
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN ON INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, MONTH 20ZZ 1

CNN-on-AWS: Efficient Allocation of Multi-Kernel

Applications on Multi-FPGA Platforms
Junnan Shan, Student Member, IEEE, Mihai T. Lazarescu, Senior Member, IEEE, Jordi Cortadella, Fellow, IEEE,

Luciano Lavagno, Senior Member, IEEE, and Mario R. Casu, Senior Member, IEEE

Abstract—Multi-FPGA platforms, like Amazon AWS F1, can
run in the cloud multi-kernel pipelined applications, like Con-
volutional Neural Networks (CNNs), with excellent performance
and lower energy consumption than CPUs or GPUs. We pro-
pose a method to efficiently map these applications on multi-
FPGA platforms to maximize the application throughput. Our
methodology finds, for the given resources, the optimal number
of parallel instances of each kernel in the pipeline and their
allocation to one or more among the available FPGAs. We
obtain this by formulating and solving a mixed-integer, non-
linear optimization problem, in which we model the performance
of each component and the duration of the phases in which
the accelerated computation can be split into, namely: 1) data
transfer from a host CPU to the DDR memory of each FPGA,
2) data transfer from FPGA DDR to FPGA on-chip memory,
3) kernel computation on the FPGA, 4) data transfer from
FPGA on-chip memory to FPGA DDR, 5) data transfer from
FPGA DDR to host. Finding the optimal solution using a
Mixed-Integer Non-Linear Programming (MINLP) solver is often
highly inefficient. Hence, we provide a fast heuristic method that
according to our experiments can be much more efficient than the
MINLP solver and finds comparable results. For larger problems
(more CNN layers), our heuristic method can quickly find (several
thousand times faster) much better solutions than the MINLP
solver, even if we run the latter for a very long time.

Index Terms—CNNs, multi-FPGA, allocation, optimization.

I. INTRODUCTION

C
ONVOLUTIONAL Neural Networks (CNNs) achieved

breakthrough results in many challenging artificial intel-

ligence domains, such as image recognition, object detection,

and natural language processing. To continuously improve

these results approaching human abilities in a broad variety of

domains, the CNNs depth increases, thus leading to Deep Neu-

ral Networks (DNNs). Application domains of these networks

range from processing live data for traffic surveillance cam-

eras, to identifying peoples in pictures, transcribing voice and

analyzing text to perform “sentiment analysis” (for customer

support or to improve user experience on social networks).

Most of these applications are run on datacenter-class

servers, for which processing speed and energy consumption

are primary concerns. For these reasons, CPU- and GPU-

based platforms are poorly suited and increase operating

costs. ASICs can provide the best energy efficiency, but the

J. Shan, M.T. Lazarescu, L. Lavagno and M.R. Casu are with the Depart-
ment of Electronics and Telecommunications, Politecnico di Torino, I-10129
Torino, Italy, e-mail: mario.casu@polito.it.

J. Cortadella is with the Computer Science Department,
Universitat Politècnica de Catalunya, 08034 Barcelona, Spain, e-mail:
jordi.cortadella@upc.edu

Manuscript received Month XX, 20ZZ; revised Month YY, 20ZZ.

Fig. 1: Architecture of the Amazon Web Service (AWS) F1

instance.

continuous evolution of DNNs requires flexible ASICs, such

as the Google TPU [1], which are, however, less efficient than

theory would predict.

FPGAs are a promising option for CNN and DNN acceler-

ation in datacenters, offering energy efficiency coupled with

full re-programmability and configurability for both datapath

and memory architecture. This allows one to tailor the archi-

tecture to the application to a much deeper extent than either

CPU/GPU platforms or relatively rigid domain-specific ASICs,

like the Google TPU. For these reasons, cloud providers

like Amazon Web Service (AWS) offer Virtual Machines

coupled with multi-FPGA platforms to accelerate datacenter

applications with GPU-like performance, but consuming less

energy.

Most past work addressed CNN acceleration on a single

FPGA. However, since network depth and complexity in-

crease, single-FPGA designs cannot always meet performance

requirements and would benefit from multi-FPGA implemen-

tations. In this work, we address the problem of optimizing

the implementation of these applications on multi-FPGA plat-

forms in such a way to maximize their throughput.

We run our experiments on an AWS F1 instance. As

shown in Fig. 1, it has eight Xilinx UltraScale+ FPGAs,

each equipped with local DDR DRAM and connected via the

PCIexpress (PCIe) bus to an x86 host CPU. The role of the

host CPU is to orchestrate the execution of the applications

on the FPGAs and allow them to communicate via PCIe.

We use an OpenCL-like (but not OpenCL-limited) execution

model, in which an application is typically (but not always,

as we briefly discuss later) a linear task-level pipeline of

kernels. Fig. 2 is an example of a K-stage kernel pipeline.

In the context of CNNs and DNNs, the kernels correspond to

layers: convolutional, max-pooling, normalization, etc. Each

kernel is mapped to one or several independent Compute Units

(CUs), depending on the level of parallelism required for that

kernel, on one or more FPGAs. In Fig. 2, each pipeline stage

is mapped to a specific number of CUs (N1, N2, . . . , Nk).

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/TCAD.2020.2994256

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN ON INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, MONTH 20ZZ

k=2

2

N1

1

M

E

M

M

E

M
2

N2

1

M

E

M
2

NK

1

IN OUT

k=1 k=K

Fig. 2: Example of a K-stage kernel pipeline.

The CUs are implemented in the FPGAs using a High-Level

Synthesis (HLS) flow. The CUs are optimized using loop tiling

and permutation of nested loops to reduce data dependencies

and increase parallelism [2]. Each CU executes loops, which

can be unrolled and pipelined with HLS to further increase the

performance. Kernels communicate between them and with the

host CPU via large buffers allocated in the external DRAM,

i.e. the MEM blocks in Fig. 2.

The CU-level parallelism can be arbitrarily increased via

replication. This computational model is also supported by

C++-based synthesis tools1, and fits very well many data-

center applications, like CNNs or other Neural Networks and

Machine Learning algorithms, databases, video encoding and

decoding algorithms, and so on.

Optimizing the global throughput of a task-level pipelined

application, however, is not a trivial task. A designer needs to:

• balance the number of CUs of each kernel, knowing that

in an OpenCL-style task-level pipeline, the application

throughput is the inverse of the latency of the slowest

stage of the pipeline;

• allocate the CUs in the FPGAs trying to maximize

communication locality;

• meet the FPGA constraints on memory bandwidth

and resources: Look-Up Tables (LUTs), Block RAMs

(BRAMs), Flip-Flops (FFs), and Digital Signal Process-

ing (DSP) blocks.

Indeed, the optimization problem can be mathematically

formulated as a complex Mixed-Integer Non-Linear Problem

(MINLP), which turns out to be particularly hard to solve using

commercial or academic solvers. As an example, Fig. 3 shows

the slow progress of the Couenne solver [3] when optimizing

the Initiation Interval (II), which is the inverse of the pipeline

throughput, of the YOLO CNN [4] on three FPGAs with

a specific resource utilization constraint (namely 45% target

maximum resource usage, to ensure good routability and fast

clock frequency).

To accelerate the optimization process, we propose a fast

heuristic that not only returns the solution in a matter of sec-

onds, instead of several hours or days run time of the MINLP

solver, but often offers better results than those returned by

the solver when its run time is limited for practical reasons.

In our previous work [5] we did not model the data transfer

time between the CPU and the FPGAs. Here, instead, we

consider both that time and the fact that the communication

between kernels mapped to the same FPGA can occur within a

board, thus avoiding costly inter-board data transfers through

1In fact, in this work we model our applications in C++ to better control
loop handling during HLS, since the Xilinx OpenCL HLS front-end is not
yet as developed as their C++ one.

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 5 10 15 20 25 30

In
it

ia
ti

o
n

 I
n

te
rv

a
l

(m
s

)

 !"#$%&%'(&)*+$&,-.

Fig. 3: Slow progress of the MINLP solver while searching

for the optimum allocation of a CNN application.

the host CPU (the AWS platform does not yet offer direct

inter-FPGA transfers via PCIe links). For the execution phase,

we separate the DDR access time from the computation time

to improve the model accuracy. We also consider the effects

of clock frequency reduction when the resource utilization

increases.

We improve also our heuristics, in order to tackle the more

complex performance and cost model, and increase the number

of CNN benchmarks for which we show results, now including

AlexNet [6], VGG [7], YOLO [4] and ResNet [8]. Each of

these networks consists of convolution layers, pooling layers

(sometimes combined with the previous convolution layer

for efficiency), and, only in AlexNet, normalization layers.

Although we restrict our results to these benchmarks, our

technique is completely general and applicable to any DNN

or deep task-level pipelined application.

