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Automated Nonintrusive Analysis of Electronic
System Level Designs

Mehran Goli

Abstract—Due to the ever increasing complexity of hardware
systems, designers strive for higher levels of abstractions in the
early stages of the design process. Modeling hardware at the
electronic system level (ESL) is one way to address this demand,
with the C++-based system modeling framework SystemC and
its abstract communication library transaction level modeling
(TLM) having become de-facto standards for ESL system design.
While the C++ compiler is sufficient to compile and simu-
late a given ESL design, for tasks of design understanding,
debugging, or validation (where access to the details of design’s
structure and behavior is necessarily required), design needs
to be processed by an appropriate tool. This problem is often
solved by adding instrumentation code to either the design or
the library, usually resulting in incomplete logs, work over-
head and/or incompatibilities. This paper introduces an approach
that automatically extracts information about both, structure
and behavior of SystemC designs and TLM transactions, non-
intrusively. The information is retrieved from a given design
by running it in debug mode while being connected to a pre-
programmed debugger, thus leaving the existing sources and
workflows untouched while collecting a vast amount of data
without user intervention. Illustrating use cases, value change
dump files of the SystemC models’ behavior and unified modeling
language activity diagrams of transaction protocols are created
automatically from simulation runs.

Index Terms—Data extraction, GNU debugger (GDB), nonin-
trusive, SystemC, transaction level modeling (TLM), transaction.

I. INTRODUCTION

HE EVER-INCREASING complexity of circuits and tight
time-to-market constraints make designers work on rais-
ing levels of abstraction. System design at the electronic
system level [25] (ESL) is one way to work on more abstract
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layers, allowing designers to implement executable mixed
hardware-software simulations in high-level programming lan-
guages. The system-level library SystemC [5] has become the
de-facto standard [36] to specify HW-SW designs at the ESL.
SystemC includes a framework for transaction level modeling
(TLM), providing the designer with standardized interfaces to
model communication channels that at the same time provide
fast simulation times. TLM focuses on functionality of data
transfers among computational components and differentiates
between the details of communication and the computation [7].
To model the communication, TLM provides designers with
a set of TLM-2.0 components which are the base protocol
(which provides a common infrastructure for all use cases),
the generic payload (which represents a standardized way to
model data that should be transferred) and the communica-
tion interfaces (which provide readily available methods to
implement the required protocols).

Analyzing a given SystemC design in order to know the
respective components of the design (e.g., structure) as well as
their relation to each other (e.g., behavior) is a crucial as C++
(and thus also SystemC, which is a library for the former) is
inherently hard to analyze due to the following.

1) The lack of proper analysis methods for C++ run-
time behavior (e.g., the lack of a modern reflection
framework).

2) The countless compiler-specific dialects that a source
code may have.

3) The executable binary format which not only is stripped
of any information that is not needed to execute the
simulation but may also be heavily optimized.

These make the information retrieval from SystemC models a
nontrivial task.

In addition to the aforementioned obstacles to analyze an
ESL model, in case of SystemC TLM-2.0 designs this analysis
can be even more difficult. The complete TLM communica-
tions represent a complex process that passes several phases
and may be spread out far (concerning both, time and code).
A complete system model may contain a vast amount of the
TLM-2.0 base protocols—so understanding them becomes a
complex (but still crucial) task whenever, e.g., new developers
enter a team or are assigned new issues to work on.

While a well-written and up-to-date documentation should
be a primary source for these cases, there may be situa-
tions where these documents have become outdated or are
unavailable. For these or other situations (e.g., to validate that
a given documentation still corresponds to the current state of
the implementation), a way to generate a proper model from
a given implementation would be desirable. Moreover, a part
from the fact that knowing the properties of a given design
(both structure and behavior) is necessary to understand it,
this information can facilitate other steps of the design process
such as debugging, validation, verification, and synthesis of the
model [15], [16].
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To this end, this paper introduces a new method that focuses
on retrieving run-time information of ESL models and pre-
senting them in a structured format. The extracted information
describes both structure (architecture) of designs (i.e., the mod-
ules, attributes, member functions, binding information of the
modules’ signals, and parameters of functions) and their simu-
lation behavior (i.e., the sequence of the modules’ activations,
value changes and function calls during the execution). To
illustrate how this behavioral information can be processed
to facilitate design understanding, it is automatically trans-
formed into value change dump (VCD) file and a set of
unified modeling language (UML) [32] models for SystemC
and TLM-2.0 designs, respectively. The UML models spec-
ify the behavior of transactions, allowing designers to use a
familiar, abstract design language to understand the behavior
that is actually occurring during simulation. In order to show
how the extracted information assists the design process, this
information is used to validate that a given ESL design adheres
to its formal specification.

In summary, the main contributions of this paper are as
follows.

1) The automatic and nonintrusive extraction of detailed
information of a given ESL design which reflects its
structure and behavior.

2) The presentation of the architectural information of ESL
models in structured formats such as XML that can be
used during the design process with minimal effort to
be set up by designers.

3) The presentation of the extracted run-time information
of SystemC models in form of VCDs.

4) The automatic creation of proper logs of the transac-
tions of TLM-2.0 models—and their presentation as a
UML diagram to enable the designer to easily trace the
transactions’ behavior.

5) The determination of the transactions’ types that are
implemented in a given TLM-2.0 design.

6) The validation of ESL designs.

7) The application of the proposed method to several
ESL benchmarks in various domains to evaluate its
effectiveness.

The rest of this paper is organized as follows. Section II
outlines existing approaches in this area and compares them
to the proposed method. Section III presents the methodology
in detail. Section IV includes the use of the proposed method
to facilitate the design process, specifically validation of ESL
design. The evaluation and experimental results are presented
in Section V. Finally, this paper is concluded in Section VI.

II. RELATED WORK

Analyzing SystemC designs (e.g., for design understand-
ing) is an active field of research. Several methods have been
developed to satisfy this goal, each of them with its own
features and issues. A common denominator for all these
methods is whether they are based on static or hybrid tech-
niques. Static approaches rely on extracting information from
the original source code or the compiled binary model of them
using parsers [12], [17], [30], [37] or existing C++ front-
ends [8], [9], [35]. They do not (by definition) analyze the
execution of the models. Their results can only describe some
information related to the structure of a model and in the
best case can be represented in an abstract syntax tree (AST).
Besides the static data extraction, hybrid approaches retrieve
additional information of a given SystemC design during its
execution. While this is required to retrieve a model’s behavior,
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it is often also the only reliable method to retrieve the struc-
ture of a design as SystemC creates all its modules during
the elaboration phase (during which the design’s modules are
created) at run-time.

As the extraction of dynamic information is necessary to
describe both structure and behavior of a given ESL design,
the hybrid methods have received the most attention lately.
In this section, we thus give an overview of hybrid methods
based on whether they support TLM or only analyze plain
SystemC, illustrating their features and issues.

A. Methods That Do Not Support TLM

The analysis methods of SystemC designs that do not sup-
port TLM constructs are introduced in this section. These
approaches extract either the model structure or dynamic
behavior of the model, or both.

In [13], the AST of a SystemC model is retrieved by parsing
the model using a PCCTS-based parser. To extract dynamic
information an instrumented version of the original source
code is generated by adding some recorder function. The state
of all variables of the model is recorded by executing its
elaboration phase. Using the PCCTS-based parser limits the
available SystemC constructs as it does not fully support the
entire instruction set of C++4-. The recorder function makes
the method an intrusive solution, modifying a design’s original
sources.

PinaVM [24] extracts the structure of a SystemC model
from the translated version of the source code into LLVM bit-
code by executing its elaboration phase. To extract the dynamic
information, it specifies the parts of the source code which
contain the parameters of interest (e.g., the address of ports or
events in SystemC constructs). Afterwards, new functions are
constructed to be added to the model during its compilation.
Those parameters are retrieved using the generated functions
during the model’s execution. PinaVM takes advantage of the
LLVM project to analyze SystemC models which limits it to
setups that are built using LLVM.

SHaBE [10] retrieves the static data by utilizing the GNU
debugger (GDB) [38] and extracts the dynamic information
using a GCC plugin. In the next step, the dynamic information
is linked with the hierarchical information and stored as an
intermediate representation. The method has limitations to
extract some static and dynamic information of SystemC con-
structs (e.g., SystemC primitive channels or processes sensitive
to certain events).

