
4030 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

ReSQM: Accelerating Database Operations Using
ReRAM-Based Content Addressable Memory

Huize Li, Graduate Student Member, IEEE, Hai Jin , Fellow, IEEE,
Long Zheng , Member, IEEE, and Xiaofei Liao , Member, IEEE

Abstract—The huge amount of data enforces great pressure
on the processing efficiency of database systems. By leveraging
the in-situ computing ability of emerging nonvolatile memory,
processing-in-memory (PIM) technology shows great potential in
accelerating database operations against traditional architectures
without data movement overheads. In this article, we introduce
ReSQM, a novel ReCAM-based accelerator, which can dramat-
ically reduce the response time of database systems. The key
novelty of ReSQM is that some commonly used database queries
that would be otherwise processed inefficiently in previous stud-
ies can be in-situ accomplished with massively high parallelism
by exploiting the PIM-enabled ReCAM array. ReSQM supports
some typical database queries (such as SELECTION, SORT,
and JOIN) effectively based on the limited computational mode
of the ReCAM array. ReSQM is also equipped with a series
of hardware-algorithm co-designs to maximize efficiency. We
present a new data mapping mechanism that allows enjoying in-
situ in-memory computations for SELECTION operating upon
intermediate results. We also develop a count-based ReCAM-
specific algorithm to enable the in-memory sorting without any
row swapping. The relational comparisons are integrated for
accelerating inequality join by making a few modifications to
the ReCAM cells with negligible hardware overhead. The exper-
imental results show that ReSQM can improve the (energy)
efficiency by 611× (193×), 19× (17×), 59× (43×), and 307×
(181×) in comparison to a 10-core Intel Xeon E5-2630v4 pro-
cessor for SELECTION, SORT, equi-join, and inequality join,
respectively. In contrast to state-of-the-art CMOS-based CAM,
GPU, FPGA, NDP, and PIM solutions, ReSQM can also offer
2.2× 39× speedups.

Index Terms—Content addressable memory (CAM), database
query, nonvolatile memory, processing-in-memory (PIM).

I. INTRODUCTION

IN THE big data era, modern enterprise data and Internet
traffic have been exploding exponentially with a per-year

growth amount that exceeds the total amount of data in the
past years [1]. That exerts tremendous pressure on the existing
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database systems in a wide variety of data-intensive appli-
cations (such as biodiversity research [2]) for real-time data
analytics demand, such that the response time of database
operations must be much faster than ever before.

A wealth of the existing database systems are built upon
CPU [3], [27], [32], [33], which is, however, difficult to
satisfy the low-latency requirement due to its limited com-
putational parallelism [8]. Alternatively, some efforts have
been made in accelerating database operations with dedi-
cated hardware. For instance, traditional CMOS-based content
addressable memory (CAM) is developed as a coprocessor for
CPU to achieve data-parallel computing for multiple database
operations. However, it still relies on CPU to manage data
transfer between CAM and main memory. In addition, due
to the well-known scalability problem of the CMOS transis-
tors, the computing ability of the CMOS-based CAM often
suffers greatly in practice [9], [10]. Many studies lever-
age the massive parallelism of GPU [11], [12], [14], [15]
(or FPGA [16], [18]) for (energy) efficiency improvement.
Nevertheless, because of the separate computation-storage
hierarchy by following the von Neumann architecture,
these earlier studies suffer from the “memory wall”
problem.

To address the above problem, near-data processing (NDP)
integrates processing units into the memory or storage.
Although significant data movement can be reduced for an
NDP accelerator, they still suffer from challenges with the
computing-ability-limited logic units in memory with consid-
erable integration cost [19]–[21], [31]. Processing-in-memory
(PIM) technology provides a promising way with the in-situ
computing ability and massive parallelism. Sun et al. [22]
presented a first PIM-enabled design to accelerate SQL
query operations based on resistive random access memory
(ReRAM). They exploit the bipolar structure characteristic of
ReRAM crossbar and present a hybrid of columnwise and
row-wise dot-product computations. Since the SELECTION
operation contains some inherent comparison semantics that
ReRAM does not support, they attach a simple peripheral
scalar comparison unit to each row of ReRAM crossbar. This
PIM-featured approach can offer the orders of energy effi-
ciency over the traditional architecture, but its practicability
still suffers. It is extremely difficult, if not impossible, for their
approach to area-efficiently support complex but the important
database operations, such as SORT and JOIN, which can be
several million times comparisons than SELECTION in quan-
tity for even a moderately sized database [4]. Yet, different
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database operations involve different peripheral circuit layouts,
making their design extraordinarily complex.

Recently, there emerges ReRAM-based content address-
able memory (ReCAM), takes the best of both worlds of
nonvolatile ReRAM [34], [35] and specialized CAM hard-
ware with large capacity and PIM feature [24]. In addition to
scalar comparison, ReCAM is also naturally capable of mak-
ing the comparisons in a vector granularity, also known as
vector–scalar comparison, at a time with higher parallelism.
ReCAM is promising to enable in-situ in-memory computing
to handle the database table for a wide variety of database
operations efficiently. More importantly, the array structure of
ReCAM can be intuitively regarded as a database table layout,
making easy access to data and a fast mapping on ReCAM
crossbars.

Nevertheless, exploiting ReCAM for accelerating database
queries remains tremendously challenging. First, to support
processing a database query, it is challenging to store and
handle a lot of intermediate results. NVQuery [29] presents
the first ReCAM-based accelerator for accelerating database
operations. However, in order to obtain the final results of a
query, NVQuery often relies on the main processor to process
the intermediate results. Therefore, substantial data movements
can be transferred between the processor and the ReCAM
array, limiting the overall efficiency. Second, since ReCAM
functions as both storage and processing units, the raw data
of the database table in ReCAM must be consistent with-
out data pollution for subsequent operations. This requirement
may potentially suppress the efficiency of many database oper-
ations, such as the SORT that often involves (substantial)
data reordering (if not carefully designed). Besides, vector–
scalar comparison in ReCAM can compute only the equality
between a given number and every element in a vector, affect-
ing the applicability to handle some database operations, such
as inequality join that needs to know the relativity [7].

