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Abstract—Invertible logic using a probabilistic magnetoresis-
tive device model has been recently presented that can compute
functions in bidirectional ways and solve several problems
quickly, such as factorization and combinational optimization. In
this article, we present a design framework for invertible logic
circuits. Our approach makes use of linear programming to cre-
ate a Hamiltonian library with the minimum number of nodes for
small invertible-logic functions. In addition, as the device model
is approximated based on stochastic computing in synthesizable
SystemVerilog, a faster simulation using the compiled SystemC
binary is realized than a conventional SPICE-level simulation
and is verified using field-programmable gate array (FPGA) as
prototyping. Using our design framework, several invertible-logic
circuits are designed and emulated (verified) in SystemC, exhibit-
ing five order-of-magnitude faster simulation than conventional
work.

keywords—Field-programmable gate array (FPGA),
Hamiltonian, stochastic computing, SystemVerilog model.

I. INTRODUCTION

INVERTIBLE logic has been recently presented for provid-
ing a capability of forward and backward operations [1]

as opposed to typical binary logic for the forward operation.
It is designed based on underlying Boltzmann machines [2]
and probabilistic magnetoresistive device models (p-bits) [3]
whose input and output signals are represented by random
bit streams. The bidirectional computing capability is realized
by reducing the network energies of the machines with noise
control (e.g., a multiplier could be used as a factorizer in the
backward mode). Hence, several challenging problems could
be quickly solved, such as integer factorization (e.g., cryptog-
raphy problems [4]), combinatorial optimization (e.g., wireless
sensor networks [5]), and machine learning (e.g., training
neural networks [6]).
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However, there are several issues for designing large-scale
invertible logic circuits. The functions that operate in bidirec-
tional modes are defined by the Boltzmann machine configu-
rations (Hamiltonians). A method of generating Hamiltonian
is limited to small function blocks, such as Boolean logic
[7], [8]. Another issue is the simulation speed due to the com-
plicated device model described at the transistor level. In [9],
the model is emulated in software using a microcontroller,
however, the simulation speed per sample is not fast (e.g.,
100–300 ms).

In this article, a design framework for large-scale invert-
ible logic is presented in order to tackle the two main issues:
1) network configurations (Hamiltonians) and 2) simulation
speed. For the small network configurations, a Hamiltonian
library is created based on linear programming (LP), which
provides the minimum number of nodes in Hamiltonians for
basic functions, including adders and nonlinear functions. In
addition, Hamiltonians of large functions (e.g., multiplica-
tion) can be constructed by adding those of small function
blocks. For faster simulations, the probabilistic device model is
approximated using stochastic computing [10]–[12] in synthe-
sizable SystemVerilog. Stochastic computing that uses random
bit streams realizes area-efficient computation blocks (e.g.,
multiplication and tanh function) and has been recently used
for several applications, such as low-density parity-check
decoders [13]–[16], image processing [17], [18], and deep neu-
ral networks [19]. As invertible logic may operate as serial
computing, stochastic computing efficiently approximates the
device model. Therefore, invertible logic can be emulated (ver-
ified) in the compiled SystemC environment and verified in the
prototyping hardware (FPGA). Using our design framework,
two noise-control methods are introduced and discussed in
terms of convergence speed.

Our contributions are summarized: 1) the first design frame-
work for invertible logic from specification to simulation;
2) Hamiltonian design using LP with the minimum number
of nodes; and 3) five order-of-magnitude faster simulation
than conventional works. The remainder of this article is
as follows. Section II reviews invertible logic with related
works and discusses the current issues of invertible logic
design. Section III describes an overview of the proposed
design framework for invertible logic. Section IV introduces
a creation of Hamiltonian library using LP and a method of
designing large-scale invertible logic. Section V models the
probabilistic device model (p-bits) using stochastic computing
for fast simulation. Section VI introduces two noise-control
optimization methods for fast convergence of invertible logic.
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Fig. 1. Invertible logic: (a) concept, (b) invertible AND, (c) Hamiltonian of
invertible AND, and (d) state probabilities when Y is fixed to 0.

