
Hardware Memory Management for Future Mobile Hybrid Memory Systems

Fei Wen
feitamu@gmail.com

Mian Qin
celery1124@tamu.edu

Paul Gratz
pgratz@gratz1.com

Narasimha Reddy
reddy@tamu.edu

Department of Electrical & Computer Engineering
Texas A&M University

Abstract
The current mobile applications have rapidly growing mem-
ory footprints, posing a great challenge for memory system
design. Insufficient DRAM main memory will incur frequent
data swaps between memory and storage, a process that hurts
performance, consumes energy and deteriorates the write en-
durance of typical flash storage devices. Alternately, a larger
DRAM has higher leakage power and drains the battery faster.
Further, DRAM scaling trends make further growth of DRAM
in the mobile space prohibitive due to cost. Emerging non-
volatile memory (NVM) has the potential to alleviate these
issues due to its higher capacity per cost than DRAM and mini-
mal static power. Recently, a wide spectrum of NVM technolo-
gies, including phase-change memories (PCM), memristor,
and 3D XPoint have emerged. Despite the mentioned advan-
tages, NVM has longer access latency compared to DRAM
and NVM writes can incur higher latencies and wear costs.
Therefore integration of these new memory technologies in
the memory hierarchy requires a fundamental rearchitect-
ing of traditional system designs. In this work, we propose
a hardware-accelerated memory manager (HMMU) that ad-
dresses both types of memory in a flat space address space.
We design a set of data placement and data migration policies
within this memory manager, such that we may exploit the
advantages of each memory technology. By augmenting the
system with this HMMU, we reduce the overall memory la-
tency while also reducing energy consumption and writes to
the NVM. Experimental results show that our design achieves
a 39% reduction in energy consumption with only a 12% per-
formance degradation versus an all-DRAM baseline that is
likely untenable in the future.

1 Introduction

As the demand for mobile computing power scales, mobile
applications with ever-larger memory footprints are being de-
veloped, such as high-resolution video decoding, high-profile
games, etc. This trend creates a great challenge for current

memory and storage system design. The historical approach to
address memory footprints larger than the DRAM available is
for the OS to swap less used pages to storage, keeping higher
locality pages in memory. Given the latencies of modern stor-
age systems (even "high" performance SSDs [12, 16, 39]) are
several orders of magnitude higher than DRAM.However,
allowing any virtual memory swapping to storage implies in-
curring a severe slowdown. Thus mobile device manufacturer
rapidly expanded the DRAM size for the worst case possible
memory footprint. For example, the DRAM capacity of the
flagship phones from the Samsung Galaxy S series have ex-
panded by 16X over the past ten years. While this approach
has been largely successful to date, the size of DRAM is con-
strained by both cost/economics and energy consumption. Un-
like data centers, mobile devices are highly cost-sensitive and
have a highly limited energy budget. Moreover, the DRAM
technology has a substantial background power, constantly
consuming energy even in idle due to its periodic refresh
requirement, which scales with DRAM capacity. Therefore
a larger DRAM means a higher power budget and a shorter
battery life, particularly given recent hard DRAM VLSI scal-
ing limits. The approach of provisioning more DRAM is not
sustainable and hard limits will soon be hit on the scaling of
the future mobile memory system.

The emergence of several Non-Volatile-Memory (NVM)
technologies, such as Intel 3D Xpoint [13], memristor [7],
Phase-change-memory(PCM) [30], provides a new avenue to
address this growing problem. These new memory devices
promise an order of magnitude higher density [4] per cost and
lower static power consumption than traditional DRAM tech-
nologies, however, their access delay is significantly higher,
typically also within one order of magnitude of DRAM. Fur-
ther, these new technologies show significant overheads asso-
ciated with writes and are non-volatile. Thus, these emerging
memory technologies present a unique opportunity to address
the problems of growing application workload footprints with
hybrid memory systems composed of both DRAM and emerg-
ing NVM memories. To exploit these new memory devices
effectively, however, we must carefully consider their perfor-

1

ar
X

iv
:2

00
4.

05
51

8v
1

 [
cs

.A
R

]
 1

2
A

pr
 2

02
0

50
0.p

erl
be

nc
h

51
0.p

are
st

51
9.l

bm

52
3.x

ala
nc

bm
k

53
1.d

ee
ps

jen
g

53
8.i

mag
ick

54
4.n

ab

55
7.x

z

Geo
mea

n

1

2

3

4

5

Slowdown vs. No Swap

Figure 1: Performance Impact of OS Memory Management.

mance characteristics relative to existing points in the memory
hierarchy. In particular, while memory access and movement
in prior storage technologies such as flash and magnetic disk
is slow enough that software management via the OS was
feasible. With emerging NVM memory accesses at within an
order of magnitude of DRAM, relying on traditional OS mem-
ory management techniques for managing placement between
DRAM and NVM is insufficient as illustrated in Figure 1.

In Figure 1, a subset of benchmarks from the SPEC
CPU2017 benchmark suite are executed in a system where
around 128MB of the application’s memory footprint is able
to fit in the system DRAM directly. A ramdisk based swap file
is set up to hold the remainder of the application memory foot-
print. Since this ramdisk swapfile is implemented in DRAM
it represents an upper bound on the performance for pure
software swapping. The results shown are normalized against
a system where sufficient DRAM is available to capture the
entire memory footprint. As we see, in this arrangement, the
cost of pure OS managed swapping to NVM would be quite
high, with applications seeing an average of ∼2X slowdown
versus baseline. As we will show, a significant fraction of this
overhead comes explicitly from the costs of the required page
fault handling.

Some existing work has begun to explore system design
for emerging hybrid memories. Broadly this prior work falls
into one of two categories, first, some advocate using DRAM
as a pure hardware managed cache for NVM [5, 29]. This
approach implies a high hardware cost for metadata manage-
ment and imposes significant capacity and bandwidth con-
straints. Second, some have advocated for a purely software,
OS managed approach [9,10,36]. As we discussed previously,
this approach implies significant slowdowns due to software
overhead of the operating system calls.

Here we propose a new, hardware managed hybrid memory

management scheme which retains the performance benefits
of caching, without the high metadata overhead such an ap-
proach implies. Compared to previous work, our project has
the following advantages:
• With a ratio of 1/8 DRAM vs 7/8 NVM, we achieved

88% of the performance of an untenable full DRAM
configuration, while reducing the energy consumption
by 39%.
• Compared to inclusive DRAM caches, we preserve the

full main memory capacity for the user applications.
• Parallel access to both the DRAM and NVM is sup-

ported, rendering a higher effective memory bandwidth.
This also helps to suppress the excessive cache inser-
tion/replacements and prevent cache thrashing.
• The data placement and migration are executed by hard-

ware. This eliminates the long latency incurred by the
OS managed virtual memory swap process.
• Memory management and allocation are performed with

a combination of page and sub-page-block sizes to en-
sure the best utilization of the available DRAM and to
reduce the number and impact of writes to the NVM.

