configuration of the VLIW needs its own binaries to work
properly. In this work, Hybrid-DBT is used to dynamically
explore the different configurations of the VLIW and to pick
the most suitable one for each function of the application. If
the operating conditions are modified and if the system wants
to change the trade-off between energy and performance, the
tool-chain picks a new VLIW configuration for each function
of the application and generates new binaries accordingly.

It is also to note that the use of a hardware accelerated
DBT process reduces the penalty from cold-code execution,
and thus increases the ability to quickly start executing an
application. We believe this is also a very important issue, as
for such machine, the effect of cold-code translation has often
been reported to impact user experience.

Finally, the hardware acceleration reduces the need for
caching previous translations. Indeed, previous work on dy-
namic compilation uses a translation cache to store generated
binaries [2], [3]. However, for large applications or for sys-
tems where many different applications are executed at the
same time, the size of the translated binaries becomes huge.
Reducing the cost of re-generating the binaries also reduces
the interest of caching them. This may result in a reduction
of the size of the translation cache.

B. Limits of Hybrid-DBT

There are some features that would be of primary impor-
tance for a commercial tool but that are not currently not
handled in this version of Hybrid-DBT. The support of precise
exception or self-modifying code, for example. For the latter
one, accelerating the translation process is of great interest as
such system often re-translate portions of binaries that have
been modified. Since these issues are not performance critical,
and do not pose significant research challenges, we made the
choice of not supporting them for now.

The current version of Hybrid-DBT lacks a full translation
cache system. Designing an efficient translation cache policy
for such an accelerated DBT is not trivial, as the trade-off
between performance and cache size is more complex due to
hardware acceleration. We believe that this is an interesting
research direction, which is part of our ongoing work.

Retrospectively, it turns out that one of the main perfor-
mance bottleneck lies in an insufficient amount of middle-
end compiler optimizations in our flow (constant propagation,
more aggressive superblock construction, etc.). Although such
optimizations are classical text-book algorithms, their efficient
and correct implementation within a DBT framework remains
quite challenging, and require very significant engineering
efforts, which go well beyond what can be achieved in the
scope of a PhD work.

C. The key role of High-Level Synthesis

Implementing a functional compiler back-end using appli-
cation specific hardware represents a major design challenge,
that would normally be out of reach of an academic research
project. Yet, we were able to implement a fully functional
hardware accelerated DBT stack and prototype it on an FPGA
platform (Altera DE2-115) to check for its functional correct-
ness. We see this as a significant achievement, that was only
made possible through the systematic use of state of the art
High-Level-Synthesis tools (Catapult-C) instead of classical
HDL/RTL design flows. To our opinion, this demonstrates both
the maturity and importance of such tools.

As a side note, the idea of implementing compiler using cus-
tom hardware is not new: for example, the Symbol computer
project, which took place in the 60s/70s, aimed at building
a machine capable of executing program specified in high-
level programming languages[32]. The project turned out to be
extremely difficult to design and debug. As a matter of fact, it
is considered by many as a turning point in computer system
designs, corresponding to the decline of hardware solutions
and the rise of software implementations.

VIII. CONCLUSION

In this paper we presented Hybrid-DBT, an open-source,
hardware/software co-designed DBT system targeting VLIW
cores. The use of three hardware accelerator drastically re-
duces the cost of critical parts of the translation process
and impact the performance of the architecture. Other opti-
mizations are done on software, using a dedicated low-power
core. Our experimental study demonstrates that i) the use of
hardware accelerators are two orders of magnitude faster than
their software counterpart; ii) this speed-up in the translation
process induces a reduction of the total execution time.

Future work will focus on improving software optimization
in order to increase peak performance. The integration of this
flow in heterogeneous systems will also be studied.

REFERENCES

[1] P. Greenhalgh, “Big.LITTLE Processing with ARM Cortex-Al5 &
Cortex-A7,” ARM White Paper, 2011.

[2] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,

A. Klaiber, and J. Mattson, “The Transmeta Code Morphing™ Soft-

ware: Using Speculation, Recovery, and Adaptive Retranslation to

Address Real-Life Challenges,” in Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-Directed

and Runtime Optimization, pp. 15-24, IEEE Computer Society.

D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman, “Denver: Nvidia’s

First 64-bit ARM Processor,” vol. 35, no. 2, pp. 46-55.

[4] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars, and B. R.
Childers, “Evaluating Indirect Branch Handling Mechanisms in Software
Dynamic Translation Systems,” in Proceedings of the International
Symposium on Code Generation and Optimization, CGO °07, IEEE.

[5] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,” in MICRO-36.

[6] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings. 31st Annual International Sym-
posium on Computer Architecture, 2004., pp. 64-75.

[7]1 H. T. Mair et al,, “A 20nm 2.5GHz ultra-low-power tri-cluster CPU

subsystem with adaptive power allocation for optimal mobile SoC per-

formance,” in 2016 IEEE International Solid-State Circuits Conference

(ISSCC), pp. 76-717.

S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke, “Mirage Cores:

The Illusion of Many Out-of-order Cores Using In-order Hardware,”

MICRO-50 17, ACM.

S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke, “DynaMOS:

Dynamic Schedule Migration for Heterogeneous Cores,” MICRO-48.