Section VII evaluates the proposed design framework with the
conventional work in several aspects, such as Hamiltonian and
simulation speed. Section VIII concludes this article.

II. PRELIMINARY

A. Invertible Logic

Fig. 1(a) shows a concept of invertible logic realized
using Boltzmann machine and probabilistic bits (p-bits) [1].
Invertible logic circuits operate at forward and/or backward
modes, where functions are embedded using Hamiltonian with
inputs (xi ∈ {0, 1} (1 ≤ i ≤ p)) and outputs (yi ∈ {0, 1} (1 ≤
i ≤ q)). Note that the 2’s complement format is used to
represent data in invertible logic throughout this article. For
example, an invertible multiplier exhibits a capability of mul-
tiplication with fixed inputs (forward mode) and factorization
with fixed outputs (backward mode). If partial inputs and
outputs are fixed, the invertible multiplier operates as division.

Fig. 1(c) shows a Hamiltonian of a two-input AND cor-
responding to the gate shown in Fig. 1(b). There are three
nodes, where weight values (J) between nodes and bias values
at nodes are given by

hAND = [+1 +1 −2
]

(1a)

JAND =
⎡

⎣
0 −1 +2

−1 0 +2
+2 +2 0

⎤

⎦ (1b)

where the first two rows correspond to A and B and the last
row corresponds to Y . Hamiltonians of simple logic gates can
be obtained using ground-state spin logic [7], [8]. With given
h and J, each node (p-bit) probabilistically generates an output
(mi ∈ {−1, 1} (1 ≤ i ≤ l)), where l is the number of nodes.
mi is given by the following equations:

mi(t + τ) = sgn(rnd(−1,+1) + tanh(Ii(t + τ))) (2a)

Ii(t + τ) = I0

⎛

⎝hi +
∑

j

Jijmj(t)

⎞

⎠ (2b)

where rnd(−1,+1) is a uniformly distributed random (real)
number between −1 and +1, sgn is the sign function (with
binary +1 or −1 outputs), and I0 is a scaling factor (an inverse
pseudo-temperature). As mi is represented in bipolar format,
“mi = +1” and “mi = −1” correspond to logic values of “1”
and “0,” respectively.

Energies (H) of invertible logic circuits are given by

H = −
∑

i

himi −
∑

i<j

Jijmimj. (3)

By controlling noise levels using several parameters, such as
I0, H ideally decreases to the global minimum, leading to
desired inputs and/or outputs. Fig. 1(d) shows an example of
the two-input invertible AND in the backward mode. With
fixing the output (Y) to “0” (“my = −1”), there are three
valid states (“ABY”) of (“000,” “010,” “100”). In this simula-
tion, the three valid states are obtained with almost the same
probability of 33%.

B. Related Works

Table I summarizes comparisons of logic family character-
istics. Unlike conventional Boolean logic that realizes only
forward operations, invertible logic can realize bidirectional
(forward/backward) operations. The number of inputs and
outputs are flexible, while computation is deterministic or
probabilistic in conventional and invertible logic, respectively.
Invertible logic is designed using a probabilistic device model
and can be implemented using a magnetoresistive device [1].

Reversible logic circuits are constructed of special gates
(such as controlled NOT (CNOT) or Toffoli gates) having a
direct one-to-one mapping of inputs to outputs [20]. While
reversible logic gates allow for circuits to be built which
are bidirectional, they must be designed differently and do
not include standard gates (such as AND or OR gates) and
require different design methods, such as binary decision dia-
grams (BDDs) [21]. While both reversible and invertible logic
circuits reconstruct inputs from a given output value, they
differ at fundamental levels. Unlike invertible logic, the num-
ber of inputs is equal to the number of outputs, which could
require additional outputs/inputs, such as even a simple AND
gate in reversible logic [22]. For physical realization, gates of
reversible logic used in quantum circuits can be converted to
standard binary logic that can be in turn realized in standard
CMOS.
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TABLE I
COMPARISONS OF LOGIC-FAMILY CHARACTERISTICS

Fig. 2. Proposed design framework for invertible logic.