Our main contributions are:

• A mathematical model that covers the whole application

execution, which consists of the following sequence:

1) input data transfer time from the host CPU to the FPGA

DDR memory, which is considered only if needed, i.e.,

if the data are bound to the first kernel in the pipeline,

or to a kernel allocated on different FPGA(s) than the

kernel that sends the data,

2) data transfer time from the FPGA DDR memory to the

FPGA on-chip memory,

3) actual kernel computation,

4) data transfer time from the FPGA on-chip memory to

the FPGA DDR memory, and

5) data transfer from the FPGA DDR memory to the host

CPU, again which is considered only if needed, i.e., if

the data come from the last kernel in the pipeline, or

from a kernel allocated on different FPGA(s) than the

kernel that receives the data.

• An implementation of the model suitable for being solved

by a MINLP solver, which finds a solution that maximizes

the global execution throughput by minimizing the II of

the kernel pipeline, which is the product of the cycle

count times the estimated clock period.

• A heuristic method that integrates Geometric Program-

ming (GP) to relax the constraints of the exact model,

followed by an efficient allocation algorithm that returns

the number of compute units (CUs) for each kernel, and

their allocation on various FPGAs.

Our article is organized as follows. In Section II, we discuss

related works. In Section III, we present the problem formula-

SHAN et al.: CNN-ON-AWS: EFFICIENT ALLOCATION OF MULTI-KERNEL APPLICATIONS ON MULTI-FPGA PLATFORMS 3

tion, and discuss the proposed heuristic method in Section IV.

In Section V, we present and discuss the experimental results.

Section VI concludes the article and outlines opportunities for

future work.

II. RELATED WORK

The community interested in compilers for parallel archi-

tectures faced a similar problem when mapping streaming

applications to multiprocessor systems and accelerators. In

fact, in [9], the authors define three levels of parallelism (task,

data, and pipeline) that we also exploit in our execution model

(tasks are called “kernels”, data parallelism is exploited both at

the CU level and at the loop unrolling level within a CU, and

the innermost loops within each CU are pipelined). However,

their compiler is aimed at processors rather than FPGAs.

Moreover, it only makes heuristic choices for allocation, while

we first find an optimal non-integer solution using Geometric

Programming, then we relax it, obtaining very good results.

In terms of FPGA implementation of DNNs, the research

focus moved from single to multiple accelerators (i.e., the

layers of a DNN) implemented on a single FPGA [10], [11],

[12]. Even though in these works the use of FPGA resources

and memory bandwidth are maximized, still single FPGA

designs cannot deliver the performance of multi-FPGA plat-

forms, which have recently attracted the interest of researchers.

In [13], the authors propose Multi-FPGA CNN acceleration

by minimizing independently the latency of each kernel, while

our goal is to maximize the application throughput. Their

design space exploration is applied to each layer individually,

which may oversize or undersize each layer with respect to the

global balancing of the task-level pipeline. However, similar

to our work, [13] also adopts an on-board data reuse scheme

to minimize the external memory access time.

In [14], the pipeline stages are consecutive kernels allo-

cated on a single FPGA and the throughput is optimized by

balancing the workload and the FPGA resources. The II of the

pipeline in [14] is by construction greater than in our work,

and therefore the throughput lower, because the kernels of

each group are executed sequentially within a single FPGA.

The advantage of our method is that all kernels can work

concurrently regardless their allocation in the FPGAs, since

each kernel is a single stage of the pipeline. Moreover, in [14]

the consecutive kernels are forced to be allocated on the same

FPGA, while our model does not force that. Finally, [14] does

not consider the frequency reduction due to routing congestion

when the resource utilization increases, while we consider it.

Similar to our work, in [15] the authors first obtain a

characterization of individual kernels, which then they use to

feed a dynamic programming model that optimizes the way in

which the network is partitioned into stages. Still, our model

can obtain a better II for the same reason that it can outperform

the results obtained by the method proposed in [14], namely

that we do not restrict the distribution of CUs to FPGAs to be

grouped by stages.

In [16], the authors focus on designing optimal pipelined

CNNs on a set of heterogeneous FPGAs. The rationale is that

different tasks in the pipeline are better suited to a specific

type of FPGA. Our work is different from theirs in various

aspects, of which the main three are as follows. First, we target

an existing commercial Multi-FPGA platform (AWS), which

consists of a set of homogeneous FPGAs, but our formulation

can be adapted to heterogeneous FPGAs. Second, we do not

force neighboring pipeline stages to be on the same FPGA,

but we take into account the performance advantage of doing

so to achieve a globally better solution. Third, to improve the

solver efficiency, [16] provides an efficient BLAST algorithm

using Dynamic Programming (DP), while we use a Geometric

Programming solver and a heuristic allocator to improve the

efficiency.

Finally, [17] and [18] propose to accelerate a lung cancer

nodule segmentation algorithm on a multi-FPGA system.

All these works maximize the application throughput using

pipelined FPGA clusters, i.e., they force neighboring stages

to be on the same FPGA, which may or may not be the

best solution. Our work uses the layers of the DNNs as a

more natural partition of the network into pipeline stages.

Differently from previous works, we also consider an esti-

mated clock frequency reduction due to routing, when FPGA

resource usage increases.

III. PROBLEM FORMULATION

We consider a multi-kernel application, like a CNN or DNN,

as a set of K kernels organized as stages of a linear pipeline,

i.e., {1, 2, . . . ,K} as in Fig. 2. However, unlike [14], [16], [17],

[18] we do not limit the allocation to follow strictly this logical

pipeline, because we do not force several adjacent kernels to be

grouped as a single stage of the pipeline and be allocated on a

single FPGA, although we can exploit this when advantageous.

In CNNs and DNNs, the kernels are the convolutional, pooling,

and normalization layers2. The workload of each kernel, say

the kth stage, is assigned to Nk CUs that operate concurrently.

We consider kernels that are inherently parallel and for which

the execution time scales proportionally with the number Nk

of CUs for that kernel3.

Application throughput is the inverse of the pipeline initi-

ation interval (II), which depends on the execution time of

the slowest pipeline stage. To minimize II , we must find the

optimal value of Nk and the CU allocation on multiple FPGAs

under specific constraints. If we define nk,f as the number of

CUs of kernel k on FPGA f , we have

Nk =
F∑

f=1

nk,f , (1)

where F is the number of available FPGAs (e.g., F = 8 for

the AWS F1.16xlarge).

By increasing Nk to decrease the execution time, one has

to consider not only the FPGA resource limitations, but also

the limited memory bandwidth. Indeed, the CUs fetch from the

2We merge some max-pooling layers with the previous convolutional layer
whenever this allows us to optimize memory access. We do not implement
the fully connected layers, since we are simply interested in showing a
design methodology with a realistic use case, rather than benchmarking a
full application.

3This “unlimited parallelizability” is a key reason for the success of modern
DNN algorithms.

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN ON INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, MONTH 20ZZ

TABLE I: Constants (boldface) used in model equations.

Notation Description

K number of kernels: k ∈ {1, . . . ,K} used as index
F number of FPGAs: f ∈ {1, . . . ,F} used as index
Ck Input constant data of kernel k
BH2F bandwidth of the link between host and FPGAs
DIk input data of k, not including constants
BF2H bandwidth of the link between FPGAs and host
DOk output data of k
δk duplication factor for non-constant inputs
γk duplication factor for constant inputs
rk number of AXI ports used by k only to read
rwk number of AXI ports used by k both to read and write
xk number of AXI ports used by k to read
BDR read bandwidth of local DDR
wk number of AXI ports used by k only to write
yk number of AXI ports used by k to write
BDW write bandwidth of local DDR
TC1k worst-case computing time of kernel k when Nk = 1

F1k clock frequency of kernel k when Nk = 1

L1k latency (in clock periods) of kernel k when Nk = 1

Rt upper bound of usage for resource t in one FPGA:
t ∈ {BRAM, DSP, LUT, FF, AXI} used as index

Rk,t usage of resource t by kernel k in one FPGA

external DRAM the intermediate data and constants needed for

their computation through AXI ports as shown in Fig. 1. We

do not consider (yet) the possibility of streaming data directly

between kernels, because it involves complex routing of data at

runtime. We simply assume that if all the CUs of two adjacent

kernels are on the same FPGA, then the host does not need to

gather and scatter the data between them. This is a reasonable

assumption for applications and platforms where the number

of pipeline stages (i.e., kernels) is significantly larger than the

number of FPGAs.

We formulate the optimization problem as follows:

minimize II (2)

subject to

Nk ≥ 1, ∀k (3)∑

k

nk,fRk,t ≤ Rt, ∀f, ∀t, (4)

where the goal is to minimize II . Constraint (3) guaran-

tees that each kernel is implemented with at least one CU.

