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Abstract—Current DRAM-based memory systems face the
scalability challenges in terms of memory density, energy con-
sumption, and monetary cost. Hybrid memory architectures
composed of emerging nonvolatile memory (NVM) and DRAM
is a promising approach to large-capacity and energy-efficient
main memory. However, hybrid memory systems pose a new
challenge to on-chip cache management due to the asymmetri-
cal penalty of memory access to DRAM and NVM in case of
cache misses. Cache hit rate is no longer an effective metric
for evaluating memory access performance in hybrid memory
systems. Current cache replacement policies that aim to improve
the cache hit rate are not efficient either. In this article, we
take into account the asymmetry of the cache miss penalty on
DRAM and NVM, and advocate a more general metric, aver-
age memory access time (AMAT), to evaluate the performance
of hybrid memories. We propose a miss penalty aware LRU-
based cache replacement policy (MALRU) for hybrid memory
systems. MALRU is aware of the source (DRAM or NVM) of
missing blocks and preserves high-latency NVM blocks as well
as low-latency DRAM blocks with good temporal locality in the
last level cache. The experimental results show that MALRU
can improve system performance by up to 22.8% and 13.1%,
compared to LRU and the state-of-the-art hybrid memory aware
cache partitioning technique policy, respectively.

Index Terms—Cache replacement, hybrid memory systems,
least recently used (LRU), nonvolatile memory (NVM).

I. INTRODUCTION

IN-MEMORY computing is becoming increasingly popular
for data-intensive applications in the big data era. However,

current DRAM technologies are hard to meet the continuously
increasing requirement of main memory due to low memory
density and high power consumption [1]. As a result, a large
body of work pays more attention to the emerging nonvolatile
memory (NVM), such as phase-change memory (PCM), spin-
torque transfer RAM (STT-RAM), and 3D XPoint [2]. NVMs
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features byte-addressability, near-zero static power consump-
tion, much higher density, and lower cost than DRAM [3], [4].
However, NVMs have some disadvantages, such as asymmet-
rical read/write latencies and limited write endurance. These
drawbacks make NVM hard to be a direct substitute of DRAM.
Therefore, hybrid memory systems comprising DRAM and
NVM become a practical way to build a large-scale and
high-performance main memory system.

Caches play an important role in bridging the performance
gap between CPU and main memory. Efficient use of cache
can avoid abundant memory accesses. Existing cache replace-
ment policies [5], [6] are generally designed to improve the hit
rate of last level cache (LLC). In DRAM-based main memory
systems, a higher hit rate of LLC implies more efficient use of
LLC. However, these cache replacement policies are no longer
efficient in hybrid memory systems as the cache miss penalties
for DRAM and NVM are significantly different. The latency
of fetching an NVM block is several times larger than that of
fetching a DRAM block.

Fig. 1 shows the normalized execution time of several appli-
cations from SPEC 2006 benchmarks running in DRAM-based
and NVM-based main memory. When the access latency of
NVM is 4 times higher than that of DRAM, these applications
consume 45% to 195% more time in NVM-based memory
than the execution in DRAM-based memory. For each appli-
cation, the misses per kilo instructions (MPKIs) of LLC is
the same in the two experiments. However, the application
performance varies significantly due to the location of miss
data in different main memories. This implies the LLC hit
rate is no longer an effective metric for evaluating the memory
performance in hybrid memories since the different cache miss
penalties between DRAM and NVM should be considered.
Also, current cache replacement policies that aim to improve
the cache hit rate are no longer efficient in hybrid memory
systems.

A new metric is needed to reflect the memory performance
of hybrid memory systems. Intuitively, cache replacement
algorithms such as LRU should preferentially choose a DRAM
block as a victim upon cache replacement because evicting
an NVM block suffers higher write latency than evicting a
DRAM block. However, such a simple rationale may cause
cache thrashing if a DRAM block with good data local-
ity is evicted from the LRU stack (see more analysis in
Section II). On a cache miss, it is challenging to mini-
mize the cache miss penalty while maintaining good data
locality.
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Fig. 1. Normalized execution time of SPEC 2006 benchmark in
DRAM-based main memory and NVM-based main memory.

In this article, we take into account the asymmetry of
LLC miss penalty on heterogeneous memories and propose
a miss penalty aware LRU-based cache replacement policy
(MALRU) for hybrid memory systems. First, we advocate
a more general performance metric—average memory access
time (AMAT) to assess cache performance in hybrid memory
systems. Second, we add a flag in the tag of cache lines to
distinguish the miss penalty of each DRAM or NVM block.
Third, we partition the traditional LRU stack into a reserved
section and a regular victim section by calculating the mini-
mum value of AMAT. MALRU keeps the high-latency NVM
blocks and most frequently accessed DRAM blocks in the
reserved section. Finally, we propose a simple yet effective
policy to simplify the calculation of AMAT and hardware
implementation of MALRU.

The contributions of this article are summarized as follows.
1) We investigate the asymmetry of LLC miss penalty on

heterogeneous memories and observe the inefficiency of
current cache replacement policies. We thus advocate
the AMAT metric to assess the memory performance of
hybrid memory systems.

2) We propose MALRU, a miss-penalty aware cache
replacement policy. MALRU advocates two heuristics
to guide cache replacement in hybrid memory systems.
MALRU preferentially evicts low-latency DRAM blocks
and keeps high-latency NVM blocks and some DRAM
blocks with good data locality in a reserved section.
MALRU periodically adjusts the reserved section to pro-
tect the most frequently accessed DRAM blocks that
brings even more performance benefit than NVM blocks.
Moreover, to mitigate the hardware complexity and soft-
ware overhead of MALRU, we further propose a simple
yet effective solution called MALRU-CR.

3) We evaluate MALRU and MALRU-CR with SPEC CPU
2006 benchmark, and compare MALRU and MALRU-
CR with the traditional least recently used (LRU) and
the state-of-the-art hybrid memory aware cache parti-
tioning technique (HAP) policy in a hybrid memory
system. Compared to conventional LRU, experimental
results show that MALRU and MALRU-CR can improve
system performance by up to 22.8% (11.8% on average)
and 21.4% (10.5% on average), respectively. Compared
to HAP [7], MALRU and MALRU-CR improve appli-
cation performance by up to 13.1% (6.4% on average)
and 10.7% (5.0% on average), respectively.

The remainder of this article is organized as follows.
Section II introduces the background and related work.
Section III motivates the penalty-aware cache replacement

Fig. 2. Flat-addressable hybrid memory architecture.

policy in hybrid memories. Section IV introduces the design of
MALRU. Section V provides the experimental methodology
and results. Section VI concludes this article.

II. BACKGROUND AND RELATED WORK

In this section, we first briefly introduce hybrid
DRAM/NVM memory architectures and then describe
the previous cache replacement policies.