In this article, we make the following contributions.
1) We identify that the existing PIM-based database-

oriented accelerators can support a subset of database
operations. Neither can support SELECTION, SORT,
and JOIN queries simultaneously. Yet, these exist-
ing studies also typically rely on the main processor
that assists a PIM architecture in handling a lot of
intermediate results, which can become a bottleneck
limiting the overall efficiency. To the best of our knowl-
edge, ReSQM is the first ReCAM-based architecture that
can process various database queries in memory effec-
tively and efficiently without the assistance of a CPU
processor.

2) We develop a series of hardware-algorithm co-designs
to improve the efficiency of performance accelera-
tion on different database operations. For SELECTION,
we present a new data mapping mechanism that
allows enjoying in-situ in-memory computations of
the SELECTION query operating upon intermediate
results for performance acceleration. For SORT, we
develop a count-based ReCAM-specific algorithm to
enable the in-memory sorting. For inequality-join, we
make a slight modification to the basic ReCAM cell

to support the relational comparison with negligible
hardware overhead.

3) We conduct a comprehensive evaluation. We compare
ReSQM with not only the traditional CPU-based, GPU-
based, FPGA-based, and CMOS-based efforts but also
the emerging NDP-enabled and PIM-enabled accelera-
tors. Results show that ReSQM outperforms state of the
art significantly.

The remainder of this article is organized as follows.
Section II describes the background and motivation. Section III
presents the architectural designs of ReSQM. Section IV
shows the experimental results. Section V concludes the work.

II. BACKGROUND AND MOTIVATION

A. Database Operations

In this article, we mainly focus on the relational database
since it is widespread in the current mainstream market. In a
relational database, those records with the same attributes are
called tuples. In general, each tuple is distributed row by row to
form a table. Each column of the table indicates an attribute
of the table. In this article, we focus on three fundamental
kernels of database queries as follows.

SELECTION: The selection query aims to choose tuples by
querying a table via a restricted statement, which usually con-
tains several arithmetic expressions connected with each other
using various logical operators, such as AND, OR, NAND, and
NXOR. The arithmetic operators used in the arithmetic expres-
sion may also get involved, e.g., “+,” “−,” “×,” “=,” “�=,” ≤,
≥, “>,” “<.”

SORT: The sort query aims to reorder the tuples in an
expected (e.g., ascending or descending) order according to
some attributes.

JOIN: The join query aims to generate a new table using
the Cartesian product of two relational attributes. In this arti-
cle, we consider two typical join operations: 1) equi-join and
2) inequality join. The former indicates a join operation with
the condition containing an equality operator of =. The latter
represents a join condition with the inequality operators, e.g.,
> and <.

B. ReCAM Basics

Fig. 1 illustrates the basics of ReCAM, which consists of a
MASK register, a KEY register, an array of ReCAM bit-cells
organized in a crossbar architecture, and TAG registers. The
MASK register decides which columns will be selected to do
read, write, and match operations. The KEY register stores a
data word that will be used for a write or match operation. As
shown in Fig. 1(a), a ReCAM bit-cell is organized with two
transistors and two memristors (2T2R) elements with one bit
line and one bit-not line. The match/word line of the ReCAM
array is attached to a TAG register [Fig. 1(b)] in which each
ReRAM array row is connected to a signal amplifier (SA) and
a TAG latch. The TAG registers mark those matched rows that
satisfy the condition of comparison. Unlike the row-oriented
or column-oriented storage in a traditional memory [11], [28],
the ReCAM crossbar is a natural fit to store the database table
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(a)

(b)

Fig. 1. Basics of the ReCAM array. (a) Sketch of ReCAM bitcell. (b) TAG
register organization.

(a) (b) (c)

Fig. 2. Common computational patterns for (a) SELECTION, (b) SORT,
and (c) JOIN.

with bit lines representing attributes and each match line show-
ing a tuple. By using ReCAM, we can perform vector–scalar
comparisons with massive parallelism.

As applied in [25] and [30], we follow to use the high-
resistance state (HRS) to represents logic “1” (i.e., the switch-
off state), while the low-resistance state (LRS) represents logic
“0” (i.e., the switch-on state). Since a ReCAM cell often uses
two memristive cells to represent one logic bit. We use the
“10” of two memristive cells to represent the logic 1, and
vice versa.

Vector–Scalar Comparison: Initially, a given scalar data that
need to be compared is stored in the KEY register. All match
lines are precharged with high voltage, while the KEY register
was set on bit and bit-not lines. Note that the precharged signal
and the signals operating upon the bit line and bit-not line of
the KEY register are activated at the same time. The bit and
bit-not lines of those columns that do not need to be compared
are set to the low voltage by the MASK register. For each row
(i.e., a vector element), if all selected bits match the given data,
the corresponding precharged word line will keep high voltage
that can be captured by the corresponding SA and also held
in the TAG latch. Otherwise, if the mismatch of any one bit

happens, leakage current will flow through that cell, and the
voltage of the word line will drop off. Note that all per-row
vector elements of selected columns against the scalar data
can be compared in parallel and finished at one cycle.

C. Related Work

GPU and FPGA Acceleration: A lot of efforts have been
put into speeding up database operations based on the tradi-
tional architectures, such as GPUs and FPGAs [11], [12], [14],
[15], [18]. For instance, Schaa and Kaeli [12] pointed out
that the Peripheral component interconnect express bus will
also become a bottleneck on multiple GPUs unless the com-
plete dataset can be placed in the memory of GPU. StoreGPU
proposes to accelerate several hashing-based primitives for
a distributed storage system [17]. By initializing the input
data in the pinned host memory, StoreGPU protects the GPU
driver from an extra memory copy with reduced data trans-
fers. Asymmetric distributed shared memory [13] is proposed
to maintain a shared logical memory space for reducing the
amount of data movement between the host and the acceler-
ator. An in-memory FPGA-based architecture is developed to
accelerate table joins [16]. Compared with CPUs, these studies
can provide superior results. Also, both GPU and FPGA accel-
eration of SQL operations can be designed with the flexibility
that can deal with a larger set of SQL operations, types, and
column/row sizes. However, currently, GPU and FPGA still
suffer from the limited memory size such that they have to
read/write through the host-system from/to SSD/HDD storage
with I/O bottlenecks.