The method presented in [39] uses aspect-oriented program-
ming (AOP) to extract the behavioral data. AOP is a paradigm
that allows the designer to write refactoring rules that are
applied before compiling a program (a process called weav-
ing). This approach comes with several pitfalls. Debugging
AOP setups is a complex task, just like setting up a working
AOQOP environment. Furthermore, the current implementation of
AspectC++ which can be used in tandem with SystemC does
not support, e.g., join points for field access (i.e., field variable
assignments cannot be tracked), privileged aspects, templates,
or macros, which limits the goal of arbitrary behavior tracing.

B. Methods That Support TLM

The methods that can analyze TLM models are introduced
in this section. These approaches extract either the model
structure or transaction behavior, or both.

Pinapa [27] retrieves the information of SystemC mod-
els in two steps. First, the AST of the models is extracted
using a C++ front-end. Second, the elaboration phase of the
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models is executed to extract their dynamic information. The
extracted information is linked to the AST to create the final
result. However, the method describes the structure of a given
SystemC model, it does not provide any information to reflect
the design’s behavior such as the order of function calls and
process activation.

The SystemC verification (SCV) library by the open sys-
temC initiative (OSCI) provides designers with a set of APIs to
record transactions into a database. The APIs are divided into
three different transaction collection classes that can be instan-
tiated during the execution of a SystemC TLM-2.0 model. The
results obtained by this method can be analyzed by some com-
mercial tools such as Cadence Incisive [2] or Novas Verdi [4]
with modifications to the result-file format. SCV introduces
some overhead in execution time. The method is an intrusive
solution to extract the behavior of a SystemC TLM-2.0 model
as the original source code needs to be manipulated. For a
complex design, this manual process is a nontrivial task.

DUST [23] is a SystemC TLM-2.0 analysis framework that
extracts both structural and behavioral information of a TLM-
2.0 model. It retrieves the model’s hierarchy at the end of
the execution of its elaboration phase and presents it in an
XML format. It describes the behavior of the model by record-
ing transactions at run-time. DUST works by enhancing some
SystemC objects (e.g., sc_port to sc_dust_port) and using SCV
constructs which are added to the original source code. Due
to this intrusive solution, its application may thus be limited
if the SystemC library is updated but the given framework
is not. Additionally, existing sources need to be updated to
use DUST’s types instead of the standard SystemC types—a
solution that may require considerable work.

The method presented in [40] takes advantage of debug
symbols to extract static information and SystemC API calls
to retrieve dynamic data during the execution of a SystemC
model. The dynamic information extracted by this method only
reflects the structure of the model. The simulation behavior is
not captured at all though, leaving designers with static model
descriptions. Moreover, the method only supports the debug
symbols that are generated by Microsoft VC+4+ and not GCC
or Clang-LLVM.

Recently, an automated approach was introduced to auto-
matically retrieve the structure and behavior of a given ESL
model [34]. It uses the ROSE compiler to generate an AST
model of the design which is then used to generate an
intermediate representation (IR). The IR is analyzed to extract
both architectural information of the model and behavior as
graphical multithread communication charts. However, solely
relying on a static analysis, the method shares the limitations
of previous static approaches. It cannot consider parameters
which are set at run-time (and may affect the design’s behav-
ior). The behavioral information is restricted to only describe
high level interaction of modules—thus, behavior such as
value changes of a module’s ports and function’s variables
during execution are not traceable. Moreover, the method does
not support designs including pointers or array indices in port
mappings.

In summary, existing solutions have two major limitations in
terms of precise behavior extraction of a given ESL model and
custom code annotations or language constructs. The first limi-
tation is that most of them extract a limited set of information
that only describes the structure of the model and does not
reflect its run-time behavior. The second limitation is that
most of them can only be applied to a restricted range of
SystemC designs and do not support TLM constructs. Those
approaches that analyze the SystemC TLM-2.0 models mostly
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Fig. 1. Architecture of the proposed method.

rely on manipulating the original source code (which is either
expensive for manual processes or may have compatibility
problems for automated approaches) or the SystemC library
and interfaces (which may be an issue for the application of
several approaches in parallel, future updates, or restrictive
environments).

III. METHODOLOGY

As illustrated in Fig. 1, the core idea of the proposed method
to specify a given ESL design in terms of its structure and
simulation behavior consists of three steps.

1) The static information of the compiled model is retrieved

by analyzing its debug symbols to satisfy two goals.

a) Identifying all components and their attributes and
member functions which are required to describe
structure of the model (e.g., the name and type of
the modules’ variables).

b) Automatically generating a set of GDB instruc-
tions tailored to be used in the next step to extract
the model’s structure (dynamic data) and trace its
behavior.

2) The model is executed via GDB using the previously
generated instructions. The model’s structure is retrieved
when the execution reaches the objects for which the
corresponding instructions to extract their information
were generated. The execution of the model is paused
at certain events (such as function calls) to record the
run-time information.

3) The extracted information is automatically transformed
into structured formats that can be used during the
design process with minimal effort to setup by design-
ers. The architecture of ESL models is presented in XML
format, while the behavior of them as a VCD file.

Although this idea (executing a given ESL program in debug
mode to access its run-time behavior using a preprogrammed
debugger) properly works for analyzing SystemC designs [14],
to support TLM constructs it requires some enhancements.

As stated in [11] and [23] to properly understand a given
TLM model, its structure and its transactions’ behavior need
to be recorded and analyzed. The former refers to the object
instances that are created and describe the structure of a TLM
design (such as modules, functions and signals). The latter
refers to the run-time information which specifies the flow
of modules’ communication with respect to transaction’s data
including transaction creation and manipulation.

The main difficulty to be overcome here is to nonintru-
sively trace each TLM transaction’s payload at run-time. To
deal with this issue, we take advantage of the TLM-2.0
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rule stated in [7]—a transaction object is passed as a func-
tion argument to a method implementing one of the given
communication-interfaces (b-transport or nb-transport) with a
reference address (call by reference). The reference address of
a transaction object remains constant from its creation until its
destruction (i.e., during its lifetime). For transactions that are
generated by different TLM initiator modules, the reference
address of transactions can thus be used to isolate information
related to each of them. This reference address is used as
a transaction ID which is the main key to trace a transac-
tion (related information to build its lifetime) among other
transactions within the simulation log of a TLM design.

Therefore, in order to make the debugger properly trace and
log the TLM payloads and function calls, the instructions must
be generated specifically with regard to this case in step one,
thus altering the execution in step two to extract the desired
information about TLM transactions.

The enhancements that need to be performed in each step
to extract and present the required TLM information are as
follows.

1) Extract the structure from the TLM model to recog-
nize the transaction object and its related parameters
(e.g., phase, delay) for each TLM module.

2) Record the transaction’s flow (i.e., the information of
caller and callee object that communicate) and the
transaction’s data (i.e., the transaction’s attribute).

3) Reflect the behavioral information in a big scale view
to empower the designer to easily trace transactions’
behavior. The extracted information is translated to a set
of UML models once the execution finishes. Using an
UML model to reflect the behavioral information enables
designers to easily trace both transaction flow and data
at the same time.

A. Static Information Retrieval

The model’s static information is retrieved by analyzing
its debug symbols (which is generated by the GDB) to
extract all SystemC (e.g., name of modules and their mem-
ber functions and attributes) and TLM constructs (e.g., the
generic payload data type, initiator and target sockets, and
the TLM utilities). This information is required to reflect
the model’s structure and trace its transactions (in case of
SystemC TLM-2.0 designs) at run-time. For instance, consider
the AT-example (which is explained in detail in Section V-A).
A part of the static information related to the design’s struc-
ture is presented in its generated debug symbols (Fig. 2,
lines 8-15). It shows that the design contains a module
AT-typeA-initiator with (among others) an initiator
socket socket and a member function nb_transport_bw
with return type t1lm_sync_enum.

The retrieved information is translated into a more man-
ageable data format in which each module is described in
a hierarchical structure based on its member functions and
attributes. Unlike other static approaches that consider this
type of information as the result, this information is used
as the foundation to extract additional run-time information.
A GDB command file (GCF) which is used to program
GDB is automatically generated based on this static data.
It controls the execution of the ESL executable model run-
ning on GDB to extract the desired information in the
simulation run.

