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EM-Fuzz: Augmented Firmware Fuzzing via

Memory Checking
Jian Gao, Yiwen Xu, Yu Jiang, Zhe Liu, Wanli Chang, Xun Jiao, and Jiaguang Sun

Abstract—Embedded systems are increasingly interconnected
in the emerging application scenarios. Many of these applications
are safety-critical, making it a high priority to ensure that the
systems are free from malicious attacks. This work aims to
detect vulnerabilities, that could be exploited by adversaries to
compromise functional correctness, in the embedded firmware,
which is challenging especially due to the absence of source code.

In particular, we propose EM-Fuzz, a firmware vulnerability
detection technique that tightly integrates fuzzing with real-time
memory checking. Based on the memory instrumentation, the
firmware fuzzing can not only be guided by the traditional branch
coverage to generate high-quality seeds to explore hard-to-reach
regions, but also by the recorded memory sensitive operations to
continuously exercise sensitive regions which are prone to being
attacked. More importantly, the instrumentation integrates real-
time memory checkers to expose memory vulnerabilities, which
is not well-supported by existing fuzzers without source code.
The experiments on several real-world embedded firmware such
as OpenSSL demonstrate that EM-Fuzz significantly improves
the performance of state-of-the-art fuzzing tools such as AFL
and AFLFast, with the coveragre improvements of 93.98%
and 46.89% respectively. Furthermore, EM-Fuzz exposes a total
of 23 vulnerabilities, with an average of about 7 hours per
vulnerability. AFL and AFLFast together find 10 vulnerabilities,
costing about 13 hours and 10 hours per vulnerability on
average, respectively. Out of these 23 vulnerabilities, 16 are
previously unknown and have been reported to the upstream
product vendors, 7 of which have been assigned with unique
CVE identifiers in the U.S. National Vulnerability Database.

Index Terms—Embedded firmware, Guided fuzzing, Memory
checking, Vulnerability.

I. INTRODUCTION

W
ITH the development of 5G technologies and beyond,

the connectivity of embedded systems will get ever

stronger in the emerging application scenarios, such as highly

automated vehicles, domestic robots, and Industry 4.0. These
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applications are often safety-critical, strictly requiring func-

tions to be correct. Therefore, being free of malicious attacks,

e.g., malicious code injection and denial-of-service (DoS),

needs to be ensured. The reality is however cruel. Cui et al. [1]

scanned about 4 million embedded devices on the network

and found 13.81% of the vulnerability rate. This work targets

the embedded firmware, vulnerability detection of which is

challenging, especially due to the absence of source code.

To enhance the ability of vulnerability exposure, fuzzing

has become a research hotspot of firmware testing in recent

years [2], [3], [4]. Peach [2] is a semi-automated cross-

platform fuzzing framework which generates test inputs based

on manually constructed input specifications. SRFuzzer [3] is

a fully-automated fuzzing framework for fuzzing web servers

of physical SOHO (small office/home office) routers. IoT-

Fuzzer [4] uses the program logics of mobile app’s to produce

meaningful test cases for probing the target firmware. Al-

though these approaches ensure the authenticity of the reported

vulnerabilities, they belong to black-box fuzzing techniques

that do not take into account execution feedback. Therefore

the efficiency of vulnerability discovery is unsatisfactory.

With the greybox fuzzing technique showing efficient vul-

nerability discovery capabilities on programs with source code,

the first thought is to use QEMU process emulation to perform

similar greybox fuzzing on embedded firmware. In the absence

of embedded devices, QEMU emulator indeed becomes the

first choice for fuzzing firmware due to its relatively com-

plete cross-architecture emulation capability and support for

instrumentation to feed back branch coverage information. The

binary versions of tools, such as AFL [5] and AFLFast [6], are

representatives of such implementation, using branch coverage

to guide the generation of test inputs continuously. However,

we find in practice that their ability to deal with embedded

firmware is greatly compromised. Two main reasons hinder

the use of these tools in embedded scenarios.

One reason is that compared to fuzzing targets with source

code, the time cost of using QEMU emulator to fuzz firmware

is higher, and the number of test cases (also called throughput)

that can be executed in a unit of time is 3–5× lower. Though

existing fuzzers [5], [6] can be applied to embedded firmware,

their ability to face low throughput is limited by inappropriate

mutation frequency. For example, AFL’s blind mutation strat-

egy has difficulty mutating the meaningful seeds to efficiently

reach hard-to-reach regions, and further resulting in the crash

of the target under test.