NDP and PIM Accelerators: Near-data computing integrates
the processing units into storage or memory to reduce data
access overhead [19]–[21], [31]. Although near-data com-
puting can improve computing efficiency by reducing data
movement, it still faces several challenges. Their process-
ing ability of computing logic integrated into the storage and
memory is quite limited, and also computational parallelism
suffers. Integrating logic units into the stacking memory dies
may also lead to a potentially high cost.

Sun et al. [22] presented the first PIM-enabled design
based on ReRAM to accelerate SQL query operations.
Due to the limited computational paradigm of the ReRAM
array, this work can support only some operations of a
SELECTION query. ReCAM has been widely used in many
fields. Yavits et al. [23] replaced the last level cache with
ReCAM as an associative processor. Kaplan et al. [25] lever-
aged ReCAM to accelerate the Smith–Waterman algorithm
for DNA sequence alignment. To the best of our knowl-
edge, NVQuery [29] is the most related ReCAM-based work
specialized for accelerating database applications.

NVQuery presents a heterogeneous solution. It enables sup-
porting some basic database operations based on ReCAM,
such as nearest distance search, equi-join, and some bitwise
operations. To obtain the final results of a query, NVQuery
relies on the main processor to process the intermediate results.
Therefore, an amount of data movement can be transferred
between the processor and the ReCAM array, limiting the
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Fig. 3. Overview of ReSQM. (a) Layout of ReSQM chip. (b) Architecture of database structure query unit. (c) Truth table for supporting arithmetic and
logical operators. (d) Interconnect of DSQ mat. (e) Table layout for the ReCAM array. The pink arrow shows the workflow for the SELECTION query. The
blue arrow indicates the workflow of the SORT and JOIN queries.

overall efficiency. That is, particularly true and serious for han-
dling a large database table. ReSQM differs from NVQuery
in two ways: 1) we use an in-memory reserved region to
buffer the intermediate results so as to perform operations
between the intermediate results and the original data in
memory and 2) each database structured query (DSQ) unit
self-contains the arithmetic and logic units (ALUs) and a stack
register, which can function to parse a restricted expression
in SELECTION queries (without the assistance of the main
processor), avoiding the substantial data transfer overheads.

We particularly note that the way of performing an addition
operation in [29] is based on breaking it down into a serial
of NOR operations, which is entirely different from ours that
applies a lightweight and straightforward truth table (inspired
from [24] and [25]). Although both are based on ReCAM,
the architectures are different, and all algorithms that drive
database operations are also different.

D. Motivation

Fig. 2 shows the computational patterns of SELECTION,
SORT, and JOIN. We observe that database operations often
involve many different practical demands that may be beyond
the vector–scalar comparison pattern of the ReCAM array.

For example, in addition to comparison operators, the
restricted expressions in SELECTION often involve many
noncomparison operators operating upon the bitwise vector–
vector computing, where only elements in the same row of
two vectors are needed to take the computation [Fig. 2(a)].
Although SORT has the vector–scalar meta-operations [as
shown in Fig. 2(b)], in the presence of the existing sort-
ing algorithms (such as radix sort and merge-sort) they also
involve the row swappings that ReCAM cannot support effec-
tively. More importantly, the matching principle of ReCAM
based on the leakage current mechanism can check only
whether two elements are equal or not (i.e., equal compari-
son). However, most comparisons amongst database operations
(such as inequality join) need to know more concerning which
element is greater or smaller (i.e., the relational comparison).

III. RESQM

Fig. 3(a) shows the overview of the ReSQM chip, which
consists of multiple DSQ units connected through a bus that
is used for receiving (sending) the (results of) queries from
(to) users. Initially, we partition a database table into multiple
slices such that each piece can fit into the DSQ unit. For han-
dling an even larger table that cannot fit into the ReSQM’s
memory entirely, ReSQM can also work effectively by putting
the large table in the solid-state-disk (SSD) storage, and send
it to ReSQM in batches for processing.

In this section, we first elaborate on the architectural
details of ReSQM, and then show the fundamental designs
of accelerating different database queries.

A. Architecture

Fig. 3(b) shows the architecture of a DSQ unit that is the
core of performing the execution for every received query.
Note that ReSQM currently processes all queries serially.
Supporting concurrent query execution can be considered an
interesting future work. A DSQ unit contains some necessary
components to support an effective query execution. Next, we
discuss them as follows.

1) Structured Query (SQ) Buffer: It is mainly used to store
the queries that will be processed by the DSQ unit. Yet,
it can also be functioned to identify the type of a query,
i.e., JOIN, SORT, or SELECTION.

2) ALUs and Stack Register: ReSQM includes some sim-
ple ALUs to convert a restricted expression used in
SELECTION queries into a suffix one that can show the
correct execution priority of the operators. Stack register
stores the operands and operators during the expres-
sion parsing. ALUs and the stack register enable that
ReSQM can work independently from CPU to accelerate
database queries.

3) Look-Up Table (LUT): It is introduced to enable ReCAM
to support basic arithmetic or logic operations based on
the comparison paradigm of ReCAM. LUT stores the
precalculated truth tables of basic instructions, as shown
in Fig. 3(c).
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TABLE I
COMMON ROW-WISE VECTOR–VECTOR INSTRUCTIONS USED IN

DATABASE OPERATIONS

4) Address Information: This is an address register that
records and specifies which columns a particular
attribute is stored in DSQ mat.

5) Ctrl: This is a local microcontroller that manages the
components in the DSQ unit to perform the correspond-
ing database operations and sends some control signals
to the DSQ mat.

6) DSQ Mat: It is the main storage and computing com-
ponent in the DSQ unit. It contains many processing
elements that are connected through H-Tree, as shown
in Fig. 3(d).

7) Processing Element (PE): Similar to prior work [24],
we configure each PE with a ReRAM array size of 512
rows and 512 columns. Fig. 3(e) composes a sketch of
data organization. We reserve the first 64 b (marked with
“R”) as a buffer to store the intermediate results (when
necessary). The rest of the columns in PE are used to
store the table.