A. Hybrid Memory Architectures

Hybrid memory architectures comprising of traditional
DRAM and emerging NVM have been widely studied since
2009 [8]–[14]. Previous studies have proposed two-hybrid
DRAM/NVM main memory architectures: 1) hierarchical
cache/memory architecture [15]–[18] and 2) flat-addressable
(single address space) memory architecture [8]–[10]. We
note that the recently available Intel Optane dc persistent
memory [19] also offers two use modes: 1) Memory Mode
and 2) App Direct Mode, which corresponds to the hierarchical
cache/memory architecture and flat-addressable memory archi-
tecture, respectively. In the memory mode, the Optane DIMMs
serve as cost-effective main memory, and DRAM acts as a
cache to the Optane DIMMs. The DRAM cache is invisible to
OSes and applications. In the App Direct Mode, applications
and OS are aware of the two types of memory available. Fig. 2
shows a typical flat-addressable hybrid memory architecture in
which both DRAM and NVM are uniformly organized as the
main memory in a single flat address space. Both DRAM and
NVM are attached to the memory bus, and are visible to the
processors and OSes.

Generally, the hierarchical cache/memory architecture can
deliver higher performance for application with good data
locality, while the flat-addressable memory architecture is bet-
ter for applications with random memory access patterns.
Moreover, the flat-addressable architecture is able to offer
more memory capacity and higher memory bandwidth for
applications than the hierarchical cache/memory architecture.
There is not a verdict on which memory architecture is bet-
ter than another one. The design of DRAM/NVM architecture
should systematically consider memory access characteristics
of applications and memory management strategies in OSes.

This article chooses the flat-addressable hybrid memory
architecture for the following considerations. Most popular big
data applications usually reflect very poor data locality. In the
hierarchy hybrid memory architecture, DRAM cache blocks
are usually directly mapped to NVM pages for low hardware
complexity, and thus each DRAM cache miss leads to a data
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TABLE I
COMPARISON OF DIFFERENT FEATURES BETWEEN SSD, DRAM, PCM, RRAM, AND STT-RAM

transfer at the page granularity. However, it is unnecessary
and costly to fetch infrequently accessed data from NVM
to the DRAM cache. Previous studies [17], [18] have shown
that large-footprint applications with poor data locality would
suffer frequent DRAM cache misses and high memory band-
width consumption between DRAM and NVM. In contrast, the
flat-addressable hybrid memory architecture can offer more
flexible memory management at the OS layer, which can
exploit some heuristics to place frequently accessed (hot) data
in DRAM explicitly. Furthermore, the OS can also migrate hot
data from NVM to DRAM, and logically use the DRAM as
an exclusive cache.

However, there remain challenges to efficiently utilize the
hybrid memories in the flat-addressable hybrid memory archi-
tecture due to different performance, endurance, and cost
characteristics of DRAM and NVM, as shown in Table I. Take
memory access latency as an example, the read and write
latencies of PCM are approximately 4.4× and 12× higher
than that of DRAM [19], [20], respectively. When most of
memory requests are distributed on NVM rather than DRAM,
the applications usually suffer significant performance degra-
dation. To improve the performance and energy efficiency
of flat-addressable hybrid memory systems, previous stud-
ies [12]–[14], [21], [22] have focused on mitigating the impact
of NVM latency on application performance by migrating hot
NVM pages to DRAM. However, page migration usually relies
on costly hot page monitoring and sorting [9], [14]. This article
explores another direction to improve the performance of flat-
addressable hybrid memory systems at the on-chip cache layer
and propose a miss-penalty aware cache replacement scheme.

There are some other key NVM characteristics that also
have a significant impact on the performance and lifetime of
NVMs, such as access latency discrepancy due to IR drop [23],
wear leveling [17], and shift overheads of racetrack memo-
ries [24]. Particularly, the write endurance of PCM is a major
concern when it is used as the main memory. In the past
decade, there have been many studies on improving NVM
lifetime through hardware and software approaches, including
wear-leveling [17], bit-write reduction [3], [5], DRAM buffer-
ing [8], [9], and so on. The advance of PCM technologies
has demonstrated that the write endurance can be signifi-
cantly improved to 1012 cycles [25]. Intel also claims that
Intel Optane dc persistent memory is able to last 5 years’ life-
time writes [26]. These technological evolutions allow PCM
a promising memory alternative to complement DRAM.

In this article, we mainly study cache replacement policies
for hybrid memory systems, and thus only considers the differ-
ence of access latency between NVM and DRAM. Although
previous studies on other key NVM characteristics are

orthogonal to this article, they are complementary techniques
for constructing a high-performance and energy-efficiency
hybrid memory system.

B. Related Work

On-chip cache is able to significantly narrow the
performance gap between processors and main memory.
However, due to the limited capacity of LLC, hot data may
be evicted from LLC and later is rereferenced again. Cache
contention can lead to severe cache thrashing problems. A
sophisticated cache replacement mechanism should mitigate
cache thrashing and improve the cache hit rate.

1) Cache Replacement for Homogeneous Memory: There
have been a large body of work on cache replacement poli-
cies. LRU-based cache replacement policies have been widely
studied in the past years. The primary goal of LRU and its
derivative algorithms is mainly to improve the hit rate of LLC.
These policies [27]–[34] usually work well in most cases.
Without considering the impact of memory request queues in
the memory controller and row buffers in memory devices,
the LLC miss penalty is mainly attributed to a fixed memory
access latency. A higher hit rate of LLC implies less memory
requests to the main memory, and thus less total memory
access delay during the execution of applications. As a result,
the LLC hit rate determines the total data traffic between
processors and main memory.

There are also several optimizations on LRU-based cache
replacement, such as rereference interval prediction (RRIP),
dead block prediction, and cache partitioning. Dynamic inser-
tion policy (DIP) [27] improves the performance of LRU
replacement policy by dynamically changing the insertion pol-
icy according to the cache access patterns. RRIP [28] further
improves the DIP performance in mixed memory access pat-
terns. ReMAP [35] takes into account the reuse distance, block
access recency, and memory access cost, and gives them dif-
ferent weights to calculate the priority of each data block. The
data blocks with the lowest priority are replaced preferentially.
Some other work tries to reduce the miss rate of LLC by pref-
erentially replacing the dead blocks in the cache [15], [36],
because these blocks are unlikely rereferenced before they
are evicted. Partition-based replacement [7], [37]–[39] poli-
cies classify the LLC blocks into several partitions. Those
partitions correspond to different memory access behaviors,
and are replaced separately.

Although previous LRU-based cache replacement
policies [27]–[32] can achieve a very high cache hit
rate, they do not effective anymore in flat-addressable hybrid
memory architectures. Upon a cache miss, the data block
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may come from DRAM or NVM. To fetch a cache line
from NVM, the access latency is much higher than that of
DRAM. Therefore, the amount of memory references is not
the only factor in determining the LLC efficiency. Instead,
the heterogeneous memory access latencies should be taken
into account. In Section III, we show that LRU-based cache
replacement policies do not work well for hybrid memories
with asymmetrical access latencies.

