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Abstract—Multi-core architectures are widely adopted in the
emerging real-time applications, such as autonomous vehicles and
robotics, where latency is required to be both bounded in the
worst case (i.e., time predictability) and low. With the number
of processors growing, the conventional memory interconnects,
i.e., shared bus, crossbar, and network-on-chip (NoC), suffer
high latency due to the increasing logic size of their centralised
arbiter, which is deployed for time predictability. In this paper,
we introduce a novel distributed multi-memory interconnect,
Meshed Bluetree, and explain its operation. Constructed by
coupling a router network with multiple Bluetree-based memory
architectures in parallel, Meshed Bluetree allows simultaneous
access to multiple memory modules. We present the analysis for
the predictable timing behaviour of memory access to bound the
worst case. Evaluation on FPGA with synthetic memory work-
loads and real-world benchmarks demonstrates the effectiveness
of our work, i.e., as the number of memory modules increases,
the latency is reduced with the same scale. This work reports
the first time-predictable distributed multi-memory interconnect,
significantly contributing to multi-core real-time systems.

Index Terms—multi-core architecture, memory interconnect,
time predictability

I. INTRODUCTION

IN the emerging real-time application scenarios, such as
highly automated driving and robotics, there is a stringent

requirement on the latency being both bounded in the worst
case (hence time predictability) and low. To deal with com-
plex functionality and achieve high performance, multi-core
architectures are widely deployed, where multiple processors
share one memory module. With the trend of integrating more
processors into the multi-core architectures, the contention
over memory access aggravates and multiple memory modules
are getting engaged.

The conventional multi-core architectures employ shared
bus to connect processors and the shared memory modules,
e.g., AHB (Advanced High-Performance Bus) [1] in the SoC
(System-on-Chip) design. Communication between processors
and access to the memory must be delivered through the shared
bus. Once a single access occurs, the bus is blocked, which
leads to severe contention. Alternatively, the crossbar design,
e.g., AXI Interconnect (Advanced Extensible Interface) [2],
alleviates the contention issue with a set of switch boxes.
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It uses dedicated links to replace the shared bus, which
allows multiple accesses to occur simultaneously. The NoC
(Network-on-Chip) architecture employs a packet switching
network [3][4], where each processor is connected through a
router and experiences less contention compared to the shared
bus. The shared memory modules are commonly located on
the edge of the network.

In order to achieve time predictability, the above con-
ventional interconnects on multi-core architectures typically
implement an arbitration scheme, such as priority-based, time-
division multiplexing (TDM), or round-robin, on a centralised
arbiter. As the number of processors grows, the logic size of
the arbiter hardware increases, which limits the maximum syn-
thesisable clock frequency. One promising approach recently
investigated is to employ distributed memory interconnects,
where the tree-based structure with pipelined stages (Figure 1
as an example) can break the critical path of multiplexing
into multiple shorter steps with small logic size. Although
this introduces additional clock cycles, the latency is reduced,
as higher clock frequency can be synthesised, pipelining is
supported, and scaling to a large number of processors gets
enabled.

The distributed memory interconnects are classified as lo-
cally arbitrated and globally arbitrated. The locally arbitrated
interconnect is constructed with a distributed binary arbitration
tree that multiplexes the memory requests from processors to
the shared memory module. Based on this architecture, the
globally arbitrated interconnect integrates global scheduling
to the distributed data paths, and thus can be considered as
the locally arbitrated interconnect with traffic shaping. In
general, the locally arbitrated interconnect allows the average-
case latency to be much lower than the worst case, making
the time predictability analysis challenging. By contrast, the
globally arbitrated interconnect essentially limits the average-
case behaviour to be similar to the worst case, facilitating the
time predictability analysis. However, the processor is slowed
down, degrading the overall system performance. In addition,
the globally arbitrated interconnect requires complex schedul-
ing as well as strict coordination, and potentially suffers the
synchronisation issue.

Main contributions: In this paper, we introduce a novel
distributed memory interconnect, Meshed Bluetree, and ex-
plain its operation. Constructed by coupling a router net-
work with multiple locally arbitrated Bluetree-based mem-
ory architectures in parallel, Meshed Bluetree enables mul-
tiple processors to simultaneously access multiple memory
modules. We present the analysis for the predictable tim-
ing behaviour of memory access to bound the worst case,
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which can be extended to other architectures than Bluetree.
Evaluation on FPGA with synthetic memory workloads and
real-world benchmarks demonstrates the effectiveness of our
work, i.e., as the number of memory modules increases, the
latency is reduced with the same scale. This work reports the
first time-predictable distributed multi-memory interconnect,
significantly contributing to multi-core real-time systems.

The remainder of this paper is structured as follows.
Section II reviews the related work on distributed multi-
core memory interconnects. Section III describes the basic
Bluetree-based architecture. The proposed Meshed Bluetree is
presented in Section IV with its predictable timing analysis in
Section V. The experimental results are reported in Section VI
and Section VII makes the concluding remarks.

II. RELATED WORK

In contrast to the conventional centralised design, distributed
memory interconnects are emerging in multi-core architec-
tures, especially for real-time applications. In this section, we
discuss the related works on locally arbitrated and globally
arbitrated distributed memory interconnects, and make a com-
parison. Whilst the locally arbitrated interconnects have the
potential for general applicability and good performance, the
resource contention is difficult to resolve and analyse, which
is the main contribution of this work.

Among the locally arbitrated distributed memory intercon-
nects, [5] develops an arbitration tree with globally synchro-
nised timestamps. The arbiter at each distributed multiplexing
stage applies the first-come-first-served (FCFS) scheme, where
memory requests relay to the next stage according to the
increasing order of their timestamp values. It is feasible for
very limited platforms, mainly those having AXI bus [6] with
small numbers of outstanding memory requests.