8) SSD: An off-chip SSD is optionally used to store a
large number of the results of a JOIN query when the
ReCAM’s on-chip memory is not sufficient.

In the ReSQM designs, we hold the argument that ReCAM
arrays should function as both storage and computing units to
eliminate the data movement between the processor and the
memory. Based on this design philosophy, we next present how
these key components are designed to accelerate SELECTION,
SORT, and JOIN operations effectively and efficiently by
exploiting ReCAM.

B. Accelerating SELECTION Queries

ReCAM can perform a variety of bitwise operations based
on its vector–scalar comparison paradigm [24], [25]. To sup-
port SELECTION, NVQuery [29] proposes to transfer the
operations of a SELECTION query into a series of bitwise
operations, which can generate a large number of intermediate
results. To obtain the final results of the query, NVQuery
relies on the main processor to process these intermediate
results. Consider the restricted expression in a SELECTION
query contains a variety of bitwise operations, NVQuery often
needs to transfer lots of intermediate results to the processor,
degrading the overall efficiency.

To avoid the off-chip data transfers, we make the two core
designs to perform a SELECTION query in memory. First,
we reserve some memory spaces as R regions, as shown in
Fig. 3(e), which will be used to store the intermediate results
of SELECTION queries. Since the R region also has a com-
puting ability, the intermediate results can also be computed
with the original data for generating the next intermediate

results, which can be further stored in the R region. In this
way, ReSQM can get the final results of SELECTION queries
by rational use of the R region. Second, we architect some
ALUs and a stack register in each DSQ unit, as shown in
Fig. 3(b). The ALUs will parse the restricted expression of
a SELECTION query and obtain the correct execution of the
restricted expression that will be stored in the stack register
in the form of operands and operators. The processing of the
restricted expressions is as follows.

In the beginning, two operands and one operator will
be popped from the stack register and sent to the address
information register and LUT, respectively. According to the
truth table of this operator in LUT, the controller will generate
suitable signals to the DSQ mat. With control signals applied
to the memory address of these two operands recorded by the
address information register, DSQ mat can calculate the results
of these two vectors, and the results will be stored in the R
region. After that, the stack register will pop an operator and
an operand out to control the corresponding vector calculating
with the intermediate results. When all operands have been
processed, we can get the final result of the restricted expres-
sion in the R region. A logic 1 stored in the R region means
that the value of the restricted expression is true on this tuple.
Finally, ReSQM can get the results of this SELECTION query
through a memory read request according to the value in the
R region.

Example: Suppose two 32-b numbers “A” and “B” needs
an addition. Next, we introduce how this simple operation
is performed on ReSQM. This is a typical multibit addition
case [23]–[25], which are often processed by transforming it
into multiple single-bit additions. Then, we can use a truth
table for the single-bit addition to process the operation. The
procedure works as follows. First, the lowest bit of A and B
will do a single-bit addition. The carry-out and result will be
stored in the R region. Afterward, the carry-out will work as
the carry-in and do an addition with the second-lowest bit of A
and B to generate the next carry-out and result. This process is
repeated until the highest bit of A and B is processed. Finally,
the R region will hold the final result of “A+B”. Note that the
addition of the two elements in different rows is computed in
parallel.

The multiplication can be considered multistep addi-
tions [23]. Row-wise max instruction is used to find a
maximum number among the corresponding elements of two
vectors in the same row.

In ReSQM, we perform the addition on the two 32-b vectors
that operate on an 8-row truth table row by row. This thus takes
32 × 8 × 2 = 512 cycles for a vector–vector addition. Other
instructions are similar. Table I lists the instructions supported
in ReSQM.

C. Accelerating SORT Queries

The sorting for some attribute columns based on the
ReCAM array often needs first to perform the interrow com-
parisons and then reorder the attribute in different rows.
However, the ReCAM array supports intercolumn comparison
only. Also, the substantial amount of row swapping would
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incur significant overheads in efficiency and energy consump-
tion. Therefore, traditional sorting algorithms are often difficult
to be applied for ReCAM. Imani et al. [29] used the difference
between discharging currents to perform the nearest distance
search. It has the key idea that for a given number, the closer
the number on the match line is to the given number, the faster
the current on the match line leaks. They use this way to find
MIN and MAX results, which are a subset of SORT queries.
However, as the number of records increases, this method will
become challenging to differentiate data depending upon the
discharging currents. Therefore, the method in [29] is hardly
used for SORT queries, which are often operated upon millions
of records in a table.

We present a count-based algorithm to support SORT
queries on ReCAM effectively and efficiently. It can complete
the ranking using the vector–scalar comparisons of ReCAM
without any row swapping. The main idea is to construct a list
of binary groups 〈digit, cnt〉, where digit is an element from
an attribute column that needs to be sorted and cnt represents
the repetition times of digit. These binary groups are generated
serially according to the size of digit from the smallest to the
largest. They will be stored in the R region [Fig. 3(e)] from
the first line to the last line after the generation. Therefore, we
can get a well-sorted attribute quickly by: 1) merely reading
these binary groups in ascending order of rows and 2) then
replicate the digit element cnt times. That is, the data in the
R region can be treated as a well-sorted attribute that can be
visible to users as the final result of the SORT query. Note that
the number of binary groups might be large. Storing them in
the R region can save not only many spaces but also avoid
extra overheads of creating other data structures. Technically,
applying the data structure of binary groups in ReSQM can
also reduce a large number of writes on the ReCAM cells for
boosting energy efficiency significantly.

The question is then how to generate a binary group accord-
ing to the size of digit. Let us take the ascending order as an
example. Fig. 4 shows the procedure of finding digitmin and
its corresponding cnt on attribute columns from the highest bit
to lowest bit via FindMinimumDigit.

Initially, we clear all bits of the KEY register by 0.
FindMinimumDigit seems like a filter algorithm, in which
we step by step determine every bit of digitmin and get rid of
those elements that are definitely not digitmin from the highest
bit to the lowest bit. First, the MASK register will activate
the highest bit to do a match operation between the highest
bit of the KEY register and all elements of the attribute to be
sorted. If some rows are tagged by the TAG register, it means
the highest bit of digitmin must be 0, and these unmatched
rows will not be precharged any more because their highest
bit is 1 and they can never be the smallest digit. If no row is
tagged, this indicates that the highest bit of the digitmin must
be 1, and the highest bit of the KEY register will be set to 1.
Thus, the precharge information will stay unchanged.