C. Design Issues With Invertible Logic

There are two main issues for large-scale invertible-
logic circuits. The first issue is a Hamiltonian design
method. Different from reversible logic, large-scale functions
(e.g., multiplication) are represented using a corresponding
Hamiltonian as it is designed by adding small Hamiltonians
based on ground-state spin logic [7], [8]. However, a variety
of Hamiltonians is limited to small functions, such as AND.
In addition, there is no specific design method of creating
Hamiltonians corresponding to other functions. The second
issue is simulation speed. Small invertible logic circuits have
been designed and simulated at the transistor level [1] and in
a microcontroller (software) [9], which takes 100–300 ms for
a cycle of operation. For designing large-scale invertible logic,
slow simulation could be a critical issue. Especially, as a con-
trol of noise effect, I0, in Eq. (2) is required to converge to a
valid state (minimum energy), a parameter search of the noise
effect is required. A fast simulator allows designers to find a
good noise parameter quickly. In this article, these two issues
are mainly tackled using the proposed design framework for
large-scale invertible circuits, such as the design methodology
of large variety of Hamiltonians, fast simulation environment,
and noise-control optimization.

III. DESIGN FRAMEWORK

Fig. 2 shows the proposed design framework for invertible
logic. Let us explain the framework from the beginning.

1) A circuit design specification is defined, such as desired
functions and input/output bit widths.

2) A whole network Hamiltonian corresponding to the
function is generated based on a Hamiltonian library.

The Hamiltonian library is preliminarily created using
LP described in Section IV, where Hamiltonians of small
invertible logic circuits are included in the library, such
as logic functions and adders. The whole Hamiltonian
is obtained by adding the small Hamiltonians using our
custom Python tool.

3) The whole Hamiltonian is converted to the correspond-
ing SystemVerilog model using SystemVerilog primi-
tive modules. The primitive modules are preliminarily
designed using stochastic computing [10] described in
Section V, where stochastic computing approximates the
probabilistic device model. The SystemVerilog model
generated using our custom Python tool is synthesiz-
able using commercial EDA tools, such as the synopsys
design compiler.

4) A test bench is created with noise control of parameters,
such as I0. In invertible logic, the convergence speed
could be significantly changed due to the noise control
including hyper parameters, where a selection of opti-
mum parameters can reach the global minimum energy.
Two noise-control methods are introduced in Section VI.

5) The invertible logic circuit using the SystemVerilog
model is verified (emulated) using Verilator [23] that is
faster than SPICE simulations and interpreted Verilog
simulations, where Verilator compiles SystemC test
benches and the SystemVerilog models. Using the fast
simulation environment, hyper parameters for fast con-
vergence to the global minimum can be optimized
(noise-control optimization) described in Section VI.
In addition, the SystemVerilog model can be verified
using field-programmable gate array (FPGA) boards for
quite large invertible circuits as prototyping through
commercial FPGA design tools, such as Xilinx Vivado.

IV. HAMILTONIAN DESIGN

A. Hamiltonian Library of Small Invertible Logic Using
Linear Programming

Hamiltonians of small functions blocks, such as logic
gates, are obtained using LP. Fig. 3 illustrates an example of
Hamiltonian design of an invertible AND (Y = A ∧ B). There
are total eight states that are divided into valid and invalid
states based on the AND function.

Let us explain a procedure of generating a Hamiltonian
using the invertible AND. The inputs (xi ∈ {0, 1} (1 ≤ i ≤ p))

and the outputs (yi ∈ {0, 1} (1 ≤ i ≤ q)) are defined shown
in Fig. 1(a). First, logical values are converted to bipolar for-
mat as mi. Second, an energy of each state (Ek (1 ≤ k ≤
(l+ l(l−1)/2))) is defined based on Eq. (3), where l is a sum-
mation of input and output bit widths. In this case, l is 3 and
the maximum k is 6. In invertible logic, the energies of the
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Fig. 3. Example of Hamiltonians design of an invertible AND (Y = A ∧ B)
using linear programming (LP).

