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Abstract—Much research has shown that applications have
variable runtime cache requirements. In the context of the
increasingly popular Spin-Transfer Torque RAM (STT-RAM)
cache, the retention time, which defines how long the cache
can retain a cache block in the absence of power, is one
of the most important cache requirements that may vary for
different applications. In this paper, we propose a Logically
Adaptable Retention Time STT-RAM (LARS) cache that allows the
retention time to be dynamically adapted to applications’ runtime
requirements. LARS cache comprises of multiple STT-RAM units
with different retention times, with only one unit being used at a
given time. LARS dynamically determines which STT-RAM unit
to use during runtime, based on executing applications’ needs. As
an integral part of LARS, we also explore different algorithms to
dynamically determine the best retention time based on different
cache design tradeoffs. Our experiments show that by adapting
the retention time to different applications’ requirements, LARS
cache can reduce the average cache energy by 25.31%, compared
to prior work, with minimal overheads.

Index Terms—Spin-Transfer Torque RAM (STT-RAM) cache,
configurable memory, low-power embedded systems, adaptable
hardware, retention time.

I. INTRODUCTION

The memory hierarchy remains one of the most important
components of computer systems, including mobile devices,
embedded systems, desktop computers, servers, etc. On-chip
caches are especially important for bridging the persistent
processor-memory performance gap in computers. The cache
subsystem can consume up to 50% of a processor’s total power
[1]. As a result, much research has focused on optimization
techniques to reduce cache energy consumption without de-
grading performance.

An emerging and increasingly popular optimization involves
using the non-volatile Spin-Transfer Torque RAM (STT-
RAM) instead of traditional SRAM caches. STT-RAM offers
several advantages, including non-volatility, higher storage
density than SRAM, low leakage power, and compatibility
with CMOS technology [2], [3], [4]. Much prior research
and various prototypes, including a few commercial offer-
ings, demonstrate the growing interest in STT-RAMs and
their benefits [S], [6], [7]. However, dynamic operations in
STT-RAM caches accrue significant overheads, compared to
SRAM caches, due to long write latency and high dynamic
write energy [4]. Furthermore, in resource-constrained general
purpose systems (e.g., smartphones, tablets) that execute a
variety of applications, which may be unknown a priori, cache
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requirements typically vary during runtime. As such, a single
design-time configuration may be over- or under-provisioned
for the runtime execution needs of different applications,
thus limiting energy optimization potential. Targeting the L1
cache, due to its high number of dynamic operations, this
paper aims to mitigate the energy overheads of STT-RAM
caches. We also aim to realize STT-RAM caches that can
satisfy variable runtime application needs without introducing
substantial overheads.

To address the aforementioned challenges, we took a close
look at STT-RAM’s data retention time—the duration for
which data is retained in the absence of an external power
source. STT-RAM was originally developed to retain data for
up to ten years in the absence of an external power source [§]].
However, prior work [9] has revealed that such long retention
times also mean that substantially more latency and energy
is consumed during writes. These additional overheads could
be prohibitive in resource-constrained computer systems like
mobile devices. Furthermore, such long retention times are
usually unnecessary since most applications’ data blocks only
need to remain in the cache for no more than one second [2]].
Therefore, to reduce the write latency and energy, the retention
time can be substantially relaxed, such that it is just sufficient
to hold cached data.

Much prior work has explored the benefits of substantially
relaxing the retention time [10], [4], [2], [LLl], [12]. In order
to reap the full energy and latency benefits of relaxing the
retention time, the STT-RAM cache is sometimes designed
such that the relaxed retention time is shorter than several
data blocks’ lifetimes—i.e., the duration for which the data
blocks must remain in the cache. As such, premature eviction
of data blocks must be prevented using techniques such as
the dynamic refresh scheme (DRS) [10], [4], [2]. DRS is a
DRAM-style mechanism that monitors data blocks’ lifetimes
and continuously refreshes the blocks that must remain in the
cache beyond the retention time. However, the refreshes can
incur substantial overheads resulting from the multiple read
and write operations required for each refresh operation [11].
As such, the optimization potential of the STT-RAM cache
may be limited by such schemes.

To mitigate the DRS overheads, a few techniques have
been proposed to reduce the number of refresh operations
[L1], [13]. The key drawback of these techniques, however, is
that they typically rely on compiler-based data rearrangement.
These compiler-based techniques incur overheads due to the
increased compilation time and the costs of extra physical
circuits to implement the techniques [11], [12]. In addition,
our analysis shows that different applications may require



different retention times based on the applications’ execution
characteristics (e.g., cache block lifetimes). Prior techniques
typically feature a single retention time throughout the cache’s
lifetime [11]], [13], and therefore, cannot be dynamically
adapted to different applications’ runtime needs.

We have extensively analyzed the behavior of cache blocks
and their sensitivity to retention times. Based on these analysis,
we made three major observations that motivate the work pro-
posed herein. First, similar to other cache configurations (size,
line size, associativity), different applications may require dif-
ferent retention times for energy-efficient execution, depending
on the applications’ cache block characteristics. Second, even
though a shorter retention time consumes less energy than a
longer one, the longer retention time may be more energy-
efficient in the light of the refresh overheads incurred when
using shorter retention times. Third, and conversely to the
second observation, we also observed that the shorter retention
time may be beneficial for some applications, if the reduced
retention time does not excessively increase the cache misses.

Based on our observations, we propose that a relaxed
retention time STT-RAM cache’s access energy can be sub-
stantially reduced by dynamically adapting the retention time
to different applications’ runtime needs. However, the retention
time is an inherent physical characteristic of STT-RAMs [§]]
that cannot be easily changed during runtime (unlike other
cache configurations, such as cache size or associativity [14]).
Therefore, we explore our idea of exploiting STT-RAM’s
density characteristics to logically adapt the retention time to
different applications’ runtime needs.