Alternatively, Bluetree [7][8][9] is initially developed for
the NoC architecture as the external memory tree, to provide
a second network exclusively for accessing the shared memory
module. It separates memory traffic from the processor router
network, hence preventing memory access from interfering
with communication between processors. Bluetree is con-
structed by a set of pipelined multiplexers using a local
round-robin arbitration scheme. The Bluetree-based memory
architecture does not require full synchronisation and allows
multiple memory requests to be transferred through the tree
network simultaneously. This aids further scalability towards
good average-case performance. However, the locally arbi-
trated Bluetree interconnect demands complicated analysis of
the predictable timing behaviour.

Among the globally arbitrated distributed memory intercon-
nects, TDM Tree [10] is built upon the integration of global
TDM scheduling components with a tree-based multiplexing
architecture. When a TDM time slot arrives, one memory
request from a specific processor is allowed to relay to
the tree network. With the global scheduling interval, there
is no contention to the shared resources, neither the data
paths nor the root memory module. No interference exists
between memory accesses. However, TDM Tree requires strict
synchronisation and complex coordination. In addition, it does

not support work-conservation, which potentially leads to a
considerable waste of bandwidth.

Based on the global scheduling interval, Globally Arbi-
trated Memory Tree (GAMT) [11][12] extends the distributed
multiplexing tree with priority-based rate control schemes.
This aims to better utilise the bandwidth with flexibility.
When a time slot arrives, successive memory requests from
a specific processor are allowed to relay to the tree network.
The behaviour of memory access is affected by the priority-
based rate control scheme, such as Frame-based Static Priority
(FBSP) and Credit-Controlled Static Priority (CCSP). GAMT
could only benefit specific applications, as it is generally
hard to model the memory requests on hardware, unlike task
scheduling in operating systems. In addition, the synchronisa-
tion suffers.

The contention over memory accesses aggravates with an
increasing number of processors integrated. The locally arbi-
trated memory architectures allow multiple memory requests
in transfer simultaneously, leading to contention over either
the shared root memory module or the overlapped data paths
in the tree-based interconnect. Once the root memory module
is occupied, the entire request flow is blocked. By contrast, the
globally arbitrated memory architectures provide contention-
free request paths, avoiding memory access interference. How-
ever, this reservation-based method fails to alleviate memory
workloads. Instead, it budgets memory bandwidth and slows
down a processor, consequently degrading the overall system
performance.

Such resource contention as discussed above has been
widely studied on multi-core architectures. For example, [13]
proposes message combining to reduce resource contention
within the tree-based architectures. As for the memory in-
terconnects with multiple pipelined stages, the requests si-
multaneously arriving at one arbiter stage can be merged,
and the memory response is then split to multiple individual
ones along the response path. This reduces contention on the
overlapped data paths. However, it leaves the burden to the
shared root memory module and requires an increasing logic
size for each pipelined stage.

The alternative method is to invest additional hardware
resources to increase bandwidth. For example, a virtual chan-
nel [14][15] can be employed to the shared router in NoC,
which alleviates the router contention from multiple communi-
cation flows and provides flexibility in the channel utilisation.
For the tree-based architectures, [16] proposes that multiple
memory banks can be deployed at the root of the locally
arbitrated Bluetree architecture, which increases bandwidth
and potentially supports mixed-criticality systems with diverse
memory features. However, it moves the design burden to the
shared memory controller, and this centralised design at the
Bluetree root inevitably limits the maximum clock frequency
of the synthesised hardware.

Following this idea of having multiple memory banks in
parallel, we propose the design of Meshed Bluetree with
distributed data paths and local arbitration. The aim is to pro-
vide a multi-memory interconnect for multi-core architectures,
towards predictable timing behaviour (i.e., with the memory
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Fig. 1. A Bluetree-based architecture with 8 clients sharing one memory
module.

latency analysable and worst case bounded), latency reduction
in the average case, as well as scalability.

III. BASIC ARCHITECTURE

Our proposed distributed multi-memory interconnect,
Meshed Bluetree, is built upon the locally arbitrated Bluetree-
based architecture, and can be extended to other architectural
configurations, such as by reconfiguring with different local
arbitration schemes or integrating with global scheduling
schemes. In this section, we describe and analyse the con-
ventional Bluetree-based architecture.

Figure 1 illustrates an 8-client Bluetree-based architecture,
consisting of 8 clients, the Bluetree interconnect, and the
shared memory module. A client can be a single processing
core or a multi-core processor, and denoted by µi, where i is
the client index. Each client has a memory access path Pi, with
P1 for the client µ1 highlighted in the figure. The Bluetree
interconnect B employs multiple stages of 2-to-1 Bluetree
multiplexers to construct the tree network, connecting clients
at the leaves to the shared memory module D at the root.
Across this bi-directional Bluetree network, memory requests
issued by the clients are multiplexed and relayed to the shared
memory, and memory responses return to the corresponding
clients. As the number of clients grows, the tree network scales
with more Bluetree multiplexer stages, which increases the
Bluetree depth Nβ . In Figure 1, Nβ is equal to 3.

Figure 2 shows the Bluetree multiplexer with requests com-
ing from two client directions. Arbitration occurs in the request
path (RQ) to decide which direction of request to be relayed
to the memory direction, and the next Bluetree multiplexers.
The blocking factor α of the internal arbiter is defined such
that every α requests from Direction 0 can be blocked by at
most one request from Direction 1, where Direction 0 can
be considered as the local high-priority path, and Direction 1
is the local low-priority path. Starvation can be prevented by
allowing one request from the low-priority path to be relayed
for every α requests from the high-priority path. If there is no
request from Direction 0, the arbiter imposes no blocking on

Arbiter

Memory Direction

Client Direction 0

RQ

RSRQ

RS RQRS

Client Direction 1

DEMUX

Fig. 2. The Bluetree multiplexer.

Direction 1 with outstanding requests. The implementation of
the local arbiter requires an internal blocking counter. When
the blocking factor is set as α = 1, Bluetree can be considered
as the distributed binary tree stages with a local round-robin
scheme, which provides relatively fair access to the shared
memory module for all clients.