Listing 1. Part of the Python Code of LP With PuLP for the Invertible-AND
Hamiltonian

valid states must be equal to the minimum (Emin) while that of
the invalid states are larger than Emin described as following:

Ek =

⎧
⎪⎪⎨

⎪⎪⎩

−∑
i himi − ∑

i<j Jijmimj = Emin

(f (x1 · · · xp) = (y1 · · · yq))

−∑
i himi − ∑

i<j Jijmimj ≥ Emin + d
(otherwise)

(4)

where d is the energy difference between Emin and the second
minimum energy. Third, the objective function is maximizing
d using LP in order to obtain hi and Jij as follows:

maximize d (5)

subject to Eq. (4) (6)

where mi and mj are constants and hi, Jij, E, and d are
variables.

Hamiltonians are obtained using LP with PuLP [24].
Listing 1 shows a part of python code of LP for the invertible-
AND Hamiltonian. Using this method, Hamiltonians of small
functions blocks are obtained in Table II. The number of nodes
is the summation of input and output bit widths. These num-
bers are the minimum value because there is not auxiliary bit
(node). Note that the auxiliary bits are extra bits except the
input and the output bits [see Fig. 5 (a)].

In addition to the logic functions and the adders,
Hamiltonians of several unique functions, such as bitcount

Fig. 4. Examples of Hamiltonian that could be used for machine learning:
(a) bitcount function with six inputs of (x1, x2, . . . , x6) and a 3-b unsigned
output of Y = (y2, y1, y0) and (b) 5-b ReLU function with a 5-b signed input
of X = (x4, x3, x2, x1, x0) and a 5-b signed output of Y = (y4, y3, y2, y1, y0)
in 2’s complement format.

TABLE II
HAMILTONIAN LIBRARY GENERATED USING LP

function and rectified linear unit (ReLU) function can be
obtained using LP. The reason of creating these Hamiltonians
is that these functions are often used for machine learning
as building blocks in neural networks [25]–[27]. Both func-
tions are activation functions of neural networks, where the
bitcount function is used in binary neural networks. By using
these building blocks, invertible logic could be applied for
machine learning, especially training neural networks using
the bidirectional operations of invertible logic [6].

Fig. 4(a) shows a Hamiltonian example of a 6-input bit-
count function with 6 inputs of (x1, x2, . . . , x6) and a 3-b
unsigned output of Y = (y2, y1, y0) in 2’s complement for-
mat. The invertible bitcount circuit can realize Y = ∑6

i=1 xi in
forward and backward modes. Fig. 4(b) shows a Hamiltonian
example of a 5-b ReLU function with a 5-b signed input
of X = (x4, x3, x2, x1, x0) and a 5-b signed output of Y =
(y4, y3, y2, y1, y0), where the function of ReLU is defined by
Y = max(0, X).

B. Hamiltonian Construction for Large Invertible Logic

Hamiltonians of large and/or complicated functions, such as
multiplication, cannot be directly generated using LP because
of linear separability problems. Hence, auxiliary bits are
required to create such Hamiltonians. The whole Hamiltonian
can be created by adding small Hamiltonians as follows:

h =
∑

k

hk (7)
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(a) (b)

(c)

Fig. 5. Hamiltonian design example of a three-input invertible AND by
adding two Hamiltonians of two-input AND gates: (a) block diagram using
two 2-input AND gates, (b) of h, and (c) addition of J.

J =
∑

k

Jk (8)

where hk and Jk represent a Hamiltonian corresponding to a
small circuit, such as AND, HA, and FA.

Fig. 5 shows an example of Hamiltonians of a three-
input AND logic. The Hamiltonian is obtained by adding two
Hamiltonians of the two-input AND logic. In this case, there
are an additional connection (c) that becomes an auxiliary bit.
If the Hamiltonian is directly created from the three-input
AND logic, the auxiliary bit could be removed, leading to
the minimum number of nodes. When the number of nodes
is increased due to the auxiliary bits, the hardware of invert-
ible logic could be larger and the convergence speed could be
slower.