In this paper, we propose Logically Adaptable Retention
time STT-RAM (LARS) as a practical approach for enabling
STT-RAM caches whose retention times can be dynamically
adapted to different application requirements. LARS leverages
STT-RAM’s high density and small area compared to SRAM.
A LARS cache comprises of multiple STT-RAM cache units,
with only one unit being used at any given time based on the
executing application’s retention time needs.

Our major contributions are summarized as follows:

° We propose dynamically adaptable retention time as

a practical approach to energy-efficient STT-RAM
caches that can satisfy variable runtime application
requirements. To this end, we explore our idea of
logical adaptation and its potentials for reducing
energy, with minimal overheads.

. We analyze both instruction and data cache behav-
iors for different retention times, and for different
applications. Based on our analysis, we show that
adaptable retention time provides substantial energy
benefits for the data cache, whereas, a static [care-
fully chosen] retention time suffices for the instruc-
tion cache.

° Based on our analysis of cache behaviors, we explore
and evaluate simple and easy-to-implement algo-
rithms to dynamically determine the best retention
times during runtime.

) We compare LARS to both SRAM and prior related
work (using the widely adopted DRS) to investi-
gate the potentials of LARS and any concomitant

overheads. Our experiments reveal that, compared to
DRS, LARS reduced the average STT-RAM cache
energy by 25.31%, with negligible increase in the
latency and minimal area overheads.

II. BACKGROUND AND RELATED WORK

Fig. |1) illustrates the STT-RAM’s basic cell structure. STT-
RAM uses a magnetic tunnel junction (MTJ), which contains
two ferromagnetic layers separated by an oxide barrier/tunnel
layer, as the binary storage cell. Similar to other resistive
memories, STT-RAM uses non-volatile, resistive information
storage in a cell. The MTJ’s ferromagnetic layers are a free
layer and a fixed layer—wherein the free layer’s direction with
respect to the fixed layer (parallel or anti-parallel) indicates the
cell’s 70”/’1” state. Details of the STT-RAM’s structure are
presented in [15]. In this section, we present a brief overview
of related prior work on volatile STT-RAMs that provides the
background for LARS.

A. Refresh Schemes on Volatile STT-RAM Cache

Prior work has shown that volatile STT-RAMs featuring
a relaxed/reduced retention time can significantly reduce the
write energy and latency [10], [4]], [2]]. The retention time can
be relaxed by reducing the MTJ’s planar area [[10], [2] or by
reducing the MTJ’s saturation magnetization [4]]. To achieve
maximum benefits, this reduction in retention time must be
substantial (e.g., from 10 years to a few seconds). As such, in
several cases, cache blocks may still be referenced beyond the
retention time. To prevent data loss in volatile STT-RAMs, Sun
et al. [4] proposed the dynamic refresh scheme (DRS), which
uses DRAM-style refreshes to maintain data correctness for
blocks that must remain in the cache beyond the retention time.
DRS features a counter to monitor each block’s lifetime in
relation to the retention time. When the retention time elapses,
the cache controller continuously refreshes the cache block
until its lifetime expires (e.g., through eviction). DRS has been
used in more recent work in different forms/implementations,
and without loss of generality, we collectively call these
techniques DRS.

DRS incurs energy overheads due to the refresh operations,
which could be significantly large in some applications. To
reduce the refresh overheads, Jog et al. [2] proposed the cache
revive scheme, a flavor of DRS. In cache revive, a small buffer
is used to temporarily store cache blocks that prematurely
expired due to elapsed retention time. Most recently used
(MRU) blocks are then copied back into the cache and
refreshed.
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Fig. 1: STT-RAM basic cell structure



To further reduce the refresh overheads, more recent works
used compiler-based techniques—such as code optimization
[11] and loop scheduling [13]. Some techniques attempt to
reduce the write energy by reducing the number of unneces-
sary writes. For example, Bouziane et al. [[16] leveraged the
compiler to identify redundant writes, known as “silent-stores.”
These redundant writes were then prevented from occurring
in order to reduce the write energy. However, these works
preclude runtime optimization and incur overheads, since they
feature a single retention time and rely on dedicated hardware
to deal with the data loss in volatile STT-RAM cache.

B. Cost of Refresh Schemes and Motivation for LARS

Fig. 2] illustrates some of the overheads incurred by the
dynamic refresh scheme using three cache blocks. Assuming
that the STT-RAM cache’s retention time has elapsed, but
Block 1I’s lifetime has not, DRS refreshes the block by copying
it into a refresh buffer—the buffer can be SRAM or STT-
RAM—and then writing the block back into the STT-RAM
cache. Each refresh operation to transfer the block between
the STT-RAM cache and the buffer costs: 1) an STT-RAM
read; 2) a buffer write; 3) a buffer read and; 4) an STT-
RAM write. Considering that most applications feature several
refreshes throughout execution, the energy overheads of these
operations can be prohibitive [I1], especially in resource-
constrained systems.

Jog et al. [2] studied the cache block lifetimes of different
applications, with respect to the last level cache (LLC), to
reveal that a retention time of 10ms with a buffer sufficed
for the range of applications considered. Our analysis further
revealed that, based on the variable block lifetimes in different
applications, retention times can be adapted to the applications
to reduce the access energy and latency. This insight forms the
basis of the work presented herein.