For example, to extract all transactions related to the
AT-example’s initiator module AT-typeA-initiator, we
need to trace all functions of the module in which a transaction
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Symtab for file at_example.cpp
Bléci(vector:

block #169, object at 0x370e870 under 0x39d6930, 4\

syms/buckets in 0x407176..0x40755c, function\

AT_typeA_initiator :: nb_transport_bw (tlm::
tlm_generic_payload & ,...)

8 struct AT_typeA_initiator : public sc_core::sc_module {

9 tlm_utils :: simple_initiator_socket <AT_typeA_initiator\
10 ,32u, tlm::tlm_base_protocol_types> socket;

11 R

12 public:

13 virtual tlm::tlm_sync_enum nb_transport_bw (...);
14 P

15 } % const this; computed at runtime

16 class tlm::tlm_generic_payload ({

17 R

18 } &trans; computed at runtime

19 class tlm::tlm_phase {

20 R

21 } &phase; computed at runtime

22 ...

Fig. 2. Part of the debug symbol of the AT-example design generated by GDB.

set logging on run—time_traces_log. txt

1

2 ...

3 ##pre—defined breakpoit##
4  break AT_typeA_initiator::nb_transport_bw
5 commands

6 printf "instance_name is

7 print this —>m_name

8

9 gdb_AT_typeA_initiator_nb_transport_bw

10 end

11 ##pre—defined GDB function##

12 def gdb_AT_typeA_initiator_nb_transport_bw
13 info line =$pc

14 set $end_func_line_num= $_

15

16 break +1 ##local breakpoint##

17 commands

18 gdb_AT_typeA_initiator_nb_transport_bw
19

20 end

21

22 printf "trans_ID AT_typeA_initiator.nb_transport_bw_—
_trans_ID is : "

23 print &trans

24 printf "trans_phase AT_typeA_initiator.nb_transport_bw_
—_phase.m_id i : "

25 print phase.m_id

26
27 end
Fig. 3. Part of the GCF of the AT-example.

object is referenced. This is performed by finding blocks that
contain the information of module’s function from the debug
symbols. The function’s input arguments and local variables
are also in the block (Fig. 2, lines 16-21). Based on the
extracted data, the nb_transport_bw function of the mod-
ule must be traced as well as the transaction object trans
(Fig. 2, line 18) which is its input argument. To trace the
function, a breakpoint is set at the beginning of the function
body (Fig. 3, line 4). For this breakpoint, a set of commands
(Fig. 3, lines 5-10) is defined that is executed whenever the
breakpoint is triggered at run-time. The information that needs
to be extracted can be defined within these commands and by
default contains information such as the instance name of the
module (Fig. 3, lines 6 and 7) or the transaction phase (Fig. 3,
lines 24 and 25).

B. Run-Time Information Retrieval

In order to retrieve the run-time information with respect to
the execution’s flow, the GCF contains a set of breakpoints to
pause the execution, store the detailed information of the exe-
cution’s state and resume it afterwards. These breakpoints are
set for each function of the design’s modules and the global
functions of the model. They are referred to as predefined
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)
=)

1 <TLM_Design_Architecture Design_name = "AT-example">
2 ..
3 <Module_name name = "AT_typeA_target" type="target">
4 <Function name = "send_response" type="void">
5 <Local_var name="trans" type="tlm_generic_payload"/>
6 <Local_var name="status" type="tlm::tlm_sync_enum"/>
7 <Local_var name="bw_phase" type="tlm_phase"/>
8 <Local_var name="delay" type="sc_time"/>
9 </Function_name >
10 R
11 <Global_var name="response_in_progress" type="bool"/>
12 <Global_var name="n_trans" type="int"/>
13 <Global_var name="socket" \
14 type="tlm_utils :: simple_target_socket"/>
5 . ..
16 </TLM_Design_Architecture >
Fig. 4. Part of the structural presentation of the architecture of the AT-
example.

breakpoints (line 4 in Fig. 3) as they are statically defined
based on a function’s name before running the GDB script.
The predefined breakpoints (which are set up before execu-
tion) are placed at any relevant function’s first line and thus
triggered when their corresponding functions are called. Due
to limitations concerning the amount of breakpoints, succes-
sive lines within these functions cannot all be prepared with
breakpoints before the execution as well. Instead, to record
any changes within a function, setting a new breakpoint for
the next instruction of the function is part of the set of com-
mands that are executed for the first breakpoint, just like it
is part of this newly set breakpoint. This recursive process is
performed repeatedly until the execution reaches the end of
the function’s body. The goal of a predefined breakpoint is to
halt the execution at beginning of a module’s function while
successive local breakpoints are used to step through the body
of module’s function line by line.

C. Information Transformation

1) Architecture Presentation: The structure of a given ESL
design is extracted in two steps.

1) During the static analysis in the first phase of the

proposed method including:
a) the root name and type of each module;
b) the name and type of each function;
¢) the variables of each module;
d) local variables of each function.

2) During the execution of the model where each predefined
breakpoint contains instructions for GDB to retrieve the
structural information that cannot be retrieved during the
first phase including:

a) the instance name of each module;

b) binding information of signals and sockets.
The extracted information from both steps is bound together
to create a complete structure of the design.

To present the extracted architectural information in a struc-
tured, standardized format, the run-time data analyzer module
stores it in an XML formatted file. The root element of this
XML model is the name of ESL design. The structure of the
SystemC design is hierarchical itself, with the first child ele-
ments being modules and global functions. The child elements
of these are their respective member functions and attributes.
Fig. 4 shows a part of the XML presentation of the AT-example
design’s structure.

2) Behavior Presentation for SystemC Designs: One of
the common solutions to trace the simulation behavior of a
SystemC design is the utilization of VCD files. It is usually
generated by the standard SystemC API. Although this method
works well for SystemC data types which are defined as
signals of modules, it comes with some drawbacks as follows.
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Run-time
Informaion

Fig. 5. Architecture of the run-time data analyzer module analyzing the
extracted run-time information of ESL designs.

1) It lacks precision for base type variables (e.g., C++
data type) that may change several times during a single
SystemC-§-cycle (the smallest amount of time that may
pass concerning the simulation kernel).

2) It fails for user-defined datatypes that are not supported
at all unless the designers alter their code.

3) It cannot trace the values of local variables of modules
and functions.

To present the value of SystemC signals, the standard
SystemC API uses SystemC § cycles as the smallest timestep
to differentiate changes on each signal in VCD file. This may
result of less precision for base type variables. As we take
advantage of GDB as an execution environment, the smallest
timestep to differentiate assignments is C++ statements. This
(potentially) increases the precision of tracking value changes
in the order they occur in, while still setting them in context
of the current simulation time. We call this behavior of values
within a single § cycle the intracycle behavior.

The intracycle behavior analysis can facilitate the design
process such as debugging where a C++ data type is altered
by some wrong computations and then used in the right hand
side to be assigned to a SystemC signal. While the conven-
tional VCD file only illustrates the final value of the signal at
each § cycle, the intracycle behavior analysis enables design-
ers to trace all local variables’ intermediate changes within
the & cycle. Thus, the exact point of the bug can be easily
detected.

In order to present the extracted information in the shape
of VCD file, the following information is extracted during the
execution time.

1) The simulation time stamp.

2) All variables’ value of modules and local variables of

functions.

3) The name of each port.

4) Binding information of each port.

5) The instance name of modules.

6) Clock information (if available).

As illustrated in Fig. 5, first all retrieved information is
stored in an internal data structure by the SystemC analyzer
module where each simulation time stamp is considered as a
time unit in which the state of variables that was extracted
at this time is stored. Second, to differentiate values of vari-
ables within a single point in simulation time, the run-time
information is processed by the intracycle time unit (ICTU)
module.

To present all events on a single timeline, the assignments
of each single point in simulation time are sorted by their
execution order o and the value o - u; is added to their
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Algorithm 1: ICTU Update Process

Input: simulation time scale stc, Run-time Information R/
Output: updated R/
foreach time unit t in RI do
foreach variable v in t do
‘ veltllv] <= sum(uing value changes v);
end
tvelt] < sum(vclt]);
end
maxp,e <— max(tve);
e < (1/maxpyc) *stc;
foreach time unit t in RI do
foreach variable v in t do
if ve[t][v] > 1 then
foreach value assignment do
hew <t + Ut}
store (tpew, value assignment);
1 < Inew;
end
end
end

end
update (RI);

original timestamps. The value p,; is thus used to differen-
tiate the particular assignments. It should be much smaller
than the smallest step in simulation time in order to have all
assignments being displayed before the next “large” simula-
tion timestep. u, is therefore related to the maximum sum of
the number of value changes of variables in a time unit among
all time units as illustrated in Algorithm 1 and is calculated
automatically.