Afterward, DSQ Mat [as described in Fig. 3(b)] will acti-
vate the second highest bit of the MASK register to determine
the second highest bit of the digitmin to be 0 or 1. DSQ Mat
will repeat the same procedure until the lowest bit is matched.
After this phase, the number in the KEY register has stored

Fig. 4. Finding a minimum digit and its count.

every bit of the digitmin. All the rows matched can be consid-
ered as digitmin, and their number indicates the cnt of digitmin.
Through Sizeof(Vector) (e.g., 32 in this article) cycles,
we can find a minimum digit and its corresponding count. All
the rows matched to this digitmin will not be precharged so as
to find the next digitmin. Note that the ith minimum digit can
be easily found by disabling matching the (i − 1)th minimum
digit.

For every sorting queries, the same operations are performed
upon the KEY and MASK registers of all processing elements
(PEs). Each PE can execute FindMinimumDigit in parallel
under the control of the KEY and the MASK registers. Since
each PE returns a cnti of the same digit. By simply adding all
cnti in the ALU, the cnt of digitmin can be obtained then.

Computational Complexity: The computational complexity
of our sorting procedure is O(NM), where N is the number
of elements and M is the number of elements with duplicates.
Suppose all the elements are unique, the worst complexity will
be O(N2), which can be finished in N cycles under ReSQM.

D. Accelerating JOIN Queries

Compared with SELECTION and SORT operations, the
results of a JOIN query can be too large and might exceed
the memory size of ReSQM. In this case, ReSQM enables
to optionally store the massive results of a JOIN query into
an off-chip SSD instead of the R region. Once a join-induced
matching (a part of final results) is found, it can be (optionally)
transferred to the SSD (if necessary). Note that these off-chip
data transfers can be conducted in an overlapping fashion with
the normal executions. Hence, their impact of off-chip data
movements can be mitigated as well.

Equi-Join: Imani et al. [29] used a so-called “exact search”
mode to support equi-joins based on the LUTs. For Equi-
Join, the number of table lookups can often be thousands of
times that of SELECTION. Once the LUT is occupied by
some operations, they often require considerable overheads
to finish the operations, since the frequent switching of con-
trol signals has occurred. The LUT becomes a bottleneck for
equi-join. ReSQM copes with this issue by performing a data
reading in advance to use the vector–scalar comparison ability
of ReCAM, without the assistant of LUTs for equi-join.
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The equi-join implementation of ReSQM can be as sim-
ple as performing some per-tuple scalar-vector comparisons.
Suppose we hold two attribute columns A and B from two
tables. All records of A will be read out in turn and sent
to the KEY register to compare with B simultaneously. All
matched rows tagged by the TAG register can be part of the
results of the equi-join of A and B. Note that the intermediate
results of the equi-join between B and each element of A can
be optionally written into the SSD. Note that although our
method introduces extra read operations, ReSQM can still pre-
serve the efficiency for the following reason. The reading of
A can run while the processing of B in an overlapping manner
since A and B are stored in different tables.

Inequality Join: Unlike SELECTION, SORT, and equi-join
that performs equal comparisons, which have a good fit for
the ReCAM computational paradigm, inequality join involves
the relational comparison. To enable relational comparison, we
make a slight modification to the ReCAM bit-cell organization
with respect to the current leakage mechanism.

Fig. 5 shows the modified structure of ReCAM bit-cell that
we add a TAG-G register to each row of ReCAM. The main
idea is to architect an extra TAG to capture the direction of
leakage current when dismatched. We architect a TAG-G regis-
ter between all memristors of the bit line and the ground wire
to detect the potential leakage current. When ReSQM per-
forms SELECTION, SORT, and equi-join queries, the switch
controller (SC) in TAG-G will be in the switch-on state to
make the SA and the latch invalid. The SC will be in the
switch-off state if inequality join query is under processing.
Suppose the KEY register stores 1 and ReCAM bit-cell stores
0, leakage current will flow through the switch-on memristor
on the bit line to the TAG-G since the memristor on the bit-
not line is in the switch-off state in this case. Then, both of
TAG-M and TAG-G will store a logic 1. The modified bit-cell
may have three cases: 1) no leakage current occurs. Only the
TAG-M will capture the voltage, indicating the equality; 2) the
TAG-G and the TAG-M both capture a leakage current, indi-
cating a greater data in the KEY register; and 3) both TAG-M
and TAG-G do not capture a signal, meaning a smaller-than
relation.

Note that we architect TAG-G based on the off-the-shelf
TAG architecture. The timing correctness of its SA and latch
controller has been demonstrated in previous studies [23]–[25].
The working mechanism of SA and latch is easy to understand.
Both SA and latch have an internal resistance. Therefore, the
current often prefers to be leaked out of the memristor pref-
erentially. If and only if the current cannot flow through the
memristor, the match line will then hold a high voltage. In
this case, the SA and latch will start working. The activated
timing of the precharge signal and the signals operating upon
the KEY register is the key for the correctness of the TAG cir-
cuit. We also note that these signals are activated at the same
time, and thus, the correctness can be ensured.

The basic principle of performing the relational compari-
son between two data based on the modified bit-cells works
as follows. We can perform a bitwise comparison from the
highest bit to the lowest bit of two data. The relational com-
parison between their highest bits can directly indicate their

Fig. 5. Modified ReCAM bitcell organization. Each TAG-G is shared.

TABLE II
WORKLOAD CHARACTERISTICS WHERE m = 1, 4, 8, 16

relationship of the size. If their highest bits are equal, we can
iteratively compare their subsequent bits from the high to the
low bit until a nonequal relation is found. Otherwise, the two
data are essentially equal. Similar to equi-join, inequality join
also performs the meta-operation of scalar-vector comparison.