[10] C. Villavieja, J. A. Joao, and R. Miftakhutdinov, “Yoga: A Hybrid
Dynamic VLIW/O00 Processor,” 2014.

[11] A.C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, “Transparent
Reconfigurable Acceleration for Heterogeneous Embedded Applica-
tions,” in Proceedings of the Conference on Design, Automation and
Test in Europe, pp. 1208-1213, ACM.

[12] A. Brandon and S. Wong, “Support for Dynamic Issue Width in VLIW
Processors Using Generic Binaries,” in Proceedings of the Conference on
Design, Automation and Test in Europe, pp. 827-832, EDA Consortium.

[13] M. A. Watkins, T. Nowatzki, and A. Carno, “Software Transparent
Dynamic Binary Translation for Coarse-Grain Reconfigurable Architec-
tures,” in 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 138-150.

[14] A. Brandon, J. Hoozemans, J. van Straten, and S. Wong, “Exploring
ILP and TLP on a Polymorphic VLIW Processor,” in 30th International
Conference on Architecture of Computing Systems.

[15] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core Fusion:
Accommodating Software Diversity in Chip Multiprocessors,” in Pro-
ceedings of the 34th Annual International Symposium on Computer
Architecture, ISCA 07, pp. 186-197, ACM.

[16] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with
the Polymorphous TRIPS Architecture,” ISCA *03, ACM.

[3

—

[8

=

[9

—

(171

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

H. Zhong, S. A. Lieberman, and S. A. Mahlke, “Extending Multicore Ar-
chitectures to Exploit Hybrid Parallelism in Single-thread Applications,”
in 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pp. 25-36.

T. Kotzmann, C. Wimmer, H. Mossenbock, T. Rodriguez, K. Russell,
and D. Cox, “Design of the Java HotSpot™ Client Compiler for Java
6,” vol. 5, no. 1, pp. 7:1-7:32.

J. J. Gough and K. J. Gough, Compiling for the NET Common Language
Runtime. Prentice Hall PTR.

S. Hu and J. E. Smith, “Reducing Startup Time in Co-Designed Virtual
Machines,” in Proceedings of the 33rd Annual International Symposium
on Computer Architecture, ISCA 06, IEEE Computer Society.

E. Borin and Y. Wu, “Characterization of DBT Overhead,” in 2009 IEEE
International Symposium on Workload Characterization (IISWC).

D. Nuzman, S. Dyshel, E. Rohou, I. Rosen, K. Williams, D. Yuste,
A. Cohen, and A. Zaks, “Vapor SIMD: Auto-vectorize once, run
everywhere,” in Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pp. 151-160, IEEE.
F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” ATEC
’05, pp. 41-41, USENIX Association.

K. Ebcioglu and E. R. Altman, “DAISY: Dynamic Compilation for
100% Architectural Compatibility,” ISCA *97, ACM.

K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye, “Dynamic Binary
Translation and Optimization,” vol. 50, no. 6, pp. 529-548.

D. Bruening, T. Garnett, and S. Amarasinghe, “An Infrastructure for
Adaptive Dynamic Optimization,” in International Symposium on Code
Generation and Optimization, 2003. CGO 2003., pp. 265-275.

G. Agosta, S. Crespi Reghizzi, G. Falauto, and M. Sykora, “JIST: Just-
In-Time scheduling translation for parallel processors,” pp. 239-253.
B. Dupont de Dinechin, “Inter-Block Scoreboard Scheduling in a JIT
Compiler for VLIW Processors,” pp. 370-381.

A. Carbon, Y. Lhuillier, and H.-P. Charles, “Hardware acceleration
for Just-In-Time compilation on heterogeneous embedded systems,” in
ASAP’13, 1IEEE.

D. S. McFarlin, C. Tucker, and C. Zilles, “Discerning the Dominant
Out-of-order Performance Advantage: Is It Speculation or Dynamism?,”
ASPLOS 13, pp. 241-252, ACM.

S. Rokicki, E. Rohou, and S. Derrien, “Supporting runtime reconfig-
urable VLIWs cores through dynamic binary translation,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2018.

D. R. Ditzel, “Reflections on the High-Level Language Symbol Com-
puter System,” vol. 14, no. 7, pp. 55-66.

Simon Rokicki obtained the BSc and MSc degrees
from ENS Rennes, France, in 2012 and 2014, re-
spectively. He is currently working toward the PhD
degree in computer sciences at the University of
Rennes, under the supervision of Steven Derrien and
Erven Rohou. His research interests include embed-
ded systems architecture, dynamic compilation and
HW/SW co-design.

Erven Rohou obtained his PhD from the University
of Rennes 1 in 1998. He was a post-doc at Harvard
University in 1999. He spent 9 years working in
R&D at STMicroelectronics before joining Inria in
2008. He is now a senior researcher and the head
of the PACAP project-team. His research interests
include static compilation, JIT compilation, and dy-
namic binary optimization.

Steven Derrien obtained his PhD from University
of Rennes 1 in 2003, and is now professor at
University of Rennes 1. He is also a member of the
Cairn research group at IRISA. His research interests
include High-Level Synthesis, loop parallelization,
and reconfigurable systems design.

