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Abstract—Improving data locality of tensor data structures is a
crucial optimization for maximizing the performance of Machine
Learning and intensive Linear Algebra applications. While CPUs
and GPUs improve data locality by means of automated caching
mechanisms, FPGAs let the developer specify data structure
allocation. Although this feature enables a high degree of cus-
tomizability, the increasing complexity and memory footprint of
modern applications prevent considering any manual approach to
find an optimal allocation. For this reason, we propose a compiler
optimization to automatically improve the tensor allocation of
high-level software descriptions. The optimization is controlled
by a flexible cost model that can be tuned by means of simple
yet expressive callback functions. In this way, the user can tailor
the optimization strategy with respect to the optimization goal.
We tested our methodology integrating our optimization in the
Bambu open-source HLS framework. In this setting, we achieved
a 14% speedup on the digit recognition version proposed by the
Rosetta benchmark. Moreover, we tested our optimization on the
CHStone benchmark suite, achieving an average of 6% speedup.
Finally, we applied our methodology on two industrial examples
from the aerospace domain obtaining a 15% speedup. As a final
step, we tested the versatility of our methodology inserting our
optimization in the Clang software optimization flow achieving a
12% speedup on the Rosetta benchmark when running on CPU.

I. INTRODUCTION

THE fast-paced evolution of machine learning techniques
keeps posing ambitious performance requirements for

hardware vendors. However, recent technical challenges in the
semiconductor process required computer architects to inves-
tigate alternative solutions for a high-performance delivery.
While Google proposed Tensor Processing Units (TPUs) [1],
more flexible and cost-competitive approaches have been in-
vestigated. In this direction, Field-Programmable Gate Arrays
(FPGAs) appear to be a promising solution [2][3]. In fact,
despite FPGAs offer performances comparable to Application-
Specific Integrated Circuits (ASICs), they require way reduced
production costs and time to market.

FPGAs are integrated circuits providing programmable logic
that can be configured to execute a certain function. The way
FPGA devices can be configured substantially changed over
time and nowadays a variety of choices is proposed. Despite in
the past this choice had to be a tradeoff between performance
and programmability, with the High-Level Synthesis (HLS)
process [4] evolving over the years, nowadays FPGAs can
be easily programmed through high-level languages with a
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negligible performance loss. High-Level Synthesis is a set of
techniques used for producing a Register-Transfer Level (RTL)
description starting from a high-level behavioral description.
The obtained RTL description is then used for producing the
bitstream responsible for programming the FPGA device. In
general, during the HLS process, local arrays are allocated in
Block RAM (BRAM) memories placed all around the pro-
grammable logic. Since tensors essentially are n-dimensional
arrays, the same consideration applies. In principle, BRAM
memories guarantee an access time in the order of clock cycles
and an aggregate capacity ranging from kilobytes to megabytes
according to the considered device. Despite this solution seems
to provide ideal performance, there are two main issues to be
considered. Firstly, each BRAM bank has a limited amount
of ports to be shared among all of the data structures stored
within. In case parallel accesses are required, other allocation
strategies such as data partitioning or data reshaping should
be investigated. Secondly, the too dense logic generated from
large and complex designs might excessively stress the on-chip
memory subsystem and compromise the overall performance.
In fact, processing elements who need to access such memories
are wired to the bank where the data to access is placed.
In the case of large designs, long routings required to reach
memory banks may congest the communication infrastructure
causing severe performance degradations. Analogously to CPU
and GPU architectures employing memory hierarchies [5]
to improve data locality [6][7], these limitations could be
overcome allocating critical data structures figuratively nearer
the computational area. In this direction, the most promising
solution consists of allocating highly-accessed tensors in the
FPGA registers usually devoted to store scalar variables. In the
HLS process, this optimization can be performed in the front-
end layer with a compiler transformation disaggregating ten-
sors in their scalar elements. Despite with a way different goal,
the transformation enforcing data structure disaggregation has
already been formulated by the software-compiler community
and is known in the literature as Scalar Replacement Of
Aggregates (SROA).

Since HLS tools [8] are usually built on top of software
compilation frameworks such as GCC [9] and LLVM [10],
several IR-level transformations can be inherited from the
underlying compilation suite. However, since mainly CPU-
specific, these optimizations may produce suboptimal results
when applied to the HLS process [11]. Considering the SROA
transformation, the CPU version is particularly focused on
disaggregating structs types so that scalar-only optimizations
could work on aggregate subelements too [12]. Firstly, this
implies that CPU SROA has no real interest in aggressive in-
terprocedural applicability where advanced analysis and trans-
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formations are required. Secondly, the provided cost model
would likely be quite far from HLS interests. In principle,
while register-allocation reduces BRAM usage for general
performance improvement, there are certain circumstances
where this optimization should be controlled. In fact, FPGA
registers are, in a sense, limited resources whose usage should
be somehow regulated. Furthermore, considering that registers
are non-addressable memory, accessing a register-allocated
array with a non-constant index requires additional logic and
latency to multiplex the data access. Aware of this issue, some
commercial HLS tools allow to enforce register allocation of a
selected array by means of HLS directives placed in the source
code. Although this methodology enables a great deal of con-
trol, it does not scale with nowadays application’s complexity
where the user should explore too large optimization spaces
to find an optimal allocation configuration. Moreover, this
manual approach is not applicable when synthesizing Domain-
Specific Languages providing no optimization expressiveness.

For this reason, we propose an open-source 1 HLS optimiza-
tion for automatically optimizing tensor locality of Machine
Learning and intensive Linear Algebra applications. This im-
plementation particularly values effectiveness and portability.
Effectiveness is managed proposing the optimization as a set
of analyses and transformations to be strategically placed all
over the optimization chain. In this way, we do not need to
condense the full application complexity in a single bulky
optimization rather allowing a modular and powerful solution
actively interacting with other LLVM-builtin optimizations.
Portability, instead, is guaranteed by a flexible cost model
that can be customized by the user via simple callback func-
tions. In practice, the optimization comes as a set of specific
LLVM optimization and transformations mainly subdivided
in preprocessing optimizations, function versioning, SROA
extension, and code cleanup. Although possibly distributed
in the optimization chain of standard compiler recipes (such
as the -O2 optimization level), all the transformations are
working together since lead by the same cost model.

Despite we individuate machine learning as the main ap-
plicative domain, this methodology is generalized to any
intensive linear algebra application. After being integrated into
the Bambu [13] HLS framework, the proposed methodology
has firstly been validated on one of the Rosetta benchmark [14]
where we achieved a 14% speedup on the digit recognition
test case. Moreover, we tested our optimization on a complex
and HLS-standard scenario such as CHStone test suite [15]
reaching a 6% average speedup. Then, we synthesized several
industrial Aerospace applications obtaining a 15% improve-
ment on these real case examples. Lastly, as a portability
showcase, we customized the cost model to target CPU-based
architectures and we illustrate the optimization of a sample
application.

In definitive, we propose the following contributions:

1) we investigated the limitations of some CPU compiler
optimizations when applied to HLS design flows;

1An LLVM implementation of the proposed optimization is publicly
available at the following link https://github.com/ferrandi/PandA-bambu

2) we address those limitations proposing advanced analy-
sis and transformations improving tensor allocation and
accessing;

3) we integrated the analysis with callback functions to
customize the cost model and tightly control the op-
timization goal;

4) we propose a second cost model for CPU, demonstrating
the flexibility of our approach.