Constraint (4) defines an upper bound of resource utilization

in each FPGA for all types t of FPGA resources, i.e., DSPs,

BRAMs, Flip-Flops, LUTs, and AXI ports.

The problem difficulty stems from the complex dependen-

cies between the II and the main optimization variables nk,f ,

which will be thoroughly explained in the next subsections.

In particular, the presence of integer variables and non-linear

equations and constraints makes the problem a member of the

Mixed-Integer Non-Linear Problem (MINLP) class.

All the constants and variables used in the model equations

introduced in this and the following sections are reported in

Table I and Table II, respectively. Note that we use bold

typefaces for constants and regular typefaces for variables.

A. Modeling of application Initiation Interval (II)

We divide the execution time of each stage of the pipeline

in three phases:

TABLE II: Variables (regular typeface) used in the model

equations.

Notation Description

nk,f CUs of kernel k allocated to FPGA f
Nk sum of nk,f over all the F FPGAs
Th2f host-to-FPGA transfer time
Tf2h FPGA-to-host transfer time
Texe Execution phase time
DIH2F total input data transferred in H2F phase
DID total input data locally stored in DDR memories
ak binary, 1 if k’s inputs are in DDR, 0 otherwise
αk,f binary variable, 1 if k’s CUs are in f
αk number of FPGAs in which k’s CUs are spread
DOF2H total input data transferred in F2H phase
DOD total input data locally stored in DDR memories
bk binary, 1 if k’s outputs are in DDR, 0 otherwise
ETk,f execution time of k in f
TRk,f reading time of k in f
TCk,f computing time of k in f
TWk,f writing time of k in f
drk data read from DDR by each of k’s CU
dwk data written to DDR by each of k’s CU
BXf AXI bandwidth in f
NRf num. of AXI ports concurrently reading from f ’s DDR
BRk,f instantaneous read bandwidth of k’s CU in f
NWf num. of AXI ports concurrently writing to f ’s DDR
BWk,f instantaneous write bandwidth of k’s CU in f
Lk latency (in clock periods) of kernel k for any Nk

Fk,f clock frequency of kernel k in FPGA f
ψ clock frequency degradation factor
Rf resource usage metric for clock frequency computation
Ff clock frequency of FPGA f

T̂Ck computing time of k’s CU in Geometric Programming
(GP)

T̂C maximum computing time among all the kernels in GP
II initiation interval

N̂k total number of CUs of kernel k in GP

L̂k latency (in clock periods) of kernel k for any N̂k

1) Host-to-FPGA (H2F) data transfer phase: the host trans-

fers the input data from its own memory to the various

DDR memories locally connected to the FPGAs. We

denote the transfer time of this phase as Th2f .

2) Execute (EXE) phase: all CUs fetch input data from the

local DDR memory, perform the computation, and save

the data back in the local DDR memory. The duration

of this phase is Texe, and it is the maximum among the

execution times of the various kernels.

3) FPGA-to-Host (F2H) data transfer phase: the host trans-

fers the output data from the local DDR memories to its

own memory. We denote the transfer time as Tf2h.

Therefore, we can write

II = Th2f + Texe + Tf2h. (5)

Note that if the three times were comparable, we could

pipeline the three phases at the cost of double-buffering the

DDR. We leave this further optimization for future work.

Fig. 4 shows an example of pipelined execution of three

kernels. In Fig. 4(a), each kernel is implemented with one CU.

In Fig. 4(b), kernels K1 and K3 use two CUs each, which

leads to a significantly lower II . Note how the duration of the

EXE phase is related to the maximum execution time among

the various kernels. The kernels that determine this maximum

SHAN et al.: CNN-ON-AWS: EFFICIENT ALLOCATION OF MULTI-KERNEL APPLICATIONS ON MULTI-FPGA PLATFORMS 5

(a) Kernel pipeline with one CU

(b) Kernel pipeline with multiple CUs

Fig. 4: Initiation Interval (II) depends on the number of

compute units of each kernel in a multi-kernel pipeline.

might change, depending on the number of CUs: in Fig. 4(a),

K1 sets the II , while in Fig. 4(b) it is set by K2.

In the initialization phase, before pipeline inception, all

constant data are transferred from the host to the DDR

memories locally connected to the FPGAs. For example, in

the CNNs these constant data are the weight and bias values.

We define Ck to be the amount of constant data for each

kernel. The duration of this transfer is not considered in the

optimization, because it is typically small, since it occurs only

once.

The modeling of the three phases is illustrated in the

following sections.

B. Host-to-FPGA (H2F) phase

The duration of this phase is

Th2f =
DIH2F

BH2F
, (6)

where DIH2F is the total amount of transferred input data

(in bytes) and BH2F is the bandwidth of the link between

the host and FPGAs (in GB/s), which is primarily the PCIe

bus bandwidth (see Fig. 1). Note that DIH2F is not the total

amount of input data for every kernel. Part of the input data,

which we denote as DID, is already stored in the local DDR

and does not need to be transferred during H2F. This happens

when all the CUs of two adjacent stages of the pipeline

(kernels k − 1 and k) reside in the same FPGA, therefore

the output of kernel k − 1, which is the input of kernel k,

does not need to be transferred.

We model this using a binary variable, ak ∈ {0, 1}, which

denotes whether kernel k already has all its input data in the

local DDR (ak = 1) or not (ak = 0):

ak =
∨

k>1,∀f

((nk−1,f = Nk−1) ∧ (nk,f = Nk)) . (7)

Note that ak is zero for the first kernel (k = 1), which

always receives its input data from the host CPU. For the

other kernels (k > 1), the logic expression (7) is true only if

all the CUs of consecutive kernels (k − 1 and k) are on the

same FPGA.

The input data of kernel k, denoted as DIk, can be either in

the local DDR or must be transferred from the host memory,

but does not include the constant data which are in the local

DDR after initialization. Thus, the part of the input data that

is already in the local DDR, because it is produced by the

previous kernel, is

DID =
K∑

k=1

akDIk. (8)

If kernel k does not already have its input data in local DDR,

then it will receive (1 − ak)DIk data during H2F. Note that

some networks like ResNet [8] violate the linear pipeline

scheme of Fig. 3 and include branches that reconverge. In this

case we can split the input data of one layer in two or more

parts depending on how many branches reconverge to that

layer. In terms of modeling, this requires a simple change of

(8); in terms of implementation, this simply requires adding

more memory buffers in DDR.

Each kernel k can have its CUs spread across multiple FP-

GAs. When they are spread, these data need to be duplicated4.

Let us denote as αk the number of different FPGAs in which

the CUs of kernel k are spread. This is obtained as follows:

αk,f =

{
1 if nk,f > 0

0 otherwise
(9)

αk =

F∑

f=1

αk,f . (10)

Finally, the total amount of data to be transferred during the

H2F phase is

DIH2F =

K∑

k=1

αk(1− ak)DIk. (11)

Fig. 5 illustrates an example of H2F phase with a hypothet-

ical allocation of four kernels in three FPGAs. The constant

data, C1−C4, have been pre-transferred at initialization. Since

kernels K3 and K4 are allocated to the same FPGA, the input

data DI4 is not transferred during H2F, whereas DI1, DI2, and

DI3 are all transferred. Note that it is necessary to transfer DI2
because not all CUs of K1 are allocated to the same FPGA

as K2.

C. FPGA-to-Host (F2H) phase

Similar to the H2F phase, the duration of the F2H phase

can be expressed as

Tf2h =
DOF2H

BF2H
, (12)

where BF2H is the bandwidth and DOF2H is the output data

to be transferred to the host. Like before, a part of the output

data remains in the local DDR, DOD. To model this, we

introduce another binary variable, bk, for each kernel:

4We assume, for simplicity, that the host CPU only needs to know where
kernel k is allocated and not which CUs are in each of the FPGAs where
k is allocated. As a result, the host will simply duplicate the data transfer
αk times. As discussed above, a more precise model of data scattering and
gathering is left to future work.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN ON INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, MONTH 20ZZ

C4C3

DI3

DI4

DI2

k3 k4k1

C1 C1 C2

DI1

FPGA1 DDR FPGA2 DDR FPGA8 DDR

FPGA1 FPGA2 FPGA8
CPU

Host DDR

k1 k2

Fig. 5: Host-to-FPGA (H2F) example showing data transfer

between host DDR and FPGA DDRs. DI4 is not transferred

because kernels K3 and K4 are on the same FPGA. DI2 is

transferred because parts of K1 are on different FPGA than

K2.