For designing Hamiltonians of large invertible logic, a cir-
cuit architecture is a important factor that can affect the
performance of invertible logic. Fig. 6(a) shows a 4×4-bit
unsigned multiplier architecture based on a simple adder-based
structure. This design includes (2×4) inputs, 8 outputs and 32
internal connections. The Hamiltonian is obtained by adding
that of AND and FA generated using LP. The number of nodes
in the Hamiltonian is 48. The number of internal connections
(auxiliary bits) is exponentially increased when the input bit
width is increased because of horizontal and vertical internal
connections. Note that a well-known Wallace-tree structure
for fast multiplier design in conventional logic [28] causes a
larger number of internal signals (nodes) than the adder-based
structure.

In order to obtain smaller number of nodes, the proposed
multiplier is designed using the bitcount circuits as shown in
Fig. 6(b). As there is no internal connection in the bitcount
circuit, the vertical internal connections can be eliminated,
leading to a smaller number of nodes. In case of the 4×4-bit
multiplier, the number of internal connections (auxiliary bits)
decreases to 26 and hence the total number of nodes decreases
to 42. The reduction method is much more effective in larger
multipliers.

Fig. 7 compares the number of nodes in invertible
multipliers (factorizers). The number of nodes is exponentially
increased in the conventional adder-based multiplier because
horizontal and vertical internal connections (auxiliary bits)

Fig. 6. 4×4-bit unsigned multiplier architecture for constructing
Hamiltonians: (a) adder-based structure and (b) bitcount-based structure
(proposed) that decreases the number of vertical interconnections (auxiliary
bits).

Fig. 7. Number of nodes in invertible multipliers (factorizers). The proposed
structure realizes almost a linear growth of nodes in proportion to the input
bit width while the exponential growth occurs in the conventional structure.

are required. As the proposed bitcount-based structure elimi-
nates the vertical internal connections, the number of nodes is
almost linearly increased, leading to significant reductions in
the number of nodes. As a result, the number of nodes in the
4×4-bit and the 12×12-bit multipliers are reduced by 80.6%
and 89.1%, respectively. The detailed evaluation is described
in Section VII-E.

V. SYSTEMVERILOG MODEL USING STOCHASTIC

COMPUTING

A. Binary and Integral Stochastic Computing

In invertible logic, p-bits operate based on Eq. (2) with
bias values (h) and weight values (J) of Hamiltonians. In
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(a)

(b)

Fig. 8. Binary and integral stochastic computing in bipolar coding: (a)
multiplier of an integer stochastic bitstream and a binary stochastic bitstream
(y = a ∗ s) and (b) stochastic tanh function realized using a saturated updown
counter.

order to realize faster simulations than conventional works at
the transistor level [1] and Microcontroller (software) [9], a
SystemVerilog model corresponding to Eq. (2) is created. The
SystemVerilog model is designed based on binary and integral
stochastic computing [10], [19].

In stochastic computing, data values are represented by
frequencies of “1” in bit streams. Let us denote by S ∈ {0, 1}
a random bit streams. A real number, s ∈ [−1 : 1], is rep-
resented by (2 ∗ E[S] − 1) in binary stochastic computing in
bipolar format, where E[S] denotes the expected value of the
random variable, S. In contrast, in case of integral stochas-
tic computing, one or more bit streams are concurrently used
to represent data values in larger ranges than that of binary
stochastic computing. Let us denote by X ∈ {−r,−(r −
1), . . . , r} a random bit streams, where r ∈ {1, 2, . . .}. A real
number, x ∈ [−r : r], is represented by E[X] in signed for-
mat, where E[X] denotes the expected value of the random
variable X.

Stochastic computing realizes several functions, such as
addition, multiplication, and nonlinear functions (see detail
in [12]). Fig. 8(a) shows a multiplier of an integer stochastic
bitstream and a binary stochastic bitstream (y = a∗s) designed
using a two-input multiplexor. Fig. 8(b) shows a tanh function
block (Stanh) using a finite state machine (FSM) in stochastic
computing. The tanh function is approximated using Stanh as
follows:

Stanh(2 · NT, x) ≈ tanh(x · NT) (9)

where 2 · NT is the total number of states of the FSM. The
Stanh block is designed using a saturated updown counter in
hardware.

Fig. 9. Spin-gate circuit (SystemVerilog model) using stochastic computing,
which corresponds to Eq. (10).