C. Other Improvements in the use of STT-RAM

While this paper focuses on the L1 cache, prior work has
provided insights on STT-RAM’s limitation throughout the
memory hierarchy. To this end, several techniques have been
proposed to address the challenges posed by STT-RAMs, espe-
cially with respect to the write energy and latency overheads.
Ranjan et al. [17] used approximated storage to provide an
energy-efficient solution to organize STT-RAM in the level
two (L2) cache. Reed et al. [[18] used conditional random
replacement to mitigate repeated writes on some cache blocks
and improve write lifetime of STT-RAM L2 cache. For the
last level cache (LLC), the most common works emphasize
predicting and balancing the usability of cache blocks in order
to avoid the insertion of non-reused cache blocks in the LLC.
In effect, the number of writes is reduced, while also reducing
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Fig. 2: Overheads of dynamic refresh scheme
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Fig. 3: Adapting STT-RAM retention times to applications’
requirements

energy consumption and improving the cache endurance [19]]
[20] [21] [22]. Other work on LLC (e.g., Zeng et al. [23])
quantified data block replacements based on the required write
activities, and used minimum bit transitions to replace cache
blocks, in order to reduce the write energy.

III. LOGICALLY ADAPTABLE RETENTION TIME STT-RAM
(LARS) CACHE

Fig. [3|illustrates the overarching idea of how LARS works.
Consider a set of applications running on a general-purpose
system (e.g., smartphone), where many of these applications
may be unknown at design time. The cache is designed such
that it has a set of retention times that can satisfy different
applications’ runtime requirements. (Section details how
these requirements can be determined). As illustrated in Fig.
[3l based on their cache block characteristics, Appl requires
a 100 us retention time, App2 and App4 require a 100 ms
retention time, and so on. To specialize the retention times to
the application requirements, in order to reduce energy con-
sumption, LARS allows each application to execute on a cache
unit with a retention time that best satisfies the application’s
needs, given the constrained design space of retention times.
To facilitate this runtime adaptability, LARS also involves
a hardware structure that dynamically determines the best
retention time for each executing application. This section
motivates LARS through an analysis of applications’ retention
time behaviors, and details LARS architecture, algorithms, and
overheads.

A. Retention Time Analysis

To motivate our work, we analyzed how retention times
affect applications’ cache miss rates. We used cache miss rates
as an indicator of the cache’s performance for the executing
application. Ideally, for energy efficiency, we would want the
smallest retention time that satisfies an application’s cache re-
quirements without substantially trading off the performance.

Fig. 4] illustrates the relationship between cache miss rates
and retention times for different applications in the SPEC
2006 [24]] benchmark suite. Our experimental setup is detailed
in Section [Vl The miss rates for the different STT-RAM
retention times are normalized to the applications’ SRAM miss
rates with the same base cache configuration (32KB, 4-way
set associative, 64B line size). Since a higher retention time
implies higher energy and latency, our goal was to explore
the lowest retention times that maintained comparable cache



miss rates to the SRAM (baseline of one in the figure).
We determined the best retention time as one that achieved
miss rates within a threshold of 5% compared to SRAM. We
empirically determined this threshold by observing that this
change in miss rates did not result in observable change in
energy consumption or performance.

In general, as expected, the miss rates decreased as the
retention times increased for all the applications. However, for
the different applications, there were variances in the benefit of
further increasing the retention time beyond certain amounts.
Furthermore, we also observed that the data and instruction
caches behaved differently with respect to the retention time.
For the data cache, the retention times that achieved low cache
miss rates varied for the different benchmarks. As shown in
Fig. [@a] libquatum’s and leslie3d’s best retention time were
100us. hmmer’s, bzip2’s and xalancbmk were 1ms. astar’s
and namd’s were 100ms. For the other five benchmarks, the
best retention time was 10ms, which we also found to be an
average good retention time across all the benchmarks (similar
to prior work [2]). However, our observations revealed that
using the single averagely good retention time of 10ms limited
the optimization potential for each individual application, and
in effect, for all the applications on average. Compared to
using the best retention time for each application, using a
static 10ms retention time increased the average data cache
miss rates by 18.45%.

In general, instructions typically exhibit less runtime vari-
ability than data. As such, for the instruction cache, we ob-
served much less variability in the retention time requirements
of different benchmarks. As depicted in Fig. b the 100ms
retention time was best for eleven of the twelve benchmarks
considered. Only zalancbmk required a different retention
time of 10ms. We also observed that using a smaller retention
time than 100ms resulted in substantial increases in the miss
rates for most of the benchmarks. Fig. [5] illustrates this
observation. For instance, reducing the retention time to 10ms
increased the miss rates by more than 2x for eight out of
twelve benchmarks. Reducing the retention time to 100us
astronomically increased the miss rates by 1345x and 952x
for bzip2 and calculix, respectively. Therefore, we concluded
that unlike the data cache, adaptable retention time would bear
no benefits for the instruction cache. We decided to use a static
100ms retention time for the instruction cache in the rest of
our experiments.

B. LARS Architecture

Prior work has shown that STT-RAM is 3 to 9 times denser
than SRAM [4], [2]. However, due to design constraints,
such as access latency considerations, L1 cache sizes are
usually limited (e.g., 16 — 32KB in modern-day smartphones).
Thus, thanks to its density, an STT-RAM would take up a
much smaller physical area than SRAM for the same memory
capacity. Leveraging STT-RAM’s physical density advantages,
we propose a LARS cache that comprises of four STT-RAM
units, which will take up approximately the same physical
area as one SRAM cache of the same memory capacity.
Even though we have empirically determined that these four
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Fig. 4: STT-RAM cache miss rate changes for different
retention times (normalized to SRAM, baseline of 1)

units suffice for our benchmarks, designers can opt to use a
different number of STT-RAM units depending on the target
applications or application domains.