Finally, the updated version of the run-time information is
used to generate a VCD file of the design’s behavior via the
generate VCD module.

3) Behavior Presentation for TLM Designs: To present the
behavior of a given SystemC TLM-2.0 model, both transaction
flow and transaction data are retrieved and stored in the run-
time log file. To extract the transaction flow, each predefined
GDB function contains instructions for GDB to extract the
following.

1) The sequence number of objects’ activation.

2) The root name of each module taking part in the

transaction.

3) The role of each module taking part in the transaction
(for TLM modules can be initiator, interconnect or target
and for others is global).

4) The instance name of each module.

5) The name of the current function, its arguments’ values
and its return value (if available).

6) Source code information (i.e., line of code and source
file name).

7) The simulation time.

8) The transaction reference address.

In order to retrieve the transaction data, the GDB instruc-
tions extract the attributes of a transaction object which are
the following.

1) Data value.

2) Address.

3) Command.

4) Data length.

5) Response status.

In the next step, the extracted information in the run-time
log file is translated to a structured format. To do this, the
information related to each single transaction within its life-
time is distinguished from other transactions. In order to trace
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1 transID_number :0x7054f0_1
2 ...
3 ([AT_typeE_target::nb_transport_fw , target4)\
4 ,at_typee_target.h:74, 0 ns, 0x7054f0\
5 ,target], [0x6bc660, 100, tlm ::TLM READ COMMAND\
6 ,4, tlm ::TLM_OK_RESPONSE, BEGIN_REQ, 4565 ps\
; JNULL]T, [1)
9 transID_number :0x7078f0_1
10 ...
11 ([ AT_interconnect:: nb_transport_fw , interconnect)\
12 ,at_interconnect.h:196, 6397 ns, 0x7078f0\
13 ,interconnect], [0x6¢9dc4, 232, tlm ::TLM_WRITE COMMAND\
14 .4, tlm::TLM_OK RESPONSE, END_RESP, 243 ps\

15 ,tlm::TLM_COMPLETED], [])

Fig. 6. Part of the trans log details of the AT-example.

a single transaction in the run-time log file, transactions are
separated based on some unique elements. In addition to
the transaction ID, some attributes of a transaction object
(e.g., response status) as well as other elements related to it
(e.g., the value of the phase argument on call to and return
from the nb-transport function and the return value of the
function) are used to determine the start and end point of the
transaction. The phase argument represents the current state
of a module with respect to the TLM-2.0 base protocol state
machine of phase transition. This information is referred to as
the transaction related information.

As demonstrated in Fig. 5, the TLM analyzer module
gets the run-time log as an input. It extracts the required
information for each single transaction to describe the activ-
ity within its lifetime and stores it in the trans-log detail file.
This data is an accurate trace of each transaction’s behavior,
covering all changes of transaction data that occurred during
the execution of the model. Fig. 6 shows a part of generated
trans-log detail of the AT-example design.

As all information of a single transaction to describes its
lifetime is stored in the trans-log detail, the next step is to
understand the type of transactions. By identifying the types
of communication interface (blocking or nonblocking) in each
transaction lifetime, the type of timing model is extracted
either loosely or accurate time model or a combination of
both. While the loosely time model can only be implemented
in one way due to the TLM-2.0 base protocol, the accurate
time model comes in 13 unique ways. In case of the accu-
rate time model, we take advantage of the transaction related
information to distinguish different types of base protocol
transactions from each other. As shown in Fig. 5, this analysis
is preformed by protocol analyzer module and the result is
stored in the trans type file.

Finally, in order to reduce the complexity of understand-
ing the extracted information stored in the trans-log detail,
the generate UML module generates a UML sequence dia-
gram for each single transaction stored in trans-log detail.
The generated UML diagram is a message sequence chart
introduced by the OSCI TLM-2.0 reference manual in [7]
but it provides the designer with more detailed information.
It describes the transaction flow among modules’ communi-
cation for each single transaction within the design. It also
includes the transaction data (i.e., the last changes of the trans-
action data and not all temporary changes) which is passed
among modules during their interactions. In particular, the
UML model includes a set of sequence numbers indicating
both transaction flow and transaction data within its lifetime.

4) Designer Interaction for Optimized Translation: In order
to provide a better view of a given ESL design’s behav-
ior and structure, the current implementation offers several
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configuration options available for designers. The extracted
information of the design can be filtered based on the follow-
ing parameters.

1) Kinds of Variables: The generated VCD file is optimized
to only show the signals of modules, local variables of
modules’ functions or variables of global functions.

2) Depth of Information: The generated VCD file may
exclude the intracycle behavior (resulting in a more
“classic” SystemC trace that only tracks values when
the simulation time advances).

3) Time Window: The generated VCD shows only the
information from a specific period of simulation time.

4) Depth of Hierarchy: The generated XML model is opti-
mized to only show the information of modules (and
also their member functions and their variables).

In case of SystemC TLM-2.0 designs, the generated UML
model may only show the sequence of certain modules’ activ-
ity or include the transactions’ data as well. This allows the
designer to easily focus on the points of interest in the design
by filtering out any irrelevant information. Moreover, reducing
the amount of translated information enhances the readability
of generated UML, VCD, or XML models.

IV. APPLICATION: VALIDATION OF ESL DESIGNS

In this section, the utility value of the run-time information
analysis method is illustrated. The extracted information is
used to assist the validation of an ESL design against its for-
mal specification [15]. First, the importance of ESL design
validation and the related work in this domain are presented
in Section IV-A. Second, the proposed methodology is shown
in Section I'V-B.

A. Background

One solution to ensure that design constraints such as timing
and phases are satisfied at ESL, is the utilization of for-
mal specification languages such as the UML [32] early in
the design process. UML has become a de-facto standard
for the modeling phase in design processes as it supports
object-oriented and concurrency features that are used by
SystemC [28], [31]. This enables designers to define the struc-
ture and the behavior of the design in order to either create
a reference model for ESL implementation or generate ESL
code stubs or initial implementation. However, manual refine-
ment steps of the generated ESL model are required. As the
implementation of ESL designs based on a formal specification
is either a partly (in case of generating the initial steps auto-
matically from UML model) or fully manual process, errors
may be introduced-resulting in the final ESL model poten-
tially differing from the formal reference model. Therefore,
the validation of ESL design against its formal specification
is necessary.

Previous approaches (either formal or simulation-based)
mostly focus on verifying SystemC TLM-2.0 designs
against TLM-2.0 rules and do not support compliance
checking of ESL models against their formal specifica-
tion [18]-[20], [22], [26]. The method [41] employs SystemC
data extraction approach [40] to extract the information of
a SystemC model. It checks the equivalence of the retrieved
data to the model’s formal specification. Due to use of [40], it
inherits the same limitations which are no support for behavior
validation and TLM construct.

Overall, the existing methods have two major problems: in
case of formal verification, methods are limited to support a
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Fig. 7. Architecture of the validation method.

wide range of ESL designs. Regarding simulation-based verifi-
cation, they are usually using intrusive techniques, either alter-
ing the source code or modifying the SystemC library. This
can reduce the degree of automation or create compatibility
problems for the application of several approaches in parallel.
Moreover, they are mostly restricted to verify SystemC TLM-
2.0 designs against TLM-2.0 rules. Therefore, in this section
we show how both, the behavior and the structure of a given
ESL design, can automatically and nonintrusively be verified
against its formal specification.

B. Validating ESL Designs Against Their Formal
Specifications

To ensure the equality of a given ESL model against its
formal specification, both, structure (e.g., modules, signals, or
binding information) and behavior (the order in which meth-
ods are invoked, must be checked. The structure of the model
is usually defined using block definition diagrams including
components, their attributes and member functions, binding
information of modules’ signals, and parameters of functions.
The behavior of the model is usually specified using sequence
diagrams, determining the expected order of the modules’ acti-
vations (the information for each sequence includes the name
of module, its instance name, and function name). For a design
implementing different tasks or communication protocols (in
case of SystemC TLM-2.0 design), each of them are presented
as an independent sequence diagram. We consider each of this
sequence diagrams a “scenario,” presenting one different task
or communication protocol of the design formally.