In the remainder of this document, in Section II we discuss
related works and state-of-the-art methodologies in the HLS
context. Then, in Section III we provide an LLVM overview
to better discuss our methodology in Section IV. Finally,
in Section V we validate our work on several benchmarks
and industrial applications before summarizing and delineating
future steps in Section VI.

II. RELATED WORK

In the HLS process, tensors can be forced to registers
allocation by means of the Scalar Replacement of Aggre-
gates (SROA) IR-level compiler transformation. Despite this
transformation is already implemented in the GCC [12] and
LLVM [16] compiler suite, as shown by the results collected
by Huang et al. [11], the current implementations do not
provide any relevant performance impact in the HLS synthesis.
More generally, the authors investigate the performance impact
of several LLVM IR-level compiler optimizations when inte-
grated into the front-end layer of an open-source HLS tool.
As already discussed for software compilation [17][18][19],
the collected results demonstrate how both IR-level optimiza-
tions’ selection and ordering heavily impact the quality of
the generated hardware description. Thus, despite a selected
set of optimizations produces performance improvements, an
aggressive CPU-specific standard optimization level such as
-O3 degrades the overall HLS performance. In fact, since
the set of optimizations offered by compilation suites such
as GCC or LLVM mainly target CPU architectures, the used
cost model may produce suboptimal results on other target
architectures. In principle, CPU cost models trade optimization
effectiveness for containing compilation time. Besides this lim-
its applicability in contexts like High-Level Synthesis where
compilation time is not an issue [20], there may be cases where
the transformation is anyways too aggressive and produce code
patterns not recognized by the HLS phase, eventually leading
to performance degradation. For this reason, Prabhakar et al.
[21] propose a similar study yet considering a restricted subset
of HLS-oriented optimizations. This work shows that HLS-
specific optimizations provide substantial performance benefits
even if requiring custom implementation and maintenance.

State-of-the-art HLS tools also implement HLS-specific
optimizations that can be enforced with source-level HLS
directives. In particular, data allocation can be managed with
directives for partitioning and reshaping data structures and
distributing array allocations over separate BRAM banks. In
this way, the developer can increase memory access concur-
rency to support higher degrees of thread-level parallelism
[22][23][24]. However, because of its nature, BRAM partition-
ing requires greater memory usage consequently introducing
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Fig. 1. Latency analysis of three Benchmarks from the CHStone test suite
while varying disaggregation threshold of a commercial HLS tool.

higher design complexity. Since this aspect generally increases
single-thread latency and timing, in case this loss is not
amortized by the latency reduction brought by the parallel
computation, the final design will suffer performance degra-
dations. For this reason, in order to avoid BRAM allocation of
critical data structures, HLS tools allow to completely partition
arrays into single elements to be mapped in FPGA registers. In
this way, the user can specifically improve the data locality of
highly-accessed arrays for relevant performance improvement.
However, since register allocation may come with substantial
area and even latency cost, finding the optimal configuration
requires further investigations.

Considering for instance the adpcm benchmark of the
CHStone suite [15], since allocating a total of 21 arrays,
assessing all the combinatorial effects requires to consider
two million solutions in a full search approach. Although
expert users are able to prune the optimization space, a manual
search is still not feasible. For this reason, commercial HLS
tools propose a threshold-based approach where all the arrays
with size below a specific value are automatically lowered.
For the sake of discussion, in Figure 1 we report the results
we collected with a commercial HLS tool while varying the
disaggregation threshold. The figure visualizes a clock latency
analysis of three CHStone benchmarks obtained probing the
whole threshold domain from 0 to 300 bytes. In particular,
the Y-axis reports the circuit latency normalized with respect
to the latency obtained with the default threshold value. Thus,
values lower than one imply that there is at least one threshold
value providing higher performance than the default one.
Considering the aes and blowfish cases, there are two threshold
values providing better results than the default one. However,
being these values different, it requires the user to fine-tune
the threshold for each application. Furthermore, the results
obtained from adpcm demonstrates that the latency is not
generally decreasing with increased disaggregation and then,
since there are different local minima, no pruning strategy can
be applied. Although this threshold-based approach provides
a simplified method with respect to HLS-directive insertion, it
drastically reduces the explorable optimization space. In fact,
optimal solutions usually come from an arbitrary combination
of arrays’ disaggregation not considered by a threshold-based
approach. Considering the adpcm example, the optimization

space of the threshold-based approach reduces to the eight
items represented by the vertical traits in Figure 1, hardly
guaranteeing optimality.

For these reasons, we propose a tensor optimization for
automatically improving the data locality of critical data
structures. In particular, we mainly focus on IR-level tensor
disaggregation performed through Scalar Replacement Of Ag-
gregates (SROA) transformation. In order to improve SROA
applicability in the HLS process, we perform a more com-
plex and modular transformation with respect to the LLVM
and GCC implementations, also including a set of accessory
analyses and transformations improving optimization results.
Moreover, we integrate all the optimizations with a flexible and
customizable cost model. In this way, we provide an automated
optimization currently missing in modern commercial and
academic HLS tools. Providing high customizability by means
of simple callback functions, the cost model can be easily
adapted to other architectures.

III. LLVM BACKGROUND

The LLVM infrastructure is a collection of compiler tech-
nologies used for optimizing high-level code through a modu-
lar toolchain. At the higher level, this toolchain is composed of
a frontend, an optimization layer, and a backend. The frontend,
commonly addressed as the Clang compiler, constitutes a tool
for translating a large choice of high-level languages into a
target-independent representation formally known as LLVM
Intermediate Representation (LLVM IR). This intermediate
representation is used in the optimization layer to perform
target-independent optimizations. The optimized code is then
forwarded to the backend layer that, after performing target-
specific optimizations, translates it to machine code.

The LLVM IR is a strongly typed RISC instruction set used
by the optimization layer to perform target-independent opti-
mizations. In practice, the LLVM IR resembles an assembly-
like language in the Static-Single-Assignment form. How-
ever, this language offers some higher-level constructs used
for abstracting strong target-dependent concepts. For ex-
ample, the complex mechanism behind the calling con-
vention is abstracted through a simple llvm::CallInst state-
ment representing a function call. The backend would
then take care of any lowering according to the con-
sidered target. An LLVM program is an llvm::Module
containing llvm::GlobalVariables and llvm::Function defi-
nitions or declarations. Each llvm::Function contains sev-
eral llvm::BasicBlocks defining the control flow graph. Each
llvm::BasicBlock contains an ordered list of llvm::Instructions
to be executed in sequence. Using specific analysis, higher-
level constructs such as llvm::Loops can be tracked.

The LLVM IR is a powerful representation where the opti-
mization layer can operate through a chain of compiler passes.
Each pass is entitled to perform a certain analysis or transfor-
mation either on a llvm::Module, llvm::Function, llvm::Loop
or llvm::BasicBlock. In practice, a pass is a C++ class that
reads or manipulates the LLVM IR through the LLVM Core
API libraries. Each pass can declare the list of other passes
that requires or invalidates. The llvm::PassManager entity is
then responsible to coherently schedule all the passes.
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In the end, a set of optimization ca be gathered in recipes
defining the optimization steps needed to accomplish a certain
level of optimization. Well known standard optimization levels
include -O1, -O2, -O3, -Oz and so on. Therefore, the developer
who wants to implement a new optimization recipe is only re-
quired to define the set of transformations to be applied and the
order those should be carried out. It is just worth mentioning
that other than in the optimization layer, optimizations can be
implemented either in the frontend or backend stage despite
offering infrastructures way less featured.