Zhao et al. [30] presented a relational comparator for the
random forest. They divide the original bit lines and bit-not
lines into the two separate ReRAM arrays. Through precharg-
ing the two arrays individually, the relativity of two data can
be obtained by computing the voltage difference between the
two arrays. Unfortunately, this approach suffers in accelerat-
ing database operations, which involve not only the relational
comparisons but also a large number of equal comparisons (as
in SELECTION and SORT operations) or even noncomparison
operations. Their separate architecture, in many cases, might
double the overheads of those database operations since at
least double rows need to be precharged. In contrast, ReSQM
adds only a neat and cheap TAG register attached to each row
with nearly negligible modification to the ReCAM architecture
without sacrificing any potential parallelism of the ReCAM
array.

Computational Complexity: The JOIN query often needs
O(NM) matchings, where N and M represent the lengths of
two attribute columns A and B, which can be accelerated in
N cycles under ReSQM if A is read to match B.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Workloads: Table II lists the workloads used for ReSQM.
We used the GNU library [11] to create two tables M and N.
Both have nine attributes, among which the key has 4 B, and
two attributes are the 2-B integers used for the 16-b multipli-
cation while the rest is the 4-B integers. The key attribute was
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TABLE III
ATTRIBUTE DISTRIBUTION OF THE TABLE M

AT DIFFERENT SIZES, AND THE TABLE N

marked as attr0, while others are marked from attr1 to attr8
in turn. As shown in Table III, these attributes are generated
based on the Bernoulli, uniform, and Gaussian distributions.
In particular, we generate table M at four different scales for
sensitivity study.

Measurement: We evaluate ReSQM by two metrics:
1) response time and 2) energy consumption. All results for
ReSQM and the baseline are obtained by an average of run-
ning ten different queries for each query type. SELECTION
and SORT are performed at the table M with all the four
scales. Equi-join and inequality join are performed on table
N and four scales of table M. We list each typical query as
follows.

1) SELECTION (SE): Select attr0, attr2, attr5, and attr8
from the table M where 2 × (attr5+attr6− attr7) > 3000
AND (attr2 − attr4 − attr1) < 500 OR 4 × (attr8 + attr5)
+ 5 × (attr7 − attr6) > 1000.

2) SORT (SO): Select attr3 from the table M order by attr3.
3) Equi-Join (EJ): Select M.attr2, M.attr4, N.attr0, and

N.attr3 from the tables M and N where M.attr2 =
N.attr3.

4) Inequality Join (IJ): Select M.attr5, M.attr3, N.attr3,
and N.attr1 from the tables M and N where M.attr3
> N.attr1.

Cycle-Accurate Simulation: We use a cycle-accurate simu-
lator in which the underlying mathematical model constraints
have been proved to ensure the correctness and accuracy for
program executions [23]. ReSQM applies this with a three-
step simulation [23] for the ReCAM hardware. The first step
is data mapping. ReSQM can work as a memory. The two
tables M and N will be written into the DSQ Mat of all the
DSQ units. Their attribute locations are also recorded in the
address information register. The second step is to decom-
pose a database query into a serial of arithmetics and data
communication operations. This step is managed by the con-
troller in the DSQ unit. Consider the SELECTION query as an
example. The original query statement will be parsed as arith-
metic expressions shown in Table I. Finally, these arithmetic
operations will be converted into a serial of ReCAM atomic
operations, such as read, write, and comparison. Through look-
ing up Table I, we can hence obtain the running time of each
query accurately. The simulation for SORT and JOIN needs
only the first and the last steps since we perform their algorith-
mic operations straightforward based on the ReCAM atomic
logic rather than arithmetic operations.

ReSQM Configurations: ReSQM runs at 1 GHz with 12
DSQ units. We use the SPICE simulator to obtain the energy
consumption, area parameters, and performance of ReSQM.
Each DSQ unit has 437.5-MB memory and 200-W power at

(a) (b)

(c) (d)

Fig. 6. Throughput (tuples processed per second) of ReSQM when hanlding
all the four database operations on the table M at different sizes. (a) SE.
(b) SO. (c) EJ. (d) IJ.

full capacity. The area of each DSQ mat is 103.7 mm2 and
each ReCAM array takes 0.0034 mm2. The read and write
operations are atomic, and their latency is 8.31 and 17.42 ns,
respectively. The matching operation is also atomic during the
computation. Its latency is 1 ns, an inverse of the frequency. In
general, the read and write operations are more expensive than
the match operation, and hence we implement our algorithms
by using read and write operations at a minimum level. Taking
SORT as an example, we do not use any reads and use writes
only when the binary groups need to be stored.

In this article, we conservatively set the size of the KEY
register to 32 b for careful consideration of supporting the bit-
wise operations that are frequently used in SELECTION. As
discussed in Table I, performing bitwise operations is often
sensitive to the bit number. As the size of the KEY regis-
ter increases, the number of cycles required can significantly
increase. In this case, the KEY register is scanned and pro-
cessed one bit at a time in a bit-serial manner [23]–[25]. In
actuality, the size of the KEY register can be still set to 256-b
if only SORT and/or JOIN queries are considered.

We evaluate ReSQM against a baseline with a 10-core Intel
Xeon E5-2630v4 CPU@2.2 GHz, 25-MB Cache, 68.3 GB/s,
and 85-W TDP. We run SQLite selection, radix sort [14], sort-
merge join [27], and inequality join on PostgreSQLv9.4 [5] for
our baseline comparison. We use RAPL [26] to measure the
energy of the CPU. ReSQM is a PIM accelerator and all tables
and the results of SELECTION and SORT are stored in the
memory. The baseline also stored all tables and the results of
SELECTION and SORT in the memory. The JOIN results of
ReSQM and baseline are both stored in the off-chip SSD. The
SSD card connected to ReSQM is the same as that to CPU
with a size of 480 GB. The SSD interface is based on SATA3.
Its read and write speeds are 562 and 420 MB/s, respectively.
To make apple-to-apple comparisons, we benchmark ReSQM
against the CPU baselines using the same workloads and the
same benchmarks. For preserving fairness, the loading time of
the original data from the disk to the memory is not counted.

B. Overall Efficiency

We first evaluate the speedup and energy consumption of
ReSQM against the CPU baseline for SELECTION (SE),
SORT (SO), Equi-Join (EJ), and Inequality Join (IJ).
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Fig. 7. Response time of ReSQM against CPU for all the four database
operations on the table M at different sizes.