On the other hand, the response path (RS) is non-blocking.
The internal demultiplexer simply decides the route direction
of the memory response as shown in Figure 2. Besides, a buffer
is implemented along each direction as a common pipeline
design practice. The Bluetree multiplexer interface is designed
to operate in the client-server manner, which allows each
local Bluetree multiplexer to function independently, without
requiring the operating state knowledge of any other Bluetree
multiplexer nearby. The Bluetree interconnect does not require
full clock synchronisation.

The Bluetree-based architecture is initially designed to pro-
vide good average-case performance and guarantee the worst-
case memory latency. With the locally arbitrated data paths,
memory accesses show predictable behaviour. However, the
shared root memory is the architectural bottleneck. As shown
in Figure 1, closer to the Bluetree root, more memory access
paths overlap, where the memory requests from different
clients have to share the common hardware paths, as well as
the shared root memory. This shared interconnect architecture
inevitably causes resource contention during simultaneous
memory accesses.

IV. MESHED BLUETREE

In this section, we introduce the Meshed Bluetree distributed
memory interconnect. The topology of our design is based on
the Mesh-of-Trees (MoT), similar to [17][18][19], where [17]
and [18] focus on the topology research. In [19], the MoT is
developed with single-clock-cycle data paths, using a set of
switches coordinated by a global control signal to establish a
complete memory access path dedicated for a specific client
at a time. This MoT operates in the circuit-switched round-
robin manner with centralised control, allowing data transfer
between clients and memories within one clock cycle and
enabling relatively simple timing analysis. However, with the
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Fig. 3. An 8×4 Meshed Bluetree with 8 clients and 4 memory modules.

expanding system configuration (i.e., the number of clients and
memories), the logic size of the centralised design increases
logarithmically, which severely limits the maximum synthe-
sisable clock frequency.

By contrast, our Meshed Bluetree employs distributed data
paths with local arbitration. Although additional clock cycles
are introduced, it allows a much higher clock frequency,
enables pipelining, and scales to a large system. There have
been works quantitatively comparing the centralised and the
distributed design, such as in [12]. According to its experimen-
tal results, the centralised design fails to scale with the number
of processors, and the results can be even worse with more
complex arbitration schemes. By comparison, the maximum
synthesisable clock frequency of the distributed design remains
high and constant with the increasing number of processors,
demonstrating scalability.

With distributed data paths, Meshed Bluetree is proposed to
resolve the resource contention on the conventional Bluetree-
based memory architecture as discussed in Section III and to
enable multiple processors to share multiple memory modules.
Our aim is to achieve good and scalable average-case perfor-
mance, whilst providing predictable timing behaviour across
the pipelined multiplexing stages, i.e., with an analysable
memory access latency bound.

Figure 3 illustrates the architecture of Meshed Bluetree,
which is constructed by coupling a distributed router network
(the upper half) with multiple Bluetree-based architectures
in parallel (the lower half). In this particular example, eight
clients share four memory modules. Each client µi has a mem-
ory access path P(i,j) to connect to the memory module Dj ,
where j is the memory module index. The path P(1,1) for the
client µ1 to connect to the memory module D1 is highlighted
in the paper. The memory modules can be paralleled memory
banks within one DRAM module as analysed in [16]. The
design can also be extended with paralleled scratchpad mem-
ory, cache, or mixed types of memory components. Meshed

Bluetree allows sufficient design flexibility to support multi-
core applications.

When a client µi issues a memory request, the router
network R first decides the routing path and relays the
request to a specific Bluetree-based architecture. Then the
corresponding Bluetree interconnect Bj further multiplexes
and relays this request to the destination memory module Dj .
Here, the same subscript j indicates a one-to-one relationship
between a Bluetree interconnect and a memory module. The
memory response returns across the bi-directional meshed
interconnect in a reverse process. As the memory address
range can be partitioned across these paralleled memory mod-
ules, the simultaneous accesses to different memory modules
can be processed concurrently. This significantly reduces the
contention over a single memory module and increases the
system bandwidth.

The router network R is constructed with multiple stages
of Bluetree routers. With the number of memory modules ND
growing, the router network R scales with more pipelined
router stages, which increases the router depth NR in the
tree-based architecture. In Figure 3, NR is equal to 2. The
design of the Bluetree router is shown in Figure 4. The local
request path (named RQ as before) of the Bluetree router is
non-blocking, and the internal demultiplexer simply decides
the route direction of memory requests. Pipelined buffers and
client-server interfaces are also implemented, similar to the
Bluetree multiplexers.

Arbitration occurs in the local response path (named RS
as before) to decide which direction of memory response to
be relayed to the client, and the next Bluetree routers. An
applicable local arbitration scheme can be round-robin, which
provides locally fair access for both Bluetree directions. It
is also feasible to employ static priority-based arbitration at
the local router stage, always allowing the memory response
from one direction to have higher priority and get relayed first.
The consecutive responses along one path have time intervals
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Fig. 4. The Bluetree router.

in between, related to the responding speed of the memory
modules. Therefore, a memory response will not be blocked at
one router stage for long, even with a lower priority. The exact
amount of blocking along the response path depends on the
number of responses ahead in transfer. This Meshed Bluetree
architecture allows memory modules with different response
time, potentially supporting mixed-criticality applications.

The term system cardinality can be introduced to describe
the configuration of the Meshed Bluetree architecture. It is
expressed as the product of the number of clients Nµ and the
number of memory modules ND. For example, the system
cardinality of the Meshed Bluetree in Figure 3 is 8× 4. With
an increasing system cardinality, the Meshed Bluetree scales
with either higher router depth NR or higher Bluetree depth
Nβ , indicating larger hardware consumption.