2) Cache Replacement for Hybrid Memory Systems: There
have been some studies on extending the traditional LLC
replacement policies to adapt to hybrid memory systems.
Writeback-aware dynamic cache (WADE) [38] is a partition-
based cache management policy for NVM main memory. Due
to the high latency and energy consumption when blocks are
evicted to NVM main memory, WADE commits to mitigate
performance degradation by reducing the write-back requests.
WADE dynamically partition the LLC into frequent writeback
list and infrequent writeback list, and highly used dirty blocks
in frequent writeback list are kept in LLC. Thus, WADE can
reduce total data requests to the NVM main memory, and
achieve a higher cache hit rate for the frequent writeback list.

However, WADE does not work well in hybrid memory
systems. First, there are four kinds of memory accesses in
the LLC: 1) DRAM read; 2) DRAM write; 3) NVM read;
and 4) NVM write. Correspondingly, four logic lists should
be maintained in LLC, making LLC management more com-
plicated. Second, in most applications, write operations are
not in the critical path. Memory buses can be only driven in
write mode or read mode at a time [40]. Write requests are
serviced only when the amount of write requests has reached
a given threshold. Therefore, WADE does not perform well in
these cases when write operations are trial. Finally, because
the performance gap between NVM and DRAM is much larger
than the performance gap between NVM reads and NVM
writes, it is more beneficial to keep NVM blocks rather than
DRAM blocks in LLC.

HAP [7] is the most similar work to our approach for
LLC management in hybrid memory systems. HAP logically
divides the LLC into NVM and DRAM partitions, which are
used to cache data blocks from NVM and DRAM, respectively.
HAP argues that there should be an optimal range of NVM
partition size. Beyond this range, the system performance
would become poor. Therefore, HAP maps memory requests
of a sampling set in different processing units with different
thresholds of the NVM range. HAP figures out the range of
NVM partition size in which the system has the minimum
memory access overhead, and set the range of NVM parti-
tion in the next epoch. However, in HAP, the NVM partition
size is only selected from five ranges. The result is just a
local optimization. How to determine the number and range
of each processing unit should be further discussed. Moreover,
when the number of NVM blocks is kept within the appro-
priate range, HAP would evict the cache line at the LRU
position upon an LLC miss. This eviction scheme without
distinguishing the type of the evicted block may allow the
number of NVM cache lines beyond the appropriate range.

DARP [41] is another similar work to MALRU. MALRU
can be differentiated from DARP in cache filling and eviction

Fig. 3. LRU-based cache replacement policy is not effective in hybrid
memory systems.

strategies. MALRU always inserts a new cache block at the
MRU position, while the position of new blocks inserted by
DARP is dynamic. DARP always evicts cache blocks at the
LRU location, while MALRU always evicts the first DRAM
block in the victim section. The cache partition policies in
MALRU and DARP are also different. DARP only limits the
LLC space simply for all DRAM blocks, without considering
the access frequency of DRAM blocks. In contrast, MALRU
only stores cache blocks with low access frequency in the
victim section. Moreover, DARP may not fully and efficiently
use the scarce LLC. When all cache blocks are fetched from
DRAM, the position for filling DRAM blocks in a cache set is
still fixed, allowing a portion of cache lines unused. Therefore,
DARP may inefficiently use the scarce LLC resource. In con-
trast, MALRU can be adaptively transformed into the LRU
algorithm, and thus is compatible with both homogeneous and
heterogeneous memory subsystems.

There are also some studies on the cache designs over
hybrid hard disk drives [33], [34], which combines slow
mechanical hard disk, fast NAND flash memory and DRAM
in the same drive. Both DRAM and flash act as a cache of
the disk, named as DRAM cache and NVC (NVM cache),
respectively. Upon a DRAM cache miss, the missed data may
be hit in the unpinned region of NVC or disk. In this case,
the storage architecture of hybrid disk [33], [34] is some-
what similar to the cache/memory architecture proposed in
this article. However, the cache replacement policy in [33] is
significantly different from MALRU. The previous work [33]
use two LRU lists (active and inactive) to manage the DRAM
cache, and the NVC is also managed with the traditional LRU
policy. Its cache replacement policy does not consider the
heterogeneity of the underlying storage medium. In contrast,
MALRU mainly considers different performance character-
istics of DRAM and NVM to replace data blocks in LLC.
Without considering the hardware implementation details, we
think the policies proposed in MALRU is also applicable for
the hybrid hard disk [33].

III. MOTIVATION AND DESIGN HEURISTICS

In hybrid memory systems, the cache hit rate and MPKI
are no longer effective metrics for evaluating the cache
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Fig. 4. Layout of MALRU-managed LLC sets.

performance due to the asymmetrical cache miss penalty of
heterogeneous memories. In this section, we use an example to
illustrate the inefficiency of the LRU-based cache replacement
algorithm in hybrid memory systems.

To better understand the reason that LRU performs ineffi-
ciently in hybrid memory systems, we illustrate the behavior
of the LRU algorithm in Fig. 3. Let Ni denote the address of an
NVM cache line, Di denote the address of a DRAM cache line.
Sequence A and sequence B represent two different memory
access sequences that mapped to the same cache set.

Assume the LLC cache set has four entries, and the LLC hit
overhead, DRAM block miss penalty, and NVM block miss
penalty are 1, 10, and 40, respectively. Applying the LRU
replacement policy to sequence A and sequence B, the cache
hit rates are 1/4 and 1/8, respectively. Although the hit rate
of sequence A is greater than that of sequence B, the total
memory access overhead of sequence A (182) is larger than
that of sequence B (161).

Obviously, in hybrid memory, MPKI and hit rate of LLC
are no longer effective metrics for evaluating the cache miss
penalty, and LRU is not an efficient cache replacement algo-
rithm either. To manage LLC more efficiently in hybrid
memory systems, we should consider not only the data local-
ity but also the asymmetry of the cache miss penalty. We thus
advocate AMAT, a more general metric to assess the cache
performance of hybrid memory systems.

Due to the expensive penalty of NVM block misses, an
intuitive idea to improve LLC performance is reducing the
miss of NVM blocks. In this guidance scheme, we always
preferentially evict DRAM blocks from LLC and give NVM
blocks more opportunities to stay in LLC.

On a cache miss, the policy that always replaces DRAM
(ARD) blocks selects the first DRAM block from the LRU
position to the MRU position, and the selected DRAM block
is evicted. If there is no any DRAM block available, an NVM
block at the LRU position is evicted. We use sequence C to
verify this method and find that the total memory access over-
head with ARD policy (161) is smaller than that with the
LRU policy (200). Namely, ARD achieves better performance
by improving the hit rate of NVM blocks, as shown in Fig. 3.
Therefore, we have Heuristic 1 to improve cache performance
in hybrid memory systems.

Heuristic 1: It is more beneficial to evict low-latency
DRAM blocks than to evict NVM blocks from LLC.