We note that prior work has shown that MTJ cells can have
reliability issues (e.g., read disturbance) [25]], [26]], particularly
in relaxed retention time MTJs [10]. While there is much
ongoing work to tackle these issues, they are beyond the
scope of this paper. For our work, we assume that the STT-
RAM caches can be fabricated with the desired retention
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times. Each STT-RAM cache features different STT-RAM
‘units’ implemented as functionally self-contained physical
banks within the STT-RAM chip. Details of how we modeled
and simulated this cache are in Section [Vl

Fig. [6] depicts the proposed LARS architecture, which
comprises of four STT-RAM units with four different data
memory retention times. As previously alluded to in Section
these retention times are empirically determined at
design time to satisfy a range of application needs, depending
on the target system. The cache also comprises of four tag
memory units, a per-block status array wherein each element
contains a valid bit, dirty bit (assuming a write-back cache)
and monitor counter bits. For each application, the cache
controller only accesses a single cache unit at a given time,
depending on the application’s retention time needs. Even
though LARS eliminates the need to refresh cache blocks,
the monitor counter determines when to eliminate an expiring
cache block (e.g., through invalidation) in order to prevent
data corruption resulting from a prematurely elapsed retention
time. We designed the monitor counter similarly to [4]], and
assume the counter’s clock period is N times smaller than
the retention time. That is, when a block’s counter reaches
N — 1 (starting from 0), the block has reached the maximum
retention time and should be invalidated. Before eliminating
the block, its dirty bit must be checked to determine whether
or not it must be written back to main memory, as in a normal
write-back cache.

Fig. [7| shows the N-bit monitor counter’s state machine.
The state machine comprises of states Sy to Sy_1, which
advance on the monitor clock’s rising edge. Within each state,
the counter resets to .Sy if the cache block receives a write or
invalidate request. At state S _1, the counter sets the F signal,
which triggers LARS (via the cache controller) to check the
block’s dirty bit. If the block is dirty, the block is written to the
main memory. Otherwise, the block is invalidated. Note that
LARS requires minimal modifications to the cache controller,
since these processes (e.g., writing back/invalidating a cache
block) are implemented in state-of-the-art cache controllers.
Our analysis shows that the counter comprises little overhead

(details in Section [III-D).

T:Counter Pulse Width, W:Write/Invalidate, E:Expired
Fig. 7: Monitor counter state machine for each cache block

C. Determining the Best Retention Time

We assume that the cache controller orchestrates the *pow-
ering on/off’ of the appropriate STT-RAM units. Since STT-
RAMs work on the principle of normally-off computing [27],
the cache controller orchestrates the process by simply writ-
ing/reading applications’ data blocks to/from the appropriate
STT-RAM units. Thus, LARS does not require any modifica-
tions to the cache controller beyond a 2-bit location array
to indicate which STT-RAM unit to use for an executing
application. Using more or fewer STT-RAM units would
change the number of bits required for the location array.

To non-intrusively determine the best retention time for
different applications—and in effect, which STT-RAM unit
to use—we designed a low-overhead hardware LARS tuner
to implement the algorithms described herein (the tuner
overheads are described in Section [II-D). To minimize the
runtime tuning overhead, we explored different techniques
for dynamically determining an application’s best retention
time. To enable easy/low-overhead implementation, we chose
to use simple algorithms. We found, during our experiments,
that these simple algorithms sufficed for achieving LARS’
full benefits. We considered three approaches: a sampling
technique, which samples all the retention time units to
determine the best retention time, and two tuning algorithms,
which we call LARS-Optimal and LARS-Miss. Both algorithms
achieve different tradeoffs with respect to tuning accuracy and
implementation overheads. In what follows, we describe these
different approaches.

1) Sampling Technique: We first explored a simple sam-
pling technique that exhaustively samples every available
retention time to determine the best retention time. The appli-
cation is sampled on each STT-RAM unit for a tuning interval
during which the energy consumption is measured. We used
intervals of 100million instructions, which we determined to
be sufficient time to gather stable statistics of the application’s
execution. After all the retention times have been sampled, the
best (e.g., lowest energy) retention time is then selected and
stored in a low-overhead data structure for subsequent use.

Note that given the constrained design space of four re-
tention times, the tuning overheads with respect to time and
energy are not prohibitive. Since we used a tuning interval
of 100 million instructions, tuning only takes a small fraction
of each application’s execution, after which the best retention
time is used for the rest of the execution. The tuning overheads
are rapidly amortized over the application’s execution, which
can span trillions of instructions [24]. Alternatively, time
intervals (e.g., in seconds or cycles) can be used for the
tuning intervals. Shorter tuning intervals can also be used for
more fine-grained tuning (e.g., at a phase granularity wherein
retention times are specialized for different phases within an
application). We leave exploration of phase-based LARS for
future work.

We also explored different objective functions (energy,
latency, or energy-delay product (EDP)) for evaluating the best
retention time during runtime. We found that using the EDP
provided a Pareto-optimal balance between energy and latency
optimization, as compared to using latency or energy as the



Algorithm 1: LARS-Optimal Tuning Algorithm

Algorithm 3: Checking process

Data: Retention time set
R = {100us, 1ms, 10ms, 100ms}
Result: Best retention time
1 BaseEDP < samplingEDP (100ms);

2 OutputRetentionTime <— 100ms;
3 foreach » € R — {100ms} do

4 CurEDP <— samplingEDP (r);

5 if CurEDP =< BaseEDP then

6 BaseEDP < CurEDP;

7 OutputRetentionTime <— 7;

8 end

9 else

10 ‘ return OutputRetentionTime, BaseEDP;
11 end

12 end

-

3 return OutputRetentionTime, BaseEDP;

Algorithm 2: LARS-Miss/-LB tuning algorithm

Data: Retention time set
R = {100us, 1ms, 10ms, 100ms}
Result: Best retention time

1 BaseMisses <— samplingMisses (100ms);
2 OutputRetentionTime <— 100ms;
3 foreach r € R — {100ms} do

4 CurMisses, CurMissRate <— samplingMisses (r);
5 if LARS-Miss-LB is true && CurMissRate < 0.05%
then

6 ‘ OutputRetentionTime <— 7;

7 end

8 else if CurMisses < BaseMisses * 1.05 then
9 ‘ OutputRetentionTime <— 7;

10 end

11 else

12 ‘ return OutputRetentionTime, BaseMisses;
13 end

14 end

15 return OutputRetentionTime, BaseMisses;

objective function (details in Section[V-A). Thus, we used EDP
as the objective function in describing the LARS algorithms
and in our experiments.