DO3

k3 k4k1

DO1

DO2

DO4

FPGA1 DDR FPGA2 DDR FPGA8 DDR

FPGA1 FPGA2 FPGA8
CPU

Host DDR

k1 k2

Fig. 6: FPGA-to-Host (F2H) example showing data transfer

between FPGA DDRs and host DDR. K3 and K4 are on the

same FPGA and DO3 does not need to be transferred.

bk =
∨

k<K,∀f

((nk,f = Nk) ∧ (nk+1,f = Nk+1)) . (13)

Note that bk is zero for the last kernel (k = K, which always

transfers its output to the host CPU), and that for the kernels

between 1 and K − 1 its value is bk = ak+1.

If we define as DOk the output data of kernel k (which

can be either in the local DDR or be transferred to the host

memory), we have

DOD =
K∑

k=1

bkDOk (14)

DOF2H =
K∑

k=1

(1− bk)DOk. (15)

Note that DOk = DIk+1 for kernels between 2 and K − 1.

Note also that, contrary to the input data, there is no

output data duplication. Each CU, regardless of its allocation,

contributes to a unique, non-duplicated fraction of the total

output data DOk of kernel k.

Fig. 6 shows the F2H phase of the same hypothetical

allocation in Fig. 5. Since kernels K3 and K4 are in the same

FPGA, the output data DO3 are not transferred during H2F,

whereas DO1, DO2, and DO4 are all transferred.

This model does not force the CUs of a kernel, nor consec-

utive kernels, to be allocated on a single FPGA. However,

grouping can reduce the data transfer time, which is part

of the II. Hence, when the solver optimizes the II, it will

implicitly try to group the CUs on a single FPGA. And for

the same reason, consecutive kernels are also grouped together

whenever possible.

D. Processing (EXE) phase

In comparison with our previous work [5], we improve the

accuracy of the model by including the memory access time.

This is obtained by dividing the execution time into three

stages: reading data from DDR, performing computation and

writing data to DDR.

The execution time of the CUs of kernel k located in FPGA

f is ETk,f , made of reading, computing, and writing times5:

ETk,f = TRk,f + TCk,f + TWk,f . (16)

The duration of the EXE phase is obtained taking the maxi-

mum of all execution times:

Texe = max
k, f

ETk,f (17)

The three times in (16) depend on the number of CUs of kernel

k, Nk, as shown in the following.

1) Reading from local DDR: Let us define as drk the

amount of total data that one CU of kernel k reads from

the local DDR memory. These data include the input data,

DIk, and the constant data, Ck. If the workload is perfectly

balanced among the CUs of a kernel, these data will be split

in Nk chunks, and each CU will fetch one of these chunks. It

is possible, however, that some data and/or some constants are

duplicated. We introduce two factors to take into account the

possible duplication of some of the data and the constants, δk

and γk, respectively, such that we can express drk as follows:

drk =
δkDIk + γkCk

Nk
+ (1− δk)DIk + (1− γk)Ck, (18)

where 0 ≤ δk ≤ 1 and 0 ≤ γk ≤ 1. (18) captures the fact that

not all input data scale with Nk and a residual amount of data

needs to be fetched by all the CUs from local DDR even when

Nk → ∞. The two extreme values of δk and γk capture the

extreme cases of full duplication (δk = γk = 0) and perfect

scaling (δk = γk = 1). The values of these constants can be

obtained by profiling a few instances of the application with

different CU allocations.

Each CU of kernel k accesses the local DDR through

separate AXI ports, each with bandwidth BXf . Note that the

AXI bandwidth can be different in each FPGA (hence the f

subscript) due to the specific clock frequency at which FPGA

f is running. We also assume that all CUs start reading at

the same time, and those that need less data or have the best

memory bandwidth finish first, as we will discuss below.

The read bandwidth of the DDR connected to each FPGA

is BDR. This bandwidth is instantaneously shared among the

NRf actively reading AXI ports associated to the various

kernels allocated to that FPGA. NRf changes over time,

due to the different finishing time. The instantaneous read

bandwidth for each CU is therefore the minimum between

5Here we assume that reading, computing, and writing do not overlap,
i.e. that task-level pipelining is not used inside the kernel to further optimize
throughput at the expense of on-chip RAM usage. Including this aspect would
require a simple modification of our model, using the max instead of the sum,
which is not considered here.

SHAN et al.: CNN-ON-AWS: EFFICIENT ALLOCATION OF MULTI-KERNEL APPLICATIONS ON MULTI-FPGA PLATFORMS 7

the total AXI bandwidth used by the CU and the portion of

DDR bandwidth that the CU receives:

BRk,f = xk ·min

(
BXf ,

BDR

NRf

)
, (19)

where xk is the number of AXI ports used in the reading

phase. Some of these ports are used only for reading and

some are used both for reading and writing: let us denote

their number as rk and rwk, respectively. Therefore, we have

xk = rk + rwk. (20)

Each CU has a different amount of data to read through the

AXI interface, so the data read time also varies from kernel

to kernel. At the beginning, all the ports share the bandwidth,

but when the first CU finishes reading, the available bandwidth

for the remaining CUs increases, since the number of active

reading ports is reduced. Eventually there will be only one

active port reading data from external DDR memory.

Worst-case approximation: Unfortunately, taking into ac-

count the different read times requires an iterative formulation,

which would be too costly to implement (the MINLP solver

already times out with just a single iteration). Therefore, we

simplify it to obtain a worst-case formula by assuming that the

number of active AXI ports is always equal to the initial value,

i.e., NRf =
∑

k∈K(xk · nk,f), i.e. that the memory reading

times are roughly balanced among the kernels. In this way, we

can use a fixed value for the read bandwidth as in (19), and

consequently the approximated reading time becomes

TRk,f ≃
drk

BRk,f
. (21)

2) Writing to local DDR: All the CUs of kernel k write

their output data dwk to the local DDR memory roughly at the

same time, while the CUs of different kernels in principle can

write at different times. Since it is difficult to model the exact

time at which each kernel starts writing the data, we consider

the worst-case scenario when all the CUs of all kernels start

writing at the same time, in the same way as we did for the

reading phase. This is a crude approximation, but we consider

it acceptable because the writes are much fewer than the reads.

Therefore, we will determine the TWk,f time in a similar way

as we obtained the TRk,f time. One difference is that there

is no output data duplication:

dwk =
DOk

Nk
. (22)

Each CU of kernel k writes in the local DDR through yk

separate AXI ports, each with bandwidth BXf . Some of these

ports are used both for writing and reading (rwk), while some

only for writing (wk). Hence, we have

yk = wk + rwk. (23)

The DDR memory write bandwidth is BDW. It is instan-

taneously shared among the NWf actively writing AXI ports

associated to the various kernels allocated to that FPGA. NWf

changes over time and we assume that initially it takes the

value NWf =
∑

k∈K(yk · nk,f). The instantaneous write

bandwidth for each CU is therefore

BWk,f = yk ·min

(
BXf ,

BDW

NWf

)
. (24)

Worst-case approximation: As in the previous case, we

can obtain a worst-case expression by assuming that the

number of active AXI ports is always equal to the initial value,

i.e., NWf =
∑

k∈K(yk · nk,f). By assuming that the write

bandwidth is always as in (24), we obtain the approximated

writing time:

TWk,f ≃
dwk

BWk,f
. (25)

3) Computing: Let us define TC1k as the worst case

computing time when kernel k is implemented with only one

CU and runs at clock frequency F1k. The computing latency in

clock cycles needed by one CU is therefore L1k = TC1k ·F1k.

Considering that kernel k is arbitrarily parallelizable, its la-

tency Lk scales proportionally to its number of CUs, Nk:

Lk =
L1k

Nk
. (26)

The actual clock frequency in each FPGA depends on both

resource utilization and the different kernels allocated to it.

We observed an almost linear graceful degradation of clock

frequency for each kernel as the amount of resources increases:

Fk,f = F1k − ψ ·Rf , (27)

where Rf is a metric of resource utilization in the FPGA f

and ψ ≥ 0 is a constant, potentially different for each kernel.

To obtain ψ, we collected experimental data with different

numbers of compute units (in this case, the kernel resource

utilization will change) and we noticed that a linear fitting

worked very well. Since all kernels in f run at the same clock

frequency6, Ff , it is determined as

Ff = min
k
Fk,f (28)

and we can obtain the computing delay for each kernel k in

FPGA f :

TCk,f =
Lk

Ff
. (29)

IV. GEOMETRIC PROGRAMMING AND ALLOCATOR

The optimization problem discussed in the previous section

can be solved by a Mixed-Integer Non-Linear Programming

(MINLP) solver like Couenne [3]. This can lead, however, to

impractically long optimization times for designs with many

kernels and FPGAs, as we will show in the next section.

Consider, for instance, that the VGG-net convolutional neural

network with 20 layers spread on eight FPGAs has 160 integer

variables. Using a slow MINLP solver within a design space

exploration loop often leads to prohibitively long run times.