2 Background and Motivation

With emerging non-volatile memory technologies providing
more memory system capacity, density, and lower static power,
they have the potential to meet the continuously increasing
memory usage of mobile applications. Given their different
characteristics from traditional DRAM and storage, however,
the design of systems comprising these new technologies to-
gether with traditional DRAM and storage is an open question.
Here we examine the characteristics of these new memory
technologies and the existing proposals to date on how to
leverage them in system designs.

2.1 Nonvolatile Memory Technology Charac-
teristics

Table 1 shows the relative characteristics of several emerging
non-volatile memory technologies against traditional DRAM
and storage [3, 25, 31]. While HDD and Flash have 100k
and 2k times larger read access latency than DRAM respec-
tively, the emerging NVM technologies have read access la-
tencies typically within one order of magnitude of DRAM.
Meanwhile emerging non-volatile memory technologies pro-
vide higher memory system capacity, density and lower static
power.

Given their different characteristics from traditional DRAM
and storage, however, the design of systems comprising these
new technologies together with traditional DRAM and storage
is an open question. Here we examine the characteristics of
these new memory technologies and the existing proposals to
date on how to leverage them in system designs.

2

Table 1: Approximate Performance Comparison of Different Memory Technologies [3, 25, 38]

Technology HDD FLASH 3D XPoint DRAM STT-RAM MRAM
Read Latency 5ms 100µs 50 - 150ns 50ns 20ns 20ns
Write Latency 5ms 100µs 50 - 500ns 50ns 20ns 20ns

Endurance (Cycles) > 1015 104 109 > 1016 > 1016 > 1015

$ per GB 0.025-0.5 0.25-0.83 6.5 [33] 5.3-8 N/A N/A
Cell Size N/A 4−6F2 4.5F2 [4] 10F2 6−20F2 25F2

Further, we note that in these new technologies writes are
often more expensive that reads both in terms of latency as
shown and endurance/lifetime cost, as well as energy con-
sumption for writing.

The relative closeness in performance and capacity to tra-
ditional DRAM of emerging NVM technologies argues for a
different approach to memory management than traditional,
OS or hardware-cache based approaches. In the remainder
of this section, we examine the prior work approaches to the
design of hybrid memory systems.

2.2 Operating System-Based Memory Man-
agement

Hassan et al., Fedorov et al. and propose to leverage the
OS to manage placement and movement between NVM and
DRAM [9, 10]. They treat NVM as a parallel memory device
on the same level as that of DRAM in the memory hierarchy.
They argue that this approach can yield better utilization of
the large NVM capacity without wasting the also relatively
large DRAM capacity. Their approach is similar to the tradi-
tional approach of using storage as a swap space to extend
the DRAM main memory space. Direct application of this
approach to NVM creates some difficulties, however. When a
given requested data is found to be in the swap space on the
NVM, a page fault occurs which must be handled by operating
system. The latency of this action is not only comprised of the
device latency itself but also the induced OS context switch,
and page fault handling. While in traditional storage systems
with ms-level latencies, that cost is negligible, with the latency
of SSD and other NVM devices significantly decreased, the
OS management overheads come to dominate this latency, as
discussed previously and indicated in Figure 1.

2.3 Hardware-managed DRAM Caches and
Related Approaches

Other groups have proposed using DRAM as the cache/buffer
for NVM, and thus turning DRAM into the new last level
cache [29]. Similar schemes have also been applied to other
memory devices with latency discrepancy in heterogeneous-
memory-system(HMS). For instance, 3D-stacked DRAM
was proposed as a cache for off-chip DRAM in the works
[14, 21, 28, 34]. A common theme in all these designs is the
difficulty in lookup and maintenance of the tag storage, since

the number of tags scales linearly with the cache size. Assum-
ing the cache block size is 64B and 8 bytes of tag for each
block, then a 16GB DRAM cache requires 2GB for the tag
storage alone. That is much too large to fit in a fast, SRAM tag
store. Much of the prior work explores mechanisms to shrink
the tag storage overhead [22]. Some researchers explored tag
reduction [11]. Others aimed to reconstruct the cache data
structure. For instance, some works combine the tag or other
meta-data bits into the data entry itself [14, 23].

Another issue these works attempt to address is the ex-
tended latency of tag access. DRAM devices have signifi-
cantly greater access latency than SRAM. Additionally, their
larger cache capacity requires a longer time for the tag compar-
ison and data selection hardware. If the requested data address
misses in the TLB, it takes two accesses to the DRAM before
the data can be fetched. Lee et al. attempted to avoid the tag
comparison stage entirely by setting the cache block size to
equal the page size, and converting virtual addresses to cache
addresses directly in a modified TLB [18]. This approach,
however requires several major changes to the existing sys-
tem architecture including requiring extra information bits in
the page table, modifying the TLB hardware and an additional
global inverted page table.

Broadly, several issues exist with the previously proposed,
hardware-based management techniques for future hybrid
memory systems.
• As with traditional processor cache hierarchies, every

memory request must go through the DRAM cache be-
fore accessing the NVM. Prior work shows that this
approach is sub-optimal for systems where bandwidth
is a constraint and where a parallel access path is avail-
able to both levels of memory [37]. Further, given the
relatively slow DRAM access latency requiring a miss
in the DRAM before accessing the NVM implies a sig-
nificantly higher overall system latency.
• These works largely assume an inclusive style caching.

Given the relative similarity in capacity between DRAM
and NVM, this implies a significant loss of capacity.
• Given the capacities of DRAM and NVM versus SRAM

used in processor caches, a traditional cache style ar-
rangement implies a huge overhead in terms of cache
meta-data. This overhead will add significant delays to
the critical path of index search and tag comparison, im-
pacting every data access.

Liu et al. propose a hardware/software, collaborative ap-

3

proach to address the overheads of pure software approaches
without some of the drawbacks of pure hardware caching [20].
Their approach, however, requires modifications both to the
processor architecture as well as the operating system ker-
nel. These modifications have a high NRE cost and hence is
difficult to be carried out in production.

In this paper, we propose a hardware-based hybrid memory
controller that is transparent to the user and as well as the
operating system, thus it does not incur the overheads of
management of OS based approaches. The controller is an
independent module and compatible with existing hardware
architectures and OSes. The controller manages both DRAM
and NVM memories in flat address space to leverage the full
capacity of both memory classes. Our approach also reserves
a small portion of the available DRAM space to use as a
hardware-managed cache to leverage spacial locality patterns
seen in real application workloads to reduce writes to the
NVM.