The architecture of the validation methodology itself is
presented in Fig. 7. In order to validate the structure of an
ESL design against its specification, the model of the design’s
structural information is compared to its formal presentation.
We assume that the formal specification of the structure and
the behavior of the design are provided by designers. As the
structure of an ESL design is described using root elements
(which are modules and global functions), a bijective (one-to-
one) mapping algorithm is proposed to check the equality of
two models. Based on this, a root element in the XML format
of the ESL’s formal specification is selected to be mapped to
the corresponding root element in the XML model of its run-
time traces. Whether an element of the specification matches
an element from the implementation is determined by several
criteria.

1) Their names must be equal.

2) Their child elements must be equal, i.e.:

a) their variables’ names and types;
b) their ports’ names and types;
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c) their functions’ signatures (name, return type, and
parameters);

d) their local variables.
If no fitting root element is found in the XML model of
run-time traces, the corresponding implementation element is
reported as a violation. Otherwise, the algorithm continues
with the next element. If a specification does not include
detailed information (such as variable names or their types)
this information can be easily filtered from the results in order
to keep the extracted models on roughly the same level of
abstraction as the given specification.

In order to check the compliance of a models’ behavior,
the extracted run-time information from the analysis step in
Fig. 1 is translated to an XML model. We assume that each
design is run using a testbench that includes a set of tests
which provide a full coverage on the complete functionality
and all communication protocols of the design. The ESL
model’s behavior compliance is tested by checking whether
each transaction (implementing a unique communication pro-
tocol) or functionality (in case of SystemC design) matches the
expected sequences of components’ activation (i.e., function
calls and corresponding responses).

In case of SystemC designs, in [15] the simulation run is
used to generate only one sequence diagram from the run-
time log. As the behavior of a design is rarely ever defined
using only one single sequence diagram, comparing this to
the given specification is difficult. Instead, each functionality
is translated into its own sequence diagram. Functionalities
are distinguished based on test cases, for each of which a
unique sequence diagram is generated. Since several test cases
can activate the same functionality, we only verified unique
functionality to reduce the validation time. The instance name
and the name of its function are concatenated for all modules
taking part in each functionality to create a unique identifier,
which is called the functionality signature. The validation algo-
rithm then checks for each unique functionality in the XML
presentation of the extracted run-time traces of the model
whether or not it complies with the expected scenario.

Regarding SystemC TLM-2.0 designs, the algorithm checks
the equivalence of each unique transaction with the expected
scenario. Thus the first task is to create a list of unique trans-
actions, each of them representing a unique communication
protocol. This reduces the validation complexity as the design
might contain several transaction of the same communica-
tion protocol. In [15] only the transactions’ reference address
(transaction ID) is used as key to filter redundant transactions.
This may not be sufficient as an initiator module can gen-
erate two transactions with the same address implementing
different communication protocols (e.g., the transactions are
sent to two different target modules through an interconnect).
Therefore, some scenarios might not verified in this case. To
solve this problem, in addition to the transaction ID, we add
another key to distinguish transactions that share the same
address: the instance name of each module taking part in trans-
action lifetime is concatenated to the transaction ID to create
a transaction signature.

As illustrated in Algorithm 2, a list of unique transactions
and functionalities is stored, allowing a matching scenario to
be selected from the formal specification part if available. If
a fitting scenario is found, the success is indicated to the
user and, for each extracted transaction or functionality, a
corresponding (XML formatted) log is generated from the
transaction’s run-time traces. Otherwise, while the algorithm
continues for all transactions and scenarios, the scenarios that
could not be matched are reported as violations.
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Algorithm 2: Behavior Validation Algorithm

Input: SystemC_trace ST, TLM_trace TT, scenario_list SL
Output: Equivalence_list EL
functionality_unique_list ful < @;
transaction_unique_list tul < ;
foreach functionality f in ST do

fs < functionality_signature(f);

if fs not in ful then

L add (fs, ful);

foreach transaction t in TLM-2.0_trace do
ts < trans_signature(t);
if ts not in tul then

L add (zs, tul);

foreach transaction/functionality t/f in ful/tul do
foreach scenario s in SL do
if s in ful/tul then
L EL[s] < true;
else
L EL[s] < false;

V. EXPERIMENTAL EVALUATION

Several standard ESL designs from various domains have
been used to evaluate the quality of the proposed method.
The experimental evaluation is presented in two steps. First,
two case studies—RISC-CPU (implemented in SystemC) [21]
and AT-example (implemented in SystemC TLM-2.0) [6]—are
discussed in Section V-A. Second, we give a brief discussion
based on the obtained results to evaluate the quality of the
proposed method in Section V-B. All algorithms are imple-
mented in python. The experiments are carried out on a PC
equipped with 8-GB RAM and an Intel core i7 CPU running
at 2.4 GHz.

A. Case Studies

The experimental results of applying the proposed method
to all benchmarks are presented in Tables III and IV for
SystemC and SystemC TLM-2.0, respectively.

The SystemC models that are presented in Table III
are taken from the standard examples which provided by
OSCI [21], S2CBench [33], GitHub [3], [29], and the
University of Edinburgh [1]. In this table, column test size
illustrates the size of application running on each design.
columns SystemC Model, LoC, Comp, and Test show the name
of designs, the lines of code, number of modules and the num-
ber of test applying to each design, respectively. We compare
the results of our methods to the SystemC trace file API in
terms of the number of retrieved variables #Var, number of
extracted time units #7U and execution time Exec. Columns
ExecD and ExecM show the execution time of the proposed
method when data is stored on disk and memory, respec-
tively. As demonstrated in this table, the amount of both,
retrieved variables and time units for all case studies of the
proposed method are much higher than those retrieved via
the SystemC trace API. The parameter #7U represents value
changes of variables. These parameters illustrate the accu-
racy of our approach to extract the detailed behavior of a
SystemC design. This difference in the amount of retrieved
data reflects one major advantage of the proposed method. As
it is able to trace value changes even for both, global and local
native variables (that have the SystemC primitive data types)
or compound data types (which can be constructed using the
programming language’s primitive data types) regardless of
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whether they are placed on the stack or the heap not only when
the simulation time advances but also of any assignments in-
between. Moreover, using the SystemC trace API to analyze
the behavior of a given SystemC model is an intrusive solu-
tion. It required further programming effort by the designer to
modify the original source code to include all variables that
need to be traced. Thus, for a complex design with lots of
variables, may be a time consuming task.

The SystemC TLM-2.0 models in Table IV are the stan-
dard examples providing by Doulos [6]. Columns TLM model
shows the name of SystemC TLM-2.0 designs. The LoC and
#Comp, #TM, and #Trans illustrate the complexity and dif-
ference of each design in terms of lines of code, number
of components, number of transaction and the timing model,
respectively. Columns #UTrans presents how many different
base protocol transactions are implemented in each design
which is performed automatically by analyzing each transac-
tion lifetime. The #Seq column shows the number of lines
related to the unique behavioral information that has been
extracted during the execution of each design. Column CExeT
presents the compilation and execution time of each design
without any modification. The TP-GDB column shows for
each SystemC TLM-2.0 design the required time to analyze
it using GDB trace point. The term “GDB trace point” refers
to the watchpoints feature of GDB that can be used to trace
an expression such as the value of a variable or an operation
during the execution of a program. Whenever the value of
aforementioned expression changes, the corresponding watch-
point automatically stops the execution and reports its old
and new values. This requires that the designer first sets a
breakpoint at a specific location (e.g., a function of a design)
and then adds a watchpoint to trace the desired expressions
(e.g., variables or signals).

In both tables the OSDS column shows the size of gen-
erated output data sets followed by size of the run-time log
(column LogF) and generated XML model of each design’s
structure (column XML). Column VCD in Table III presents
size of generated VCD for each SystemC design. The UML
size reported in Table IV is the average size of the generated
UML diagram over all transactions of each TLM design. In
both tables, the largest output file is the run-time log (which
is generated in the first phase of the proposed method) as it
includes the detailed data and the complete history of the exe-
cution. A large part of the information in the run-time log is
used to track the useful data related to the behavior and struc-
ture of the design and thus filtered out during the translation
process (in the second phase). The XML and UML files for
all case studies remain in the order of KB. Using the filter
options can reduce the size of output data sets (VCD, UML,
and XML) even more, allowing the designer to have a bet-
ter readability, focusing the resulting logs at whatever issue is
currently at hand.