For this reason, we propose a heuristic formulation that sep-

arates the optimization in two steps. The first step determines

6Even though it would be possible for each kernel to run at a different
clock frequency even in the same FPGA, we did not consider this possibility
for now.

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN ON INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, MONTH 20ZZ

the total fractional number of CUs for each kernel to minimize

the computation time (this simplification is reasonable when

the reading time and writing time are much smaller than the

computation time, which is the case for CNNs). With this

relaxation, we can use a Geometric Programming (GP) solver

that is much faster than a MINLP solver (just like Linear

Programming is much faster than its integer variant). The

second step allocates the CUs to the available FPGAs in a

greedy but “smart” way, in order to minimize the data transfer

time between the host CPU and the external DDR memory. In

the following, we refer to this two-step approach as GP+A.

A. Geometric Programming

To use GP [19], we relax the constraints of the problem

by allowing the total number of CUs for each kernel nk,f be

a real number, rather than an integer as it should be. Given

the number of FPGAs, the total available resources, and the

computation time of each kernel (since only the computation

time depends on resources like DSPs and BRAM), a GP solver

returns the optimal number of CUs of each kernel as real

numbers. With these, the allocation problem becomes fully

symmetric across the F identical FPGAs, and the optimum

solution has an equal distribution of CUs across the F FPGAs.

Let us define n̂k ∈ R the number of CUs that would be

assigned to an FPGA. The total number of CUs of kernel k

will be

N̂k = F · n̂k. (30)

To guarantee that at least one CU is generated for each kernel,

we need to specify that N̂k ≥ 1, but of course it is possible

that n̂k ≤ 17.

Now the kernel latency becomes

L̂k =
L1k

N̂k

, ∀k ∈ K (31)

and the kernel computing time becomes

T̂Ck =
L̂k

F1k
, ∀k ∈ K, (32)

where we use F1k as an estimation of the actual clock fre-

quency. This is justified by the fact that the clock frequencies

of different kernels are similar, as we will show in Section V,

and that the degradation due to the implementation affects all

FPGAs in a similar way, since we utilize them fairly uniformly.

Thus, we can reformulate the optimization problem in (2)–

(4) as follows:

minimize T̂C (33)

subject to

T̂C ≥ T̂Ck, ∀k ∈ K (34)

N̂k ≥ 1, ∀k ∈ K (35)
∑

k
N̂k

F
Rk,t ≤ Rt. (36)

The new formulation in (33)–(36) is compatible with GP

requirements [19], and as such can be solved very efficiently.

7We can liken n̂k to the average number of CUs of kernel k across F
FPGAs.

Once we obtain the (fractional) number of CUs of each kernel,

in the next step we allocate them on FPGAs in integer chunks,

via discretization. Note that the initial GP spreads the kernels

across F, which is clearly suboptimal because it increases the

data transfer time and the complexity of the work done by the

host CPU. This is why we introduce a heuristic allocator to

optimize the mapping.

B. FPGA allocation

Before allocation, the variables N̂k ∈ R must be discretized

to obtain Nk ∈ N. We enforce integrality using a branch-

and-bound technique similar to those used in Integer Lin-

ear Programming. We generate two sub-problems, each with

Nk ≤ ⌊N̂k⌋ and Nk ≥ ⌈N̂k⌉. The search is pruned when the

overall resource usage of a sub-problem exceeds the resource

bound of all the FPGAs (this might happen because GP uses

N̂k to meet the resource constraints, but ⌈N̂k⌉ ≥ N̂k). Even

though this branch-and-bound technique may lead to a worst-

case exponential branching tree, in practice this does not lead

to excessive execution times due to:

• the pruning strategy,

• the fact that we need to discretize only K variables, where

K is the total number of of distinct kernels in the network,

and

• the fact that the number of kernels K is relatively small.

E.g., it is around 20 for the VGG benchmark, and 37 for

the ResNet benchmark. ResNet, however, includes only

16 types of distinct kernels, and different layers with the

same type of kernel can have exactly the same number

of total CUs. Hence even for ResNet we have only 16

variables to discretize, as discussed below.

The full MINLP approach, on the other hand, must discretize

every variable (160 in the case of VGG over eight FPGAs),

hence it may potentially have a much larger branching tree.

For each sub-problem generated with the discretization, we

perform the actual allocation, which consists of two phases:

1) Kernel group allocation.

2) Individual kernels allocation.

1) Kernel group allocation: To minimize the H2F and

F2H transfer times, we try to allocate on the same FPGA

kernels that are consecutive in the pipeline, so that their

communication can happen through buffers in local DDR

without involving the host CPU. To do so, we first enumerate

all possible groups of at least two kernels. We then associate

each group with the size of the input data required by the

kernels in the group, data that will be transferred locally if

the group fits in a single FPGA. An example of groups and

associated data is shown on the left of Fig. 7(a).

Many of these combinations are not feasible (i.e., the group

cannot fit in one FPGA) and are therefore flagged as invalid

and pruned, as shown in the figure. This is beneficial because

it reduces the overall runtime of our heuristic. After pruning,

we sort the list of remaining kernel groups in descending order

of input data size, as shown on the right of Fig. 7(a).

Based on this list and on FPGA resource constraints, we

allocate the groups using the greedy heuristic procedure called

AllocateGroups in Algorithm 1.

SHAN et al.: CNN-ON-AWS: EFFICIENT ALLOCATION OF MULTI-KERNEL APPLICATIONS ON MULTI-FPGA PLATFORMS 9

(a)

(b)

Fig. 7: Grouping example with five kernels: (a) possible kernel

groups (left), flagging and discarding, and kernel group sorting

by input data size (right). (b) possible allocation: first allocate

the kernel groups and then allocate the individual kernels.

Algorithm 1: Pseudo-code of kernel group allocation

1 procedure AllocateGroups(Nk, R)

2 CU = (CU1, CU2, . . . , CUK) // Kernel CUs to allocate

3 CUk = Nk , ∀k // Initialized to GP values

4 S = (S1, S2, . . . , SF) // FPGA resource slacks

5 Sf = R, ∀f // Initialized to resource constraint

6 nk,f = 0, ∀k, f // Allocated CUs initialized to zero

7 Ng = All Kernel groups // Set of all possible groups

8 Ng = Ng \ Infeasible groups(Ng) // Pruning

9 Ng = Sorted groups(Ng) // Sorting by data size

10 Rg = Group resources(Ng) // Resources needed by

// each group

11 for n = 1 to |N g| do // Try to allocate group n
12

13 for f = 1 to F do

14 if R g[n] ≤ Sf then // if f has space left

15

16 Sf = Sf − R g[n]
17 for k ∈ N g[n] do // all kernels in n
18

19 nk,f = CUk

20 CUk = 0

21 Ng = Ng \ {Ng [n]} // remove group n
22 sortFPGA(S) // Sort by increasing slack

23

24 return CU, S

After pruning and sorting the groups (N g is the set of

groups and its cardinality is |N g| =
∑K−1

n=1 n), the loops in

lines 11–23 simply try to allocate each group as long as an

FPGA has enough space. If a group is allocated to FPGA

f , each kernel k in the group will have all of its CUs (as

determined by GP) allocated to f (nk,f = CUk = Nk) and the

corresponding value CUk will be set to zero, otherwise CUk

will keep the initial value Nk. The resource slack of f is also

updated. The procedure returns the modified arrays CU and

S, which are then passed to the last phase for the individual

allocation of the residual kernels. Fig. 7(b) shows one possible

allocation of a five-kernel application. By following the order

of the sorted kernel groups, the allocator first tries to allocate

the first two kernel groups on a single FPGA, but does not

succeed. Then it tries to allocate the third kernel group and

successfully assigns it to FPGA1. Similarly, k1 and k2 are

allocated on FPGA2. The individual kernel k3 cannot fit on

FPGA1 or FPGA2, and is allocated on FPGA3 using the

algorithm in Section IV-B2.

2) Individual kernel allocation: Before delving into the

details of the procedure shown in Algorithm 2, it is important

to note that, due to the discretization that follows the GP

solution, it might happen that an allocation is not feasible,

as it might exceed the initial resource constraint Rc = R.

For this reason, we use a soft bound that can be increased

iteratively by a little amount (Rc = Rc+∆) until it exceeds the

initial constraint by a predetermined threshold (Rc > R+ T).

This is implemented by the outer while loop in lines 4–37 of

Algorithm 2, with the boundary increased on line 35 and the

exit condition (in case of allocation) on line 37.