Below we provide an analysis on the number of components
required to construct the Meshed Bluetree interconnect, includ-
ing Bluetree multiplexers, Bluetree routers, and Bluetree wires.
For a single Bluetree memory architecture as in Figure 1,
the number of Bluetree multiplexers Nmux increases with the
number of clients Nµ, considering the tree topology. For the
Meshed Bluetree, the total number of Bluetree multiplexers
Nmux also increases with the number of memory modules
ND. To sum up,

Nmux = (Nµ − 1)×ND. (1)

Taking Figure 3 as an example, the number of Bluetree
multiplexers Nmux is equal to (8−1)×4 = 28. Similarly, the
number of Bluetree routers Nrouter increases with the number
of memory modules ND in the tree-based router network and
the number of clients Nµ. To sum up,

Nrouter = (ND − 1)×Nµ. (2)

Taking Figure 3 as an example, the number of Bluetree
routers Nrouter is equal to (4 − 1) × 8 = 24. Bluetree wire
refers to the data bus for the communication between any
two Bluetree components within the interconnect, i.e., clients,
memory modules, multiplexers, and routers. The number of
Bluetree wires Nwire is,

Nwire = (Nµ − 1)×ND + (ND × 2− 1)×Nµ, (3)

CMD CPU_IDADDR DATA MEM_ID

Memory Access Information Route Information

Fig. 5. The packet format for the communication across the Meshed Bluetree
interconnect.

where for each Bluetree multiplexer, there is one Bluetree wire
(pointing towards the memory modules), thus (Nµ−1)×ND;
for each Bluetree router, there is one Bluetree wire (pointing
towards the clients), thus (ND − 1)×Nµ; and the rest ND ×
Nµ connects the multiplexers with routers. Taking Figure 3 as
an example, the number of Bluetree wires Nwire is equal to
(8− 1)× 4 + (4× 2− 1)× 8 = 84.

The width of the data bus within the Meshed Bluetree
interconnect depends on the communication packet format,
which generally includes the memory access information and
the route information as shown in Figure 5. The memory
access information is generated or received by the client or the
root memory, including the 1-bit command field CMD (i.e.,
the memory command type such as memory read or memory
write), the 32-bit address field ADDR, and the 32-bit data field
DATA. In the memory request packet, CMD ‘0’ indicates a
read request, and CMD ‘1’ indicates a write request. In the
memory response packet, CMD ‘0’ indicates a read response,
and CMD ‘1’ indicates a write acknowledgement.

The route information is required for the packet transfer
across the interconnect, and it is used for for each distributed
multiplexing stage to track or decide the route. The route
information includes the 8-bit client identifier field CPU ID
and the 8-bit memory identifier field MEM ID, which sup-
ports a maximum Bluetree depth Nβ = 8 and a maximum
router depth NR = 8. When a client issues a request, the
corresponding CPU ID is encoded by the local arbiter at each
Bluetree multiplexer to track the route: left shift by 1 bit with
‘0’ for the local high-priority path, or left shift 1 bit with
‘1’ for the local low-priority path. CPU ID is also used by
the demultiplexer along the response path to decide the route
back to the corresponding client, decoded by the right shift
operation at each local stage. Similarly, MEM ID is required
by Bluetree routers.

In the above design, the total bit-width of a packet is
81, which is also the width of the data bus as well as the
multiplexers and routers. It is to be noted that this design is
reconfigurable and allows flexible extension. For example, a
priority field can be employed in the route information for the
priority-based arbitration scheme. An extra interface is needed
for the conversion of the packet format (e.g. converting the
packet format between the Meshed Bluetree interconnect and
the AXI bus). In addition, our design is independent of the
memory addressing scheme.

In general, a single memory access over the Meshed Blue-
tree architecture incurs higher delay, considering the longer
pipelined data path with the router network. However, simul-
taneous memory accesses can be processed by the parallel
memory modules concurrently, which increases the bandwidth
and effectively alleviates the contention over one shared
memory module. Latencies for intensive memory accesses
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can be reduced and hence the overall system performance
is improved. In addition, the Meshed Bluetree architecture
supports memory isolation, potentially simplifying software
or OS (operating system) development for multi-core systems,
and provides sufficient flexibility for mixed-criticality systems
with diverse memory bandwidth and latency requirements.
The challenge is how to analyse the timing behaviour of the
memory access to bound the worst-case latency, which is
particularly important for the real-time applications and will
be provided in the next section.

V. PREDICTABLE TIMING ANALYSIS

Real-time systems must guarantee the response within the
specified timing constraints. Multi-core architectures are typi-
cally designed for good average-case performance, where soft-
ware components contend for the shared hardware resources.
Memory accesses over the distributed tree-based interconnect
cause contention to both the overlapped data paths and the
shared root memory modules. In this section, we present the
predictability analysis of the Meshed Bluetree architecture.
Our method defines the general analytical flow to the multi-
core architectures with locally arbitrated interconnects, and
can be extended to other architectural configurations than the
Meshed Bluetree.

A. Timing Behaviour

Our analysis aims to compute and bound the memory access
latencies across the Meshed Bluetree architecture. In general,
the latency t of the memory access ω consists of three parts,
the request path latency tRQ, the root memory latency tD, and
the response path latency tRS ,

t(ω) = tRQ(ω) + tD + tRS(ω). (4)

When there is no contention, i.e., in the best case, it takes
1 clock cycle to cross each pipelined stage, along both the
request and response paths. Therefore, the best-case request
path latency tBCRQ(ω) and the best-case response path latency
tBCRS (ω) are both equal to NR+Nβ . The root memory latency
tD is taken as constant. The best-case overall latency tBC of
the memory access ω is then,

tBC(ω) = tBCRQ(ω) + tD + tBCRS (ω)

= 2× (NR +Nβ) + tD.
(5)

The best-case latency tBC(ω) gives the minimum latency
that a memory access experiences across the Meshed Bluetree
architecture. It is based on the assumption of no contention,
i.e., every pipelined stage is always in the idle status, ready to
accept the request and the response without any delay. When
there is resource contention to either the data path or the shared
root memory, the request or the response may be blocked,
which leads to increasing path latency tRQ(ω) or tRS(ω), and
consequently the total latency t(ω).

Blocking whitin the Meshed Bluetree architecture can be
classified as inter-path blocking and intra-path blocking. The
inter-path blocking occurs when a request or response crosses
an arbiter stage and gets blocked by the other local path.