1) RISC-CPU (SystemC Design): The RISC-CPU design is
a standard OSCI example implementing a CPU in SystemC
using ten different modules. The instruction set is based
on commercial RISC processors together with MMX-like
instruction for DSP programs. It consists of more than 39
instructions such as arithmetic, logical, branch, floating point
and SIMD (MMX-like). In order to show the intracycle behav-
ior, we modified the exec module by adding a combinational
function calculating the factorial of the dina input. The
factorial function is added as an exemplary hardware acceler-
ator, computing the factorial computation in a single clock
cycle. Integrating such accelerators is a common approach
to gain performance for a specific task. Fig. 8 illustrates a
part of the generated VCD file of the RISC-CPU system. The
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Fig. 8. Part of the generated VCD file of the RISC-CPU example.
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retrieved structural and behavioral information of the design
is shown in four parts in this figure.

1) (A) shows a basic hierarchy of the RISC-CPU design in
form of the signal search tree (SST). It includes the name
of modules and their instances as well as the global func-
tions (e.g., scmain function in this example). E.g., the
exec module has only one instance in the RISC-CPU
design which is EXEC_BLOCK.

2) (B) illustrates the state of the design’s variables
after the simulation. Each variable is identified based
on its hierarchical structure which consists of the
name of the root module, the name of function
(for local variables), the name of variable and the
instance name of the root module. The expression
exec_-_dina.read()_-_EXEC_BLOCK shows
that the instance EXEC_BLOCK of module exec
has a signal dina. The value of this signal (here
is 8) is access by member function read() of
its type. The expression exec.factorial_ -_
factor_tmp_-_EXEC_BLOCK illustrates that the
function factorial of instance EXEC_BLOCK of
module exec has a local variable factor_tmp. The
value of this signal is 40 320.

3) (C) shows the value of each variable which is assigned
during run-time in the shape of a waveform with respect
to the simulation time.

4) (D) finally illustrates the intracyclic information, show-
ing how new, small timesteps illustrate a variable
being increased within a single SystemC-§-cycle. In
this example, at time unit + = 63 ns the input sig-
nal dina is assigned to 8 thus the combinational
function factorial is called to calculate 8! It is com-
puted by a for-loop statement where the local variable
factor_tmp is defined to store the partial values of
the factorial of dina input in each iteration. As the
entire calculation is performed in a single SystemC-
d-cycle, these temporary changes are covered by the
intracycle behavior analysis. To cover these temporary
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changes in a single time unit, the Dynamic Information
is analyzed by ICTU module based on Algorithm 1. As
the maximum amount of assignments within each of the
simulation timesteps is max = 100 and the simulation
time scale is ts = 1 ns, the smallest step within a sin-
gle time unit is u; = (ts/ max) = 10 ps. This allows
the method to store all value changes (even temporary
ones).

2) AT-Example (TLM-2.0 Design): The AT-example uses
eight of the 13 TLM-2.0 base protocol’s specified trans-
action protocols, with the unused parts being small cases
such as transactions that are canceled immediately after ini-
tiation. The design includes multiple approximately timed
(hence the name of the model) initiators and targets, as well
as an AT interconnect. The architecture of the AT-example
design is shown in Fig. 9. It includes 19 modules, namely
four initiators, one interconnect, five targets, and nine check-
ers. It consists of two different type of initiators named
AT-typeA-initiator and AT-typeB-initiator,
and five different targets named AT-typeA-target through
AT-typeE-target. Initiators (types A and B) and targets
(types A-E) each implement different cases of a TLM commu-
nication’s phase transitions (from the TLM-2.0 standard). For
each communication that is done by each TLM module, the
transaction packet is checked by the checker modules (which
are BP-chkr-init0 to BP-chkr-trgt4).

The proposed method uses the suggested approach and
the extracted data to generate a sequence diagram, shown
in Fig. 10. For each interaction between two modules, the
corresponding arrow indicates both.

1) Operations that are called on a module instance.

2) Transaction data.

Fig. 10 illustrates a part of behavioral information of the
AT-example (i.e., the gray component in Fig. 9) for a single
transaction in the shape of an UML model. In this figure,
the black stadium shapes illustrate the root name and instance
name of modules and global functions within the design. For
global functions, the instance name is NULL. The role of
each component is presented on top of the components’ name.
It separates TLM modules and global functions or modules
(e.g., for monitoring a transaction) which are not supposed to
be a main part of transaction flow with respect to TLM-2.0
protocol but still necessary to describe the model’s behavior.
For each interaction between two modules, the information on
each arrow indicates operations that are called on an instance
and are drawn from the caller to the callee with respect to the
simulation time. In particular, for a call from a TLM module or
related modules (e.g., for monitoring a transaction), it shows
the number of sequence, the name of the caller function, the
timing phase, the delay time related to the phase transition,
and the return value of the callee (if available). Regarding a
call from a global function, it shows the sequence number and
the name of the caller function.

In addition to the transaction flow, the generated UML
model shows detailed transaction data. The box under each
arrow contains the transaction’s attributes, which are passed
as an argument from caller to callee. The white boxes indi-
cate a transaction object locally created by an initiator module
and passed as a function argument while the blue boxes show
a transaction object reached the callee through a function call.
As an example, seg-18 in Fig. 10 shows the information
of the response of the target module AT-typeE-target. It
includes the name of called function (nb_transport_fw),
timing phase of the transition (BEGIN_REQ), timing annota-
tion (4598 ps), and the return value from nb_transport_fw
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TABLE I
ANALYSIS OF THE AT-Example TRANSACTIONS TIMING MODEL

[ Call | Return | Phase Transition | #Seq |

fw TC BRQ 45

fw TU/TC BRQ/BRP/ERP 80
fw/bw TU/TC BRQ/ERQ/BRP 82/ 821
fw/bw TA/TC BRQ/BRP 59
fw/bw TA/TA/TA BRQ/BRP/ERP 103
fw/bw TA/TU BRQ/BRP/ERP 81
fw/bw | TA/TA/TA/TA BRQ/ERQ/BRP/ERP 127
fw/bw TA/TA/TU BRQ/ERQ/BRP 82

TExample contains two implementations, both being a sequence of 82 calls.

(tlm: : TLM_COMPLETED). It also shows the transaction
data passed to the callee module including the reference to
the transaction data (0x6bc660), address (100), command
(tlm: : TLM_READ_COMMAND), length (4), and response sta-
tus (t1lm: : TLM_OK_RESPONSE). The obtained result in this
example also demonstrates that the timing annotation that is
used for the internal process does not have an effect on the
simulation time, as it is expected from TLM transactions.
Notice that the information also includes both, class names and
instance names for the given modules, seen on top of Fig. 10.

Table I illustrates the result of analyzing the AT-example
by the proposed method. It shows the different ways of
modeling communication-interfaces (implementing different
base protocol transactions) of the design, all of which are
automatically extracted by analyzing the transactions’ life-
time. Therefore, designers can easily understand which types
of communication interfaces and base protocol transactions
are implemented in a given TLM-2.0 model. The Call col-
umn presents the type of call to transport the transaction
which are nb_transport_fw (fw) and nb_transport_bw (bw),
i.e., forward and backward paths of the nonblocking trans-
port interface. The return column shows the return value of
these methods based on which protocol is used. Eligible values
are TLM_ACCEPTED (TA), TLM_COMPLETED (TC), and
TLM_UPDATED (TU). Phase transition presents the possible
transitions of the timing phase for each transaction protocol
which are BGIN_REQ (BRQ), END_REQ (ERQ), BGIN_RESP
(BRP), and END_RESP (ERP). Finally, #seq shows the num-
ber of function calls related to the given transaction protocol
that were extracted by the proposed method.

B. Integration and Discussion

The proposed method is able to automatically retrieve a
huge amount of information to describe the structure and
behavior of a given ESL implementation.

According to [27] the following criteria should be consid-
ered by ESL analysis approaches.

1) Avoiding any preconditions concerning the source code

or workflow in order to be as compatible as possible.

2) Applying as little intrusion to the existing sources and

workflow as possible.

3) Extracting detailed information of a design which

reflects its structure and behavior.

4) Supporting TLM-based models.

We evaluate the characteristics and the applicability of the
proposed method based on how it does meet the aforemen-
tioned criteria.