3 Design

Here we describe the proposed design of our proposed hard-
ware memory management for future hybrid memory systems.
Based on the discussion in Section 2 and cognizant of the
characteristics of emerging NVM technologies, we aim to de-
sign a system in which the latency overheads of OS memory
management are avoided, while hardware tag and meta-data
overheads of traditional caching schemes are minimized.

3.1 System Architecture Overview
Figure 2 shows the system architecture of our proposed
scheme. The data access requests are received by the Hy-
brid memory management unit (HMMU), if they miss in the
processor cache. These are processed based on the built-in
data placement policies, and forwarded with address transla-
tion to either DRAM or NVM. The HMMU also manages the
migration of data between DRAM and NVM, by controlling
the high-bandwidth DMA engine connecting the two types of
memory devices.

3.2 Data management policy
A key component of the proposed HMMU design is its data
management policy, i.e. the policy by which it decides where
to place and when to move data between the different memory
levels. Traditionally, in processor caches and elsewhere, cache
blocks are managed with 64-byte lines and policies such as
set-associative are used to decide what to replace upon the
insertion of new lines into a given cache level. While this
approach yields generally good performance results in pro-
cessor caches, there are difficulties in adapting it for use in
hybrid memories. As previously discussed in Section 2.3,
for a hybrid memory system of 16GB comprised of 64-byte

Figure 2: System Architecture Overview

cache-lines, the tag store overhead would be an impractically
large 2GB. Extending the block size up to 4KB to match the
OS page size would significantly reduce the overheads of the
tag store, bringing it down to 4MB for a 16GB space. Since
the host operating system primarily uses 4KB pages, using
any larger size than 4KB for block management, however,
risks moving a set of potentially unrelated pages together in a
large block, with little, if any spatial locality between differ-
ent pages in the block. This is particularly true because the
addresses seen in the HMMU are “physical addresses”, thus
physically colocated pages may come from completely dif-
ferent applications, with no spatial relationship.1 As we will
discuss, however, even managing blocks on a page granularity
will yield greater than optimal page movements between “fast”
(DRAM) and “slow” (NVM) memory levels, due to the fact
that only subsets of the page are ever touched in many applica-
tions. Thus, we will examine a hybrid scheme in which most
of the fast memory is managed on a page basis, lowering tag
overheads, while a small fraction is managed on a sub-page
basis to reduce page movement when only small portions of
each page are being used at a given time.

In terms of organization and replacement, using traditional
processor cache policies of set associativity and LRU replace-
ment become unwieldy for a memory system of this size. The
practical implementation of such a set-associative cache re-
quires either a wide/multi-ported tag array (which becomes
untenable for large SRAM structures) or multiple cycles to
retrieve and compare each way in the set sequentially. Prior
work from the OS domain [15, 27] shows that, with a large
number of pages to choose from, set associative, LRU re-
placement is not strictly necessary. Inspired by that, we first
developed a simple counter-based page replacement policy.

1 While many systems do allow a subset of pages to be managed at larger
granularities, the HMMU has no visibility to this OS-level mapping, thus we
conservatively assume 4KB pages

4

3.2.1 Counter-based Page Management

Rather than implementing a set associative organization with
the drawbacks described above, we instead propose to im-
plement a secondary, page-level translation table internal to
the HMMU as illustrated in Figure 3. The internal page table
provides a one-to-one remapping, associating each CPU-side
“physical” page number in the host address space to a unique
page number in the hybrid memory address space, either in
the fast or slow memory. Thus, any given host page can be
mapped to any location in either fast or slow memory.

While this design gives great flexibility in mapping, when
a slow memory page must be moved to fast memory (i.e.
upon a slow memory reference we move that page to fast
memory) it requires a mechanism by which to choose the fast
memory page to be replaced. Inspired by prior work in the OS
domain [15, 27], we designed the counter-based replacement
policy for this purpose.

Figure 3: Counter-based Page Movement Policy

Algorithms and Design The counter-based replacement
policy only requires one counter to keep track of the currently
selected fast memory replacement candidate page, thus it has
minimal resource overhead and can efficiently be updated
each cycle. The chance that a recently accessed page gets
replaced is very rare because 1. the total number of pages is
very large; 2. the counter increases monotonically. To further
reduce the possibility of evicting a recently touched page,
however, we implemented a light-weight bloom filter that
tracks the last 2048 accessed pages. Since checking against
the bloom filter is parallel to normal page scan process, and
is also executed in background, it adds no extra delay to data
accesses. Algorithm 1 shows the details of the algorithm.

Figure 3 illustrates a simple example of this page move-
ment policy. In this example memory address space, fast mem-
ory occupies internal page numbers 0 - 40000, while slow
memory ranges from page number 40000 and beyond. In the
figure, a request for host address 4000a arrives at the inter-
nal remapping page table. The corresponding internal page
address in the memory address space is 40027, which in this
case is the 28th page in the slow memory. Here we use a pol-
icy of page movement to fast memory upon any slow memory

Algorithm 1: Counter-based Page Relocation

Function unsigned pgtb-lookup (address) is
return page_table[address/page_size];

Function unsigned search-free-fast-page() is
while pointed_page 6∈ fast memory or

pointed_page ∈ bloom filter do
counter++;
pointed_page = pagetable[Hash(counter)];

set candidate page as ready;
return pointed_page;

Function counter-based-page-move(address) is
pointed_page = pgtb-lookup (address);
if pointed_page ∈ fast memory then

directly forward the request to DRAM
else

if candidate page is available then
initiate to swap the content between
requested page and candidate page.;

Call page-swap();
else

Forward the current request to NVM;

Function page-swap (source_page, target_page) is
while page swap is not completed do

if new requests conflict with pages on flight then
Froward the requests to the corresponding
device depending on the current moving
progress

Continue the page swap;

Update the corresponding entries in page table.;

touch.2 Thus, the HMMU directs the DMA engine to start
swapping data between the requested page (40027) and the
destination page in fast memory. Here, as described in Al-
gorithm 1 the fast memory pages to be replaced is selected
via the replacement counter, i.e, page 00038 in this example.
Once the data swapping is completed, the memory controller
updates the new memory addresses of the two swapped pages
in the internal page table. Next, the counter searches for the
next fast memory page replacement candidate. As the figure
shows, the counter is passed through a hash function to gener-
ate an index into the internal page table. If the retrieved page
number turns out to be in slow memory, the counter incre-
ments by one and the hash function generates a new index for
the next query to the page table. Such process loops until it
finds a page in the fast memory, which becomes the candidate
destination for the page swapping.

Further details of the counter-based page management pol-

2Note that the request is serviced immediately, directly from the slow
memory, while the page swap happens in the background.