B. Spin-Gate Circuit for Modeling p-Bits

Fig. 9 shows a spin-gate circuit (SystemVerilog model)
using binary and integral stochastic computing. This model
approximates the original equation of Eq. (2) as follows:

mi(t + τ) � sgn(tanh(Ii(t + τ) · NT)) (10a)

Ii(t + τ) �
⎛

⎝hi +
∑

j

Jijmj(t) + wrnd · sgn(rnd(−1,+1))

⎞

⎠

(10b)

where I0 of Eq. (2) corresponds to NT . In addition, the
weighted noise source with corresponding weight denoted as
wrnd is an additional parameter from Eq. (2). The weighted
noise source is generated using a random number genera-
tor [29]. The model is designed as an extended version of [30]
and [31], which can support controlling I0 using NT . The
inputs and the output of the spin-gate circuits (mi) are rep-
resented in binary stochastic computing in bipolar format
as stochastic bit streams, si = (1 + mi)/2. Instead, integral
stochastic computing is exploited inside the spin-gate circuits
in order to deal with integer values of h and J. As the model is
fully designed using stochastic computing, it is synthesizable
for standard digital CMOS circuits.

VI. NOISE-CONTROL OPTIMIZATION

In invertible logic, it is important to control noise effects in
order to reach the global minimum of energy (Hamiltonian).
To converge node states to that at the global minimum, NT

and/or wrnd of Eq. (10) can be controlled as noise optimization.
In this article, wrnd is selected to be controlled for two
scenarios.

A. Grid Search on Monotonous Noise Reduction

To find the optimum control of wrnd, a grid search is used as
shown in Fig. 10. In the grid-search method, wrnd is linearly
decreased using four parameters as follows.

1) RND_WEIGHT: The maximum value of wrnd.
2) RND_STEP: The amount of noise drops.
3) Ns: The number of noise drops defined by 2RND_DECAY-1.
4) T: The number of cycles at the same wrnd.
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Fig. 10. MNR with grid search. The noise, wrnd , is linearly decreased in
order to converge energy to the global minimum.

Fig. 11. Noise control based on TPR with an example of factorization of
756 (in_A × in_B). A short pulsed noise is repeatedly applied to obtain the
correct values. In this case, at the third trial, correct input values of 27 and
28 are obtained.

These four parameters are swept in order to converge energy to
the global minimum. The monotonic noise reduction (MNR)
method derives from [32] that monotonically increases I0. This
method is simple, but it requires long simulation time to find
good noise parameters. The detailed simulation results are
summarized in Section VII-D.

B. Tuning Parameter Repeat With Pulsed Noise

In order to reduce the simulation time of finding good noise
parameters, tuning parameter repeat (TPR) is introduced. In
this method, a short pulsed noise is repeatedly applied as
opposed to MNR based on grid search. Fig. 11 shows a noise
control based on TPR with an example of factorization of 756
(in_A × in_B). In TPR, wrnd is decreased from large to small
as a one shot. There are three parameters in TPR as follows.

1) RND_WEIGHT: The maximum value of wrnd.
2) RND_STEP: The amount of noise drops.
3) T: Cycles at large or small noise.

Hence, a cycle of one shot is (2 ∗ T + RND_STEP).
As invertible logic is probabilistic, the results (energies)

can be different, if the same noise parameter is applied.
This example shows a factorization of 756 using TPR with
RND_WEIGHT = 6, RND_STEP = 4, and T = 6. The tun-
ing parameters were determined using simulations of a small
invertible factorizer and can be applied to larger invertible fac-
torizers. In this example, at the first and second trials, the
correct input values of in_A and in_B are not obtained. In
contrast, at the third trial using the same noise parameters, the

TABLE III
COMPARISONS OF NUMBER OF NODES IN HAMILTONIAN

Fig. 12. Simulation results of a seven-input bitcount function in the back-
ward mode with MNR. Given a fixed output of Y , seven inputs are correctly
obtained at: (a) Y = 2 and (b) Y = 6.

correct input values of 27 and 28 are obtained. The comparison
results with the grid search are summarized in Section VII-D.