Fig. 8. Energy consumption of ReSQM against CPU for all the four database
operations on the table M at different sizes.

Throughput: Fig. 6 shows the throughput between ReSQM
and CPU-based platform. For the SELECTION query, we
see that ReSQM can achieve 162G tuples per second, while
the CPU can only process 359M tuples per second for the
table M@4M. In particular, when the table is scaled to 64M,
ReSQM can continue improving the throughput to up to
1083G tuples per second while the throughput of CPU stays
immutable. For the SORT query, ReSQM has an average
throughput of 1096M tuples per second while CPU has an
average throughput of 81M tuples per second only for the
four scales of the table M. For the equi-join query, ReSQM
has an average throughput of 513M tuples per second while
CPU has an average throughput of 13M tuples per second
only. For the inequality join query, ReSQM has an average
throughput of 3.5M tuples per second. The CPU has a typ-
ically small throughput of 15.2K tuples per second for table
M@4M. When the table size is at 64M, the throughput of
CPU becomes worse by 7.6K tuples per second.

Speedup: Fig. 7 shows the speedup results. Overall, ReSQM
significantly outperforms CPU for all database operations. For
example, for the table M@4M, ReSQM can accelerate SE, SO,
EJ, and IJ in 0.025 ms, 3.65 ms, 7.8 ms, 1.15 s, while CPU
complete them by 11.13 ms, 49.37 ms, 319.5 ms, 263.6 s,
yielding the speedups of 445×, 13×, 41×, and 229×, respec-
tively. More importantly, ReSQM shows better scalability than
CPU as the data size increases. Taking IJ as an example, its
response time can be increased from 17.9 to 8 469 s when
the table M varies from 4M to 64M, while ReSQM keeps
the response time between 1.15 and 17.9 s with significant
improvement by the two to three orders of magnitude. That
yields the speedups of 721×, 25×, 95×, and 471× for the
table M@64M.

Energy Efficiency: Fig. 8 shows the energy results fur-
ther. We can see that ReSQM can complete all the database

(a) (b)

(c) (d)

Fig. 9. Response time of ReSQM against CPU with varying query result
sizes. All results are obtained on M@16M. (a) SE. (b) SO. (c) EJ. (d) IJ.

operations with far fewer energy consumption against the
baseline due to the substantial reduction of data movement.
For the table@4M, ReSQM can reduce energy consumption
by 164×, 12×, 21×, and 114× for SE, SO, EJ, and IJ, respec-
tively. A better scalability of ReSQM further reduces them into
239×, 23×, 55×, and 237× for the table M@64M.

C. Systematic Impact of Query Result Size

We further show the systematic impact of ReSQM when the
result size of query increases for SE, SO, EJ, and IJ.

SE: Fig. 9(a) characterizes the performance of ReSQM for
SE against CPU. We can see that the CPU seems to be insen-
sitive to the query result size, while ReSQM is sensitive. The
reason is below. In a CPU architecture, no matter how many
tuples are matched with the restricted expression, it always
needs to load all tuples from memory to cache for a global
analysis, thereby yielding a relatively stable performance. On
the contrary, ReSQM performs the in-situ computation of
restricted expression with only those columns that need com-
parisons computed. Despite the rising tendency in response
time, ReSQM still has a faster response speed than baseline
due to fewer data movements.

SO: Fig. 9(b) characterizes the performance of ReSQM
against radix sort on CPU with different repetition times of
every unique element on an attribute that needs to be sorted.
As the repetition times increase, results show that the response
time of CPU maintains a stable level while that of ReSQM is
reduced significantly. Radix sort is easy to understand since
it needs to compare every element in each round. In ReSQM,
the same elements are reduced into one unique binary tuple
such that we can access only once to this unique binary tuple
to remove the redundant accesses.

EJ: Fig. 9(c) shows the response time of EJ, for which CPU
has an increasing overhead while ReSQM’s is degraded. The
reason is as follows. CPU-based EJ includes a sort-merge two-
step approach. As discussed above, the performance of sorting
keeps stable. For the merging operation, a large size of results
often implies more than row-wise comparisons, thereby lead-
ing to longer response time. The case is completely different
in ReSQM. It has no sort step. Also, the EJ is a natural fit
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TABLE IV
COMPARISONS BETWEEN THE ORIGINAL RECAM ARRAY AND OUR

MODIFIED ARRAY

TABLE V
OVERHEAD BREAKDOWN

for vector–scalar comparisons. More comparisons involved in
a large query result size can be well parallelized by exploiting
the massive parallelism of the ReCAM array.

IJ: Fig. 9(d) shows the response time of IJ. By rearchitecting
the ReCAM bit-cell, ReSQM also exposes the massive paral-
lelism of ReCAM to handle the relational vector–scalar com-
parisons. Thus, the performance of ReSQM against CPU for
processing IJ shows a similar variation trend as processing EJ.

D. Overheads and Breakdown

TAG-G Overheads: We evaluate the overheads of the TAG-
G register. Table IV shows the latency and energy consumption
of the match operations between the original ReCAM array
and our modified array. We see that only the match latency of
the inequality join is 0.1 ns longer than the original array. The
latency for other database operations is the same as the origi-
nal array. The reason is apparent that TAG-G is not used when
performing SELECTION, SORT, and equi-join, and their per-
formances are not affected by this modification. The energy
consumption for all database operations is not influenced either
by this modification because the TAG-G makes full use of the
existing leakage current mechanism, rather than architects the
new hardware components. Finally, we also see that the area
of DSQ Mat with TAG-G is 103.7 mm2, introducing only an
extra 2.3 mm2 against the original array without TAG-G.

Controller Overheads: We further investigate the controller
overheads when handling SELECTION, SORT, and JOIN
queries, respectively. Table V depicts the results. “CAM” indi-
cates the overhead from the DSQ Mat. We can see that the
overhead of the controller takes 16.23% of the total overheads
for the SELECTION query. The controller can be as small as
1.72% and 2.44% in the SORT and JOIN queries, respectively.