Therefore, the inter-path blocking is affected by the local
arbitration scheme. On the other hand, the intra-path blocking
occurs when a request or response is blocked by any other
request or response ahead of it, from either the same client
or the other clients. In addition, the interaction between
the inter-path blocking and intra-path blocking needs to be
considered. For example, when a request ω1 experiences inter-
path blocking from ω2, ω2 might overtake ω1 and get ahead
in the same data path, which potentially leads to additional
intra-path blocking.

Based on the above blocking analysis, the memory access
across the Meshed Bluetree architecture exhibits predictable
behaviour. If the exact memory access profiles are known,
the detailed status of the memory flow and the local arbiter
at every pipelined stage can be derived. Hence, the accurate
timing can be computed. It is to be noted that such exact
analysis becomes more complicated as the router depth NR
or the Bluetree depth Nβ increases, due to the following
reasons. First, a larger number of pipelined buffers in the data
path potentially leads to more intra-path blocking. Second,
the inter-path blocking could increase with the the number
of arbiters. Third, there is interference between the pipelined
stages. As the nature of tree-based architectures, if there is any
blocking in the stage close to the root, the entire tree will be
affected. For example, if the Bluetree root stage is blocked,
the request flow within this Bluetree-based architecture stalls.
Similarly, with more inter-path blocking close to the Bluetree
leaf stage, there will be more consequent intra-path blocking
in the overlapped paths.

In practice, there is often uncertainty with the memory
access profiles, such as on the number of memory requests
and the memory issuing time instants. In this case, the exact
timing analysis is not valid. Below, we will provide the worst-
case latency analysis on the memory access across the Meshed
Bluetree architecture.

B. The Worst-Case Memory Access Latency

Similar to the analysis in Section V-A, the calculation on the
worst-case latency tWC of the memory access ω also consists
of the worst-case request path latency tWC

RQ (ω), the worst-case
response path latency tWC

RS (ω), and the constant root memory
latency tD,

tWC(ω) = tWC
RQ (ω) + tD + tWC

RS (ω). (6)

Along both the request and response paths occur the inter-path
blocking and intra-path blocking.

1) The Worst-Case Request Path Latency: Each blocking
that the request ω experiences in the request path induces
an amount of path latency proportional to the root memory
latency tD within the corresponding Bluetree-based architec-
ture. Essentially, the request flow stalls until the memory is
idle again to accept the next request. This latency caused by
waiting for the root memory masks the path latency across the
pipelined stages. Therefore, the maximum blocking number
denoted as NWC

RQ (ω), which the request ω experiences across
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the corresponding request path P(i,j), can be used to calculate
the worst-case request path latency tWC

RQ (ω),

tWC
RQ (ω) = NWC

RQ (ω)× tD. (7)

For the request path within the router network R, the
memory request ω can only be stalled due to the intra-path
blocking. With the router depth NR, the maximum blocking
number in the router request path is equal to NR, under the
assumption that all the buffers are occupied at every pipelined
stage. These blockings within the router network aggravate the
inter-path blocking in the overlapped Bluetree request paths,
which gets more severe closer to the root memory modules.

For the request path within the corresponding Bluetree
interconnect Bj , the blocking analysis complicates, involving
both the inter-path blocking and the intra-path blocking. The
term priority path is introduced here to analyse the maximum
blocking number. It is used to track the local priority at each
Bluetree stage βk across the request path, where k is the stage
index. Referring to the interconnect in Figure 3, the priority
path P(1,1) for the client µ1 to the memory module D1 can
be P(1,1) = {L,H,H}, for example, where L is for the local
low-priority and H for the local high-priority. Therefore, the
path P(1,1) within the Bluetree interconnect B1 is across the
local low-priority path at the Bluetree stage β2, the local high-
priority path at β1, and the local high-priority path at the
Bluetree root stage β0, eventually to the memory module D1.
The related local priority can be expressed as P(1,1)(β2) = L,
P(1,1)(β1) = H , and P(1,1)(β0) = H .

By tracking the local priority, the calculation of the max-
imum blocking number NWC

RQ (ω) across the corresponding
Bluetree request path is iterative, based on the calculation
of the maximum blocking number at each Bluetree stage
βk. Intuitively, the blocking number at any given Bluetree
stage βk is dependent on (i) the amount of blocking that has
occurred at previous stages along the request path, and (ii)
the amount of blocking that can occur at the current stage,
which is dependent on the local blocking factor α. Following
this idea, NWC

RQ (βk) is defined as the iterative blocking up to
and including the Bluetree stage βk, and the maximum arbiter
blocking number NWC

α (βk) is to represent the blocking at
the Bluetree stage βk only. The iterative calculation can be
expressed as,

NWC
RQ (βk) = NWC

RQ (βk+1) +NWC
α (βk) + 1, (8)

where +1 indicates that the local buffer is occupied. At
the Bluetree leave stage, NWC

RQ (βk+1) = NR, which is the
amount of blocking that has accumulated in the router network,
according to our previous analysis.

The maximum arbiter blocking number NWC
α (βk) is locally

decided by the blocking factor α at the corresponding Bluetree
stage βk. With the local arbitration scheme discussed earlier
in Section III, every α requests from the local high-priority
path can be blocked by at most one request from the local
low-priority path, and every single request from the local low-
priority path can be blocked by up to α requests from the

local high-priority path. Given NWC
RQ (βk+1), NWC

α (βk) can
be calculated with the local priority P(i,j)(βk),

NWC
α (βk) =

{
d (N

WC
RQ (βk+1)+1)

α e H
(NWC

RQ (βk+1) + 1)× α L
, (9)

where +1 is to include the request ω and determine the total
amount of requests to cross the local arbiter at this Bluetree
stage.

Taking the local high-priority path as an example, if there
are NWC

RQ (βk+1)+1 (the number of requests accumulated till
the upper stage plus the request under study itself) requests
going through the high-priority path, the maximum blocking
from the low-priority path is this number divided by α and
then applied a ceiling function. Other types of arbitration may
be applied as well and our interconnect makes no specific
requirement.