5

icy:
• Current requests are processed at top priority under all

circumstances. Except for rare cases when a given write
request conflicts with ongoing page movement, we al-
ways process the current request first. As for those rare
cases, since all write requests are treated as non-blocking,
the host system shall not suspend for them to complete.
Therefore our design does not add overhead to the criti-
cal path of request processing.
• Due to the parallel nature of hardware, we search for

free pages in fast memory in the background, without
interference to host read request processing.
• Page-swap is initiated by the HMMU, however, it is ex-

ecuted by a separate DMA hardware module. Thus it
does not impact other ongoing tasks.
• Data coherence and consistency are maintained during

page movements.
We carefully designed the DMA process so that it could prop-
erly handle the new requests to the pages as they are being
moved. All read requests and most write requests can proceed
without blocking. In some very rare cases, the write requests
are held until the current page copy finished.

3.2.2 Sub-page Block Management

Various applications could have widely different data access
patterns: those with high spatial locality may access a large
number of adjacent blocks of data; while others may have
a larger stride between the requested addresses. For applica-
tions with weak or no spatial locality, there is very limited
benefit to moving the whole page of data into fast memory, as
most of the non-touched data may not be used at all. Based
on this observation, we propose a scheme for sub-page size
block management, which manipulates the data placement
and migration in finer granularity.

Algorithm 2: Sub-page Block Management

Function sub-page block management(address) is
pointed_page = pgtb-lookup(address);
if pointed_page ∈ fast memory then

directly forward the request to DRAM
else

if the count of cached blocks > threshold value
then

if candidate free page available then
initiate to swap the content between

requested page and candidate page.;
Call page-swap();

else
Forward the current request to NVM;

else
initiate moving the block to cache zone

Data Migration Policy We set aside a small fraction of the
fast memory and manage that area in a cache-like fashion with
sub-page sized blocks. The basic algorithm used in shown
in Algorithm 2. Upon the first accesses to a slow memory
page, instead of moving the whole page into fast memory,
we will only move the requested block of that page into the
"cache" zone in fast memory. We then keep track of the total
number of cached blocks belonging to every page. Only after
the count of cached blocks meets a certain threshold will we
swap the whole page to fast memory.

Figure 4 illustrates a simple example of the sub-page block
relocation policy: The memory controller receives a request to
host physical address 0x124000a200. In the first cycle, both
the page table and cache metadata are checked in parallel, to
decide the target memory device. If the data is found only in
the slow memory, the memory controller will trigger the data
relocation process. The 4-bit counter in the page table entry
tells the number of sub-page blocks that have been cached for
the current page. Comparing the counter against the preset
threshold, determines whether to start a full-page swap or a
sub-block relocation. In the given example, the counter value
is 2, which is smaller than the threshold value of 4. Thus only
that specific block containing the requested data (0x40027200
to 0x4002727f) will be copied to the cache. It is possible that
the data might be found in both slow memory and the cache at
the same time. To enforce data consistency, we always direct
the read/write request to the copy in cache. This dirty data
will be written back to the slow memory upon eviction.

Fast Memory Cache Design As the page size is 4KB, we
choose 128 bytes as a reasonable block size (this size also
corresponds to the DRAM open page burst size, so it sees a
significant performance boost versus other block sizes). The
cache is organized as a 4-way associative cache. The cache
uses a pseudo-LRU as the block replacement policy. We also
enable a proactive cache recycling policy: when a block is
accessed, if its underlying page is detected to have been re-
located to fast memory, we would evict that block from the
cache to save the space for other blocks. Thus one block of
data will not occupy the capacity of two copies in the fast
memory at the same moment.

3.2.3 Hardware Cost and Overhead

Each page table entry takes log2
Memory Space

Page Size
bits to rep-

resent the page address. In addition, we need some bits for
statistical meta-data such as the counter of misses occurring to
the page. In our sample design, the memory space is 2GB and
the page size is 4KB, thus the hardware cost per page could

be rounded to log2
2GB

4KB
+5bits= 3bytes, and the total cost

is 1.5MB. The page table cost scales linearly with memory
size whereas the cost per entry only grows logarithmically.
The meta-data for each cache set is comprised of three parts;

6

Figure 4: Sub-block Relocation Policy

four tags(8 bits × 4), pseudo-LRU bits (3) and dirty bits (4),
which adds to 39 bits. The total cost is 39bits×216 ≈ 312KB
Since the cache is read and check parallel to the access to
the page table, there is no additional timing cost for handling
regular requests. The DMA provides the non-conflict data
relocation for sub-page block level as same as that of the page
relocation.

3.2.4 Static versus Adaptive Caching Threshold

With both page and block migration available, a new question
arises, how to choose wisely between these two policies for
optimal results. We note that these policies have different
characteristics as follows:
• With page-migration, the data is exclusively placed be-

tween NVM and DRAM device. Thus larger memory
space is available to applications, and the bandwidth of
both devices is available.
• Sub-page-block migration is done in an inclusive cache

fashion, thus avoids the additional writes to NVM when
the clean data blocks are evicted from DRAM.

For applications with strong spatial locality, whole page mi-
gration maximizes performance because the migration cost
is only incurred once, and the following accesses hit in the
fast memory. Alternately, sub-page block promotion benefits
applications with less spacial locality, because it limits writes
to NVM incurred by full page migration. We further note
that application behavior may vary over time with one policy
being better in one phase and another better during another.

We therefore include in the page translation table an 8-
bit, bitmap for tracking accesses to each sub-page block of
the given page. This allows measurement of the utilization
rate of promoted pages. If a large portion of blocks were
revisited, then we lower the threshold to allow more whole
page migration. Alternately, if few blocks were accessed we
suppress the whole page promotion by raising the threshold

value, decreasing the rate at which full pages are migrated.

4 Evaluation

In this section, we present the evaluation of our proposed
HMMU design. First, we present the experimental method-
ology. Then we discuss the performance results. Finally we
analyze some of the more interesting data points.

4.1 Methodology
4.1.1 Emulation Platform

Evaluating the proposed system presents several unique chal-
lenges because we aim to test the whole system stack, com-
prising not only the CPU, but also the memory controller,
memory devices and the interconnections. Further, since this
project involves hybrid memory, accurate modeling of DRAM
is required. Much of the prior work in the processor mem-
ory domain relies upon software simulation as the primary
evaluation framework with tools such as Champsim [2] and
gem5 [1]. However, detailed software simulators capable of
our goals impose huge simulation time slow-downs versus
real hardware. Furthermore, there are often questions of the
degree of fidelity of the outcome of arbitrary additions to
software simulators [26].

Another alternative used by some prior work [9] is to use
an existing hardware system to emulate the proposed work.
This method could to some extent alleviate the overlong the
simulation runtime, however, no existing system supports our
proposed HMMU.