Algorithm 2: Pseudo-code of kernel allocation

1 procedure AllocateKernels(CU, S)

2 Rc = R // Resource constraint initialized

3 alloc = FALSE

4 while Rc < R + T and not alloc do

5 sortKernels(CU) // Sort by descending criticality

6 for k = 1 to K do // Allocate large kernels first

7 f = 1
8 while CUk · Rk > R do // Can’t fit in one FPGA

9 if Sf = R then

10 δCU = ⌊R/Rk⌋
11 CUk = CUk − δCU
12 Sf = Sf − δCU · Rk

13 nk,f = nk,f + δCU
14 else

15 f = f + 1

16 sortFPGA(S) // Sort by ascending slack

17 for k = 1 to K do // Allocate all kernels

18 partial alloc = FALSE

19 f = 1
20 while f ≤ F and not partial alloc do

21 if Sf ≥ CUk · Rk then

22 Sf = Sf − CUk · Rk

23 nk,f = nk,f + CUk

24 CUk = 0
25 partial alloc = TRUE

26 f = f + 1

27 if not partial alloc then

// Use least used FPGA F, if possible

28 δCU = ⌊SF/Rk⌋
29 CUk = CUk − δCU
30 SF = SF − δCU · Rk

31 nk,F = nk,F + δCU

32 sortFPGA(S)

33 if
∑

k CUk > 0 then // Not all CUs are allocated

34 Rc = Rc + ∆
35 else

36 alloc = TRUE // All kernels allocated

37 if alloc then // All CUs are allocated

38 return nk,f , ∀k, ∀f
39 else

40 return allocation failed

If no discretization case can be allocated (alloc = FALSE

for all of them), it means that the initial constraint R was too

tight and the entire GP+A heuristic needs to be run again with

the looser constraint R+ Tmax.

The two for loops inside the while loop (lines 6–15 and

18–37, respectively) are preceded by a procedure that sorts

the kernels in descending “criticality.” Critical kernels are

those that might end up being the slowest in the pipeline and

determine the overall II . In practice, we sort the kernels in

descending T̂Ck as determined by the GP step.

After sorting by criticality, the first for loop attempts to

allocate a portion of the CUs of the large kernels that cannot

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN ON INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, MONTH 20ZZ

fit in a single FPGA (line 8) to still empty FPGAs (line 9).

The second loop is preceded by an FPGA sorting by

ascending slack (the less empty first). The rationale is that we

want to consolidate the kernels by allocating all the residual

CUs to the already partially filled FPGAs. If this is not possible

(line 28), we use the least used FPGA, which is the last in the

ordered set (F, i.e., the one with the largest slack), to allocate

as many CUs as possible.

Before the next iteration of the for loop, the FPGAs are

sorted again by ascending slack.

After the loop, if there are still CUs that are not allocated

(line 33), the soft boundary is increased and the outer while

loop is executed again.

If all kernels are allocated, the procedure returns nk,f for all

kernels and FPGAs. In this case, the FPGA working frequency

is updated and the AXI reading time Tread and writing time

Twrite are calculated, as well as the data transfer time between

the host CPU and the local DDR memory Th2f and Tf2h.

Finally, the II is computed and compared with the best

obtained so far. If better, the allocation of the current sub-

problem obtained with discretization of GP results is kept,

otherwise it is discarded and a new discretization is considered.

V. EXPERIMENTAL RESULTS

We implemented our allocation heuristics in C++ and linked

it to an existing GP solver [20]. To validate our optimization

method, we use several widely used CNNs: AlexNet [6],

VGG-net [7], YOLO [4] and ResNet [8]. For AlexNet, we

consider both a 32-bit floating point version and a 16-bit

fixed-point version, which we denote Alex-32 and Alex-16,

respectively. For VGG-net, we only use the 16-bit fixed-point

version, denoted VGG-16. For YOLO we only use the floating-

point version, denoted YOLO-32. Finally, for ResNet we only

use 16-bit fixed-point version denoted RESNET-16. Again,

this is just an arbitrary selection of benchmarks to show the

effectiveness of our technique for a growing CNN complexity.

We validate our heuristic against the MINLP solver Couenne

under the same conditions, and for this purpose we introduce

two symbols:

• GP+A refers to the solution given by the heuristic method

that couples GP and Allocation;

• MINLP refers to the solution obtained using the state-

of-the-art MINLP solver Couenne.

We compare the solutions obtained with the two methods for

different numbers of FPGAs and different resource constraints.

We ran all our MINLP and GP+A optimizations on a multi-

core CPU (Intel Core i7-6900K clocked at 3.2 GHz, 16 cores)

with Linux CentOS 6.9, and our hardware experiments on an

AWS F1.x16large instance with eight UltraScale Plus FPGAs.

Initially, we ran our kernels individually on AWS and

obtained the performance and cost characteristics with one

CU each, that are needed for the cost-performance model.

Tables III–V report the input/output data size of each kernel,

duplication factor of the input data, constant data weights,

number of input/output data ports, working frequency, resource

usage (since the critical resource usage in our applications

are DSPs, we only report the DSP usage), and computation

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 55 60 65 70 75 80 85 90 95

In
it

ia
ti

o
n

 I
n

te
rv

a
l
(m

s
)

Resource Constraint (%)

T1

T2.5

T5

T7.5

T10

T12.5

T15

T17.5

Fig. 8: II vs. Rmax with different resource usage thresholds

for AlexNet fixed-point (Alex-16) on two FPGAs.

time8. Note that we do not need to characterise all kernels

individually, because some of them have exactly the same

configuration (same input/output data size and amount of

computation).

Out of all the experiments that we carried out, we select

five representative cases of increasing complexity: ALEX-16

on two FPGAs, ALEX-32 on four FPGAs, YOLO-32 on three

FPGAs, VGG-16 on four FPGAs, VGG-16 on six FPGAs,

and ResNet on five FPGAs. The MINLP solver manages to

complete and return the (provably) optimum solution in a

reasonable time only in the smallest among all these cases,

namely ALEX-16 on two FPGAs. The MINLP CPU time

for this case is shown in Table VI, where we vary the

DSP resource constraint (FPGA DSPs are always the limiting

factor) from 55% to 92%. In this range, we observe an almost

linear degradation of the maximum clock frequency with the

FPGA resource utilization, which we captured in (27).

For all the other cases, we had to set a time limit to stop

the MINLP solver. We chose it by looking at the progress of

the solution: when we observed a flattening of the II curve

as in Fig. 3, we decided to stop the solver. The time limit,

as shown in Table VII, varies from 10 to 70 hours for the

different cases, due to the different size of the problem.

Table VIII shows instead the CPU time required by our

heuristic to generate a set of results, which is generally several

thousand times faster than the MINLP solver.

As shown in Algorithm 2, our heuristic requires to set

a resource usage threshold, T . Fig. 8 shows the effect of

changing it while keeping the other parameters of ALEX-16

on two FPGAs constant. We observe little effect of T on the

value of II across a large range of the resource constraint

R. Similar results are obtained for the other benchmark cases.

Because of this, in the following we report the results obtained

with one specific threshold, namely for T = 1%.

The plots in Fig. 9 show the results obtained by changing

the resource constraint for both the MINLP solver and our

heuristic. ALEX-16 on two FPGAs, shown in Fig. 9(a), shows

the effectiveness of our method since we know that MINLP

returns the optimum result for this benchmark: notice how

MINLP and GP+A completely overlap. Interestingly, for all

the other cases with increased complexity shown in Figs. 9(b)–

(e), GP+A significantly outperforms MINLP (even for runs

8To save space, we did not include the ResNet characterization table.

SHAN et al.: CNN-ON-AWS: EFFICIENT ALLOCATION OF MULTI-KERNEL APPLICATIONS ON MULTI-FPGA PLATFORMS 11

TABLE III: Characterization of kernels for Alex-32 (floating point) and Alex-16 (fixed-point). C, P, N stand for convolutional,

pooling and normalization layers.

Alex-32 Alex-16

DIk DOk Ck δk γ
k

rwk F1k DSP TC1k DIk DOk Ck δk γ
k

rwk F1k DSP TC1k

Kernels (MB) (MB) (MB) (GHz) (%) (ms) (MB) (MB) (MB) (GHz) (%) (ms)

C1 0.62 1 0 0 1 1 0.25 21.24 4.41 0.31 0.58 0 0 1 1 0.25 4.31 2.63

P1 1 0.27 0 1 1 1 0.25 0 0.11 0.58 0.139 0 1 1 1 0.25 0.58 0.37

N1 0.27 0.27 0 1 1 1 0.25 2.11 0.29 0.139 0.139 0 1 1 1 0.25 0.06 0.28

C2 0.27 0.17 1.17 0 1 1 0.22 37.59 2.99 0.139 0.086 0.614 0 1 1 0.25 7.63 1.927

N2 0.17 0.17 0 1 1 1 0.223 7.75 0.2 0.086 0.086 0 1 1 1 0.25 0.06 0.17

C3 0.17 0.25 3.375 0 1 1 0.214 28.13 2.18 0.086 0.13 1.77 0 1 1 0.25 5.66 1.82

C4 0.25 0.25 2.53 0 1 1 0.21 37.5 1.82 0.13 0.13 1.33 0 1 1 0.25 7.55 1.08

C5 0.25 0.035 1.69 0 1 1 0.22 37.5 3.73 0.13 0.018 0.884 0 1 1 0.25 7.55 1.72

TABLE IV: Characterization of kernels (K) for YOLO-32

(floating point). C and P stand for convolutional and pooling

layers.