Unfortunately, ARD cannot always perform better than LRU
policy in hybrid memory systems. If DRAM blocks with tem-
poral locality are evicted frequently, ARD can cause cache
thrashing. Sequence D in Fig. 3 demonstrates such a scenario.
The total memory access overhead of sequence D with ARD
policy (190) is larger than that of LRU policy (172). ARD

Fig. 5. Hybrid memory architecture in MALRU.

increases the memory access overhead as it evicts the fre-
quently accessed DRAM blocks (block D2 and D3). Some
blocks with good temporal locality will be rereferenced in a
near-immediate interval. We call them near-immediate reref-
erenced blocks. These blocks also should be kept in LLC to
avoid cache thrashing. Thus, we have Heuristic 2 to improve
cache performance in hybrid memory systems.

Heuristic 2: Near-immediate rereferenced DRAM blocks
are valuable for cache hit rate and should be not evicted from
LLC.

Based on the two heuristics and cache RRIP, we propose
MALRU, an efficient cache replacement policy that keeps
NVM blocks and near-immediate rereferenced DRAM blocks
in LLC as more as possible.

IV. MISS PENALTY-AWARE CACHE REPLACEMENT

Fig. 4 shows the layout of LLC that is managed by MALRU.
MALRU divides LLC into a reserved section and a victim sec-
tion through the reserved pointer. Low latency DRAM blocks
with poor locality (larger reuse distance) are located in the
victim section. These low latency blocks will be preferentially
replaced, and thus NVM blocks have more opportunities to
stay in LLC. NVM blocks and some DRAM blocks with very
short reuse distances are kept in the reserved section.

On a cache miss, MALRU evicts data blocks from the LRU
position to the reserved pointer. If there is no DRAM block
available in the victim section, the whole LLC degenerates to
the traditional LRU stack. MALRU has to evict NVM blocks
in the LRU position.

A. Data Distribution in Hybrid Memories

Fig. 5 shows a typical architecture of hybrid memory
systems. The main memory system contains one DRAM chan-
nel and three NVM channels. In our hybrid memory simulator,
the address mapping scheme in MALRU is decoded as “subar-
ray:row:rank:bank:channel:column” to improve memory level
parallelism. This allows more even distribution of memory
accesses across channels. This mapping scheme is also used
by many hardware architectures, such as Intel Ivy Bridge
architecture [42].

We apply this channel-interleaving address mapping scheme
to our hybrid memory architecture, and data are placed on the
four channels evenly in the granularity of page. Our memory
access statistics also show that the memory access counts
between different channels vary slightly.

To distinguish low-latency DRAM blocks and high-latency
NVM blocks, MALRU adds a latency flag to reflect different
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Fig. 6. Sketch of obtaining the rereference interval distribution of DRAM
access sequence and NVM access sequence.

storage medium using one bit in each cache line. The flag of
a high-latency NVM block is set to 1, otherwise, the flag is
set to 0. We can simply check the physical memory addresses
to identify whether a data block is from DRAMs or NVMs.

B. Rereference Interval Distribution

Rereference interval (or reuse distance) [28] of a cache
block is the number of distinct memory accesses between the
two sequential accesses to the same data block. Rereference
interval is an important metric to evaluate data locality in LLC.
A cache line is missed if its rereference interval is bigger than
the total number of cache lines in a set of LLC. Otherwise,
the requested cache line is hit.

Assume the total number of cache lines in a set of LLC
is M. On a cache miss, the rereference interval of the cache
line is set to M + 1 uniformly in this article. As a result, a
cache block’s rereference interval ranges from 1 to M + 1. If
a cache block is hit in LLC, the position of the cache block
in the LRU chain is exactly the rereference interval of this
memory access.

Fig. 6 illustrates the process of rereference interval statistics
in MALRU. As sampling a small number of sets is sufficient to
reflect the cache behaviors [43], MALRU only samples (1/64)

of the total sets to calculate the rereference interval of DRAM
blocks and NVM blocks, respectively. For each sampled cache
set, MALRU uses 31 bits (a major portion of tag) to index the
NVM and DRAM blocks. DRAM accesses and NVM accesses
are mapped to the DRAM blocks and NVM blocks, respec-
tively. As a result, the hybrid memory access sequence is
logically divided into a DRAM access sequence and an NVM
access sequence. We adopt the MALRU replacement policy to
each sampled set of LLC, and adopt LRU replacement policy
to the sampled sets of DRAM and NVM access sequences.
MALRU also maintains two tables to record the rereference
interval distribution of DRAM and NVM access sequences, as
shown in Fig. 6.

C. Determine the Boundary of the Reserved Section

As the LLC hit rate is not an effective metric in hybrid
memory environments, we advocate AMAT to assess the LLC
performance, as illustrated in (1). Let Pd and Pn be the propor-
tion of DRAM and NVM accesses, respectively. Let HitRated

(a) (b) (c) (d)

Fig. 7. State transition diagram. (a) αj,i. (b) αj,i transfers to αj,i. (c) αj−1,i
transfers to αj,i. (d) αj−1,i−1 transfers to αj,i.

and HitRaten represent the hit rate of DRAM blocks and NVM
blocks in the LLC, respectively. Let Td and Tn denotes the
average access latency of DRAM and NVM, respectively. The
TLLC denotes the latency of LLC hits. We have the following
equation:

AMAT = Pn ∗ (TLLC + Tn ∗ (1 − HitRaten))

+ Pd ∗ (TLLC + Td ∗ (1 − HitRated)). (1)

Since each cache block is either a DRAM block or an NVM
block, we have

Pn + Pd = 1. (2)

In the table of rereference interval statistics, lm denotes
the total number of DRAM block accesses whose rereference
intervals are m in a given sampling epoch. Similarly, hm cor-
responds to the total number of NVM block accesses with
rereference interval m. To calculate HitRaten and HiteRated,
we introduce variables αj,i and βj,i. αj,i represents the prob-
ability of the jth position of whole LRU stack is exactly the
ith DRAM block (as shown in Fig. 7), and βj,i represents the
probability of the jth position of whole LRU stack is exactly
the ith NVM block.

Assume the associative set of the LLC is M and the access
sequence is a pure DRAM access sequence. If these DRAM
blocks are handled separately, the hit rate of the pure DRAM
access sequence PD_HitRate is the sum of the probabilities
of all rereference intervals from 1 to M, namely, the total hit
rate of the individual DRAM block sequence is

PD_HitRate =
M∑

i=1

P(x = i) (3)

where P(x = i) is the hit rate of DRAM block with reref-
erence interval i in the DRAM access sequence. It can be
easily calculated from the distribution table of the DRAM
block rereference interval.