To summarise the above analysis, the maximum blocking
number up to and including any given Bluetree stage βk
can be computed with (8) and (9). The maximum blocking
number that the request ω experiences across the request path
NWC
RQ (ω) can be calculated iteratively, starting with the value

NR from the router network R to the Bluetree root stage β0
within the interconnect Bj . Finally, the maximum blocking
number in the request path NWC

RQ (ω) is

NWC
RQ (ω) = NWC

RQ (β0), (10)

and the worst-case request path latency tWC
RQ (ω) can be calcu-

lated with (7). The worst-case assumption is that the request
path gets flooded by interfering requests — (i) all pipelined
buffers across the data path are occupied, and (ii) the local
arbiter always harms the request flow.

With the increasing Bluetree blocking factor α, the maxi-
mum blocking number in the request path NWC

RQ (ω) decreases
with more local high-priority tracks. According to the Bluetree
arbitration design in Section III, when the blocking factor
α = 1, Bluetree can be considered as distributed tree stages
with the local round-robin scheme and provides fair accesses
for all requests regardless of the client index. This design is
implemented in our experiments.

2) The Worst-Case Response Path Latency: The analysis
for the blocking in the response path is different from that
for the request path discussed above. According to our de-
sign of the Meshed Bluetree architecture in Section IV, the
consecutive memory responses are separated by certain time
intervals, depending on the responding speed of the memory
modules. Therefore, a response path will not be flooded by
interfering responses. The maximum blocking that the memory
access ω experiences in the response path is much less than
that in the request path. In general, the response path is non-
blocking within a Bluetree interconnect Bj , and the memory
response can experience blocking in the router network R. The
blocking analysis within the router network varies, depending
on whether the root memory modules have homogeneous
latency.

If all the paralleled memory modules have the identical
root memory latency tD, there will be no blocking within
the router network R. The memory requests from the same
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client are always issued successively. Therefore, there is only
one response arriving at each arbitration stage at a time,
hence no inter-path blocking. If the root memory latency tD
varies on different memory modules in the paralleled Bluetree-
based architectures, the inter-path blocking occurs in the router
network R. One response may stall in each pipelined stage for
at most 1 clock cycle due to one contending response from
the other local path. Referring to our analysis in Section IV,
the Bluetree router could locally employ either the round-
robin arbitration scheme or the static priority-based arbitration
scheme. Below we analyse the maximum blocking number
with both schemes. The worst case occurs when the local
arbiter along the response path always harms the response
flow.

With the round-robin scheme at each router stage, one re-
sponse can be blocked by at most one other response from the
other local path. Considering the response intervals from the
memory modules and the basic pipelined data path latencies
(crossing routers and multiplexers without blocking), such
inter-path blocking will not lead to any intra-path blocking
of the responses behind. Therefore, the maximum blocking
number in the response path is determined by the router depth
NR as NWC

RS (ω) = NR. The worst-case response path latency
tWC
RS (ω) can be calculated as the sum of the basic pipelined

path latencies (through the router network and the Bluetree
interconnect) plus blocking,

tWC
RS (ω) = Nβ +NR +NWC

RS (ω)

= Nβ +NR +NR

= Nβ + 2×NR.
(11)

The local static priority-based arbitration could lead to more
inter-path blocking. With the static priority at each router
stage, the internal arbiter will always allow memory responses
from one local path with higher priority to block the other local
path. Following the architectural characteristics, the responses
in one path are separated with intervals, and one response
experiences the basic pipelined data path latencies. Therefore,
one response will not be stalled at a local router stage for
long. The inter-path blocking does not cause any intra-path
blocking to the memory responses behind in the same path, as
the clients process responses immediately, unlike the memory
modules that take tD to process requests.

When a response ω crosses the leaf stage of the router
network, there will be only one interfering response from the
other local path considering the memory responding intervals.
Then the response ω experiences more inter-path blocking at
the subsequent router stages closer to the client. The maximum
blocking number in the response path can be bounded as
NWC
RS (ω) = ND, with the assumption that the response flow is

always interfered. Based on the above analysis, the worst-case
response path latency tWC

RS (ω) can be calculated as,

tWC
RS (ω) = Nβ +NR +ND. (12)

3) The Worst-Case Memory Access latency: Below we
summarise the worst-case memory access latency analysis and
calculation for our proposed Meshed Bluetree configurations.
The round-robin arbitration is deployed for the Bluetree multi-
plexers and the static priority-based arbitration for the Bluetree

routers in the implementation. The worst-case latency tWC of
the memory access ω can be computed from the worst-case
latency across the request path tWC

RQ (ω) and the response path
tWC
RS (ω). The worst-case request path latency can be calculated

with (8), (9), and (10), where the local blocking factor α is set
to 1 as in the implementation. The worst-case response path
latency with local static priority can be calculated using (12).
The overall equation for the worst-case memory access latency
is,

tWC(ω) = tWC
RQ (ω) + tD + tWC

RS (ω)

= NWC
RQ (β0)× tD + tD + tWC

RS (ω)

= (NWC
RQ (β0) + 1)× tD +NB +NR +ND.

(13)

We illustrate the above calculation with an example, on
the 8×4 Meshed Bluetree architecture shown in Figure 3.
The router network R has two stages and hence its depth
is NR = 2, which is equal to the maximum blocking
number along the router request path, based on our analysis.
A Bluetree architecture Bj has three stages and hence its
depth is Nβ = 3. The maximum blocking number along the
request path within the Bluetree interconnect can be computed
iteratively with (8), as discussed before. At the Bluetree leaf
stage β2, NWC

RQ (β2) = NWC
RQ (β3) + NWC

α (β2) + 1, where
NWC
RQ (β3) = NR = 2. In this example, we assume α

to be 1, which is effectively a local round-robin arbitration
scheme, where every request from one path can be blocked
by at most one request from the other path. The maximum
arbiter blocking number can then be calculated following (9)
as NWC

α (βk) = (NWC
RQ (βk+1) + 1) × 1. Therefore, at the

Bluetree stage β2, NWC
α (β2) = (NWC

RQ (β3) + 1) × 1 =
(2+1)× 1 = 3. The maximum blocking number at this stage
is then NWC

RQ (β2) = 2 + 3 + 1 = 6.
Similar calculation can be performed for the Bluetree stage

β1 and the Bluetree root stage β0. Finally, the maximum
blocking number along the request path is NWC

RQ (ω) =

NWC
RQ (β0) = 30. The worst-case memory access latency can

be calculated using (13) as tWC(ω) = (NWC
RQ (β0)+1)×tD+

NB+NR+ND = (30+1)×20+3+2+4 = 629, where the
root memory latency is assumed as constant tD = 20 and the
local static priority-based arbitration is employed in the router
along the response path.