1) Concerning the First and Second Criteria: In compar-
ison to approaches that rely on manipulating the original
source code or modifying the SystemC library or interfaces to
extract the run-time information, the proposed method extracts
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Role: interconnect

AT _interconnect:
interconnect

Role: global

tlm_utils:
check_targ4

Role: target

NULL

AT _typeE_target:

targetd

: 4598 : tlm::TLM_COMPLETED &

NULL

|
ETE RESPONSE,
NULL

5 : NULL

1 seq-18 I  nb_transport_fw : BEGIN_REQ

m_length: 4
| m_response s

o
-

0 . S SN N B SN SN SN e SN N BN BN BN BN BN SN B

| m_data: 0x6bc660 :
m_address:100

| m_command: lm::TLM_READ_COMMAND :

1

]

5 ¢ NULL

seq-16 : nb_transport_fw : BEC

0 seq-17

rand_ps: NULL

LETED

Fig. 10. Part of the generated UML model of the AT-example behavior presenting detailed transaction data.

the detailed run-time information without any modification
of the user’s implementation and the standard tool flow. The
information extraction process by the proposed method can be
perform even without the original source code as it only needs
the binary executable of the design and its debug symbols. It
means that the proposed method is a nonintrusive and code-
independent approach. The main problems of using intrusive
techniques are the compatibility issues (that arise from modi-
fying the SystemC library) and the reduction of the automation
degree (due to expensive manual processes to manipulate the
original source code). Moreover, it can be combined with
setups that already rely on a modified SystemC library which
makes the approach applicable for a wide range of ESL
designs. This makes the proposed method as an easy-to-use
ESL analysis solution.

2) Regarding the Third and Fourth Criteria: Unlike the
methods that focus on extracting the static aspect of an ESL
implementation, the proposed method extracts the models’
behavior as well as their structure. It presents the retrieved
information of a given ESL model in two different categories.

1) An XML model of the design architecture.

2) A structured trace file of design’s run-time information

including:

a) intracycle analysis of SystemC designs’ behavior
in the standard VCD format;

b) all details of transaction data and flow (UML
presentation for each single transaction in its life-
time) by precision of an instruction execution and
with respect to design’s execution flow.

In case of analyzing SystemC TLM-2.0 models, the developed
method meets the requirements stated in [11], [23, Sec. III] as
it provides designers with behavioral analysis of the models’
transactions.

TABLE I
COMPARING THE PROPOSED METHOD WITH EXISTING APPROACHES

[ Method | Automated | Non-intrusive [ Struct. info. [ Behav. info. [ TLM-2.0 |
Ours 4 4 4 4 4
[13] v X v X X
Pinapa [27] v v v X v
PinaVM [24] v v v ~ X
SHaBE [10] v v v X X
DUST [23] = X v z v
[40] v v v X v
[34] v v v ~ v
V/support ~ not fully support Xnot support
Struct. info.: Structural information Behav. info.: Behavioral information

Overall, Table II demonstrates the characteristics of the
proposed method to analyze a given ESL design in comparison
with the existing approaches. It shows that our method not only
satisfies all criteria stated in [27], but also provides designers
with precise run-time information describing the behavior of
an ESL design.

3) Performance: The performance of the proposed method
depends on the time that is spent extracting the information of
a model. The extraction of the model’s run-time information
is the major time consuming part of the method. The time that
is consumed to extract the run-time information depends on
three parameters.

1) The complexity of each ESL design.

2) The size of running application (testbench).

3) The amount of information that needs to be extracted.
Concerning the first parameter, as the program is executed on
GDB to store the state of the program during its simulation
time on disk (or memory), the execution has to be halted
repeatedly. The number and duration of halting a program
are very related to the instruction types such as loop, wait
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TABLE III
EXPERIMENTAL RESULTS FOR ALL SYSTEMC CASE STUDIES
. SystemC Trace Ours TP-GDB OSDS(MB
‘ Test size ‘ SystemC Model | LoC  #Comp #Test | yvo ™ ¥TU "Exects) | #Var  #TU  ExecD(m:s) ExecM(m:s) ‘ CExeT(s) ‘ Exec(h) ‘ Logf  VCD | XML
4-bit shift-register” | 135 2 50 3 29 0.01 12 54 0:03 0:02 22 >1 027 0012 0.004
FIR-filter? 233 5 30 6 24 0.01 23 504 0:05 0:04 4.1 >3 141 0.063 0.007
3-stages-pipe? 290 5 10 8 23 0.01 25 34 0:06 0:03 49 >3 117 0022  0.007
FFT_fipt2 484 2 10 8 81 0.01 34 129 0:51 0:43 3.9 >5 153 0.041 0011
Cholesky3 522 2 27 4 11 0.01 28 46 0:17 0:13 5.4 >5 170 0.032 0.010
Hamming-code?® 563 6 16 13 32 0.02 55 64 1:09 0:54 6.9 >5 213 0045 0016
Interpolation® 596 2 10 10 21 0.02 32 30 0:47 0:41 6.1 >5 155  0.039  0.006
Small IDCT3 815 2 100 9 205 0.02 27 206 0:41 0:32 3.6 >5 472 0058 0.004
VGA3 856 6 100 9 59 0.02 37 239 423 3:49 3.8 >5 1225 0072 0.010
Decimation? 883 2 20 10 47 0.02 35 48 0:33 0:24 5.4 >5 145 0054 0.008
pkt-switch? 1020 20 50 14 93 0.05 332 5606 0:20 0:17 8.5 > 10 411 0651 0.036
MD5-hash3 1111 2 5 18 23 0.06 33 115 10:12 8:57 6.3 > 10 1843  0.041 0.011
RISC CPU? 1960 10 10 89 37 0.03 299 121 0:13 0:11 111 > 10 106  0.103 0.026
Simple-bus? 2100 7 10 10 359 001 32 852 3:43 3.07 5.1 > 10 1349 0213  0.011
AES128lowarea® | 3280 13 5 10 18 1.39 86 89 12:23 10:04 17.2 > 10 4267 0061 0.021
LZW-encoder? 5132 22 5 20 30 242 398 139 45:48 37:43 223 > 10 9171 0239  0.052
4-bit shift-register’ | 135 2 150 3 78 0.02 12 142 0:07 0:05 22 >1 076 0.031 0.004
FIR-filter? 233 5 150 6 66 0.02 23 2291 0:19 0:16 4.1 >3 623 0257 0.007
3-stages-pipe? 290 5 150 8 300 0.02 25 341 0:21 0:11 49 >3 1626 0314  0.007
FFT_fipt2 484 3 150 8 1465  0.02 34 5841 4:10 3.29 3.9 > 10 2012 0.542  0.011
Cholesky? 522 2 108 4 29 0.02 28 429 1:52 1.25 5.5 > 10 6.17  0.102 0.010
Hamming-code?® 563 6 128 13 256 0.02 55 512 5:06 4:04 6.9 > 10 16.71 0311 0016
Interpolation® 596 2 104 10 205 0.02 32 295 2:31 2:09 6.1 > 10 1510 0345  0.006
Large IDCT3 815 2 996 9 1997 0.2 27 1998 4:11 3.07 3.7 > 10 4340 0513 0.004
VGA3 856 6 1000 | 9 619 0.2 37 2005 15:28 13.11 3.8 > 10 11037 0.640 0.010
Decimation? 883 2 215 10 437 0.02 35 438 6:06 4:41 5.4 > 10 1217 0.409  0.008
pkt-switch? 1020 10 350 55 1723 0.05 332 19559 3:39 3:05 8.7 > 10 26.05 3.620 0.036
MD5-hash? 1111 2 50 18 66 0.06 33 307 41:20 35:32 6.3 > 10 16527 0.192  0.011
RISC CPU? 1960 10 150 89 137 0.03 299 368 9:52 8:16 112 > 10 1339 0.268  0.026
Simple-bus? 2100 7 100 10 4506  0.02 32 9767 24:05 20:09 5.2 > 10 129.96 2.039  0.011
AES128lowarea® | 3280 13 50 10 110 3.39 86 397 51:38 41:48 19.2 > 24 419.11 0219  0.021
LZW-encoder? 5132 22 50 20 290 516 398 529 193:41 159:03 25 > 24 90427 0.722  0.052

Provided by University of Edinburgh [1] 2Provided by OSCI [21] 3Provided by [33] TProvided by GitHub [3] 5Provided by [29] LoC: Line of Code #Comp: Number of
components #Var: Number of Variables #TU: Number of extracted Time unit ExecD: Execution Time on Disk ExecM: Execution Time on Memory CExeT: Compilation and
Execution Time TP-GDB: Trace Point by GDB OSDS: Output Size of Data Set

statements and function call. Therefore, more complexity
leads to an increased execution time. Experimental results
(columns ExecD and ExecM in Table III and columns
ETD and ETM in Table 1V) show that storing data in the
main memory instead of writing it to disk eliminates 1/O
bottlenecks. This provides designers in average with 21% and
19% performance gain for SystemC and SystemC TLM-2.0
designs, respectively. As long as new inputs are applied to
the design, the extraction time is increased linearly. Reducing
the amount of data to be extracted (e.g., by limiting the
extraction to certain data fields of particular transactions) also
reduces the overhead of the extraction method.