DIk DOk Ck δk γ
k

rwk F1k DSP TC1k

K (MB) (MB) (MB) (GHz) (%) (ms)

C1 0.574 3.063 0.0016 1 0 1 0.25 3.66 6.63

P1 3.063 0.767 0 1 1 1 0.25 0 0.43

C2 0.767 1.531 0.018 1 0 1 0.25 9.52 4.22

P2 1.531 0.383 0 1 1 1 0.25 0 0.03

C3 0.383 0.766 0.07 0 1 1 0.25 9.43 2.24

P3 0.766 0.191 0 1 1 1 0.25 0 0.03

C4 0.191 0.383 0.281 0 1 1 0.25 18.77 1.2

P4 0.383 0.096 0 1 1 1 0.25 0 0.03

C5 0.096 0.096 0.563 0 1 1 0.25 18.72 0.58

P5 0.096 0.024 0 1 1 1 0.25 0 0.016

C6 0.024 0.048 1.125 0 1 1 0.247 4.68 1.02

C7 0.048 0.079 0.415 0 1 1 0.25 7.31 0.49

TABLE V: Characterization of kernels (K) for VGG-16 (fixed-

point). C and P stand for convolutional and pooling layers.

DIk DOk Ck δk γ
k

rwk F1k DSP TC1k

K (MB) (MB) (MB) (GHz) (%) (ms)

C1 0.287 6.126 0.003 1 0 1 0.25 2.95 14.652

C2 6.126 6.126 0.07 1 0 1 0.249 15.14 20.18

P2 6.126 1.531 0 1 0 1 0.25 0.03 0.115

C3 1.531 3.063 0.141 1 0 1 0.25 15.14 10.042

C4 3.063 3.063 0.281 1 0 1 0.249 15.14 13.71

P4 3.063 0.766 0 1 1 1 0.25 0.03 0.115

C5 0.766 1.531 0.563 0 1 1 0.246 15.07 7.808

C6 1.531 1.531 1.125 0 1 1 0.249 15.05 14.97

C7 1.531 1.531 1.125 0 1 1 0.249 15.05 14.97

P7 1.531 0.383 0 1 1 1 0.25 0.03 0.115

C8 0.383 0.766 2.25 0 1 1 0.244 15.02 7.66

C9 0.766 0.766 4.5 0 1 1 0.25 15.02 14.94

C10 0.766 0.766 4.5 0 1 1 0.25 15.02 14.94

P10 0.766 0.192 0 1 1 1 0.25 0.01 0.115

C11 0.192 0.192 4.5 0 1 1 0.245 14.99 3.84

C12 0.192 0.192 4.5 0 1 1 0.245 14.99 3.84

C13 0.192 0.192 4.5 0 1 1 0.245 14.99 3.84

TABLE VI: ALEX-16 on 2 FPGAs: MINLP CPU time to

obtain one optimum solution varying the resource constraint.

Resource Usage on each FPGA

55% 61% 76% 82% 92%

Time (h) 8.2 1.7 1.8 1.93 1.6

TABLE VII: Time limit used by the Couenne MINLP solver to

obtain one point on the II vs. R curve of each implementation

in Fig. 9.

CNN / # FPGAs

Alex-32 YOLO-32 VGG-16 VGG-16

4 FPGAs 3 FPGAs 4 FPGAs 6 FPGAs

Time (h) 10 30 30 40

TABLE VIII: Execution time of our heuristic method GP+A

to generate the Pareto points in Fig. 9.

CNN / # FPGAs

Alex-16 Alex-32 YOLO-32 VGG-16 VGG-16

2 FPGAs 4 FPGAs 3 FPGAs 4 FPGAs 6 FPGAs

Time (s) 25 22 17 89 66

within the fairly large time limits of Table VII), with only one

exception: the point at R = 61% for ALEX-32 on four FPGAs

in Fig. 9(b) where the heuristic is slightly worse than MINLP.

Different from the other benchmarks, for ResNet the com-

parison between the heuristic and the MINLP solver is imprac-

tical. In the 5-FPGA case for which we report the heuristic

result in Fig. 10, the MINLP solver could not return a feasible

solution even after a very long runtime. We stopped it after

70 hours, whereas our heuristics returned the points in Fig. 10

in only 15 seconds.

In general, the larger the size of the problem, the larger

the gap between GP+A and MINLP. As the problem gets

more complex, the MINLP solver either gets stuck in a local

minimum, or needs an impractical amount of time to converge

to the global optimum. Our heuristic instead returns in a short

amount of time a competitive solution.

The histograms in Fig. 11 and Fig. 12 show the resource

allocation of kernels for ALEX-32 on four FPGAs and VGG-

16 on six FPGAs, respectively, with a different value of R.

These correspond to two specific points that are circled out in

the plots of II vs R in Fig. 9(b) and Fig. 9(e), respectively.

Fig. 11 shows that MINLP and GP+A made very similar

allocations. Both manage to place in the same FPGA kernels

that are consecutive in the pipeline, as highlighted by the

coloring (similar colors refer to consecutive kernels that should

be allocated on the same FPGA).

On the contrary, in the more complex case in Fig. 12 the

allocations are significantly different. While GP+A manages

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN ON INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, MONTH 20ZZ

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 50 55 60 65 70 75 80 85 90 95

In
it

ia
ti

o
n

 I
n

te
rv

a
l

(m
s

)

Max Resource Use (%)

(a)

ALEX-16 on 2 FPGAs

GP+A MINLP

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 50 55 60 65 70 75 80

Max Resource Use (%)

(b)

ALEX-32 on 4 FPGAs

GP+A MINLP

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 45 50 55 60

Max Resource Use (%)

(c)

YOLO-32 on 3 FPGAs

GP+A MINLP

 15

 20

 25

 30

 50 55 60 65 70 75 80 85 90 95

Max Resource Use (%)

(d)

VGG-16 on 4 FPGAs

GP+A MINLP

 10

 12

 14

 16

 18

 20

 22

 24

 26

 50 55 60 65 70 75 80 85 90 95

Max Resource Use (%)

(e)

VGG-16 on 6 FPGAs

GP+A MINLP

Fig. 9: Initiation interval as a function of FPGA resource usage: (a) ALEX-16 on 2 FPGAs, (b) ALEX-32 on 4 FPGAs, (c)

YOLO-32 on 3 FPGAs, (d) VGG-16 on 4 FPGAs and (e) VGG-16 on 6 FPGAs.

 2

 2.2

 2.4

 2.6

 2.8

 3

 64 66 68 70 72 74 76In
it

ia
ti

o
n

 I
n

te
rv

a
l
(m

s
)

Max Resource Use (%)

GP+A

Fig. 10: RESNET-16 on 5 FPGAs: II vs resource usage.

 0

 20

 40

 60

 80

 100

F1 F2 F3 F4 F1 F2 F3 F4

%
 o

f
to

ta
l
re

s
o

u
rc

e
s

ALEX-32 - FPGA resource utilization by kernels

GP+A MINLP

CONV1
POOL1

NORM1
CONV2

NORM2
CONV3

CONV4
CONV5

R

Fig. 11: ALEX-32 allocation on 4 FPGA using GP+A and

MINLP.

to both use efficiently the resources available within the R

constraint and group in the same FPGA consecutive kernels,

MINLP does not succeed at any of these two tasks within the

allotted time.

In Fig. 13, we show the value of II (red curves) as a

function of the number of FPGAs, for the best solutions

returned for each number of FPGA by our heuristic in the four

benchmark cases. We plot in the same graphs the Transfer time

and Computing time fractions of II , which show that there is

an optimum number of FPGAs for each application. This is

because more FPGAs (1) provide more parallel resources that

allow decreasing the computing time, but (2) more FPGAs also

tend to increase the transfer time in the H2F and F2H phases

because fewer kernel pairs can share data directly and data

 0

 20

 40

 60

 80

 100

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

%
 o

f
to

ta
l
re

s
o

u
rc

e
s

VGG-16 - FPGA resource utilization by kernels

GP+A MINLP

CONV1
CONV2
POOL2

CONV3
CONV4
POOL4

CONV5
CONV6
CONV7

POOL7
CONV8
CONV9

CONV10
POOL10
CONV11

CONV12
CONV13

R

Fig. 12: VGG-16 kernel allocation on 6 FPGA using GP+A

and MINLP.

transfers via host code are slower. Even though the MINLP

solver can theoretically return this optimum, for the more

complex cases this is highly impractical. Our heuristic can

be efficiently used for a faster design space exploration.