Another reason is that when the firmware source code is not

available, the existing fuzzers cannot implement source code

instrumentation that can be combined with various sanitizers
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(e.g., AddressSanitizer, ThreadSanitizer) to check for memory

corruption. According to statistics from NVD in the past three

years, at least 9.82% of the included vulnerabilities were

related to memory vulnerabilities, such as use-after-free and

buffer overflow. This makes hidden memory vulnerabilities in

the firmware less likely to be detected by an unassisted fuzzer.

Although mature memory checkers, such as MemCheck [7]

and Dr. Memory [8], have dominated the field of binary mem-

ory vulnerability checking through binary instrumentation,

they have greater limitations on firmware. They are workable

on the premise that they can be installed in the same running

environment (e.g., same CPU architecture) as the binary under

test. It would be impractical to install these memory checkers

in an already-shipped firmware, so they basically do not work

with the firmware. Furthermore, even if they are included in

the firmware, executing arbitrary test cases obtained without

guided fuzzing may be time-consuming and will not report

vulnerabilities at all.

In the embedded scenario, although existing greybox fuzzers

and memory checkers can exert a certain function, they are

isolated. Combining fuzzing and memory checking to give

full play to their strengths, we face the following challenges:

1) Effective memory instrumentation. The augmented

fuzzer requires the necessary dynamic instrumentation of

firmware, including integrating common types of memory

detectors and recording memory sensitive operations in a

unified way.

2) Multi-architecture support. Firmware CPU architec-

tures present diversity due to different application sce-

narios of embedded devices. Using a unified running

environment to handle multiple architectures of firmware

fuzzing is eagerly welcomed.

3) Coverage-guided and memory-guided collaboration.

Traditional branch guidance information is not enough

to give full play to the capabilities of the combination.

Discovering deeper and wider program paths and trigger-

ing as many memory vulnerability sensitive operations as

possible is our desired goal.

To address the above challenges, we propose EM-Fuzz —

an augmented firmware vulnerability detection technique via

tightly integrating fuzzing with real-time memory checking.

The memory checking module completes the firmware instru-

mentation task via memory hooking and library wrapping,

which solves the challenge 1. In addition to integrating mem-

ory detectors to thoroughly identify memory vulnerability, it

also monitors and records the detailed memory sensitive opera-

tions. Both the fuzzing and the memory checking in EM-Fuzz

are implemented based on the QEMU emulator. Therefore,

it is reasonable to use this unified running environment to

address the multi-architecture support in challenge 2 and

provide the capability for memory checking instrumentation

in challenge 1. When emulating the firmware, the augmented

QEMU emulator collects branch coverage information and

memory sensitive operations, which together guide the mu-

tation direction of the fuzzing and solve the challenge 3.

The former guides the fuzzer to select seeds based on the

traditional branch frequency, and mutate them with random

and restricted mutation strategy, which ensures the depth and

breadth of fuzzing. The latter guides the fuzzer to assign

more mutation times to the seeds that have performed memory

sensitive operations, which increases the chance that fragile

regions can be covered more frequently.

For evaluation, we consider real-world embedded firmware

programs, such as the IEC61850 protocol extracted from

the substation automation system (SAS) firmware, and com-

pare EM-Fuzz with two state-of-the-art fuzzers: AFL [5] and

AFLFast [6]. The experimental results show that EM-Fuzz

significantly improves performance. In particular, EM-Fuzz

exposes a total of 23 vulnerabilities, while AFL and AFLFast

expose 7 and 10, respectively. Combining the results from

AFL and AFLFast, only 10 vulnerabilities are discovered.

Out of the 23 vulnerabilities found by EM-Fuzz, 16 are

previously unknown and have been reported to the upstream

product vendors, 7 of which have been assigned unique CVE

identifiers. As for the time cost, it takes EM-Fuzz 7 hours on

average to discover one vulnerability, which is 54% and 70%

of the time required by AFL and AFLFast, respectively.