Let HD_HitRate(x = i) denote the hit rate of the DRAM
block with rereference interval i in the hybrid memory access
sequence. The ith DRAM block (HD_HitRate(x = i)) can be
found from the ith position to the Mth position. Let Pn(x = i)
and Pd(x = i) denote the probability of the ith position
in the whole LRU stack is an NVM block and a DRAM
block, respectively. For example, the probability of rereference
interval i (i ≤ M) of the DRAM block is the sum of prob-
ability on each position the ith DRAM block can be found.
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Pd(x = i) can be derived from the rereference interval distri-
bution tables. Finally, we can induce the hit rate of DRAM
blocks in the hybrid memory access sequence

HitRated =
M∑

i=1

HD_HitRate(x = i)

=
M∑

i=1

⎛

⎝
M∑

j=i

αj,i ∗ Pd(x = i)

⎞

⎠ (4)

where αj,i represents the probability of a cache block in jth
position of LRU stack is exactly the ith DRAM block.

Similarly, the hit rate of NVM blocks in the hybrid memory
access sequence can be derived as

HitRaten =
M∑

i=1

⎛

⎝
M∑

j=i

βj,i ∗ Pn(x = i)

⎞

⎠. (5)

Fig. 7(a) shows the state of αj,i, and Fig. 7(b)–(d) shows the
three states that can be transferred to state (a). If the current
state is αj,i, the next state is still αj,i when a block between
position j and MRU is rereferenced, as shown in Fig. 7(b). In
Fig. 7(c), the current state is αj−1,i, an NVM block miss or an
NVM block hit between position j−1 and M +1 will transfer
the state to αj,i. In Fig. 7(d), the current state is αj−1,i−1,
namely, the (j−1)th position of the LRU stack is the (i−1)th
DRAM block, a DRAM block miss or a DRAM block hit
between position j−1 and M +1 will transfer the state to αj,i.
The probabilities of the three state transition are

αj,i ∗
⎛

⎝Pd ∗
i−1∑

k=1

Pd(x = k) + Pn ∗
j−i∑

k=1

Pn(x = k)

⎞

⎠ (6)

αj−1,i ∗ Pn ∗
M+1∑

k=j−i

Pn(x = k) (7)

αj−1,i−1 ∗ Pd ∗
M+1∑

k=i

Pd(x = k). (8)

The sum of these three portions should equal to 1, and then
we get the value of αj,i

αj,i =

⎧
⎪⎪⎨

⎪⎪⎩

αj−1, i∗Pn∗∑M+1
k=j−i Pn(x=k)+αj−1, i−1∗Pd∗∑M+1

k=i Pd(x=k)

1−Pd∗∑i−1
k=1 Pd(x=k)−Pn∗∑j−i

k=1 Pn(x=k)

j ≤ n + 1
0, j > n + 1

(9)

where n is the beginning position of the reserved section in
MALRU. In the ideal case, no DRAM blocks exist in the
victim section. Therefore, αj,i equals to 0 when j is larger
than the reserved pointer. Similarly, we can deduce βj,i based
on the two rereference interval distribution tables.

We determine the position of the reserved pointer by cal-
culating AMAT from 1 to M, and the position in which
AMAT achieves the minimum value is the reserved pointer
in the next epoch. Algorithm 1 shows the pseudo-code of
determining the boundary of two sections. minAMAT and
boundaryPos represent the minimum AMAT and the position

Algorithm 1 Calculating the Position of the Reversed Pointer
Output: boundaryPos, the position of the reserved pointer in the next epoch
1: minAMAT, boundaryPos = 0;
2: for i = 0; i < assoc; i + + do
3: /*Calculating the AMAT in each position on all sampling sets*/
4: currentAMAT = CalAMAT(i);
5: if i == 0 then
6: minAMAT = currentAMAT;
7: boundaryPos = 0;
8: if currentAMAT <= minAMAT then
9: minAMAT = currentAMAT;

10: boundaryPos = i;
11: return boundaryPos;

(a) (b)

Fig. 8. Recency bits updating in MALRU. (a) Recency bits updating.
(b) Logical circuit of finding victim blocks.

of the reserved pointer, respectively. We set the reserved
pointer from position 0 to assoc-1 and calculate the AMAT
(currentAMAT) in each position, where assoc represents the
number of lines in a cache set. There is no need to generate a
total order of the entries in LLC sets. Algorithm 1 just needs
to return the position where AMAT gets the minimum value
(minAMAT). The victim section ranges from the entry of the
LRU position to the entry with the minimum AMAT.

The major computation overhead is caused by sampling the
LLC and determining the boundary of the reserved section for
each cache set periodically.

D. Selection of Victim Blocks

When a new block is filled into the LLC, a block may be
evicted from the victim section. Therefore, MALRU must fig-
ure out the position of victim block in the LLC. Normally,
it is determined by the “recency bits” of each block [44].
Fig. 8(a) shows the processing of updating the recency bits
in a memory access sequence 〈A, B, C, D, E〉. When a block
hits in the LLC, its recency bit value is updated by adding one
to the maximum recency bit in the set. Namely, in an LLC
stack, the block with the minimum and maximum recency bit
values are at the LRU position and the MRU position, respec-
tively. Fig. 8(b) shows the logical circuit diagram of finding a
given block. For the LRU policy, the multiplexer selects the
blocks with minimal and maximal recency bits at the LRU
and MRU positions, respectively. We modify this circuit to
adapt to the MALRU policy. Taking the latency flag, recency
bit and section boundary pointer as inputs, the multiplexer is
able to find the first DRAM cache block in the victim section.
Therefore, there is no need to sort blocks in a set according
to their recency.

Algorithm 2 shows the pseudo-code of finding a victim
block in hybrid memories with MALRU policy. The notations
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Algorithm 2 Finding the Victim Block
Input: addr, the address of a memory request
Output: setIndex, the reference of the victim cache line
1: /*Find the index of cache set that the address mapped in LLC*/
2: set = extractSet(addr);
3: /*setIndex is used to find the block with the minimum recency value*/
4: /*Initialize currentRecency, currentRecency is the recency value the block

setIndex points to*/
5: currentRecency = 0;
6: /*Initialize the block in the LRU position as the victim block*/
7: setIndex = findMinRecency(set, currentRecency);
8: currentRecency = getRecencyValue(set, setIndex);
9: if !isDRAMType(set, setIndex) then

10: way = assoc − 2;
11: while way > boundary do
12: setIndex = findMinRecency(set, currentRecency);
13: currentRecency = getRecencyValue(set, setIndex);
14: if isDRAMType(set, setIndex) then
15: break;
16: way − −;
17: if way == boundary then
18: setIndex = findMinRecency(set, 0);
19: return setIndex;

assoc and boundary represent the number of cache lines in a
cache set and the position of the reserved pointer in the LRU
stack, respectively. MALRU tries to find the first DRAM block
from the LRU position (assoc-1) to the position of the reserved
pointer (boundary). If no DRAM block is found in the vic-
tim section, MALRU evicts the block in the LRU position as
all blocks in the victim section are NVM blocks. Blocks in
the reserved section (position 0 to the boundary) will not be
replaced to avoid cache thrashing.