In order to show how the performance of the proposed
method is related to the second and third parameters, we eval-
uate it by defining two depths of data extraction specified
by abstract and detailed and two size of applications to be
run on each design which are small and large. The abstract
data extraction depth includes all structural information and
the sequence of all component activations. In addition to the
information retrieved in abstract level, the detailed depth of
data extraction contains all value changes of modules and func-
tions variables during execution. Figs. 11 and 12 illustrate the
execution time of the proposed method for two depths of data
extraction of each design where small and large set of tests
are applied to them, respectively. This provides designers with
four corners of the ESL design analysis based on the amount
of information to be extracted which are small-abstract (SA),
small-details (SD), large-abstract (LA), and large-details (LD).
The SA corner shows the fastest analysis and the least amount
of information about the design while the LD corner repre-
sents the slowest and most precise analysis on a given ESL
design.

In addition to the abstract and detailed depth of behavior
analysis, the proposed method provides designers with a set
of configuration options and parameters in the first phase to
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Fig. 11. Run-time analysis of the proposed method based on two depths

of information extraction for small applications running on each SystemC
design.

generate the GCF script based on the designers’ optimization.
This allows them to filter out the information that is not
required for their analysis and focus on the points of interest.
These interactive options are as follows.

1) Filtering some elements of the design, e.g., only trace

certain modules (and their signals).

2) Filtering based on depth of information, e.g., trace only

modules (and their member functions and variables).

3) Filtering some specific types of function, variables or

signals, e.g., do not trace global functions, local vari-
ables or signals of type sc_in.

The proposed method thus provides a designer-chosen trade-
off between the amount of information to be extracted and the
time that is needed to do this.

Regarding SystemC TLM-2.0 designs, Table IV shows
the execution time for extracting the static and run-time
information and storing them in structured models to a hard
drive (column E7D) and memory (column ETM). It shows that
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TABLE IV
EXPERIMENTAL RESULTS FOR ALL TLM-2.0 CASE STUDIES
‘ Test size ‘ TLM Model LoC #Comps #Irans #UTrans TM  #Seq ETD(m:s) ETM(m:s) ‘ CExeT(s) ‘ TP-GDB(h) OSDS(MB)

3 3 LogF UML XML

LT-example 175 2 16 T LT 35 0:09 0:06 1.4 >1 0.72 0.007 0.002
Routing-model 456 6 2 1 LT 68 0:21 0:15 15 >1 1.30 0.014  0.004
Example-4 547 2 4 4 AT 488 1:29 1:12 1.4 >1 4.73 0.019 0.003

Small Example-5 650 7 2 2 LT 49 1:25 1:09 2.1 > 1 1.72 0.014  0.005
Snooping-sticky 676 5 64 2 LT/AT 568 2:51 2:12 6.2 >1 8.24 0.016  0.009
Example-6 713 9 10 10 AT 683 1:53 1:31 22 > 1 8.92 0.038 0.017
AT-example 2942 19 8 8 AT 1008 7:41 6:19 21 >1 8.61 0.042 0.036
Locking-two 3831 23 10 10 LT/AT 523 9:06 7:54 22.6 >5 10.32 0.038 0.047
LT-example 175 2 160 T LT 350 2:11 1.39 I.6 >1 6.39 0.007 0.002
Routing-model 456 6 100 1 LT 1402 4:15 3:04 1.7 >1 61.42 0.014  0.004
Example-4 547 2 348 4 AT 14060 66:27 53:47 1.8 > 24 406.22  0.019 0.003

Large Example-5 650 7 69 2 LT 47 31:13 25:53 2.1 > 10 57.14 0.014  0.005
Snooping-sticky 676 5 512 2 LT/AT 4544 11:33 8:56 6.8 >5 62.89 0.016  0.009
Example-6 713 9 245 10 AT 14354 53:03 43:21 22 > 24 21327  0.038 0.017
AT-example 2942 19 49 8 AT 6181 27:33 23:41 232 > 10 51.63 0.042  0.036
Locking-two 3831 23 371 10 LT/AT 16379 79:15 69:05 24.3 > 24 379.40  0.038 0.047

LoC: Line of Code UTrans: Unique Transaction TM: Timing Model ETD: Execution Time on Disk ETM: Execution Time on Memory CExeT: Compilation and

Execution Time TP-GDB: Trace Point by GDB OSDS: Output Size of Data Set
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Fig. 12. Run-time analysis of the proposed method based on two depths of
information extraction for large applications running on each SystemC design.

by increasing the numbers of transactions (from small test size
to large), the execution time increases. The first half of the
table (small test size) illustrates that designs with more lines
of code and AT timing model (which including more com-
plex base protocol transactions) have larger execution time.
Tables III and IV compare the execution time of our method
to analyze a given ESL design with both trace point functional-
ity by GDB and its pure compilation and execution time using
GCC. Although GDB’s trace point feature gives a detailed
access to analyze the ESL model, the required execution time
even for a simple ESL design lies in an order of hours and
for a complex design, days. The method also needs to be set
up manually which makes the solution inapplicable even for
a simple model. The required time to analyze an ESL design
using our method in the SD corner is in most cases within
a reasonable boundary in comparison to its pure compilation
and execution time using GCC. Even for complex designs, it
is still in order of minutes.

Although the performance impact of the proposed method
can be considerable for analyzing a large given ESL design
(concerning the LD corner) in comparison to its pure compila-
tion and simulation time (worst case the LZW-encoder running
for about 3 h versus half a minute), there is a wide variety of
use cases that justify the application of the given approach.

1) The method is able to retrieve detailed traces from,

e.g., native variables, the information which has so far
been limited to manual debugging.
The build pipeline remains untouched. This keeps the
setup time low and lets designers quickly evaluate
especially short, questionable test cases. Moreover, any
results obtained using the given method are sure to be
identical to those that are shown for the production
system.

2)

3) In case of third party intellectual property for which only
an executable binary is available, the proposed method
remains operable. It is the only solution that works on
an executable model of the design without availability of
source code—retrieving the information that is available
via debug symbols and omitting the unavailable data
without further setup.

The method can be used at any stage of the design cycle
such as helping in understanding the designs’ complexity,
validation, verification, or synthesis.

4) Memory: As illustrated in Tables III and IV, the largest
portion of the generated output data sets (column OSDS)
belongs to the run-time log file (column LogF). The reported
size for all case studies is in order of MB with the worst case
LZW-encoder in LD corner which is about 1 GB. This allows
designers to usually store the extracted data in the first phase
of the proposed method (creating the run-time log) in the main
memory (instead of the hard disk) to reduce I/O overhead and
improve the performance.

5) Limitation: The only precondition of the suggested
approach is that the executable ESL design must contain debug
information that is compatible with GDB. While GCC and
Clang-LLVM are thus supported, Microsoft Visual Studio is
currently not. Although our methodology is an overall sound
analysis, it does share the inherent performance limitations that
come with most other run-time-analysis tools build on GDB.

VI. CONCLUSION

In this paper, a new easy-to-use ESL analysis approach
was introduced. The approach is able to analyze SystemC
and SystemC TLM-2.0 implementations and translate the
corresponding data to usable formats such as VCD and
UML sequence diagrams, respectively. The proposed method
automatically and nonintrusively extracts both structural and
behavioral information of a given SystemC or SystemC
TLM-2.0 model without any modification to the source code of
the model or the library. Several ESL benchmarks were run to
evaluate the effectiveness of the proposed method to analyze
ESL designs. The retrieved information in this method can
be effectively utilized for ESL designs validation, verification,
and synthesis process.
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