IV. PROPOSED APPROACH

Our approach mainly aims at extending the Scalar Re-
placement of Aggregates (SROA) transformation to improve
optimization applicability and flexibility. In this direction,
we propose an interprocedural implementation composed of
several analyses and transformation modules. These modules
are coordinated by a flexible and customizable cost model
guaranteeing optimality convergence. For this reason, we start
discussing the main critical aspects of the SROA transforma-
tion (Section IV-A) and then we detail the proposed optimiza-
tion recipe (Section IV-B) for improving tensor locality.

A. SROA criticalities

The SROA transformation disaggregates compound data
structures in their fist-class-type elements. Although in soft-
ware compilation this transformation is used for improving
the applicability of further optimizations [12], in High-Level
Synthesis it has a much more relevant impact. From the IR-
level perspective of HLS tools, SROA still untangles alias-
related issues and simplifies the context where the next opti-
mizations would operate on. However, besides the data locality
aspect widely discussed already, SROA also improves the
generated hardware representation simplifying and reducing
the generated logic and removing the indexing latency in
critical paths. Nonetheless, to obtain the best benefits, certain
potential applicability limitations should be addressed.

For the sake of clarity, we provide a toy example in Figure
2 demonstrating the effect of the transformation on a really
simple scenario we are going to incrementally expand. In

Original Code

int foo() {
int t[2][2] = {0, 1,

2, 3};
return t[0][0] + t[0][1]

+ t[1][2] + t[1][3];
}

After SROA

int foo() {
int t0 = 0, t1 = 1,

t2 = 2, t3 = 3;
return t0 + t1

t2 + t3;
}

Fig. 2. A simple example of tensor disaggregation through SROA.

principle, we should associate, where possible, any memory
access to a tuple composed by the base address and the set of
indexes identifying the accessed subelements. Base address
and indexes are then used to identify the element to be
accessed once the disaggregation takes place. However, there
are cases where no exact mapping between base address and
indexes can be found and the transformation for that specific
aggregate gets inhibited. Pointer casts, conditional pointers,
and complex pointer arithmetic are examples of operations

preventing disaggregation. To avoid the transformation gets
limited by those patterns, we should perform an initial code
preprocessing phase. This phase is composed of a set of
transformations taking care of canonicalizing, transforming or
simplifying a certain aspect potentially preventing the disag-
gregation phase. However, there are chronic cases that pose
irremediable limits inhibiting the transformation. A pragmatic
case is when, for example, the aggregate is passed to an extern
function we cannot operate on. This characteristic requires
to have a mechanism to perform a feasibility check before
starting the transformation. Moreover, there are cases where
the transformation is feasible yet not worthy, requiring an addi-
tional profitability check only allowing promising expansions.
Although we have no hope to operate on extern functions, we
can work on internal ones implementing a context-dependent
interprocedural optimization.

Despite an interprocedural optimization is way more ef-
fective, it introduces a great deal of complexity. Due to the
C/C++ array to pointer conversion (array decay), we lose track
of the first dimension of a function argument, information
required for the disaggregation phase. Since we should expand
a certain aggregate argument in its subelements, we need to
know the exact number of elements the compound type should
be disaggregated into. Figure 3 provides an example of an
interprocedural disaggregation to be handled with a callgraph
analysis to retrieve the arguments’ dimension. In case a single

Original Code

int sum2(int *t) {
return t[0] + t[1];

}

int foo() {
int t[4] = {0, 1,

2, 3};
return sum2(&t[0])

+ sum2(&t[2]);
}

After SROA

int sum2(int t0,
int t1) {

return t0 + t1;
}
int foo() {

int t0 = 0, t1 = 1,
t2 = 2, t3 = 3;

return sum2(t0, t1)
+ sum2(t2, t3);

}

Fig. 3. An example of interprocedural SROA.

function is called with different argument dimensions, we
should replicate the function as many times as the number
of required versions to ensure a unique function signature
per function call. This technique is known in the literature as
function versioning and an example is provided in Figure 4. In
particular, we see how function sumN(...) should be replicated
to be used with different tensors in foo().

Original Code

int sumN(int *t,
int dim);

int foo() {
int t[4] = {0, 1,

2, 3};
return sumN(t, 2)

+ sumN(t, 3);
}

After Versioning

int sum2(int t0,
int t1);

int sum3(int t0,
int t1,
int t3);

int foo() {
int t0 = 0, t1 = 1,

t2 = 2, t3 = 3;
return sum2(t0, t1)
+ sum3(t0, t1, t2);

}

Fig. 4. An example of the function versioning.

However, while performing the versioning, each function
call’s signature should be computed considering the expand-
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ability constraints and expandability profitability of each argu-
ment in its function scope. For example, assuming we cannot
expand a certain tensor within a function scope but the same
tensor is passed to a callee function which allows its expansion
in its body, we can still expand the tensor in the callee function
and create an interface between the not expanded aggregate in
the caller function and the expanded argument in the callee.
Through this method, we can isolate the constraints on the
expandability and profitability within the function scope. An
example of this behavior is shown in Figure 5.

Original Code

int sumN(int *t,
int dim);

int foo() {
int t[4] = {0, 1,

2, 3};
printf("%p", t);
return sumN(t, 2);

}

After Versioning

int sum2(int t0,
int t1);

int foo() {
int t[4] = {0, 1,

2, 3};
printf("%p", t);
return sum2(t[0],t[1]);

}

Fig. 5. An example of callee only disaggregation.

One of the main limiting factors in terms of profitability
consists of accessing arrays by means of non-constant indexes.
These accesses are handled multiplexing the array elements
according to the unknown index. We provide a simple high-
level example of this behavior in Figure 6. However, despite

Original Code

int t[2] = {0, 1};
void foo(int val,

int idx) {
t[idx] = val;

}

After SROA

int t0 = 0, t1 = 1;
void foo(int val,

int idx) {
switch(idx) {

case 0:
t0 = val;

break;
case 1:

t1 = val;
break;

}
}

Fig. 6. An example of a non-constant disaggregation through SROA.

producing a relatively short latency, introducing an n-way mul-
tiplexer might turn quite expensive in terms of the consumed
area. For this reason, disaggregation of elements accessed by
non-constant indexes should be handled with care.

B. Proposed optimization recipe

The proposed tensor optimization comes as a chain of
LLVM built-in and custom implemented analysis and trans-
formations all pictured in Figure 7. The rationale of having a
multi-stage optimization resides in the possibility of distribut-
ing the complexity of the transformation over the LLVM recipe
providing high flexibility and customizability. This approach
substantially differs from the standard implementation of a
certain LLVM optimization pass usually performed in a single
step. However, we found that the advantages of subdividing the
optimization into several cooperating phases could not easily
be achieved in the traditional way. In particular, from a high-
level perspective, our recipe can be firstly subdivided into
preprocessing transformations, extended SROA, and cleanup
phase. Although working individually, all of these phases are

Initial LLVM IR

LLVM built-in optimizations

Selective unroll

llvm::GEPI simplification

Memory operations expansion

Pointer iterators simplification

llvm::Bitcast operations simplification

llvm::SelectInst lowering

SROA cost modeling

SROA versioning

LLVM built-in optimizations

SROA cost modeling

SROA disaggregation

LLVM built-in optimizations

SROA cleanup

Optimized LLVM IR

preprocessing

LLVM built-in optimizations

SROA

cleanup

recipe

Arg dim computation

Fig. 7. LLVM recipe performing automatic tensor optimization.

coordinated by a single cost model defining the optimization
goal. By means of simple user-defined callback functions, the
optimization can be easily controlled and customized. Over
this section, the technical aspects characterizing each phase are
introduced along with a discussion about the cooperation and
interoperation with those optimizations and some beneficial
LLVM-builtin transformations we included in the recipe.