2) LARS-Optimal: For easy practical implementation, we
designed LARS-Optimal as a simple heuristic/algorithm to
determine the best retention times during runtime. The algo-
rithm determines the best retention time using a cache energy
model [28]] based on the number of cache accesses, writebacks,
misses, and the associated latencies.

Algo. [T] depicts the LARS-Optimal tuning algorithm, which
runs during an application’s first execution. The algorithm
takes as input the retention time set, and outputs the ap-
plication’s best retention time. When the application begins,
LARS defaults to the maximum retention time. The application
is then executed for a funing interval, during which the

Data: BaseEDP, BaseMisses, CurRetentionTime
Result: ReTuneApp

ReTuneApp < false;

if LARS-Miss-LB is true or LARS-Miss is true then
CurMisses <— samplingMisses (CurRetentionTime) ;
ReTuneApp < (CurMisses > BaseMisses * 1.05);

end

else if LARS-Optimal is true then

CurEDP <— samplingEDP (CurRetentionTime) ;
ReTuneApp ¢— (CurEDP > BaseEDP x 1.05);

O X NN R W N -

end
return ReTuneApp;

—
=)

execution statistics are collected from hardware performance
counters and the EDP is calculated using the energy model.
For our experiments, we used a tuning interval of 100 million
instructions to provide a balanced tradeoff between tuning
overhead and accuracy; this interval, however, can be adjusted
based on specific system tradeoffs [[29].

Fig. [8]illustrates our datapath, which implements the energy
model for calculating the energy. To calculate the cache access
latency, the datapath uses the cache miss latency, hit latency,
and refill latency, which can be derived from the number of
misses, hits, and total accesses. These statistics can be obtained
from the processor’s hardware performance counters, which
are featured in most state-of-the-art processors. The datapath
contains a multiply-accumulate (MAC) unit, comprising of
a multiplier, intermediate register, and adder, to calculate
the current energy and EDP. The circled numbers in Fig.
[8] represent the order in which the controller state machine
selects data items for the MAC. Since LARS uses the EDP
as the objective function, as alluded to in Section [[II-CI}
the calculated current EDP is stored as the base EDP for
comparison during the tuning process.

As shown in Algo. [I} LARS-Optimal iterates through the
retention times in descending order by running the application
for one tuning interval per retention time. After each iteration,
LARS-Optimal compares the current EDP value to the base
EDP. If the current EDP is less than or equal to the previous
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EDP, the current retention time is stored and the base EDP is
updated to the current EDP. Otherwise, the previous retention
time is retained for the application, after which the tuning
process exits (lines [SHII). For non-intrusive operation, the
retention time and EDP values are stored in a small low-
overhead hardware data structure (Section [[TI-D).

To provide a feedback mechanism to LARS-Optimal, we
also included a checking process shown in Algo. The
checking process monitors the EDP to detect any deviations
from the expected values (based on the initial tuning process).
Such a deviation can occur as a result of new data inputs or
changes in execution conditions. If the EDP deviates from the
stored value by more than 5%, LARS re-tunes the retention
time for the application.

3) LARS-Miss: As illustrated in Fig. [§] LARS-Optimal
incurs hardware overheads resulting from the datapath reg-
isters and MAC unit required for runtime energy calculations.
Thus, LARS-Miss seeks to reduce these overheads. From
the analysis in Section which shows the sensitivity of
cache miss rates to different retention times, we observed that
we could predict the retention times using the applications’
cache misses. We established LARS-Miss by assuming that
the largest retention time (100ms in our case) has the ideal
or closest performance to the SRAM. Thus, LARS-Miss,
rather than calculating the EDP during iterations as in LARS-
Optimal, only monitors changes in cache miss.

As shown in Algo. [2] instead of recording parameters like
access counts, latencies, or writebacks, only the number of
cache misses is recorded from the processor’s hardware perfor-
mance counters. Similar to LARS-Optimal, LARS-Miss begins
with the maximum retention time, executes the application for
one tuning interval, and sets the recorded number of cache
misses as the base number of cache misses.

LARS-Miss iterates through the retention times in descend-
ing order, and compares the number of cache misses observed
for each interval with the base number of cache misses. For
each interval, LARS calculates the difference between the
base and current number of cache misses. If the number of
cache misses observed with the current retention time does not
degrade the number of misses in maximum retention time by
more than 5%, the current retention time is stored. We assigned
the base misses as the misses achieved by the longest retention
time (typically also the lowest misses). As such, unlike LARS-
Optimal, LARS-Miss does not need to store current misses,
unless it improves over the base. If current misses exceed base
misses by more than 5%, the previous retention time is retained
as the application’s valid retention time, and the tuning process
exits (lines [HI3). We empirically determined that 5% was a
sufficient tradeoff between the number of cache misses and
the improvement from a smaller retention time. This process
continues until the best retention time is determined (i.e., when
tuning exits).