Our method presented in this section defines the general
analytical flow to bound the worst case of the locally ar-
bitrated platform. It can be extended to other architectural
configurations than the Meshed Bluetree, which may require
modification to the analysis of the local arbitration scheme.
It is to be noted that the worst-case analysis may produce
pessimistic bounds as the results, which potentially leads to
conservative system design and resource dimensioning, as the
memory access latency is the main part forming the overall
program execution time. If the exact memory access profiles
can be provided, the accurate memory access latency with no
pessimism can be determined as discussed at the beginning
of this section, based on the detailed status of the memory
flow and the local arbiter at every pipelined stage. Without
such exact memory access profiles, which is often the case in
reality, the worst-case analysis reported in this section must
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Fig. 6. Hardware consumption.

be deployed for real-time applications. The bound provided
can also be tightened in future work, e.g., by restricting
the demand from processors. Evaluation on the tightness is
also important, and requires sufficiently representative memory
workload patterns to be fair.

Compared to the conventional Bluetree-based architecture,
a single memory access across the Meshed Bluetree expe-
riences higher delay with the longer pipelined data path.
However, simultaneous memory accesses can be processed by
the paralleled memory modules concurrently, which reduces
the contention and increases bandwidth, hence improving the
overall system performance. To summarise, our Meshed Blue-
tree provides good average-case performance and guarantees
the worst-case memory latency, the latter being particularly
important for the real-time applications.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed Meshed Bluetree
architecture on FPGA with both synthetic memory work-
loads and real-world benchmarks under various system con-
figurations. Our experiment is conducted on Virtex-7 FPGA
VC709 [20] with 100MHz of clock frequency. Two kinds of
single-port memory modules are employed. An FPGA BRAM
module [21] is reconfigurable from 4KB to 256MB, and gives
immediate response to a memory request. A VC709 DDR3
DRAM module [22] is of 4GB in size and responds with
approximately 30 clock cycles (when the FPGA system is
with 100MHz of clock frequency and the DDR3 DRAM
module is with 400MHz). Below, we first report the hardware
consumption of the interconnect.

A. Hardware Consumption

The numbers of components required to construct the
Meshed Bluetree interconnect, including multiplexers, routers,
and wires, are reported in Figure 6, with the system cardinality
increasing from 4× 1 to 128× 16. According to the analysis
in Section IV, the results are calculated using (1), (2) and (3),
which covers the entire interconnect. As shown in the graph,
the number of components is proportional to the number of
clients and memory modules, respectively.

The hardware consumption of the Bluetree multiplexer
and the Bluetree router at the register-transfer level (RTL)
is reported in Table I, in terms of look-up tables (LUTs),
registers, and BRAMs, which are the basic logic units on

TABLE I
HARDWARE CONSUMPTION AT THE RTL LEVEL.

Component LUT Register BRAM
Bluetree Multiplexer 105 269 0

Bluetree Router 88 251 0

FPGA. Gate-level consumption, which depends on the fabrica-
tion technology, may be evaluated in the future, where more
detailed information such as the width and length of wires,
as well as the exact amount of area, is available. Our current
design employs the round-robin arbitration within the Bluetree
multiplexers (i.e., the local blocking factor α = 1) and the
static priority-based arbitration within the Bluetree routers.
The entire Meshed Bluetree architecture is implemented with
Bluespec System Verilog [23][24] and synthesised with Xilinx
Vivado [25][26].

As shown in Table I, one single Bluetree router consumes
slightly fewer resources than a Bluetree multiplexer, and their
difference is mainly on the internal arbiter design. The BRAM
consumption is 0 with the selected arbitration schemes. It is
to be noted that this resource consumption is obtained from
the Vivado synthesis report, and will be much lower after
optimisation. Based on Figure 6 and Table I, the hardware
consumption of the Meshed Bluetree interconnect increases
linearly over the system cardinality.

B. Synthetic Memory Workloads

This section evaluates memory access latencies across the
8-client Meshed Bluetree architecture with various configura-
tions. We deploy traffic generators as clients, which simulate
memory requests without processing any data. The memory
workload parameters include the path outstanding request
number and the request interval. The traffic generator suc-
cessively issues memory requests with randomised varying
request intervals in between, until the path outstanding request
number is reached, and then stalls. After a memory response
returns, this traffic generator starts to issue memory requests
again. Such synthetic memory workloads provide traffic pat-
terns close to practical applications and facilitate behaviour
observation.

In the experiments, we limit the outstanding request num-
ber for each client to be 2. The varying memory request
interval is randomly produced from [1, 64]. This refers to
the practical applications with memory requests distributed
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over time. Two sets of experiments on multiple homogeneous
memory modules and mixed memory modules, respectively,
are performed and analysed below, each with a total of 100
memory requests. As write buffers are commonly employed
to expedite the memory writes, we focus on single-mode
memory reads with randomly generated addresses, which take
considerable latencies.

1) Multiple Homogeneous Memory Modules: This exper-
iment evaluates latencies across the Meshed Bluetree archi-
tecture with multiple homogeneous memory modules, under
the system cardinalities 8 × 1, 8 × 2, and 8 × 4. It is to
be noted that the 8 × 1 Meshed Bluetree architecture is the
same as the conventional 8-client Bluetree-based architecture.
The memory module is implemented based on FPGA BRAM
with an additional delay of 20 clock cycles (as there are
only 2 DDR DRAM modules on VC709). The accesses are
partitioned among these paralleled memory modules following
the uniform distribution.