1) LLVM built-in optimizations: The LLVM infrastructure
provides a large set of built-in analysis and transformations.
Despite part of these optimizations are quite CPU-specific, a
careful selection to be interleaved with our custom optimiza-
tions may substantially improve the quality of the generated
code [11]. For this reason, our recipe considers different spots
to include built-in optimizations. By means of a guided sensi-
tivity analysis, we selected the most suitable optimizations to
insert in each spot.

2) Selective unroll: Sine non-constantly indexed accesses
may turn quite costly in terms of the area when performing
tensor disaggregation, we try to reduce their overall amount
with a controlled and selective loop unroll phase. In fact, since
non-constant indexes mainly come from loops iterating over
the tensor (as in Figure 8), an initial selective loop unroll phase
can turn most of the indexes constant and allow propagation.
However, it is important to notice that, if not controlled,
loop unrolling could drastically change the resulting values
of latency and area of the entire solution. Moreover, if we
unroll a loop and the tensor accessed by the loop would not
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be disaggregated, its elements residing in block memory could
be the object of severe performance and area degradation.
For this reason, through the usage of loop analysis [25], we
make sure to only unroll loops providing benefits for the
disaggregation phase and producing negligible movement in
the Pareto solution. In detail, we control the unrolling through:

• the maximum number of iterations of the loop,
• the number of instructions contained in the loop,
• the estimated increase in resource usage of the loop,
• the arithmetical intensity of the loop.

In particular, the arithmetical intensity [6] of the loop is
defined as the ratio between the weighted instructions count
of the loop body over the number of bits accesses through
aggregate data structures to be expanded in the disaggregation
phase. In detail, we define the weighted instructions count
of the loop body as the sum of the instructions appearing in
the loop scope (excluding memory indexing) weighted by the
number of bits they access and the area impact they have.
However, for the sake of accuracy, we only count accesses
through non-constant indexes and this index should be the
induction variable of the loop. For example, with Figure 8 we
provide a practical example on one loop performing an accu-
mulation and another loop performing multiply-accumulate.

Loop Model Example

1 int sum_all(int t1[10], long t2[10]) {
2 int sum = 0;
3 loop1 : for(int i = 0; i < 10; ++i) {
4 sum += t1[i];
5 }
6 loop2 : for(int i = 0; i < 10; ++i) {
7 sum += t1[i] * (int)t2[i];
8 }
9 }

Fig. 8. An example of a loop the proposed cost model would unroll.

In particular, loop1 would produce an arithmetical intensity
of one integer sum over one integer access:

AI =
32 ∗ ksum_weight

32 ∗ kload_weight

Conversely, loop2 would produce an arithmetical intensity
of one integer sum and one integer multiplication over one
integer access and one long access resulting in an arithmetical
intensity AI of:

AI =
32 ∗ ksum_weight + 32 ∗ kmul_weight

32 ∗ kload_weight + 64 ∗ kload_weight

The operator weights, koperator_weight, have been defined
by doing a regression on a large profiling dataset and they
describe the different impact such operations have on the
FPGA resource usage. For example, the kmul_weight may have
a value of 100 or more than the weight of ksum_weight because
using one DSPs over few DSPs available has a bigger impact
than using 8 carry-chains to implement a sum. Measuring
the arithmetical intensity of each loop ensures to unroll only
memory-intensive loops more subject to benefits in the next
disaggregation phase. The remaining non-constant indexed
accesses untied by the loop unroll are expanded as an n-
way multiplexer by the SROA optimization if meeting the
profitability requirements.

3) llvm::GEPI simplification: In the LLVM IR, mem-
ory address computation is abstracted by means of the
llvm::GetElementPtrInst (GEPI) [26]. This instruction com-
putes the address of a subelement of an aggregate data
structure starting from a base pointer and a set of indexes
used to offset each aggregate dimension. In the backend of
a software compiler, this abstraction is then lowered to a
machine-level address computation considering the underly-
ing memory layout and machine instruction set. For several
reasons, certain address computations may be broken into
several GEPIs generating potential replications. Although this
redundancy has no much impact on software compilation, in
the HLS process it may lead to instantiating useless operators
and increasing associated area usage. For this reason, we
implemented an optimization minimizing the overall number
of GEPIs and simplifying the overall address computation.

4) Memory operations expansion: The LLVM language
expresses specific memory operations such as memcpys or
memsets via intrinsic functions. However, instead of lowering
these functions in the back-end HLS layer, we perform an early
expansion so to facilitate our SROA transformation. For this
reason, we replace the intrinsic function call with the actual
logic implementing the called behavior, improving the next
optimizations’ applicability.

5) Pointer iterators simplification: In C/C++, array itera-
tion can be performed either offsetting the base pointer with
an index incremented at any iteration (i.e. array[idx++]=k)
or directly incrementing the base pointer (i.e. *array++=k).
Although the second form is slightly more efficient, it is less
suitable for SROA and for the HLS process in general. In fact,
without any explicit base address and dimension offsets, no
SROA and other optimizations can be applied. For this reason,
we transform, where possible, the second representation back
to the first one. In practice, for each pointer iterator, we analyze
its uses and look for a common base address and a set of
indexes we can represent any access with.

6) Bitcast operations simplification: While CPUs and
GPUs rely on NUMA memories with fixed bitwidth, FPGAs
allow to configure their own on-chip memories. This implies
that CPUs and GPUs, in order to maximize NUMA bandwidth,
should fully exploit the memory bitwidth at each access. For
this reason, CPU and GPU compiler implement local memory
coalescing optimizations to maximize memory efficiency. For
instance, if a computation fetches consecutive chars from
memory, the compiler can coalesce the accesses and optimize
memory transfer pulling eight chars at a time. These transfor-
mations can be easily individuated since using llvm::Bitcast
operators. This operation is used in the LLVM intermediate
representation to change the type of a memory pointer. In this
way, in order to load a chunk of eight chars from memory,
the compiler can bitcast the *char pointer to *long pointer
and execute a single memory read. However, this optimization
does not really comply FPGA memory management besides
inhibiting SROA. For this reason, looking at the bitcasted type,
we revert this transformation where possible.

7) llvm::SelectInst lowering: Analogously to pointer itera-
tors masking index computation, llvm::SelectInst instructions
may be an obstacle as well. This instruction is the LLVM
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equivalent of the C/C++ ternary operator. Although quite
useful, this operator may complicate the optimization context
if the type of the selection is a pointer. Thus, we backtrack the
selection path investigating whether we can express the given
pointers in terms of a common base address and indexes.

8) Arg dim computation: In order to enable an interproce-
dural disaggregation, we should firstly individuate compound
arguments’ dimensions for further expansion. However, be-
cause of array decay occurring in C/C++, any argument can
have different dimensions according to the function’s call site
and its context. For this reason, we perform a callgraph anal-
ysis recursively individuating the dimensions of each function
call with respect to its calling context. The context is identified
by the chain of function calls happening from the top function
to the callsite currently analyzed.