Thus, we elected to emulate the HMMU architecture on
an FPGA platform. FPGAs provide flexibility to develop
and test sophisticated memory management policies while its
hardware-like nature provides near-native simulation speed.
The FPGA communicates with the ARM CortexA57 CPU via

7

a high-speed PCI Express link, and manages the two memory
modules(DRAM and NVM) directly. The DRAM and NVM
memories are mapped to the physical memory space via the
PCI BAR(Base Address Register) window. From the per-
spective of the CPU, they are rendered as available memory
resource same as other regions of this unified space.

Our platform emulates various NVM access delays by
adding stall cycles to the operations executed in FPGA to
access external DRAM. The platform is not constrained to
any specific type of NVM, but rather allows us to study and
compare the behaviors across any arbitrary combinations of
hybrid memories. In the following sections, we would show
the simulation results with different memory devices. The
detailed system specification is listed in Table 2.

Table 2: Emulation System Specification

Component Description
CPU ARM Cortex-A57 @ 2.0GHz, 8 cores, ARM v8

architecture
L1 I-Cache 48 KB instruction cache, 3-way set-associative
L1 D-Cache 32 KB data cache, 2-way set-associative
L2 Cache 1MB, 16-way associative, 64kB cache line size
Interconnec-
tion

PCI Express Gen3 (8.0 Gbps)

Memory 128MB DDR4 + 1GB NVM
OS Linux version 4.1.8

We measured the round trip time in FPGA cycles to access
external DRAM DIMM first, and then scaled the number of
stalled cycles according to the speed ratio between DRAM
and future NVM technologies, as described in Section 2.1.
Thus we have one DRAM DIMM running at full speed and
the other DRAM DIMM emulating the approximate speed of
NVM Memory.

4.1.2 Workloads

We initially considered several mobile-specific benchmark
suites, including the CoreMark [32] and AndEBench [6] from
EEMBC. We found however that these suites are largely out
of date and do not accurately represent the large application
footprints found on modern mobile systems. Also, in some
cases they are only available as closed source [6] and thus
are unusable in our infrastructure. Instead, we use applica-
tions from the recently released SPEC CPU 2017 benchmark
suite [35]. To emulate memory intensive workloads for fu-
ture mobile space, we selected only those SPEC CPU 2017
benchmarks which require a larger working set than the fast
memory size in our system. The details of tested benchmarks
are listed in Table 3.

To ensure that application memory was allocated to the
HMMU’s memory, the default Linux malloc functions are
replaced with a customized jemalloc [8]. Thus the HMMU
memory access was transparent to the CPU and cache, and
no benchmark changes were needed.

Table 3: Tested Workloads [35]

Benchmark Description Memory footprint
Integer Application

500.perlbench Perl interpreter 202MB
520.omnetpp Discrete Event simulation -

computer network
241MB

523.xalancbmk XML to HTML conversion via
XSLT

481MB

531.deepsjeng Artificial Intelligence:
alpha-beta tree search (Chess)

700MB

557.xz General data compression 727MB
Float Point Application

510.parest Biomedical imaging: optical
tomography with finite
elements

413MB

519.lbm Fluid dynamics 410MB
538.imagick Image Manipulation 287MB
544.nab Molecular Dynamics 147MB

4.1.3 Designs Under Test

Here we test the following data management policies devel-
oped for use with our HMMU:
• Static: A baseline policy in which host requested pages

are randomly assigned to fast and slow memory. This
serves as a nominal, worst-case, memory performance.
• PageMove: The whole 128MB DRAM is manged on

the granularity of 4k pages. When a memory request is
missed in fast memory, the DMA engine will trigger a
page relocation from slow memory to fast memory, as
described in Section 3.2.1.
• StatComb: Here 16MB out of the 128MB DRAM is

reserved for sub-page block relocation, managed in the
cache-like fashion, as described in Section 3.2.2. The
remainder of the DRAM is managed on a full page ba-
sis. An empirically derived static threshold of 4 blocks
touched is used to determine when a full page should be
moved to the page portion of DRAM.
• AdpComb: Same as StatComb, except that, as described

in Section 3.2.4, an adaptive threshold is used to deter-
mine when the full page should be moved.
• AllDRAM: Here we implement a baseline policy in

which there is sufficient fast memory to serve all pages
in the system and no page movement is required. This
serves as a nominal, best-case but impractical memory
performance design.

4.2 Results

4.2.1 Energy Saving

Emerging NVM consumes minimal standby power, which
could help save energy consumption on mobile computation.
We evaluated and compared the energy spent in running SPEC
2017 benchmarks between the full DRAM configuration and
our policies. We referred to Micron DDR4 technical spec [24]

8

for DRAM and recent work on 3DxPoint [17] for NVM device
power consumption, respectively (Table 4).

Table 4: Power Consumption of DDR4 and 3D-XPoint

Technology DDR4 3Dxpoint
Read Latency 50ns 100ns
Write Latency 50ns 300ns
Read Energy 4.2nJ 1.28nJ
Write Energy 3.5nJ 8.7nJ

Background Power 30mW/GB ∼ 0

We normalize the energy consumption of our policies to
that of the AllDRAM configuration and present them in the
figure 5. In the figure we see that all three techniques save a

50
0.p

erl
be

nc
h

51
0.p

are
st

51
9.l

bm

52
0.o

mne
tpp

52
3.x

ala
nc

bm
k

53
1.d

ee
ps

jen
g

53
8.i

mag
ick

54
4.n

ab

55
7.x

z

Geo
mea

n

50%

100%

150%

PageMove AdpComb AllDRAM

Figure 5: Energy Consumption Comparison

substantial amount of energy. On average the AdpComb adap-
tive policy only consumes 60.2% energy as compared to the
AllDRAM configuration, while the PageMove and StatComb
policies are at 65.1% and 63.6%, respectively. That said, sev-
eral benchmarks see energy consumption increases under the
PageMove policy, while StatComb, sees a significant regres-
sion in energy consumption for 519.lbm. AdpComb, while
also seeing increased energy consumption under 519.lbm,
shows better energy consumption than the other two policies
for nearly all cases.

Further investigating the distribution of energy consump-
tion, we track the DRAM background power, number of
DRAM read/writes and NVM read/writes. We present the
comparison between AdpComb and AllDRAM in Figure 6.
Since 7/8 of the memory was replaced with NVM, the standby
power shrinks significantly. Although write operations to
NVM dissipate more energy than DRAM, the AdpComb pol-
icy avoids most of this increase by absorbing many writes
in DRAM. Our policies saw the greatest energy efficiency
improvement with applications imagick and nab, which spent

50
0.

pe
rl

be
nc

h.
A

llD
R

A
M

50
0.

pe
rl

be
nc

h.
A

dp
C

om
b

51
0.

pa
re

st
.A

llD
R

A
M

51
0.

pa
re

st
.A

dp
C

om
b

51
9.

lb
m

.A
llD

R
A

M
51

9.
lb

m
.A

dp
C

om
b

52
0.

om
ne

tp
p.