We note that MALRU would first evict DRAM blocks prior
to NVM blocks. However, as most LLCs are usually config-
ured as write-back mode, dirty cache blocks are not written
back to main memory immediately. Upon a cache eviction, a
dirty block should be written back to main memory, while
a clean block only needs to be invalidated in the LLC. It
takes much more time to evict a clean block than to evict
a dirty block. Intuitively, MALRU should evict clean blocks
prior to dirty blocks. There are mainly two orders for evict-
ing different cache blocks: 1) MALRU-DDNN: DRAM clean
block > DRAM dirty block > NVM clean block > NVM dirty
block and 2) MALRU-DNDN: DRAM clean block > NVM
clean block > DRAM dirty block > NVM dirty block. We
compare the performance of MALRU when using the two
different orders for evicting cache blocks. Our experimental
results show that it is more beneficial to always evict clean
blocks first (MALRU-DNDN) than MALRU-DDNN.

The LRU algorithm needs to maintain a total order rela-
tion between all valid cache lines in a cache set. The space
overhead for tracking the LRU states is (n + 1) × log(n),
where n represents the cache associativity [45]. Due to the
hardware complexity of LRU in implementation, most on-
chip caches use simpler algorithms to approximate the LRU
algorithm, such as not recently used (NRU) [28], [46] and
Clock [21], [47]. MALRU can be easily implemented with
those LRU-based on-chip cache replacement algorithms.

Fig. 9 shows the implementations of our MALRU policy
when it is integrated with NRU and Clock algorithms. In both

(a) (b)

Fig. 9. MALRU is integrated with (a) NRU and (b) clock algorithms.

two extended algorithms, we add a one-bit latency flag (L)
to distinguish cache blocks between DRAM and NVM, and
extend the one-bit reference flag (R) in the vanilla NRU and
Clock algorithms to two bits. The R flag is initialized as 0 and
set to 1 when the block is accessed. Once a block is selected
as the boundary of the victim section and reserved section,
this block‘s reference flag is set to 2. In this way, the two-bit
reference flag can reflect the boundary of the two sections, and
thus the reserved pointer in our original design is not required.
NRU algorithm always selects victim blocks at a fixed posi-
tion (for example, the header of LLC sets), and thus the LRU
pointer in MALRU is not required. The Clock algorithm starts
the selection of victim blocks from the clock hand, and thus
it can be treated as the LRU pointer in MALRU. Therefore,
in both NRU and Clock algorithms, the victim section ranges
from the header of LLC sets or the clock hand to the section
boundary (R flag equals to 2).

For other LRU-based page cache replacement algorithms,
such as the adaptive replacement cache algorithm (ARC) [48],
they can be also integrated with MALRU. However, because it
requires four LRU lists to track both recently used pages and
least frequently used pages, and their corresponding eviction
history for both lists. The hardware overhead of ARC is even
4 times higher than the LRU algorithm [45]. We need to make
a tradeoff between the benefit and the space overhead when
applying ARC to the onchip LLC.

E. MALRU Complexity Reduction

In each time slot, MALRU should calculate the size of
the reserved section to minimize the AMAT. This requires
to calculate αj,i and βj,i iteratively. Although (9) seems a
little complex, the computation complexity of determining
the position of the reserved pointer is just O(M2). Because
the parameter M is the number of lines in a cache set
(typically 16 and 20), the computation overhead is acceptable.
However, because MALRU should periodically sample the
LLC and adjust the reserved pointer at runtime, the cumula-
tive performance overhead is not trivial when using a software
implementation.

On the other hand, cache replacement algorithms should
also take into account the complexity of hardware implemen-
tation. A new cache replacement policy in hybrid memories
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Fig. 10. MALRU-CR policy for estimating LLC hit rate, miss rate of DRAM
blocks and NVM blocks.

should make less intrusive hardware modifications to the cur-
rent cache design. Because the hardware overhead of MALRU
is higher than LRU, it is essential to reduce the computation
complexity. Therefore, we seek to simplify the MALRU to
minimize the hardware modifications while still following the
basic design heuristics of MALRU.

Although the rereference distance table adopted in MALRU
is able to provide more runtime memory access statistics, and
thus describe data access behaviors of applications much better
than the LRU, it results in higher hardware complexity and
computation overhead. As a result, we abandon the rereference
distance table and propose a simple yet effective sampling
mechanism to estimate the LLC hit rate, miss rate of DRAM
blocks and NVM blocks in the LLC.

Fig. 10 illustrates our new design for simplifying
the MALRU policy, called MALRU complexity reduction
(MALRU-CR). It follows the same design heuristics of
MALRU but can minimize the modifications of current cache
design. The reserved section and protected section are still
reserved, and our goal is still to find an optimal partition to
minimize the AMAT. For an M-way set associative LLC, the
sampling sets is mapped to M sample processing units. These
processing units can be marked as unit 0 to unit M − 1. In
unit i, the reserved pointer points to the ith cache line in the
LRU stack. We only use three counters in each sample pro-
cessing unit to record the hit counts of LLC, miss counts of
DRAM blocks and miss counts of NVM blocks in each sam-
pling epoch. At the end of sampling epoch, we get the AMAT
of each unit by simply calculating the product of access latency
and access counts for each kind of memory, as shown in

AMAT = TLLC ∗ Chit

Caccess
+ Td ∗ CDRAM_miss

Caccess

+ Tn ∗ CNVM_miss

Caccess
+ E (10)

where Chit, CDRAM_miss, and CNVM_miss represent the hit
counts of LLC lines, miss counts of DRAM blocks and miss
counts of NVM blocks, respectively. Caccess is the total counts
of sampled data blocks, and E reflects the additional memory
access latency caused by the cache write-back policy, write
queuing in memory controller and so on [49], [50]. E can be
treated as a factor to calibrate the AMAT. However, when we
try to find the minimum AMAT to determine the boundary
of the victim section, we do not need to figure out the exact
value of E because the comparison of any two AMAT would
offset the same E in each sample processing unit.

TABLE II
SYSTEM CONFIGURATIONS AND WORKLOADS

At the end of each sampling interval, MALRU-CR gets the
AMAT in each sample processing unit. The position where we
get the minimum AMAT is the optimal reserved pointer in the
next epoch. In practice, we find that only four sample process-
ing units in a 16-way set associative LLC is able to achieve
very good application performance. The reserved pointers of
the four units point to the 0th, 4th, 8th, and 12th cache line of
the LRU stack in each set, respectively. This sampling mech-
anism can significantly simplify the computation complexity
of AMAT and hardware implementation.