9) SROA cost modeling: Our automated optimization strat-
egy is based upon a custom-definable cost model. In practice,
we estimate the profit of expanding a certain aggregate by
means of a compiler analysis introduced in the recipe. In
this way, each further transformation can query the analysis’
results and take decisions accordingly. In principle, the ex-
pansion profit is computed summing up the effects on all the
entities that would be affected by the aggregate expansion.
The expansion effects on a given entity, instead, are returned
from the associated callback functions modeling its behavior.
For instance, considering the simple case in Figure 3, the
expansion profit would mainly come from the indexing latency
and area saved by the disaggregation. In the case of Figure
6, instead, the disaggregation requires to introduce a 2-way
multiplexer. Although the introduced logic may result quite
costly in terms of area, there could be cases where the overall
latency reduction brought by the disaggregation makes the
transformation still worthy. In order to formalize the cost
model in terms of LLVM representation, we introduce the
main LLVM entities [26] involved in the transformation:

• llvm::AllocaInst: the basic construct for allocating vari-
ables on the stack space;

• llvm::GlobalVariable: the basic construct for declaring a
global variable;

• llvm::Argument: an argument of an llvm::Function;
• llvm::GEPOperator: the LLVM abstraction for perform-

ing indexing and field selection;
• llvm::LoadInst: the instruction used to load the content

of a memory address in an SSA variable;
• llvm::StoreInst: the instruction used to store the content

of an SSA variable in a memory address.
Starting from any llvm::AllocaInst and llvm::GlobalVariable
having aggregate type, we recursively compute the disaggre-
gation profitability as formalized in Table I. The function
profit(a) computes the profit of expanding an aggregate
allocation (first formula) or declaration (second formula). The
profit is computed summing up two components: the specific
profit of the operator as given by the custom-definable callback
function and the recursive profit computation of its users.
Concerning the first term, the callback functions are methods
that the developer should overwrite to return a custom profit
computation given a reference to the LLVM operation to
be expanded and some context information regarding the

operator. The developer can model the expansion profit using
both the LLVM APIs to inspect the referenced operator and
the additionally provided context information (such as the
execution times of a given operator or the callgraph localiza-
tion). For example, in the context of aggregate allocation or
declaration, we implement a profit dependent on the aggregate
size. In principle, our transformation migrates data structures
allocation from block memories to registers, reducing memory
congestion. For this reason, we decided that the transformation
brings a linear revenue with respect to the allocated bits and a
quadratic cost for inhibiting excessively large tensor’s expan-
sion. The exact values populating the callback models have
been selected through a regression technique based on a large
profiling dataset and sample applications. The second term of
the allocation profit is given by the function rec_profit(a)
recursively computing the profit of the allocation’s users.
According to the LLVM nomenclature, given an instruction
or more generally a value, its users are all the operations
using that value as an operand. In particular, starting from the
pointer given by an alloca instruction or global declaration, the
rec_profit(a) function recurs over its users. In principle, the
analysis recurs on the chained getelementptr instructions up to
any memory operations (load or store) or callsite. In the case
of memory operations, the analysis stops the recursion. In the
specific case a callsite is encountered, the analysis proceeds
in the function scope of the callee recursively computing
the profit of expanding the associated argument. In case a
different operator is encountered, a profit equal to −∞ is
returned, inhibiting any expansion for associated aggregate.
For each iteration, we sum up the profit returned by the
callback function associated with the involved operator. We
implemented a gepi_callback returning a profit dependent on
the nature of the GEPI indexes. Defining the profit as the
revenue minus the cost, the constant indexed GEPIs provide
a revenue proportional to the area saving associated with
the expansion whereas the non-constant indexed GEPIs also
provide a cost proportional to the logic required to multiplex
the memory access. In this way, we inhibit non-constant
indexed GEPIs’ expansion which are however still possible
if the global profit they bring motivates the disaggregation.
Considering the example in Figure 3, we want to evaluate
the profitability of expanding tensor int t[4]. Starting from
its declaration in foo, the profitability is initialized to the
value returned by the alloca_callback. At the first step of
the recursion, the analysis encounters a GEPI for computing
the address of the operand &t[0] to be used in the callsite
sum2(&t[0]). For this reason, the profit is updated querying
the gepi_callback. Since encountered a callsite, the analysis
starts over computing the profitability cost of the argument as-
sociated with the callsite operand. Therefore, the analysis pro-
ceeds in the sum2 function scope computing the expandability
profit of the first argument. In this context, the profitability is
updated considering the profitability associated with the two
GEPIs for indexing the array access and the associated load
instructions. Once returned from the function call, the second
callsite (sum2(&t[2])) is analyzed in the very same way.
Because of the reduced array dimension and the GEPIs having
all constant indexes, the analysis returns positive profitability
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profit(a_alloc) = alloca_callback(a_alloc, context(a_alloc)) +
∑

ua_alloc∈users(a_alloc)

rec_profit(ua_alloc) if a_alloc is a alloca instruction

profit(a_glob) = global_callback(a_glob, context(a_glob)) +
∑

ua_glob∈users(a_glob)

rec_profit(ua_glob) if a_alloc is a global variable

rec_profit(a) =



gepi_callback(a, context(a)) +
∑

ua∈users(a) rec_profit(ua) if a is a getelementptr instruction
load_callback(a, context(a)) if a is a load instruction
store_callback(a, context(a)) if a is a store instruction
arg_callback(ai, context(ai)) +

∑
uai

∈users(ai)
rec_profit(uai ) if a = opi where opi is the operand i of a callsite

−∞ if a is none of the listed operators

.

TABLE I
COST MODEL FORMALIZATION FOR COMPUTING TENSOR DISAGGREGATION PROFITABILITY

allowing the expansion. Conversely, in the case reported in
Figure 6, the 2-way multiplexer introduced for allowing int
t[2] disaggregation may inhibit its expansion if the function
is not called enough times to motivate such area increase. A
quite different scenario, instead, arises from Figure 5 where
the printf(...) function turns the profitability of array int
t[4] to −∞. Although the base tensor is not expanded, the
disaggregation of the array passed to function sum2(...) is
still profitable, suggesting a callee only disaggregation.

10) SROA versioning: Versioning a function is generally
quite costly in terms of area usage. For this reason, we
should make sure to version a function only in case of need.
Intuitively, a function should be versioned only if the profit
of expanding its arguments is worthy with respect to the area
increase. We compute the revenue of versioning a function
summing up the expansion profit of its arguments previously
computed by the cost model analysis. We compute the cost of
versioning a function by modeling the area impact given by all
of its versions. Computing the profit as revenue minus cost, we
assess whether the given function should be versioned. In case
the function is not versioned, the arrays passed as arguments
would not be expanded in the SROA phase.

11) SROA disaggregation: This transformation performs
the actual tensor expansion according to the results collected
by the cost model analysis. In practice, the transformation re-
cursively expands any llvm::AllocaInst, llvm::GlobalVariable
and llvm::Argument having positive profitability. In doing so,
we perform a preliminary analysis in order to individuate, for
any memory access, the base address and the indexes used as
dimensions’ offset. This is performed starting from any load
or store and recursively traverse the GEPI chain up to the
base pointer (alloca instruction, global declaration, or function
argument). The indexes of the traversed GEPIs are translated
in aggregate dimensions offsets used for individuating the
subelement to load or store. In case of variable dimension
offsets given by non-constant indexes, we multiplex the access
of that particular dimension by means of an n-way if-else-if
construct whose condition is the variable index and the cases
are the array elements. The preprocessing transformations take
care of minimizing non-constant accesses and canonicalizing
the GEPI chains to improve optimization applicability. In case,
as in Figure 5, a callee-only disaggregation takes place, we set
up the required interfaces.

LLVM –O2
optimization

Bambu IR
generation

Source code 
compilation

HLS FRONT-END

Tensor locality
optimization

LLVM –O2
optimization

Bambu IR
generation

HLS MIDDLE-END

Source code 
compilation

HLS FRONT-END HLS MIDDLE-END

</>

</>

(1) Original Bambu optimization sequence:

(2) Tensor optimization integrated in Bambu optimization sequence:

Fig. 9. Tensor locality optimization in the Bambu HLS framework.