4) LARS-Miss-LB: While LARS-Miss improved over the
dynamic refresh scheme for most benchmarks, we observed
that the dynamic refresh scheme outperformed LARS-Miss for
two benchmarks: astar and namd. We attribute this behavior
to their low initial misses in the base retention time. For these
applications, LARS-Miss easily exceeded the 5% threshold of

cache misses during tuning, and thus used a higher retention
time, resulting in higher energy consumption. Based on this
observation, we also created a flavor of LARS-Miss, called
LARS-Miss-LB, which operates as follows. If the base retention
time’s total miss rate is extremely small (less than 0.05%), the
extra energy/latency produced by expiration misses could be
offset by choosing a smaller retention time unit. As shown
in Algo. [2} if the miss rate is below 0.05%, LARS-Miss-LB
chooses the smaller retention time and continues the iteration.
Otherwise, the tuning process continues as described in LARS-
Miss.

Using the cache miss for predictions leads to fewer calcu-
lations, less hardware resource for storage and computations
(the statistic registers and MAC unit are no longer required),
and allows for easy runtime measurement from hardware
performance counters. The dotted line in Fig. [§] illustrates the
hardware resources that are eliminated by LARS-Miss, since
only the miss rate is measured. However, registers, compara-
tors, and muxes are still required to enable comparisons of the
cache miss rate to earlier iterations.

Similar to LARS-Optimal, LARS-Miss also uses the check-
ing process (Algo. [3). However, unlike LARS-Optimal, the
base value for comparison in LARS-Miss remains fixed as the
number of misses achieved by the largest retention time for
the executing application.

D. LARS Overheads

LARS’ main overheads result from 1) the LARS hardware,
2) runtime tuning, and 3) switching overheads. We estimated
the hardware overheads using Verilog implementations, syn-
thesized with Synopsys Design Compiler [30], and the tuning
and switching overheads using simulations (detailed in Section
V).

The hardware overheads include the monitor counters (Sec-
tion and the LARS tuner. The tuner implements the
LARS-Optimal algorithm (Section [[II-C)), energy calculation
datapath (Fig. [8)), and storage for retention time and energy
histories (Section [II-C). The monitor counter requires n =
loga N bits, where N is the number of monitor clock periods.
For example, for a 100us retention time and 10us clock period,
N = 10, and n = 4. A 32KB cache with 64B lines has
512 monitor counters for each STT-RAM unit; each monitor
counter requires 4 bits. The monitor counters in our four-unit
LARS design constitutes an area overhead of 3.12% for a
32KB cache.

We  synthesized the LARS-Optimal tuner with
SAED_EDKO90 Synopsys standard cell library. The estimated
area overhead was 0.0145 mm?, dynamic power was 28.04
mW, and leakage power was 422.68 uW. With respect to the
ARM Cortex-A15 [31], for example, the tuner’s overhead is
negligible (around 0.095%).

Both LARS-Optimal and LARS-Miss/LARS-Miss-LB can
further reduce tuning overheads since the algorithms do not
exhaustively search the retention time design space. In our
experiments, LARS-Miss reduced the search time by 18.75%
compared to sampling, while LARS-Optimal and LARS-Miss-
LB reduced by 6.25% and 10.41%, respectively.



The switching overhead is the energy and latency incurred
while migrating the cache state (tag and data) from one STT-
RAM unit to another during tuning. Switching occurs every
time an application is initially executed or when runtime
changes to the application’s characteristics necessitate a re-
tuning. We estimated that in the worst case (for the 100ms
retention time), each migration took approximately 4608 cy-
cles and 57.34nJ energy. In the sampling technique (the worst
case scenario), the total switching through all the STT-RAM
units for each application incurred time and energy overheads
of 15872 cycles and 197.12nJ, respectively. In the context of
full application execution, the worst case switching energy and
latency overheads were infinitesimal and rapidly amortized
during execution.

IV. EXPERIMENTAL SETUP

To evaluate and quantify the benefits of LARS, we modified
the GEMS5 simulator [32] to model LAR We added a
new retention parameter to GEMS in order to model the
variable retention time behavior. We compared the time at
which a block was inserted with the time at which the block
was accessed by CPU. We used the modified simulator to
obtain the block’s lifetime to determine whether the lifetime
has exceeded the retention time. If the lifetime exceeds the
retention time, the block is invalidated or written back to lower
level memory (if dirty). We also implemented DRS [4], [2]—
the most related work to ours—in GEMS to enable comparison
with prior work. We modeled DRS as a perfect” refresh
scenario, meaning that there were no extra misses caused by
failed refreshes, there were no unnecessary refreshes, and there
were no refresh-related latency overheads. We modeled DRS
as such to reflect the best case scenario for DRS in order to
provide a stringent comparison for LARS. We used 1mW to
account for the write buffer leakage power.

To model a state-of-the-art embedded system microproces-
sor, we used configurations similar to the ARM Cortex AlS5
[33]. The microprocessor features a 2GHz clock frequency,
separate 32KB STT-RAM L1 instruction and data caches, and
an 8GB main memory. Based on our retention time analysis
described in Section [[II-Al we kept the L1 instruction cache’s
retention time at 100ms, while LARS was implemented in the
data cache. We used a base retention time of 10ms for DRS,
similar to prior work [2]], [4]. Our LARS cache comprises
of four STT-RAM units with 100us, Ims, 10ms, and 100ms
retention times. We chose the retention times to be as low
as possible without excessively increasing the cache miss
rates with respect to the SRAM, while covering a range of
application requirements. Note that the retention time is a
design choice, and the cache can be designed with more STT-
RAM units (and different retention times), depending on the
design objectives and/or executing applications. However, we
empirically determined that the chosen retention times suffice
for the range of benchmarks used in our experiments.

To model different retention times, we used the MTJ cell
size scaling method proposed in [15]. From the modeling

IThe modified GEMS5 version can be found at www.ece.arizona.edu/tosiron/
downloads.php

results, we obtain essential parameters, such as the write pulse,
write current, and MTJ resistance value R4 p. We then applied
these parameters to the circuit modeling tool, NVSim [34], in
order to construct the STT-RAM cache for different retention
times, as shown in Table [} To fairly compare LARS with the
SRAM cache, we also modeled the SRAM using NVSim. To
represent a variety of workloads, we used twelve benchmarks
from the SPEC 2006 benchmark suite compiled for the ARM
instruction set architecture, using the reference input sets.