V. EVALUATION

A. System Configuration

We conduct our experiments on an integrated simulator,
Gem5 [51] and NVMain [52]. Gem5 simulates the proces-
sor and cache, while NVMain simulates the hybrid main
memory. Although MALRU is applicable for a variety of
hybrid memory systems with asymmetrical memory access
latencies, it is more beneficial to apply our proposal to hybrid
memory systems in which the performance gap between NVM
and DRAM is significant. As a result, we use PCM as NVM
main memory in our experiments. The DRAM performance
parameters, DRAM energy parameters, and NVM energy
parameters are referred to the DDR3-1333 and NVM chip
modules in the NVMain simulator, respectively. The NVM
performance parameters are referred to data in the public lit-
erature [15], [44], [53], [54]. It should be noted that there is
a significant difference among the PCM parameters in these
public studies, and we choose a reasonable range from them.

Table II shows the system configurations and experimental
workloads. We use seven single-thread workloads and four
multiprogrammed workloads from the SPEC CPU 2006. These
workloads represent some typical memory access patterns of
cache thrashing (mcf), recency-friendly (soplex and gcc), and
irregular access (mix).

As data distribution in the hybrid memory system can sig-
nificantly affect application performance, we use the channel-
interleaving address mapping scheme in NVMain to guarantee
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Fig. 11. Comparison of IPC among LRU, MALRU, HAP, and MALRU-CR.

an even data distribution across all memory channels. This set-
ting is to make fair and stable comparisons in our experiments.

B. Performance Evaluation

We compare MALRU and MALRU-CR with two other
cache replacement policies LRU and HAP. HAP divides the
LLC into the NVM section and DRAM section logically and
changes the size of the NVM section dynamically. We refer the
application performance with the LRU algorithm as a baseline.

Fig. 11 shows the normalized instructions per cycle
(IPC) for both single-thread and multiprogrammed workloads.
Compared to HAP and LRU, MALRU improves IPC by 6.4%
and 11.8% on average, respectively. For workloads hmmer,
mcf , and mix1, compared to LRU, MALRU improves applica-
tion performance by 22.8%, 20.5%, and 15.3%, respectively.
MALRU-CR achieves similar performance to MALRU. The
slight performance gap is due to a little accuracy degradation
in predicting the reserved pointer by MALRU-CR.

We classify the workloads that benefit from MALRU into
two categories: 1) cache thrashing and 2) recency-friendly
access patterns. For the thrashing access pattern such as mcf ,
the working sets of these workloads are much larger than
the cache size, and thus leads to cache thrashing. MALRU
improves these workloads’ performance by reducing the total
cache miss penalty. As NVM blocks are preferentially kept in
LLC and may be rereferenced before being evicted, the hit rate
of NVM blocks is increased while the hit rate of DRAM blocks
is not reduced. For recency-friendly access patterns such as
soplex, MALRU evicts the DRAM blocks with the least prob-
ability of being accessed in the next epoch. MALRU increases
the hit rate of most recently accessed DRAM and NVM blocks
and thus improves system performance.

C. Reduction of Memory References

Fig. 12 shows the DRAM and NVM memory references
under four cache replacement policies, all normalized to the
LRU policy. For recency-friendly workload gcc, MALRU and
HAP achieve 16.9% and 10.9% performance improvement,
and reduce memory references by 20.3% and 15.8%, respec-
tively. The gap between total memory reference reduction is
smaller than the gap between performance improvement. This
is because NVM blocks may occupy a majority of LLC space
in our configuration, since the capacity of NVM is 3 times
of DRAM. Upon a cache miss, MALRU would evict the

Fig. 12. Memory reference reduction using LRU, MALRU, HAP, and
MALRU-CR.

first DRAM block from the victim section, while HAP has a
more probability to evict an NVM block because the block in
LRU position is evicted. Therefore, MALRU achieves higher
performance improvement by keeping more NVM blocks in
LLC most application data are located in the NVM. For work-
loads with long rereference intervals, MALRU leads to fewer
memory accesses because both the DRAM and NVM blocks
have a long rereference interval. Some NVM blocks are more
likely hit because they have more chances to stay in LLC while
DRAM blocks are replaced preferentially.

We find that there is no definite positive correlation between
performance improvement and memory access reduction for
different applications. For example, gcc and hmmer achieve
16.9% and 22.8% performance improvement while getting
20.3% and 7.17% memory reference reduction, respectively.
The number of read requests is 4.43 times of the number
of write requests in gcc, while the ratio of read requests to
write requests is 1.07 in hmmer. Namely, a large proportion
of NVM write requests are reduced by MALRU in hmmer
than that in gcc. As NVM write latency is 6 times higher than
that of DRAM read, the application performance can be sig-
nificantly improved even when decreasing a very few NVM
writes. This implies that the ratio of reads to writes on NVM
has a significant impact on application performance.

D. Energy Consumption

Previous studies [15], [55] shows the main memory con-
sumes over 40% of total system energy consumption. A
majority of memory energy consumption is attributed to the
dynamic potion. In hybrid DRAM/NVM memory systems,
the energy consumption can be reduced by decreasing the
memory references, especially, for NVM write operations.
Fig. 13 presents the energy consumption of hybrid memo-
ries by adopting the four policies. Compared to LRU policy,
MALRU, MALRU-CR, and HAP can reduce energy consump-
tion by 10.9%, 4.1%, and 8.8% on average, respectively. The
reason behind this is that MALRU and MALRU-CR are able
to provide NVM blocks more opportunities to remain in LLC,
and thus reduce write operations to the NVM. As NVM writes
consume approximate 7 times higher energy than NVM reads,
an application can reduce more memory energy consumption
if the proportion of NVM writes is significantly reduced.
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Fig. 13. Total energy consumption using LRU, MALRU, HAP, and
MALRU-CR.

Fig. 14. MALRU sensitivity to cache size.

MALRU is able to significantly reduce the energy con-
sumption of mcf by 22% because mcf demonstrates a cache-
thrashing memory access pattern, and MALRU can also reduce
the memory references of mcf by almost an equivalent degree,
as shown in Fig. 12. Since milc is a data streaming program,
there is very little opportunity for data reuse in LLC. As a
result, MALRU, HAP, and MALRU-CR all lead to a slight
reduction of memory references compared to LRU, as shown
in Fig. 12. Correspondingly, there is a trial reduction of energy
consumption, as shown in Fig. 13.

E. Sensitivity Studies

1) Sensitivity to Cache Size: Fig. 14 presents the system
performance improvement of MALRU with different cache
sizes. For workloads with short rereference interval and
good temporal locality, such as gcc, the competition between
DRAM blocks and NVM blocks is mitigated as the cache
size increases. Hence, MALRU performs more similar as LRU
when the LLC capacity becomes larger.

For workloads with the thrashing access pattern, in which
the cache size is larger than the working set, the workload
tends to be a recency-friendly workload. Workload mcf has a
knee in the working set which is a litter larger than 2 MB,
as demonstrated in [28]. Therefore, the performance of mcf
is enhanced at the 2 MB LLC size as more NVM blocks hit.
When the size of LLC increases to 4 MB, mcf tends to be a
recency-friendly workload as the working set is smaller than
the cache size, LRU achieves more performance improvement
than MALRU.