12) SROA cleanup: We implemented a cleanup phase to
perform SROA-specific simplifications. For instance, disaggre-
gated function arguments are passed as pointers. However, if
those pointers are read-only, we can pass them as references.

V. EXPERIMENTAL EVALUATION

In this section, we illustrate the impact of the proposed
methodology integrating our optimization in Bambu [13],
an open-source HLS tool. Bambu automatically generates
hardware circuit implementations starting from C/C++ source
code specifications. In particular, Bambu is composed of
the front-end, middle-end and back-end layers. The frontend
parses and optimizes the source code with LLVM or GCC
and translates it to a different intermediate representation for
the middle-end layer. Then, the middle-end layer performs
hardware-specific optimizations before the actual HLS process
is performed in the backend. As shown in Figure 9, we inserted
our optimization recipe (listed in Figure 7) as a preprocessing
phase of the LLVM optimization chain and we evaluated the
performance of the original optimization chain (case 1 in
Figure 9) versus the optimization chain integrating the tensor
optimization (case 2 in Figure 9). It is essential to point out
that the -O2 optimization recipe originally used by Bambu
already includes the SROA which, however, does not provide
any relevant improvement. All of the experiments have been
conducted on a Xilinx Virtex7 device (xc7vx690t-3ffg1930-
VVD). Furthermore, in order to prove the flexibility of our
approach, we modify the cost model of our optimization so
as to be tested in a separate CPU compilation flow. The
considered test cases are part of the Rosetta HLS benchmark
suite [14], the CHStone benchmark suite [15] and several
industrial applications in the aerospace domain. In particular,
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we firstly consider the Rosetta benchmark for exemplifying
how our optimization applies to fundamental machine learning
applications. Then, through the CHStone test suite, we demon-
strate how our optimization generalizes to other domains
characterized by intensive linear algebra computation.

A. FPGA: The Rosetta benchmark suite

We selected a simple application from the Rosetta bench-
mark to be used as a walkthrough for the proposed approach.
In this way, we aim at providing full details of the main
concepts discussed in the previous sections. We selected
the software version of the digit recognition algorithm for
providing a detailed explanation of how our optimization
works. The design performs hand-written digit classification
through the K-Nearest-Neighbor (KNN) algorithm. We start
considering that the main optimization opportunities arise from
the int dists[3], int labels[3] and int votes[10].
Despite votes only lives in the scope of function knn_vote,
arrays dists and labels are propagated through function
update_knn and knn_vote. This allows our optimization to
independently expand those arrays in either the caller or callee,
according to the configuration maximizing the profit.

The optimization begins with the preprocessing phase which
transforms the code in a more HLS-oriented format favor-
ing our next optimization phases. As discussed in Section
IV, those optimizations are not meant to exploit processing
element replication to improve parallelism yet are rather
supposed to maximize the applicability of the proposed ap-
proach. In fact, unrolling loop SET_KNN_SET in DigitRec_sw,
loop FIND_MAX_DIST in update_knn or the first loop in
knn_vote, would avoid requiring a multiplexer for expanding
the accessed tensors with no relevant increase in area usage.

The second phase of the proposed optimization considers
the user-defined cost model to improve the tensor allocation
for the underlying hardware. The goal of this phase is to lower
tensors’ degrading performance or area when considered as
aggregate. In fact, registers are less constraining than block
RAM and usually of large availability. In order to perform this
phase correctly, the transformation needs to execute function
versioning and disambiguate the function signatures compro-
mised by the standard array to pointer conversion. In this
simple example, all of the arguments have trackable dimension
and no function should be disambiguated through replication.
In case of need, the optimization first performs preliminary
analysis on the tensor expansion profit and then assesses
whether to duplicate the function according to its estimated
cost. After function versioning, some optimizations such as
constant propagation and dead code elimination are performed.
At this point, the optimization of the tensor allocation takes
place. This optimization uses the user-defined cost model to
make considerations on the profitability of expanding, for
example, the array label in the function DigitRec_sw it is
declared or only in the scope of update_knn or knn_vote it is
propagated. The profitability of expansion is derived from the
cumulated profitability of the entities involved in the expan-
sion. The profitability of a single entity is defined through user-
defined callback functions called by the optimization during

the reduction. The major contributions to profitability are
given by the speedup and area impact a certain entity would
provide. For example, int votes[10] in knn_vote looks a
promising expansion but requires adding logic to the design
for multiplexing the non-constant indexed accesses. For this
reason, the code simplification phase is performed.

Once tensor lowering is performed, other specific transfor-
mations exploiting optimizations opportunities deriving from
the previous phases are executed. For example, read-only
pointer arguments are mutated to scalars or stored-once pointer
arguments are moved as module return.

Through the described procedure, the proposed tensor opti-
mization produces a 14% speedup without affecting resource
usage. In particular, Table II compares the design produced by
the original Bambu optimization sequence against the design
produced by inserting our tensor optimization as a preliminary
step as shown in Figure 9.

B. FPGA: The CHStone benchmark program suite

The CHStone benchmark suite offers a great variety of ap-
plications from several domains where we can show where and
how our optimization better applies. Moreover, the proposed
benchmarks offer a complex code structure for testing all of
our optimizations and heuristics.

In order to assess the impact of our optimization, we
firstly report in Table III the results in terms of performance
and area obtained from the original optimization sequence
of Bambu (case 1 in Figure 9). Then, we list in Table IV
the results obtained after integrating our optimization in the
original optimization chain (case 2 in Figure 9). As an added
value, in Table V we report optimization statistics about the
overall byte size of the involved tensors and the overall byte
size of tensors our heuristic selected for optimization. A
first comparison of the aggregated results shows that our
optimization generally produces designs with reduced Num
Cycles and higher Frequencies, leading to lower Wall Clocks.
This behavior comes from the synergy of the different phases
that the proposed transformation is composed of. In order
to provide a better insight into the behavior of the proposed
optimizations, we report in Figure 10 the Pareto walk of our
transformation in optimizing three benchmarks of choice. The
three selected benchmarks mean to be significant samples of
various situations possibly arising during the overall tensor
optimization. In particular, we compare how the different
phases composing the proposed tensor optimization (pictured
in orange) and the Bambu original optimization flow (pictured
in blue) move in the performance-area space represented by
the Pareto chart. The performance indicator we consider is
the Wall Clock whereas the area consumption of interest
is the number of slices used by the design. On one side,
we represent the walk of the Bambu original optimization
flow as a single step summarizing the whole optimizations
performed. On the other side, we represent the walk of the
proposed approach as a three-step path composed of the code
preprocessing, tensor disaggregation and -O2 optimization
phase. The charts show how the optimization sequence we
propose might take counterintuitive paths before converging to
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Setting Wall Clock [us] Num Cycles LUTs Slices Registers DSPs BRAMs Frequency [MHz] Clock Slack
Bambu original opt seq 5.558 · 104 9181934 927 340 545 1 2 165.21 3.95
Bambu with tensor opt 4.804 · 104 6481814 923 334 500 1 2 134.92 2.59

TABLE II
PERFORMANCE OF DIGIT RECOGNITION WITHOUT AND WITH TENSOR OPTIMIZATION AS SHOWN IN CASE 1 AND 2 OF FIGURE 9 RESPECTIVELY.