A
llD

R
A

M
52

0.
om

ne
tp

p.
A

dp
C

om
b

52
3.

xa
la

nc
bm

k.
A

llD
R

A
M

52
3.

xa
la

nc
bm

k.
A

dp
C

om
b

53
1.

de
ep

sj
en

g.
A

llD
R

A
M

53
1.

de
ep

sj
en

g.
A

dp
C

om
b

53
8.

im
ag

ic
k.

A
llD

R
A

M
53

8.
im

ag
ic

k.
A

dp
C

om
b

54
4.

na
b.

A
llD

R
A

M
54

4.
na

b.
A

dp
C

om
b

55
7.

xz
.A

llD
R

A
M

55
7.

xz
.A

dp
C

om
b

0%

50%

100%

150%

DDR bkgd DDR Reads DDR Writes NVM Reads NVM Writes

Figure 6: Energy Consumption Breakdown

17.9% and 21.1% energy compared to full DRAM. We find
that these two applications have high processor cache hit rates
and spent most time in computation. Thus they have few ref-
erences to the memory, and the largest portion of energy was
spent on DRAM background power. Thus AptComb policy’s
advantage of having much lower DRAM static power is best
exploited. Our policies did pretty well with all benchmark
applications except lbm, which spent 63% more energy. This
application incurred a massive number of cache block write-
backs to NVM. We investigated the case and found lbm has
the highest percentage of store instructions among all bench-
mark applications [19]. This creates many dirty blocks, and
thus writebacks are expected when blocks are later evicted.
The amount of writes is also amplified by the writebacks of
cache blocks.

4.2.2 Runtime Performance

Figure 7 shows the speedup attained by the different designs
under test for the various benchmarks in the SPEC CPU 2017
benchmark suite. Here all the results are normalized to the
runtime of the ideal, AllDRAM, DRAM configuration. We
see that the average performance of AdpComb is 88.4%, while
the random static allocation “Static” only yields 40% of the
full DRAM performance. Thus, the adaptive policy achieves
more than 2x performance benefit versus the worst-case, static
allocation policy under the same memory resource. Generally
the AdpComb policy outperforms the other two policies we
propose, though interestingly, for many benchmarks, includ-
ing perlbench, parest, xalancbmk, xz, imagick, and nab, Page-
Move comes within 5% of the performance of AllDRAM.

9

500.perlbench 510.parest 519.lbm 520.omnetpp 523.xalancbmk 531.deepsjeng 538.imagick 544.nab 557.xz Geomean
0%

20%

40%

60%

80%

100%
Static PageMove StatComb AdpComb AllDRAM

Figure 7: SPEC 2017 Performance Speedup

4.3 Analysis and Discussion

The adaptive AdpComb policy successfully reduces energy
by 40%, with a modest 12% loss of the performance versus
an unrealistic and unscalable AllDRAM design. AdpComb
attempts to make the optimal choice between the PageMove
and the StatComb block migration policy. In the remainder of
this text, we will further analyze the experiment results.

4.3.1 PageMove Policy Performance

20% 40% 60% 80% 100%

500.perlbench

510.parest

519.lbm

520.omnetpp

523.xalancbmk

531.deepsjeng

538.imagick

544.nab

557.xz

fast reads fast writes slow reads slow writes

Figure 8: Memory Accesses Breakdown of PageMove Policy

The PageMove policy has similar average runtime perfor-
mance (86.9%) to the adaptive AdpComb policy (88.4%).
Figure 8 shows the breakdown of memory requests that hit in
the fast pages and slow pages respectively. When compared
to the speedup in Figure 7, we see the benchmarks which
PageMove policy works best have most of their memory re-
quests hitting in the fast pages, while the hit rate in slow pages
become negligible. This provides a large performance boost
considering that the system’s slow memory is 8x slower than
the fast memory.

In the figure, the StatComb policy has an overall speedup
of 84% against the AllDRAM configuration. The difference is
mainly contributed by 519.lbm and 544.nab. As we will show,
however, StatComb does still provide significant benefits in
terms of total writes to NVM.

The PageMove policy performs worst on the benchmark
531.deepsjeng, with a slowdown of 52% versus AllDRAM.
We divided the number of hits in fast memory by the occur-
rences of page relocation, and found that deepsjeng has the
lowest rate (0.03) across all the benchmark applications (Ge-
omean is 3.96). This suggests that when a page is relocated
from slow memory to fast memory, the remainder of that
page is often not extensively utilized. Further, we also see
an exceptionally high ratio of blocks moved to cache versus
page relocation. The geometric mean of all benchmarks is
10.5 while deepsjeng marks 397. This is a sign that in most
cases, the page is only visited for one or two lines, and never
accumulates enough cached blocks to begin a whole page
relocation. To sum up, deepsjeng has a sparse and wide-range
memory access pattern, which is quite difficult to prefetch
effective data or improve performance.

519.lbm presents another interesting case, since its perfor-
mance is also poor. Similar to deepsjeng, the hit rate in fast
memory is low in contrast to the number of page relocations.
However, a key difference is that over 60% of the cached
blocks were evicted after its underlying pages relocated to
fast memory. This indicates that lbm walks through many
blocks of the same page and triggers the whole page reloca-
tion quickly. On that account, we deduce that this benchmark
will benefit from a configuration with more fast pages and a
smaller cache zone. We reran this benchmark with a cache
size of 8MB and the threshold value of 1, and found a sup-
portive result of 8% performance gain on top of the default
threshold value of 4.

4.3.2 Writes Reduction and NVM lifetime Saving

Unlike the traditional DRAM, emerging NVM technologies
have different characteristics for reads and writes. Write oper-

10

50
0.p

erl
be

nc
h

51
0.p

are
st

51
9.l

bm

52
0.o

mne
tpp

52
3.x

ala
nc

bm
k

53
1.d

ee
ps

jen
g

53
8.i

mag
ick

54
4.n

ab

55
7.x

z

Geo
mea

n

0%

50%

100%

PageMove StatComb AdpComb

Figure 9: Writes to NVM

ations dissipates more than 8x the energy of reads [3]. More-
over, NVM technologies often have limited write endurance,
i.e, the maximum cycles of writes before they wear out. Hence,
if we could reduce the amount of writes, we could greatly save
energy consumption and extend the lifetime of NVM device.
Figure 9 shows the percentage of writes to slow memory for
both techniques, normalized against the number of writes seen
in the PageMove policy. Please note that we measure not only
the direct writes from the host but also the writes induced
by page movements and sub-page block writebacks to slow
memory. In the figure we see that our combined policy has
an average of 20% fewer writes than the PageMove policy.
While several benchmarks benefit from the sub-page block
cache, this advantage is strongest with omnetpp, with a drop
of 86%. The detailed analysis of this particular benchmark is
presented in the next section.