V. RESULTS

To illustrate LARS’ effectiveness, we evaluated and ana-
lyzed the L1 data cache’s energy and memory access latency
achieved by LARS compared to the SRAM and DRS, repre-
senting prior work. In this section, we first summarize the
results from the LARS sampling technique, and thereafter
present results for the other LARS algorithms.

A. Sampling Technique

We evaluated the sampling technique based on different
metrics—energy-, latency-, and EDP-based approaches—to
determine which evaluation metric to use for the LARS
tuning algorithm. Fig. illustrates the energy consumed by
the different sampling approaches normalized to DRS. The
energy-based approach achieved the highest energy reduction
of 28.4% on average across all the benchmarks, while the
EDP- and latency-based approaches respectively reduced the
energy by 25.31% and 20.0% on average.

We also observed that LARS incurred some increases in
cache misses as compared to DRS. This behavior resulted from
the fact that unlike DRS where blocks are refreshed, LARS
allows the blocks to expire when the current retention time
as elapsed. However, for most applications, the increase in
cache misses were not significant enough to cause a substantial
increase in execution latency. Furthermore, smaller retention
times enabled faster accesses, thus mitigating the overheads
from the increase in cache misses. Some applications suffered
substantial increases in misses (especially using the energy-
based approach), leading to significant latency overheads com-
pared to DRS.

Fig. [Ob] depicts the latency achieved by LARS using the
sampling technique for the energy-, latency, and EDP-based
approaches normalized to DRS. Compared to DRS, on av-
erage, the energy-based approach traded off the latency for
energy optimization, increasing the latency by 20.35%, on
average. The latency-based and EDP-based approaches, on
the other hand, incurred marginal latency overheads of 0.04%
and 2.3%, respectively. The substantial increase in latency for
the energy-based approach was caused by a few benchmarks
(astar, h264ref, and namd), which suffered substantial miss
penalties in the process of reducing the energy. These trends
led us to further analyze the results to understand the tradeoffs
between the different approaches in order to minimize the
overheads. Thus, we also explored the EDP impact of the
different approaches.

The EDP-based approach reduced the EDP by 23.53%, on
average, while the latency- and energy-based approach reduced
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TABLE I: Cache parameters of SRAM and STT-RAM with different retention times

Cache Configuration ‘ ‘

32KB, 64B line size, 4-way

Memory Device SRAM STT-RAM-100pus ~ STT-RAM-1ms  STT-RAM-10ms  STT-RAM-100ms
Write Energy (per access) 0.033nJ 0.040nJ 0.056nJ 0.076nJ 0.101nJ
Read Energy (per access) 0.033nJ 0.012nJ 0.012nJ 0.011nJ 0.011nJ
Leakage Power 38.021mW 1.753mW
Hit Latency (cycles) 3 2 2 2
Write Latency (cycles) 3 4 5 7
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Fig. 9: Energy and latency of LARS sampling technique normalized to DRS. Results shown for different objective functions:

energy, latency, and EDP

the EDP by 20.0% and 13.82%, respectively (graphs omitted
for brevity). Even though the EDP-based approach increased
the latency by 2.3%, it substantially reduced both EDP and
energy (both by over 20%). While the EDP-based approach
was not the best approach for either energy or latency, we
found it to be the Pareto-optimal approach for a balanced
tradeoff between energy and latency in our analysis. Therefore,
we used the EDP-based approach as the objective function for
the different LARS algorithms.

B. LARS-Optimal Compared to the SRAM and DRS

Fig. [I0] depicts the cache energy and latency achieved by
both LARS-Optimal and DRS normalized to the SRAM. Fig.
[T0a] shows that, on average across all the applications, LARS-
Optimal reduced the energy by 87.56% as compared to SRAM,
with energy savings over 90% for calculix, hmmer, leslie3d,
libquantum, and xalancbmk. We note that this energy reduc-
tion was accounted for, in part, by the significantly reduced
leakage power that STT-RAM offers as compared to SRAM
(Table [). Thus, both LARS-Optimal and DRS significantly
reduced the energy compared to the SRAM.

Our ultimate goal was to achieve energy improvements us-
ing LARS, without significantly degrading the latency. Hence,
based on our analysis in Section LARS uses the EDP
as the objective function in order to minimize the latency
expense of energy optimization. Fig. shows that, on
average, LARS-Optimal increased the latency by only 0.7%
as compared to the SRAM, with latency overheads as high
as 11.5% for namd. For a few benchmarks, such as astar,
LARS reduced the latency by up to 8.44%. Even though
LARS incurred some additional misses for some benchmarks,
the additional misses were not enough to result in substantial
latency overheads. The latency overheads were also mitigated,
despite the increase in misses, by the fact that STT-RAM had

faster read latency than SRAM (Table E[) as also observed in
prior work [10], [20].

Compared to DRS, LARS-Optimal reduced the average
energy by 25.31%, with energy savings as high as 35.90% for
libquantum. LARS-Optimal was able to reduce the energy as
compared to DRS by mitigating the energy overheads resulting
from the dynamic refreshes featured in DRS. Furthermore,
LARS-Optimal’s improvement over DRS also resulted from
LARS’ ability to specialize the retention time to the exe-
cuting application’s requirements, unlike DRS, where a static
retention time was used. As seen in Fig. LARS-Optimal
outperformed DRS for all the benchmarks.