VII. EVALUATION

A. Comparisons of Hamiltonian

The Hamiltonian library is created using LP with PuLP [24]
in AMD Opteron 6282 SE (2.6 GHz) used for all the
simulations. Table III summarizes the number of nodes in
Hamiltonians in comparison with a conventional work [33].
The conventional method is based on [1] that uses auxiliary
bits and a handle bit to create Hamiltonians, causing a larger
number of nodes. In contrast, the proposed method using LP
generates the minimum number of nodes for the Hamiltonians
of AND, FA, and 32-b adder. The number of nodes in FA and
the 32-b adder are reduced by 64.3% and 77.7%, respectively,
in comparison with the conventional method.

B. Simulation of Invertible Logic Circuits

Invertible logic circuits are simulated using our
SystemVerilog model with the compiled SystemC binary in
Verilator [23] and SystemC-2.3.2. Verilator is a fast Verilog-
HDL simulator running on C++ and SystemC, which accepts
synthesizable Verilog-HDL and SystemVerilog. Fig. 12 shows
simulated waveforms of a seven-bit bitcount function in the
backward mode. The output of Y is fixed in order to obtain
correct seven inputs of (x1, x2, . . . , x7) at Y = 2 and Y = 6
with a noise control of MNR, where RND_WEIGHT=16,
RND_STEP = 2, Ns = 7, and T = 10 are used. When the
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Fig. 13. Simulation results of a 10-b ReLU function in the backward mode
with MNB. Given a fixed output of Y , 10-b inputs are correctly obtained at:
(a) Y = 121 and (b) Y = 0.

Fig. 14. Factorization results using SystemVerilog model with: (a) (A×B) =
182 and (b) (A×B) = 598. In both cases, the outputs are correctly factorized.
The noise-control parameters are obtained based on the grid search.

energy defined by Eq. (3) reaches the global minimum of
−14, the correct inputs are obtained.

Fig. 13 shows simulated waveforms of a 10-b ReLU func-
tion in the backward mode with the same noise control used
in the previous simulation. When the output of Y is fixed to
121 in Fig. 13(a), the input of X reaches the correct value of
121 at the global minimum energy of −28. In contrast, when
the output is fixed to 0 in Fig. 13(b), the input can be any
negative values as the correct values because of the function:
Y = ReLU(X) = max(0, X).

Fig. 14 shows simulated waveforms of the invertible fac-
torizer (adder-based) based on the architecture of Fig. 6(a).

TABLE IV
SIMULATION TIME PER SAMPLE (CYCLE) IN INVERTIBLE

MULTIPLIERS (FACTORIZERS)

For small invertible-logic circuits simulated in the previous
paragraph, it is easy to reach the global minimum energy
with many different noise parameters. In contrast, for large
invertible-logic circuits, such as invertible multipliers, specific
noise parameters are required for the convergence. In order
to converge to the global minimum, first, the grid search on
MNR is used to find the optimum control of wrnd of Eq. (10).
The total number of cycles is 9.5 × 107 in the grid search
to find the optimum noise parameters on MNR. In case of
(A × B) = 182, wrnd is reduced with RND_WEIGHT=8,
RND_STEP = 1, Ns = 7, and T = 128. In contrast, in case
of (A × B) = 598, wrnd is reduced with RND_WEIGHT=16,
RND_STEP = 1, Ns = 15, and T = 64. Depending on the out-
puts (A × B), the optimum noise parameters are different,
causing long convergence time, even though our fast simu-
lation environment is used. The evaluation of noise control is
described in Section VII-D.

C. Comparisons of Simulation Speed

Table IV summarizes the simulation time per sample (cycle)
in a 2×2-bit invertible multiplier (factorizer). In the conven-
tional work [9], the complicated device models of (2) are
realized using software running on a microcontroller. The sam-
ple time is slow, such as 100–300 ms. In such the environment,
a noise-control optimization of I0 for convergence to the global
minimum requires significantly large time.

In contrast, our SystemVerilog model using stochastic com-
puting is simulated as the emulation of the device model in
Verilator and SystemC-2.3.2. As a result, the cycle (sample)
time is around 5.3 μs, leading to around five order of magni-
tude reductions. As opposed to the conventional work, larger
invertible multipliers can be also designed and simulated, such
as 32-b.