4.3.3 Sensitivity to Threshold

The extraordinary reduction of writes for omnetpp is intrigu-
ing. We reran the tests with different StatComb static page
relocation thresholds and examined the changes in run time
and total numbers of writes to NVM. In Figure 10, we nor-
malized all numbers to the value for a threshold of 4, the
threshold used in StatComb. The runtime varied according
to the same trend as the number of writes, and the threshold
value of 4 turned out to be the overall sweet spot. Both met-
rics started to deteriorate rapidly when the threshold value
shifted. Then we measured the number of writes to NVM
incurred by page relocation and block relocation, respectively.
The results represented by stacked bars, reveals the reason
why threshold of 4 is the best choice: More pages were re-
located when the threshold was lowered. On the other hand,
the amount of block migration grew rapidly as the threshold
increased. The trade-offs reached perfect balance at the value
of 4, which had a slightly more page moves than that of value

2 3 4 5 6
0.5

1

1.5

2

2.5

3

Threshold to Trigger Page Relocation

N
um

be
ro

fW
ri

te
s

to
N

V
M

block relocation
page relocation

2 3 4 5 6
0.95

1

1.05

1.1

R
untim

e

runtime

Figure 10: Omnetpp Performance Analysis

5, yet significantly fewer block migrations.

4.3.4 Adaptive Policy

The analysis above showed that the whole page promotion
policy favors certain benchmark applications, in which most
blocks were revisited on the promoted pages. Meanwhile
other applications benefit from sub-page block promotions as
only a subset of blocks were re-utilized. If we could always
choose the correct policy for each application, then we could
expect the optimal results for overall performance. These re-
sults reinforce the reasoning behind our AdpComb policy’s
adaptive threshold, wherein for applications where pages are
mostly utilized full page movement is completed quickly,
while for applications where accesses are sparse, page move-
ment is postponed till most of the page has been touched
once.

5 Conclusions

A wide spectrum of non-volatile memory (NVM) technolo-
gies are emerging, including phase-change memories (PCM),
memristor, and 3D XPoint. These technologies look particu-
larly appealing for inclusion in the mobile computing mem-
ory hierarchy. While NVM provides higher capacity and less
static power consumption, than traditional DRAM, its access
latency and write costs remain problematic. Integration of
these new memory technologies in the mobile memory hi-
erarchy requires a fundamental rearchitecting of traditional
system designs. Here we presented a hardware-accelerated
memory manager that addresses both types of memory in
a flat space address space. We also designed a set of data
placement and data migration policies within this memory
manager, such that we may exploit the advantages of each

11

memory technology. While the page move policy provided
good performance, adding a sub-page-block caching policy
helps to reduce writes to NVM and save energy. On top of
these two fundamental policies, we built an adaptive policy
that intelligently chooses between them, according to the var-
ious phases of the running application. Experimental results
show that our adaptive policy can significantly reduce power
consumption by almost 40%. With only a small fraction of the
system memory implemented in DRAM, the overall system
performance comes within 12% of the full DRAM configu-
ration, which is more than 2X the performance of random
allocation of NVM and DRAM. By reducing the number
of writes to NVM, our policy also helps to extend device
lifetime.

References

[1] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011.

[2] ChampSim. Champsim, 2016. https://github.com/
ChampSim/ChampSim.

[3] An Chen. A review of emerging non-volatile mem-
ory (nvm) technologies and applications. Solid-State
Electronics, 125:25–38, 2016.

[4] Jeongdong Choe. Intel 3d xpoint memory
die removed from intel optane pcm, 2017.
https://www.techinsights.com/blog/intel-3d-
xpoint-memory-die-removed-intel-optanetm-
pcm-phase-change-memory.

[5] C. C. Chou, A. Jaleel, and M. K. Qureshi. Cameo: A
two-level memory organization with capacity of main
memory and flexibility of hardware-managed cache. In
2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 1–12, Dec 2014.

[6] EEMBC. An eembc benchmark for android devices,
2015. http://www.eembc.org/andebench.

[7] K. Eshraghian, Kyoung-Rok Cho, O. Kavehei, Soon-Ku
Kang, D. Abbott, and Sung-Mo Steve Kang. Memristor
mos content addressable memory (mcam): Hybrid archi-
tecture for future high performance search engines. Very
Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 19(8):1407–1417, Aug 2011.

[8] Jason Evans. Jemalloc, 2016. http://jemalloc.
net/.

[9] Viacheslav Fedorov, Jinchun Kim, Mian Qin, Paul V.
Gratz, and A. L. Narasimha Reddy. Speculative paging
for future nvm storage. In Proceedings of the Interna-
tional Symposium on Memory Systems, MEMSYS ’17,
pages 399–410, New York, NY, USA, 2017. ACM.

[10] Ahmad Hassan, Hans Vandierendonck, and Dimitrios S.
Nikolopoulos. Software-managed energy-efficient hy-
brid dram/nvm main memory. In Proceedings of the 12th
ACM International Conference on Computing Frontiers,
CF ’15, pages 23:1–23:8, New York, NY, USA, 2015.
ACM.

[11] Cheng-Chieh Huang and Vijay Nagarajan. Atcache:
Reducing dram cache latency via a small sram tag cache.
In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation, PACT ’14,
pages 51–60, New York, NY, USA, 2014. ACM.

[12] INTEL CORPORATION. Intel 750, 2015.
https://ark.intel.com/products/86740/Intel-
SSD-750-Series-400GB-12-Height-PCIe-3_0-
20nm-MLC.

[13] INTEL CORPORATION. Intel optane technology,
2016. https://www.intel.com/content/www/
us/en/architecture-and-technology/intel-
optane-technology.html.

[14] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi. Unison
cache: A scalable and effective die-stacked dram cache.
In 2014 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 25–37, Dec 2014.

[15] Theodore Johnson and Dennis Shasha. 2q: A low over-
head high performance buffer management replacement
algorithm. In VLDB, 1994.

[16] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 460–477, New York, NY, USA, 2017. ACM.

[17] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug
Burger. Architecting phase change memory as a scalable
dram alternative. In Proceedings of the 36th Annual In-
ternational Symposium on Computer Architecture, ISCA
’09, pages 2–13, New York, NY, USA, 2009. ACM.

[18] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and
J. W. Lee. A fully associative, tagless dram cache. In
2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA), pages 211–222, June
2015.