Benchmark Wall Clock [us] Num Cycles LUTs Slices Registers DSPs BRAMs Frequency [MHz] Clock Slack HLS Time [s]
adpcm 2.248 · 102 15522 6240 2171 4752 77 14 69.05 0.52 55.18
aes 3.393 · 101 2879 3526 1157 2164 0 8 84.86 3.22 25.99
blowfish 1.070 · 103 92256 3282 1055 2184 0 14 86.21 3.40 13.19
dfadd 2.652 · 100 210 1854 600 790 0 0 79.18 2.37 22.57
dfdiv 2.315 · 101 1784 3055 978 1894 18 0 77.07 2.03 26.18
dfmul 1.076 · 100 90 1115 381 635 10 0 83.61 3.04 18.98
dfsin 6.660 · 102 45535 8495 2688 4157 31 0 68.37 0.37 59.44
gsm 4.182 · 101 2885 3955 1232 2155 30 5 68.99 0.51 61.36
jpeg 6.744 · 103 463839 13983 4721 8085 8 58 68.78 0.46 70.21
mips 3.164 · 101 2496 946 296 411 3 4 78.88 2.32 9.90
mpeg2 2.825 · 101 2201 6931 2586 5040 0 1 77.92 2.17 25.30
sha 1.300 · 103 113318 1845 600 1369 0 12 87.15 3.53 7.37
Average 77.50 2.00
Overall 1.017 · 104 743015 55227 18465 33636 177 116 395.67

TABLE III
RESULTS OBTAINED FROM THE ORIGINAL OPTIMIZATION SEQUENCE OF BAMBU (CASE 1 IN FIGURE 9)

Benchmark Wall Clock [us] Num Cycles LUTs Slices Registers DSPs BRAMs Frequency [MHz] Clock Slack HLS Time [s]
adpcm 1.399 · 102 9583 10546 3507 8058 101 8 68.50 0.40 92.02
aes 2.436 · 101 2116 3848 1397 2259 0 14 86.87 3.49 40.49
blowfish 9.996 · 102 90435 3156 1045 2296 0 14 90.47 3.95 21.34
dfadd 2.652 · 100 210 1854 600 790 0 0 79.18 2.37 33.51
dfdiv 2.281 · 101 1784 3056 959 1894 18 0 78.20 2.21 39.65
dfmul 1.076 · 100 90 1115 381 635 10 0 83.61 3.04 27.52
dfsin 6.341 · 102 45535 8419 2631 4146 31 0 71.81 1.07 97.09
gsm 3.557 · 101 2399 5241 1658 2642 35 1 67.45 0.18 135.92
jpeg 6.808 · 103 474342 19805 6432 9791 9 58 69.68 0.65 129.62
mips 2.061 · 101 2479 866 258 306 0 4 120.29 6.69 13.04
mpeg2 2.487 · 101 2134 6418 2462 4644 0 1 85.79 3.34 18.72
sha 8.505 · 102 106113 1711 533 1173 0 12 124.77 6.98 9.94
Average 85.56 2.87
Overall 9.564 · 103 737220 66035 21863 38634 204 112 658.86

TABLE IV
RESULTS OBTAINED INTEGRATING THE PROPOSED TENSOR OPTIMIZATION IN THE ORIGINAL OPTIMIZATION SEQUENCE OF BAMBU (CASE 2 IN FIGURE

9)

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips mpeg2 sha
Total stack allocated tensors 0 304 112 32 32 32 32 426 4612 384 56 320
Total globally allocated tensors 3384 4542 18736 2158 1578 1530 1626 912 54006 240 6296 16496
Total function argument tensors 96 40 24 8 68 36 68 84 429 0 50 10
Optimized stack allocated tensors 0 16 16 0 0 0 0 54 0 0 8 0
Optimized globally allocated tensors 472 128 0 0 0 0 0 16 0 64 96 40
Optimized function argument tensors 96 0 8 0 0 0 0 76 0 0 16 0

TABLE V
SUMMARY OF TENSOR OPTIMIZATION STATISTICS
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Fig. 10. Pareto walks of the proposed approach (orange line) and the Bambu original optimization sequence (blue line) on a CHStone benchmark selection.
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performance improvement. In particular, the accuracy of the
defined cost model determines the convergence to optimality.
In fact, our optimization and the cost model it relies on do
not aim at improving the performance in one step. Instead,
as shown in Figure 10, they aim at transforming the code to
be more suitable for the next phases and the HLS process.
In particular, with a close look at Table IV we see that
jpeg is the only benchmark whose performance are slightly
worsened. However, jpeg presents characteristics quite difficult
to be captured from a generic cost model, leading to slightly
lower performance. In fact, jpeg requires extensive function
versioning and expansion of memory accesses performed
through non-constant indexes. Our cost model considers those
transformations not profitable since requiring excessive area
usage and therefore no main optimization is performed. The
only consistent increase in area usage is only given by adpcm
which approaches a 38% resource increase in order to allow
a reduction of BRAM consumption of 43%. The other cases,
instead, the cost model produces optimized designs with a
difference in resource consumption ranging from a -15%
(saving) up to a +26% with an overall average of +6%

C. FPGA: Industrial application in aerospace domain

Two different algorithms used by an aerospace company
for Attitude and Orbit Control Systems have been investigated.
Both the algorithms have been developed using a model-based
design methodology exploiting Simulink and then Embedded
coder, both from Mathworks, to translate the specification
in C. The high-level synthesis of the C code was required
to maintain the consistency between the C code running on
the software side and the hardware implementation on the
FPGA allowing to switch from software to hardware smoothly.
The results obtained for the two algorithms are reported
respectively in Tab. VI and Tab. VII where a comparison of the
Bambu compilation flow with and without tensor optimizations
is provided. Those examples are particularly relevant since our
optimization produces improvements in any Pareto direction.
In particular, in this set of two industrial benchmarks, the
proposed tensor optimization simplifies the HLS process by
performing SROA and function versioning of functions with
a signature similar to the following one:
int32_T sMultiWordCmp(const uint32_T u1[],

const uint32_T u2[], int32_T n);
This way to declare functions is usually a problem when

commercial HLS synthesis tools are considered. The standard
solution is to use a user estimated upper bound of the size
of the arrays passed to the functions. Instead, the proposed
approach discovers that in many places the number of elements
of the passed arrays is limited and they can be effectively
optimized by a combination of versioning and SROA steps.

D. CPU: software compilation flow integration example

We tested the versatility of our approach introducing our
optimization in the CPU software compilation flow. In order
to adopt our optimization to the CPU architecture, we removed
strong-HLS-specific optimizations from the pass chain and

reshaped the cost model according to the underlying hard-
ware characteristics. In particular, we modified the callback
functions defining the new cost model considering that:

1) non-constant indexed memory accesses should be
avoided since frequent and atomic conditional branches
generally degrade CPU performance

2) function versioning and unrolling should not be severely
penalized since potentially leading to code simplification

3) tensor allocation should consider vectorization, calling
conventions and memory-related issues as alignment

We tested the new setting on both the Rosetta and CHStone
benchmark suites where we compiled the CPU code applying
the tensor optimization before the -O3 standard optimization
sequence. The tighter constraints applied from the cost model
reduced the optimization applicability to fewer cases of interest
reported in Table VIII. In particular, we detail the results in
terms of execution time on a 2.3 GHz Intel Core i5 architecture
in two settings. In the first setting (baseline in Table VIII),
we report the execution time before and after compiling the
code with -O3 (with disabled tensor optimization). The second
setting (tensor optimization sequence in Table VIII), instead,
performs tensor optimization just before the -O3 recipe. For a
better understanding, the partial results of code preprocessing
and tensor disaggregation phases are reported.