2) Sensitivity to NVM Proportion: Fig. 15 exhibits the
MALRU performance varying with the proportion of NVM in
the main memory, all normalized to the LRU policy. When the

(a) (b)

Fig. 15. MALRU sensitivity to the proportion of NVM in main memory.
(a) Application IPC. (b) Performance speedup.

proportion of NVM increases, the IPC of the MALRU system
decreases, as shown in Fig. 15(a). However, the performance
of MALRU relative to LRU does not necessarily decline, as
shown in Fig. 15(b).

Applications with streaming access pattern such as milc
show rather stable performance when the proportion of NVM
in main memory increases. The reason is that most data is
read-only once and the read latencies of NVM and DRAM
are comparable. Both hmmer and gcc show recency-friendly
memory access patterns. However, the trend of performance
improvement for hmmer and gcc are adverse when the propor-
tion of NVM increases to 75%. To figure out the reason, we
account the read/write requests, and observe that the read/write
ratio of hmmer, gcc are 1.07, and 4.43. When the proportion
of NVM becomes larger, the competition among NVM blocks
would become severe. If an application shows a larger pro-
portion of writes such as hmmer, the LLC competition would
mainly come from NVM writes and NVM reads, rather than
NVM accesses and DRAM accesses. As the performance gap
between NVM write and NVM read (2 times in Table II) is
smaller than the gap between NVM access and DRAM access
(3.3 times in Table II), the relative performance improvement
of MALRU is reduced.

As a result, MALRU achieves higher performance improve-
ment when abundant NVM blocks compete with DRAM
blocks in LLC. When there is only NVM data or DRAM data
in LLC, the MALRU degenerates to LRU, and the block in the
LRU position is always evicted, and thus MALRU achieves
equivalent performance to LRU.

3) Sensitivity to Hot Data Distribution: Fig. 16 shows the
impact of hot data distribution on different cache replace-
ment policies, all normalized to LRU. Here, we only show
the results of migrating 25% of the top hot pages to DRAM.
LRU-M and MALRU-M represent the policies applying data
migration to LRU and MALRU, respectively.

Compared to LRU and MALRU, LRU-M and MALRU-M
improve application IPC by up to 28.3% and 26.8% on aver-
age, respectively. We note that the memory monitoring and
hot page migration overhead are not considered. Therefore, the
real system can not achieve such a performance improvement.
Compared to LRU-M, MALRU-M can still improve applica-
tion performance by 10.6% on average, which is comparable
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TABLE III
HARDWARE AND SOFTWARE OVERHEAD IN MALRU, HAP, AND MALRU-CR

Fig. 16. MALRU sensitivity to hot data distribution.

to the improvement of MALRU against LRU. This implies
MALRU is still effective when more hot data is distributed
on fast DRAM. MALRU is complementary to the hot data
migration policies in hybrid memory systems.

4) Sensitivity to Sampling Interval: Fig. 17 shows that
the performance improved by MALRU varies with the sam-
pling interval of cache sets, all normalized to LRU. For each
experiment, we exponential increase the number of cache
sets (interval) for sampling. We find that although there are
slight fluctuations when the sampled data blocks decreases.
MALRU shows rather stable performance even when the sam-
pling interval increases from 8 to 128. To this end, we set 64
as a default sampling interval in our system.

F. Hardware and Software Overhead

Table III shows the storage overhead of MALRU, HAP,
and MALRU-CR for a 2 MB 16-way set associative LLC
with 64 byte cachelines. MALRU adds one bit of latency flag
for each cacheline, and the total storage overhead is 4 KB.
MALRU uses two tables to record the counts of different
rereference intervals for DRAM and NVM blocks, as shown
in Fig. 6. As LLC has 16 lines in each set, each distribution
table of the rereference interval has 17 entries. The counter
is reset in each sampling epoch (50 million instructions), so
32 bits are enough for storing the counter value. MALRU
uses 31 bits to record the index of each sampled cacheline,
and MALRU only samples (1/64) of the total sets (32 sets
in this case). To indicate the reserved section in each cache
set, we need 8 bits to store the reserved pointer. Overall, the

Fig. 17. MALRU sensitivity to sampling intervals.

additional storage overhead of MALRU is only 0.391% of the
total capacity of LLC.

MALRU-CR is an efficient yet easy-to-implement simpli-
fication of MALRU. MALRU-CR uses four sampling units.
Three counters are used to record the LLC hit counts, LLC
miss counts of DRAM blocks, and LLC miss counts of NVM
blocks. These counters can be implemented by special hard-
ware circuits, and thus can be updated with the access to LLC
in parallel. The storage overhead of MALRU-CR is 0.576%
of the total capacity of LLC. For HAP, it should maintain five
sampling units with different thresholds for NVM partitioning.
The total storage overhead of HAP is 0.671%.

To determine the position of the reserved pointer, we search
the minimum AMAT periodically. The computation complex-
ity of MALRU is O(M2). The performance overhead can be
negligible as M is only a constant (16). Although the latency
of MALRU and MALRU-CR cannot be fully hidden, we note
that the computation of AMAT can be done by hardware and
software cooperatively in the background, and thus the latency
can be removed from the critical execution path of programs.
To this end, we simulate the computation of AMAT by soft-
ware to estimate the cost. We run the program 1000 times on
a physical machine and measure the average time of AMAT
computation. At last, we model the cost of AMAT computa-
tion in the simulator Gem5. We have shown the total overhead
of the AMAT computation in Table III. MALRU, HAP, and
MALRU-CR only spend 0.1881%, 0.0085%, and 0.0068% of
application execution time, respectively.

MALRU adds some hardware for sampling and statistics,
and thus leads to extra area and energy consumption. Since the
simulator Gem5 can not model the cache energy consumption,
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we use another tool CACTI [56] to calculate the cache energy
overhead caused by MALRU. CACTI is a widely used ana-
lytical tool that can model the LLC. It takes a set of cache
parameters as input and models its access latency, power, and
area. Specifically, we add these additional hardware circuits
to the cache tag. By modifying the size of the tag, we can
calculate the energy cost of each cache replacement policy.
Table III shows the energy overhead caused by the extra hard-
ware circuit in the three policies. Compared to LRU, MALRU,
HAP, and MALRU-CR only cause 0.9%, 1.28%, and 0.99%
more energy consumption, respectively.

VI. CONCLUSION

The conventional LRU-based cache replacement policies are
no longer effective in hybrid memory systems. In this article,
we advocate a new cache performance metric—AMAT and
a rereference interval and reserved section aware LRU-based
cache replacement policy for hybrid memory systems. NVM
blocks and partial frequently accessed DRAM blocks with
good temporal locality are protected in the reserved section to
reduce cache miss penalty. We compare MALRU with LRU
and the state-of-the-art HAP policies using several workloads.
The experimental results show that MALRU improves system
performance over LRU and HAP by up to 22.8% and 13.1%,
respectively, while incurring only 0.391% hardware overhead.
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