12

https://github.com/ChampSim/ChampSim
https://github.com/ChampSim/ChampSim
https://www.techinsights.com/blog/intel-3d-xpoint-memory-die-removed-intel-optanetm-pcm-phase-change-memory
https://www.techinsights.com/blog/intel-3d-xpoint-memory-die-removed-intel-optanetm-pcm-phase-change-memory
https://www.techinsights.com/blog/intel-3d-xpoint-memory-die-removed-intel-optanetm-pcm-phase-change-memory
http://www.eembc.org/andebench
http://jemalloc.net/
http://jemalloc.net/
https://ark.intel.com/products/86740/Intel-SSD-750-Series-400GB-12-Height-PCIe-3_0-20nm-MLC
https://ark.intel.com/products/86740/Intel-SSD-750-Series-400GB-12-Height-PCIe-3_0-20nm-MLC
https://ark.intel.com/products/86740/Intel-SSD-750-Series-400GB-12-Height-PCIe-3_0-20nm-MLC
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html

[19] A. Limaye and T. Adegbija. A workload characteriza-
tion of the spec cpu2017 benchmark suite. In 2018 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 149–158, 2018.

[20] Haikun Liu, Yujie Chen, Xiaofei Liao, Hai Jin, Bing-
sheng He, Long Zheng, and Rentong Guo. Hard-
ware/software cooperative caching for hybrid dram/nvm
memory architectures. In Proceedings of the Interna-
tional Conference on Supercomputing, ICS ’17, pages
26:1–26:10, New York, NY, USA, 2017. ACM.

[21] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Bal-
asubramonian, R. Iyer, S. Makineni, and D. Newell. Op-
timizing communication and capacity in a 3d stacked
reconfigurable cache hierarchy. In 2009 IEEE 15th In-
ternational Symposium on High Performance Computer
Architecture, pages 262–274, Feb 2009.

[22] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ran-
ganathan. Enabling efficient and scalable hybrid
memories using fine-granularity dram cache manage-
ment. IEEE Computer Architecture Letters, 11(2):61–
64, 2012.

[23] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ran-
ganathan. Enabling efficient and scalable hybrid
memories using fine-granularity dram cache manage-
ment. IEEE Computer Architecture Letters, 11(2):61–
64, 2012.

[24] Inc. Micron Technology. Calculating memory power
for ddr4 sdram. Technical report, 2017.

[25] S. Mittal and J. S. Vetter. A survey of software tech-
niques for using non-volatile memories for storage and
main memory systems. IEEE Transactions on Parallel
and Distributed Systems, 27(5):1537–1550, 2016.

[26] T. Nowatzki, J. Menon, C. Ho, and K. Sankaralingam.
Architectural simulators considered harmful. IEEE Mi-
cro, 35(6):4–12, Nov 2015.

[27] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The lru-k page replacement algorithm for
database disk buffering. In Proceedings of the 1993
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’93, pages 297–306, New York,
NY, USA, 1993. ACM.

[28] M. K. Qureshi and G. H. Loh. Fundamental latency
trade-off in architecting dram caches: Outperforming
impractical sram-tags with a simple and practical de-
sign. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 235–246, Dec
2012.

[29] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and
Jude A. Rivers. Scalable high performance main mem-
ory system using phase-change memory technology. In
Proceedings of the 36th Annual International Sympo-
sium on Computer Architecture, ISCA ’09, pages 24–33,
New York, NY, USA, 2009. ACM.

[30] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,
Y. . Chen, R. M. Shelby, M. Salinga, D. Krebs, S. . Chen,
H. . Lung, and C. H. Lam. Phase-change random access
memory: A scalable technology. IBM Journal of Re-
search and Development, 52(4.5):465–479, July 2008.

[31] INTERNATIONAL TECHNOLOGY ROADMAP FOR
SEMICONDUCTORS. Moremoore, 2015. https:
//www.semiconductors.org/resources/2015-
international-technology-roadmap-for-
semiconductors-itrs/.

[32] Markus Levy Shay Gal-On. Exploring core-
mark - a benchmark maximizing simplicity and ef-
ficacy, 2012. https://www.eembc.org/techlit/
articles/coremark-whitepaper.pdf.

[33] Anton Shilov. Pricing of intel’s optane dc persistent
memory modules, 2019. https://www.anandtech.
com/show/14180/pricing-of-intels-optane-dc-
persistent-memory-modules-leaks.

[34] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson,
and H. Kim. Transparent hardware management of
stacked dram as part of memory. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 13–24, Dec 2014.

[35] SPEC. SPEC CPU2017 Documentation, 2017. https:
//www.spec.org/cpu2017/Docs/.

[36] Z. Wang, Z. Gu, and Z. Shao. Optimizated allocation
of data variables to pcm/dram-based hybrid main mem-
ory for real-time embedded systems. IEEE Embedded
Systems Letters, 6(3):61–64, Sept 2014.

[37] X. Wu and A. L. N. Reddy. Managing storage space in
a flash and disk hybrid storage system. In 2009 IEEE
International Symposium on Modeling, Analysis Sim-
ulation of Computer and Telecommunication Systems,
pages 1–4, Sept 2009.

[38] J. Joshua Yang, Dmitri B. Strukov, and Duncan R. Stew-
art. Memristive devices for computing. Nature Nan-
otechnology, Dec 2012.

[39] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, Myoungjun
Chun, Mahmut Taylan Kandemir, Nam Sung Kim, Ji-
hong Kim, and Myoungsoo Jung. Flashshare: Punching
through server storage stack from kernel to firmware for

13

https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/
https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/
https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/
https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://www.spec.org/cpu2017/Docs/
https://www.spec.org/cpu2017/Docs/

ultra-low latency ssds. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI

18), pages 477–492, Carlsbad, CA, 2018. USENIX As-
sociation.

14

	1 Introduction
	2 Background and Motivation
	2.1 Nonvolatile Memory Technology Characteristics
	2.2 Operating System-Based Memory Management
	2.3 Hardware-managed DRAM Caches and Related Approaches

	3 Design
	3.1 System Architecture Overview
	3.2 Data management policy
	3.2.1 Counter-based Page Management
	3.2.2 Sub-page Block Management
	3.2.3 Hardware Cost and Overhead
	3.2.4 Static versus Adaptive Caching Threshold

	4 Evaluation
	4.1 Methodology
	4.1.1 Emulation Platform
	4.1.2 Workloads
	4.1.3 Designs Under Test

	4.2 Results
	4.2.1 Energy Saving
	4.2.2 Runtime Performance

	4.3 Analysis and Discussion
	4.3.1 PageMove Policy Performance
	4.3.2 Writes Reduction and NVM lifetime Saving
	4.3.3 Sensitivity to Threshold
	4.3.4 Adaptive Policy

	5 Conclusions