VI. CONCLUSION

We presented a tensor optimization automatically reallo-
cating the high-level data structures of a software descrip-
tion in order to better exploiting the underlying hardware
characteristics. The modularity and customizability of this
optimization allow a wide application on different domains
and architectures. While we extensively discussed application
in the HLS context, an extract of integration in a CPU context
has been reported as proof of concept. As future work, we
plan to extend the cost model computation with information
forwarding from the frontend layer. In this way, advanced
considerations can be done on the basis of features extracted
from Domain-Specific Languages.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal et al., “In-
datacenter performance analysis of a tensor processing unit,” SIGARCH
Comput. Archit. News, vol. 45, no. 2, pp. 1–12, Jun. 2017.

[2] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-based accelerators
of deep learning networks for learning and classification: A review,”
CoRR, vol. abs/1901.00121, 2019.

[3] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr et al., “Can FPGAs
beat GPUs in accelerating next-generation deep neural networks?” in
Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 5–14.

[4] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473–491, 2011.

[5] C. Lameter, “NUMA (non-uniform memory access): An overview,”
Queue, vol. 11, no. 7, pp. 40–51, Jul. 2013. [Online]. Available:
https://doi.org/10.1145/2508834.2513149

[6] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012318

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Politecnico di Milano. Downloaded on October 20,2020 at 08:37:36 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3012318, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, FEBRUARY 2020 12

Setting Wall Clock [us] Num Cycles LUTs Slices Registers DSPs BRAMs Frequency [MHz] Clock Slack
Bambu original opt seq 45.394 1212 23138 7575 7394 111 16 26.7 2.55
Bambu with tensor opt 38.322 1127 23302 7325 7525 71 1 29.4 6.00

TABLE VI
PERFORMANCE OF AOCS1 WITH AND WITHOUT TENSOR OPTIMIZATION (25MHZ DESIGN CLOCK CONSTRAINT)

Setting Wall Clock [us] Num Cycles LUTs Slices Registers DSPs BRAMs Frequency [MHz] Clock Slack
Bambu original opt seq 12.047 1244 23111 7615 12086 181 16 103.3 0.32
Bambu with tensor opt 11.069 1138 22637 7542 11693 172 1 102.8 0.28

TABLE VII
PERFORMANCE OF AOCS2 WITH AND WITHOUT TENSOR OPTIMIZATION (100MHZ DESIGN CLOCK CONSTRAINT)

baseline [usec] tensor optimization sequence [usec]

init O3 code
preprocessing

tensor
disaggregation O3

3Drender 11216 4665 9852 7516 3196
blowfish 274.5 134.8 270.3 260.2 123.7
mpeg2 11.93 0.190 7.339 7.151 0.146

TABLE VIII
TENSOR OPTIMIZATION ON SOFTWARE COMPILATION

[7] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L.
Chamberlain, R. Cledat et al., “Trends in data locality abstractions for
HPC systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 10, pp. 3007–3020, 2017.

[8] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis et al., “A
survey and evaluation of FPGA high-level synthesis tools,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. PP, no. 99, pp. 1–1, 2016.

[9] R. M. Stallman and G. DeveloperCommunity, Using The GNU Compiler
Collection: A GNU Manual For GCC Version 4.3.3. Scotts Valley, CA:
CreateSpace, 2009.

[10] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” San Jose, CA, USA, Mar 2004.

[11] Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. An-
derson, “The effect of compiler optimizations on high-level synthesis
for FPGAs,” in 2013 IEEE 21st Annual International Symposium on
Field-Programmable Custom Computing Machines, 2013, pp. 89–96.

[12] M. Jambor, “The new intraprocedural scalar replacement of ag-
gregates,” https://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=
get&target=jambor.pdf, 2010, accessed: Apr 8 2020.

[13] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high
level synthesis of memory-intensive applications,” in 2013 23rd Inter-
national Conference on Field programmable Logic and Applications,
2013, pp. 1–4.

[14] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin et al., “Rosetta:
A Realistic High-Level Synthesis Benchmark Suite for Software-
Programmable FPGAs,” Int’l Symp. on Field-Programmable Gate Ar-
rays (FPGA), Feb 2018.

[15] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quan-
titative analysis of the chstone benchmark program suite for practical c-
based high-level synthesis,” Journal of Information Processing, vol. 17,
pp. 242–254, 2009.

[16] “Scalar replacement of aggregates class reference,” https://llvm.org/
doxygen/classllvm_1_1SROA.html, accessed: Apr 8 2020.

[17] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August,
“Compiler optimization-space exploration,” in Proceedings of the Inter-
national Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, ser. CGO’03. USA: IEEE Com-
puter Society, 2003, pp. 204–215.

[18] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves
et al., “Finding effective compilation sequences,” in Proceedings of the
2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, ser. LCTES’04. New York, NY,
USA: Association for Computing Machinery, 2004, pp. 231–239.

[19] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, B. Mendelson, A. Zaks, E. Courtois, F. Bodin, P. Barnard,
E. Ashton, E. Bonilla, J. Thomson, C. Williams, and M. O’Boyle,
“Milepost GCC: Machine learning enabled self-tuning compiler,” In-

ternational Journal of Parallel Programming, vol. 39, pp. 296–327, 06
2011.

[20] M. Lattuada and F. Ferrandi, “A design flow engine for the support of
customized dynamic high level synthesis flows,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 12, no. 4, Oct. 2019.

[21] J. Cong, B. Liu, R. Prabhakar, and P. Zhang, “A study on the impact
of compiler optimizations on high-level synthesis,” in Languages and
Compilers for Parallel Computing, H. Kasahara and K. Kimura, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 143–157.

[22] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “COMBA: A
comprehensive model-based analysis framework for high level synthesis
of real applications,” pp. 430–437, Nov 2017.

[23] Y. Choi and J. Cong, “HLS-based optimization and design space explo-
ration for applications with variable loop bounds,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2018.

[24] M. Siracusa, M. Rabozzi et al., “Automated design space exploration
and roofline analysis for FPGA-based HLS applications,” in 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2019, pp. 314–314.

[25] J. Liao, W.-F. Wong, and T. Mitra, “A model for hardware realiza-
tion of kernel loops,” in Field Programmable Logic and Application,
P. Y. K. Cheung and G. A. Constantinides, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 334–344.

[26] “LLVM language reference manual,” https://llvm.org/docs/LangRef.
html, accessed: Apr 8 2020.

Marco Siracusa received his Bachelor’s Degree in
Computer, Electronic and Telecommunication En-
gineering in 2016 from the Università degli studi
di Parma, Italy. He received a Master’s degree in
Computer Science and Engineering in 2020 from Po-
litecnico di Milano, Italy. His research interests in-
clude Compiler Infrastructures, High-Level Synthe-
sis, Computer Architectures and High-Performance
Computing.

Fabrizio Ferrandi (M’95) received his Laurea (cum
laude) in Electronic Engineering in 1992 and the
Ph.D. degree in Information and Automation Engi-
neering (Computer Engineering) from the Politec-
nico di Milano, Italy, in 1997. He has been an
Assistant Professor at the Politecnico di Milano,
until 2002. Currently, he is an Associate Professor
at the Dipartimento di Elettronica, Informazione e
Bioingegneria of the Politecnico di Milano. His
research interests include synthesis, verification sim-
ulation and testing of digital circuits and systems.

Fabrizio Ferrandi is a Member is a member of the IEEE Computer Society
since 1995, the Test Technology Technical Committee, and the European
Design and Automation Association.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012318

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Politecnico di Milano. Downloaded on October 20,2020 at 08:37:36 UTC from IEEE Xplore.  Restrictions apply. 