The reasons for the low overheads of the controllers are
simple. The execution logic of the DSQ Mat is driven by
the KEY and MASK registers, which are dependent on the
data transferred from the DSQ unit, further dependent on
the controllers. For the SORT and JOIN queries, the MASK
and KEY registers work in a regular way. For example, in
FindMinimumDigit, the MASK register is activated bit by
bit from the highest bit to the lowest bit, and the KEY register

TABLE VI
ENERGY BREAKDOWN

TABLE VII
AREA BREAKDOWN

TABLE VIII
PERFORMANCE OF RESQM AGAINST GPU, FPGA, NDP, AND PIM

PLATFORMS (NORMALIZED TO CPU PLATFORM)

is initially set to 0. Therefore, with just one signal from the
controller, the MASK register can work 32 times and find the
digitmin and its count. However, for the SELECTION query,
the situation is different. The execution of each arithmetic
operation needs control signals from the LUT. Therefore, one
signal from the controller can manage the write of only one
row to the KEY register.

Energy and Area Breakdown: We also investigate the energy
consumption and area of each component in ReSQM. In
Table VI, we can see that the ReCAM array consumes most
(97.93%) of energy, among which dynamic computations
(replying on the precharging, KEY register, MASK register,
etc.) occupy 89.79% of energy consumption while leakage cur-
rent takes 8.14% energy. The other components beyond the
DSQ mat cost only 2.07% energy. Table VII further shows
the area breakdown of ReSQM. The ReCAM array occupies
88.39% of the total area, with the ratio of H-tree is 0.04%. All
buffers, ALUs, and microcontrollers have only 7.57%, 1.59%,
and 2.41% area, respectively. By adding small add-on periph-
eral circuits, ReSQM functions well as a promising-in-memory
device to accelerate database operations.

E. Compared With Other Platforms

We finally evaluate ReSQM against some state-of-the-art
GPU, FPGA, NDP, PIM, and CMOS-CAM-based efforts. Note
that some of these studies may support a part of four database
operations involved in this work.

For GPU, we use an NVIDIA GTX1080@1733 MHz,
2560 Cuda Cores, 2-MB shared L2 Cache, 8-GB Graphic
Memory, and 180-W TDP. The SELECTION algorithm is
introduced from [11], the SORT algorithm from [14], Equi-
join from [15], and inequality join from [6]. For FPGA, we use
the architecture and algorithms from [16] for SELECTION,
SORT, and equi-join queries. The NDP baseline is from [31]
for SELECTION only. As for the PIM baseline, we select
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NVQuery [29] for SELECTION and equi-join queries. To
ensure fairness, we evaluate ReSQM against these baselines
by running the same benchmarks on the same workloads.

Performance Comparisons and Analysis: Table VIII shows
the performance results for GPU, FPGA, NDP, and PIM plat-
forms. We can see that ReSQM shows the best performance
by the speedups of 15×, 2.2×, 6.8×, and 39× over the better
performer among GPU, FPGA, NDP, and PIM platforms for
SE, SO, EJ, and IJ, respectively. For SELECTION, the NDP
accelerator offers the worst acceleration effect compared with
other platforms. This is because, for a large table, [31] relies
on a CPU to process lots of operators and intermediate results.
Thus, the data transfer bottleneck limits the overall efficiency.
Compared with NVQuery [29], ReSQM offers more than 30×
speedup, due to the reduced number of intermediate result
transfers. Since SELECTION is as simple as being with good
data parallelism, GPU and FPGA platforms show the superior
results over NVQuery for all database tables.

Note that ReSQM on SO shows a relatively less speedup
than those on SE, EJ, and IJ due to the underutilization of
ReCAM bit-cells. Actually, only 5% of bit-cells are used for
SO in ReSQM. The rest (unrelated to a sorting attribute)
is aggressively disabled for correctness. On accelerating SO
faster by fully utilizing ReCAM resources better, we leave it
as future work. For equi-join, which represents higher com-
plexities than SELECTION, we see that NVQuery becomes
superior against GPU and FPGA. Without the lookup over-
heads of LUT, ReSQM offers more than 6× speedup over
NVQuery. For inequality join, only GPU and ReSQM can
support it currently. However, we still find that ReSQM out-
performs GPU by 39×, due to the in-situ computing ability
and massive parallelism of the ReCAM array.

For the CMOS-based CAM, it often suffers from the severe
scalability issue with the limited dataset supported. To facil-
itate comparison with the existing work, we use similar
workloads to [9] by performing SO on a 40 000-tuple table,
and running EJ and IJ on two tables with 20 000 tuples
and 40 000 tuples, respectively. For SO, EJ, and IJ, CMOS-
based CAM can offer the speedups of 1.59×, 7.3×, and
11.2× against CPU, while our accelerator offers 7.7×, 21×,
and 136×.

F. Discussion

So far, using ReCAM to handle string types has some dif-
ficulties with many challenges faced, particularly lack of an
effective data mapping: 1) using a fixed size to represent a
character is often difficult, if not impossible, to support an
arbitrary-length string. Supposing we use 26 English letters
as a collection to generate strings, so each character is repre-
sented by 5 B, one row of the ReCAM array can often support
a maximum of 50-character string only; 2) using multilevel
cells (MLCs) can mitigate the above issue to support a rela-
tively long string. However, this needs a strict MLC production
process and also introduces a precision problem; and 3) using
a fixed size of the ReCAM array size to support irregular
strings is also difficult, which needs a valid tradeoff between
computational parallelism and storage efficiency.

This work is just small-step research of using ReCAM to
accelerate some database queries. Although supporting strings
remains an open question, we believe that ReSQM still has
addressed several critical challenges in this timely topic and
would facilitate the subsequent research of handling strings
effectively and efficiently.

V. CONCLUSION

This article identified a spectrum of comparison semantics
in the relational database operations. We introduce ReSQM,
a novel ReCAM-based accelerator, which can boost the
performance for many typical database operations by flexi-
bly exploiting the inherent parallelism of the ReCAM array.
Results showed ReSQM significantly outperform existing
CPU, CMOS-based CAM, GPU, FPGA, NDP, and PIM solu-
tions by the orders of magnitude improvement in terms of
the speedups of (2.2× ∼ 39×), and ReSQM also achieved
17× ∼ 193× energy saving compared with the CPU baseline.
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