With respect to latency, LARS-Optimal increased the la-
tency by 2.3%, on average, compared to DRS. For some
benchmarks, however, LARS-Optimal reduced the latency by
up to 7.0% (for astar). We note that DRS outperformed
LARS-Optimal—marginally—only because we modeled a
“perfect” refresh scenario as described in section [V] The
perfect scenario, which ignores the latency overheads of re-
freshes, may not always be the case in practice. Thus, these
results are pessimistic for LARS-Optimal. We also reiterate
that LARS-Optimal reduced the energy by 25.31%, providing
an appreciable energy improvement at the expense of some
latency overhead.

In general, LARS’ major advantage is that it adapts the
retention time to different applications’ runtime needs and uses
a lower retention time when appropriate. In addition, LARS
eliminated the need for dynamic refreshes, which was a source
of overhead in DRS. We also observed that LARS performed
best for applications that had short block lifetimes. That is, the
applications cache miss rates remained low as the retention
time reduced. Leslie3d and libquantum typify this behavior.
As seen in Fig. [a] their cache misses remained low as the
retention time reduced. Concomitantly, LARS’ improvements
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Fig. 10: LARS-Optimal and DRS data cache energy and latency normalized to SRAM

over DRS were the highest two for these two applications—
34.55% and 35.90% energy savings, respectively.

C. LARS-Miss Compared to the DRS and LARS-Optimal

Fig. depicts the cache energy and latency achieved by
LARS-Optimal, LARS-Miss, and LARS-Miss-LB normalized
to DRS. On average across all the applications, LARS-Miss
reduced the average energy by 16.68%, with a latency over-
head of 4.56%, as compared to DRS. LARS-Miss reduced
the energy by up to 35.9% for libquantum. Compared to
LARS-Optimal, LARS-Miss achieved similar or close energy
results. However, two benchmarks—astar and namd—were
outliers with respect to LARS-Miss’ performance. For these
two benchmarks, we observed that their base number of
misses were extremely small, and even though reducing the
retention time would have increased the number of misses, this
increase was not significant enough to translate to increased
dynamic energy as described in our prior analysis (Section
[0I-C). However, LARS-Miss selected the 100ms retention
time for these two benchmarks, resulting in much higher
energy consumption and longer latency.

We observed that LARS-Miss-LB’s performance with re-
spect to energy was closer to LARS-Optimal than LARS-
Miss. Compared to DRS, LARS-Miss-LB reduced the average
energy by 21.96%, whereas LARS-Optimal and LARS-Miss
reduced the average energy by 25.31% and 16.68%, respec-
tively. As shown in Fig. LARS-Miss-LB outperformed
DRS for all the benchmarks. For instance, even though DRS
outperformed LARS-Miss for astar and namd, LARS-Miss-
LB reduced the energy for these two benchmarks by 41.2%
and 37.0%, respectively. Furthermore, LARS-Miss-LB also
reduced the latency overhead to 1.4%, from the 4.56% and
2.3% latency overhead of LARS-Miss and LARS-Optimal,
respectively. The most important feature of both LARS-Miss
and LARS-Miss-LB is that they eliminated the need for the
more complex energy calculation circuits present in LARS-
Optimal. By eliminating the need for a substantial part of the
tuner datapath, these algorithms traded off search accuracy in
favor of reduced hardware overhead and static energy.

D. Exploring a Synergy Between LARS and DRS

We also explored the benefits in combining LARS and DRS
in order to achieve additional energy savings. We implemented
a synergistic scheme that featured the best retention time
(equivalent to LARS-Optimal) and a refresh mechanism to
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prevent premature data evictions (equivalent to DRS). Fig. [12]
depicts the energy and latency achieved by this synergistic
scheme normalized to LARS-Optimal. The synergy of LARS
and DRS reduced the average latency by 9.82% as compared
to LARS-Optimal, with latency reduction of up to 33.89% for
namd. However, the synergistic scheme increased energy by
9.06% on average, and substantially increased the energy in
several benchmarks. For example, the average energy com-
pared to LARS-Optimal was increased by 42.96%, 40.47%,
and 37.33% for leslie3d, libquantum, and xalancbmk, re-
spectively. We attribute these results to the fact that the syn-
ergistic scheme required a buffer to enable the refresh opera-
tions. Since the buffer contributed leakage and dynamic power,
the benchmarks with longer latency suffered substantial energy
degradation. As such, leslie3d, libquantum, and xalancbmk,
which were the longest benchmarks in our experiments, exhib-
ited the highest energy increase. We observed only marginal
EDP improvements from this synergistic scheme as compared
to LARS-Optimal. On average, the synergistic scheme only
improved the EDP by 1.65%.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we explored the applicability of dynamic
retention times in both instruction and data STT-RAM L1
caches. Our analysis revealed that while static retention times
suffice for the instruction cache, much energy benefits can
be derived from adapting the data cache’s retention times
to applications’ variable runtime requirements, based on the
applications’ characteristics. To this end, we proposed LARS:
Logically Adaptable Retention Time STT-RAM cache, which
logically adapts the STT-RAM’s retention time to different
applications’ runtime requirements, in order to reduce the write
energy, with minimal overheads. LARS comprises of multiple
STT-RAM units with different retention times; only one unit
is used at a time, depending on an application’s needs. Based
on our analysis of applications’ characteristics with respect
to the retention time and the LARS cache architecture, we
proposed tuning algorithms to determine the best retention
time at runtime. Experiments show that LARS can reduce the
average energy by up to 25.31%, as compared to prior related
work, without incurring significant latency or area overheads.

For future work, we intend to explore finer grained opti-
mizations by exploring LARS’ impact for applications’ dy-
namic runtime phases. We will also explore the synergy of
LARS with the adaptability of other cache parameters (cache
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size, line size, associativity, replacement policy), in order to
fully satisfy executing applications’ resource requirements.
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