Figure 7 shows that the total latency, reflecting the overall
system performance, is roughly reduced by half as the number
of memory modules doubles. The reduction is not exactly
by half (slightly less than), as according to our previous
analysis, memory accesses experience longer data path delays
across the meshed interconnect. Although some path delays
can be masked by the waiting for the root memory module,
the latency of a single memory access increases. In addition,
following a randomised process, the memory accesses are not
evenly partitioned to the paralleled architecture, neither the
target memory modules nor the issuing time instants. The
contention over the heavier shared memory module increases
the latency.

Figure 8 examines every single memory access, showing
the average latency and the highest observed latency, the latter
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being the cap line. Although the blocking due to the shared
resources still occurs, the simultaneous memory requests are
partitioned into multiple memory modules in parallel through
the Meshed Bluetree interconnect, which effectively alleviates
the contention to a single memory module, and thus reduces
the average memory access latency as well as the highest
observed latency.

2) Mixed Memory Modules: This experiment evaluates
latencies across the Meshed Bluetree architecture with mixed
memory modules, under the system cardinality of 8×2, using
an FPGA BRAM module and a VC709 DDR3 DRAM module.
In the experiment, the percentage of memory accesses to the
BRAM module varies from 10%, 30%, to 50%, as the faster
memory module tends to be of smaller size and memory
address range.

Figure 9 shows that the total latency is reduced with the
increasing BRAM access percentage. When this percentage
changes from 10% to 30%, the total latency is reduced by
about 21% due to the much faster response from BRAM.
When this percentage further increases from 30% to 50%,
the total latency drops even faster by 36%. Therefore, if the
architecture scales with faster memory modules in parallel, the
system could have more noticeable performance improvement.

Figure 10 examines every single memory access, showing
that the average latency gets reasonably reduced with more
accesses to the faster memory module. However, the highest
observed latency remains unchanged. As the memory accesses
are randomly partitioned between BRAM and DRAM, the
traffic generator can quickly issue the next memory requests
to the DRAM module after receiving the very fast response
from the BRAM module. In this case, the contention to the
shared DRAM module is not alleviated, which thus does not
improve the highest observed latency.
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C. Benchmarks
This section evaluates the average-case performance of the

Meshed Bluetree using Mälardalen benchmarks [27]. The ex-
periments are based on the 8-Microblaze [28] system running
8 calculation-intensive benchmarks of different functionality.
Each core executes one benchmark. It is to be noted that
there is no local memory deployed, which makes the root
memory modules under heavy pressure. The memory accesses
are evenly partitioned to the shared memory modules. The
results are averaged over 1000 repeated runs. Due to the space
limit, four benchmarks, cnt, cover, jfdctint, and qsort-exam are
shown in two sets of experiments.

1) Multiple Homogeneous Memory Modules: This exper-
iment evaluates the performance of the Meshed Bluetree
architecture with multiple homogeneous memory modules,
under the system cardinalities 8× 1, 8× 2, and 8× 4, on the
benchmarks. The memory module is implemented based on
FPGA BRAM with an additional delay of 20 clock cycles (as
there are only 2 DDR DRAM modules on VC709). Figure 11
shows that the average latency is reduced roughly by half as
the number of memory modules in parallel doubles, for all the
benchmarks.

2) Separate Instruction and Data Memory Modules: This
experiment evaluates the performance of the Meshed Blue-
tree architecture with separate instruction and data memory
modules, using FPGA BRAM module and VC709 DDR3
DRAM. The system is configured as 8 × 1 with a single
DRAM, 8× 2 with dual DRAM, and 8× 2 with DRAM and
BRAM. In the last case, the memory accesses are partitioned
as instruction DRAM and data BRAM, or instruction BRAM
and data DRAM.

Figure 12 shows the experimental results. Compared with
a single DRAM configuration (denoted as single DDR in
the graph), the average latency with the separate instruction
DRAM and data DRAM configuration (denoted as dual DDR
in the graph) only slightly drops. Similar observations are
made with the instruction DRAM and data BRAM configura-
tion (denoted as data BRAM in the graph), where the average

latency in Figure 12 (c) jfdctint even increases compared
with the dual DRAM configuration. The reason is that, as
the benchmarks are instruction-intensive, faster data BRAM
accesses lead to more frequent instruction requests to the
slower DRAM and aggravate the congestion, which increases
the average latency. When the system is configured with
instruction BRAM and data DRAM (denoted as instr BRAM
in the graph), the average latency drops by approximately
75%. In all these experiments of this section, no local memory,
such as cache, gets deployed, which is a factor to reduce the
memory access latency.

VII. CONCLUDING REMARKS

This paper introduces the first time-predicable distributed
memory interconnect — Meshed Bluetree — that supports
multi-core architectures with multiple parallel memory mod-
ules. We first present the design of the Meshed Bluetree
architecture, which is constructed by coupling a distributed
router network with multiple conventional Bluetree-based
architectures in parallel. This allows simultaneous memory
accesses to be processed by the parallel memory modules
concurrently, which increases the bandwidth and alleviates the
contention over one shared memory module. We also report
the predictable timing analysis with the static calculations to
bound the worst case across the Meshed Bluetree architec-
ture. The evaluation with synthetic memory workloads and
real-world benchmarks demonstrates the effectiveness of our
design. That is, as the number of memory modules increases,
the latency is reduced with the same scale.

One promising direction for future work is to investigate
hardware/software co-design strategies that map (or divide)
tasks to the memory modules in the Meshed Bluetree or similar
architectures, aiming to improve the performance, including
the execution time, power consumption, and reliability. In
addition, more benchmarks, e.g., with more intensive demands
or of mixed types, can be taken to evaluate the proposed
interconnect, and finer analysis can also be performed on more
specific memory workload patterns.
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