D. Comparisons of Noise Control in Invertible Multipliers

Table V summarizes the total number of cycles and the
simulation time of invertible multipliers with different noise
controls described in Section VI. The total number of cycles
are ones until good noise parameters for convergence are
obtained. Using the grid search, both the total number of cycles
and the simulation time are significantly increased as the bit
width is increased. As a result, in larger invertible logic cir-
cuits, it is hard to converge to the global minimum and hence
obtain correct values.

In contrast, using TPR, both total number of cycles and the
simulation time are negligibly increased as the bit width is
increased. In case of the 16-b invertible multiplier, the simu-
lation time is a five order-of-magnitude faster than that of the
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TABLE V
SIMULATION TIME OF INVERTIBLE MULTIPLIERS WITH DIFFERENT NOISE CONTROLS IN SYSTEMC

TABLE VI
SYNTHESIS RESULTS OF INVERTIBLE LOGIC CIRCUITS IN DIGILENT GENESYS 2

grid search. The gap of the simulation time can be larger as the
bit width is increased. Hence, TPR would be more effective
for larger invertible logic circuits.

E. FPGA Implementation for Prototyping

As the SystemVerilog model is synthesizable, invertible
logic circuits can be evaluated using FPGA as prototyping.
Table VI summarizes the synthesis results of invertible logic
circuits in Xilinx Vivado 2016.4 for Digilent Genesys 2 with
the clock frequency of 100 MHz. As the clock cycle is
100 MHz, the sample time is 10-ns that significantly increases
simulation speed in comparison with the conventional work
and the proposed SystemC summarized in Table IV. Note that
generating bitstream files for FPGA takes a much longer time
than compiling to the SystemC binary files. Therefore, the
SystemC-based environment is useful for small invertible cir-
cuits while the FPGA environment is useful large ones that
require longer simulation time.

Considering the hardware resources, in general, the num-
ber of LUTs and FFs are large when the number of nodes
and nonzero weights in Hamiltonian are large. Note that the
number of nonzero weights are obtained from h and J of
Hamiltonians. When adder-based and bitcount-based invertible
multipliers are compared, the number of nodes in the bitcount
is significantly smaller than that of the adder-based structure as
described in Fig. 6. In contrast, the number of nonzero weights
are larger because of the denser matrix of J. As a result, the
bitcount-based invertible multiplier reduces LUT by 7% and
FF by 38% in comparison with the adder-based one.

VIII. CONCLUSION

In this article, we have presented the design framework
for large-scale invertible logic. The Hamiltonian library cre-
ated using LP provides the minimum number of nodes in
Hamiltonians for basic functions, where the library includes

Boolean logic, adders, bitcount, and ReLU functions. As
a design example of a large invertible logic circuit, the
Hamiltonians for invertible multipliers (factorizers) are con-
structed using the library, resulting in more than 80% reduction
in the number of nodes in comparison with that of the
conventional structure. For fast simulations, the probabilis-
tic device model used for invertible logic is approximated
using stochastic computing in SystemVerilog running with the
compiled SystemC binary, providing almost five orders-of-
magnitude reductions in simulation time in comparison with
the conventional environment. In our fast simulation envi-
ronment, the tuning-parameter repeat method as noise-control
optimization is introduced, reducing the convergence time by
five orders-of-magnitude in comparison with the grid search
method.

Invertible logic was recently presented to demonstrate inte-
ger factorization in 2017 [1] and have been studied in several
aspects, such as scalability, applications, and implementa-
tions. The scalability has been studied and discussed in [32];
however, optimization algorithms for specific problems (e.g.,
graph coloring) have not been studied and would be a future
research. One of the possible applications could be machine
learning, especially training neural networks using the bidirec-
tional operations of invertible logic [6]. In future prospects, our
design framework would be useful as a design and test tool
for implementing invertible logic with the probabilistic magne-
toresistive devices. In addition, larger invertible logic circuits
using stochastic computing with standard CMOS devices could
be designed for several applications.
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