VI. CONCLUSION

We have proposed and experimentally analyzed a fast and

effective method to allocate resources for each kernel in a

multi-kernel task-level pipelined application, like a CNN, to

optimize the throughout on multiple FPGAs. Our heuristic

optimizes the number of compute units of each kernel and

their allocations, while respecting resource constraints and

taking into account the cost of data transfer times between the

FPGAs and a host CPU. We developed a cost/performance

model, we modeled it as an optimization problem, and we

solved it using a MINLP solver. However, due to the long

CPU time and inefficiency of the solver, we propose a fast

and accurate heuristic method that consists of two main parts.

First we use a GP solver (using a relaxed representation of

the same model, without integrality constraints) to get the

number of CUs. Then we use a heuristic allocator to assign

them to different FPGAs in order to minimize the data transfer

time. Experimental results show that our heuristic method can

provide very similar results as the exact MINLP solution when

SHAN et al.: CNN-ON-AWS: EFFICIENT ALLOCATION OF MULTI-KERNEL APPLICATIONS ON MULTI-FPGA PLATFORMS 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

In
it

ia
ti

o
n

 I
n

te
rv

a
l

(m
s

)

Number of FPGAs

 (a)

ALEX-16

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 3 4 5 6 7 8

Number of FPGAs

 (b)

ALEX-32

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 3 4 5 6 7 8

Number of FPGAs

 (c)

VGG-16

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 3 4 5 6 7 8

Number of FPGAs

 (d)

YOLO-32

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 5 6 7 8

Number of FPGAs

 (e)

RESNET-16

GP+A Transfer time Computing time

Fig. 13: Initiation interval as a function of the number of FPGAs used.

the problem size is small, and it returns much better results

for larger problem sizes.

Future work can cover power and energy consumption,

consider streaming, and improve the kernel-to-kernel com-

munication model. It would also be interesting to extend

the method to work in a hierarchical fashion, where the

performance of each kernel (as well as its cost, bandwidth

requirements and so on) depends not only on the number of

CUs at the top level, but also on the unrolling of loops inside

each kernel.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 2017 ACM/IEEE

44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1–12.

[2] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, ser. FPGA ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 161–170.
[Online]. Available: https://doi.org/10.1145/2684746.2689060

[3] P. Belotti. (2018) Couenne (convex over and under envelopes for nonline
estimation). [Online]. Available: https://www.coin-or.org/Couenne/

[4] J. Pedoeem and R. Huang, “YOLO-LITE: A real-time
object detection algorithm optimized for non-gpu comput-
ers,” CoRR, vol. abs/1811.05588, 2018. [Online]. Available:
http://arxiv.org/abs/1811.05588

[5] J. Shan, M. R. Casu, J. Cortadella, L. Lavagno, and M. T. Lazarescu,
“Exact and heuristic allocation of multi-kernel applications to multi-
fpga platforms,” in Proceedings of the 56th Annual Design Automation

Conference 2019, ser. DAC ’19. New York, NY, USA: ACM, 2019,
pp. 3:1–3:6.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-

mation processing systems, 2012, pp. 1097–1105.
[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Jun 2016. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2016.90

[9] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,” SIGOPS Oper.

Syst. Rev., vol. 40, no. 5, pp. 151–162, Oct. 2006.
[10] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator

efficiency through resource partitioning,” in Proceedings of the 44th

Annual International Symposium on Computer Architecture, ser. ISCA
’17. New York, NY, USA: ACM, 2017, pp. 535–547.

[11] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang,
“Angel-eye: A complete design flow for mapping cnn onto customized
hardware,” in 2016 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), July 2016, pp. 24–29.
[12] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,

“Dnnbuilder: An automated tool for building high-performance dnn
hardware accelerators for fpgas,” in Proceedings of the International

Conference on Computer-Aided Design, ser. ICCAD ’18. New York,
NY, USA: ACM, 2018, pp. 56:1–56:8.

[13] W. Jiang, E. H.-M. Sha, X. Zhang, L. Yang, Q. Zhuge, Y. Shi, and
J. Hu, “Achieving super-linear speedup across multi-fpga for real-time
dnn inference,” ACM Transactions on Embedded Computing Systems,
vol. 18, no. 5s, p. 1–23, Oct 2019.

[14] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-
efficient cnn implementation on a deeply pipelined fpga cluster,” in
Proceedings of the 2016 International Symposium on Low Power

Electronics and Design, ser. ISLPED ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 326–331. [Online].
Available: https://doi.org/10.1145/2934583.2934644

[15] W. Zhang, J. Zhang, M. Shen, G. Luo, and N. Xiao, “An efficient
mapping approach to large-scale dnns on multi-fpga architectures,” in
2019 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2019, pp. 1241–1244.

[16] W. Jiang, E. H. Sha, Q. Zhuge, L. Yang, X. Chen, and J. Hu, “Hetero-
geneous fpga-based cost-optimal design for timing-constrained cnns,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 37, no. 11, pp. 2542–2554, Nov 2018.
[17] J. Shen, D. Wang, Y. Huang, M. Wen, and C. Zhang, “Scale-out

acceleration for 3d cnn-based lung nodule segmentation on a multi-
fpga system,” in 2019 56th ACM/IEEE Design Automation Conference

(DAC), June 2019, pp. 1–6.
[18] J. Shen, D. Wang, Y. Huang, M. Wen, and C. Zhang, “Accelerating 3d

cnn-based lung nodule segmentation on a multi-fpga system,” in FPGA,
2019.

[19] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,” Optimization and engineering, vol. 8, no. 1,
p. 67, 2007.

[20] E. Burnell and W. Hoburg. (2018) Gpkit. [Online]. Available:
https://github.com/convexopt/gpkit

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN ON INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, MONTH 20ZZ

Junnan Shan received the B.S. and M.S. degrees
from Politecnico di Torino, Italy, where she is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Electronics and Telecommunications un-
der the supervision of Prof. Mario Casu and Prof.
Luciano Lavagno. Her research interests focus on
electronic design automation, system-level design,
low-power, and high-performance computing, and
high-level synthesis.

Mihai Teodor Lazarescu received the Ph.D. degree
in Electronics and Communications from Politecnico
di Torino (Italy) in 1998, where he serves now as
Assistant Professor. He was Senior Engineer at Ca-
dence Design Systems and founded several startups.
He co-authored more than 60 scientific publications,
four books, and international patents. His research
interests include design tools for reusable WSN
platforms, sensing, indoor localization, and data pro-
cessing for IoT, low power embedded design, high-
level HW/SW co-design, and high-level synthesis.

Jordi Cortadella (S’87-M’89-F’15) is a Professor
with the Computer Science Department, Universitat
Politècnica de Catalunya, Barcelona, Spain. His cur-
rent research interests include formal methods and
computer-aided design of VLSI systems with a spe-
cial emphasis on asynchronous circuits, concurrent
systems, and logic synthesis. Prof. Cortadella is a
member of Academia Europaea. He received best
paper awards at the International Symposium on
Advanced Research in Asynchronous Circuits and
Systems in 2004 and 2016, the Design Automation

Conference in 2004, and the International Conference on Application of Con-
currency to System Design in 2009. He has served on the technical committees
of several international conferences in the field of design automation and
concurrent systems, and is an Associate Editor of the IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems.

Luciano Lavagno received the Ph.D. degree in
EECS from the University of California at Berkeley,
Berkeley, CA, USA, in 1992. He was the architect
of the POLIS HW/SW co-design tool. From 2003 to
2014, he was an Architect of the Cadence CtoSilicon
high-level synthesis tool. Since 1993, he has been a
Professor with the Politecnico di Torino, Italy. He
co-authored four books and more than 200 scien-
tific papers. His research interests include synthesis
of asynchronous circuits, HW/SW co-design, high-
level synthesis, and design tools for wireless sensor

networks.

Mario R. Casu (M’04-SM’18) received the Ph.D.
degree in electronics and communications engineer-
ing from the Politecnico di Torino, Torino, Italy, in
2001, where he is currently an associate professor.
His research interests are Systems-on-Chip with spe-
cialized accelerators, System-level design and design
methodology for FPGAs and ASICs, and Embedded
Machine Learning. He is also interested in the design
of circuits, systems, and platforms for industrial
applications (biomedical, automotive, food). His past
work focused mostly on latency-insensitive design

of Systems-on-Chip (SoC) and on Networks-on-Chip. He regularly serves in
the technical program committee of international conferences (among which
DAC, ICCAD, DATE).