In summary, this paper makes the following contributions:

• To our best knowledge, EM-Fuzz is the first tool that

integrates the efficient greybox fuzzing and the mem-

ory checking to augment the capability of vulnerability

discovery on the embedded firmware. While fuzzing has

shown impressive performance on desktop applications,

this work is a step for the embedded firmware without

source code.

• We integrate 10 common types of memory detectors

into EM-Fuzz through dynamic running instrumentation,

which is able to enhance fuzzing to discover more previ-

ously unknown vulnerabilities on real-world firmware.

• We propose an optimized fuzzing strategy for embed-

ded firmware. The traditional branch and the additional

memory sensitive operation information guide fuzzing to

explore hard-to-reach paths, and give fragile code areas

more opportunities for exhausted memory checking.

• We apply EM-Fuzz on real-world embedded firmware,

and discover many previously unknown vulnerabilities.

Paper Organization: Section II presents a motivating exam-

ple. Section III details the design of EM-Fuzz. Section IV

implements EM-Fuzz and reports the experimental results.

Section V indicates future research efforts. Section VI is about

related work, and Section VII concludes the paper.

II. MOTIVATING EXAMPLE

To show how EM-Fuzz can improve fuzzing performance

and expose more vulnerabilities via memory checking in-

strumentation, we walk through the trimmed code snippet

originated from the embedded firmware of IEC61850 shown

in Listing 1. There are two vulnerabilities hidden in block D.

A. Necessity for Memory Instrumentation

Assuming the traditional fuzzer has a chance to explore the

hard-to-reach region D, it still may not expose any memory

vulnerability. In embedded scenarios without any assistance

from memory checkers, fuzzers will consider that block D

2
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is functioning properly since the overflow and the memory

leak are not serious enough to crash the target firmware.

As mentioned earlier, existing memory checkers (e.g., Mem-

Check [7], Dr. Memory [8]) require to be installed in the

same environment as the firmware under test and run existing

test inputs to detect memory vulnerabilities. And existing

sanitizers (e.g., AddressSanitizer, ThreadSanitizer) require the

original source code to accomplish the instrumentation, which

is impractical in the testing of black-box embedded firmware.

1 #define FIXED_LENGTH 8

2 void parse_packet(char *buf){

3 ...

4 char* magic_values = getMagicValues(buf,offset=4,len=2);

5 char* func_codes = getFunctionCodes(buf,offset=8,len=2);

6 char* data, *other;

7 //BLOCK A

8 if (magic_values[0] == 0x88 && magic_values[1] == 0xB8){

9 //BLOCK B

10 if (func_codes[0] == 0x40 && func_codes[1] == 0x00){

11 //BLOCK C, TODO:

12 }else if(func_codes[0] == 0x7F && func_codes[1] == 0x02){

13 //BLOCK D

14 other = (char*)malloc(FIXED_LENGTH);

15 data = (char*)malloc(FIXED_LENGTH);

16 //assume data is "1234",len(data)=4

17 strcpy(data,getStatus(buf));

18 //assume other is "abcdefghijklmnopqr", len(other)=18

19 strcpy(other,getInfo(buf));

20 //BUG: buffer overflow, data="qr" now

21 storeToFile(file,data);

22 LOG(data,other);

23 //BUG: forget to free other and data

24 }else

25 //BLOCK E, TODO:

26 }else{

27 //BLOCK F

28 ERROR("Invalid data package");

29 }

30 ...

31 }

Listing 1. Motivating example that illustrates how EM-Fuzz addresses
the problems of existing fuzzers.

In detail, Lines 14 and 15 of Listing 1 request 8 bytes of

heap memory for the other and data variables, respectively. In

the 32-bit OS environment, each variable is actually allocated

16 bytes of memory1, and the memory space of the data is

closely followed by that of the other. When the data memory

is first filled with strings of less than 8 bytes in Line 17,

and then the other memory is filled with strings of more than

16 bytes in Line 19, the contents of the data memory are

contaminated by the other memory because the data memory

is behind the other memory. Obviously, this buffer overflow

issue that causes data integrity should be reported. In addition,

Line 23 forgets to free the memory allocated in Line 14 and 15.

If the function parse_packet is constantly called, the memory

leak issue will make the embedded device run out of resources.

During fuzzing cross-architecture firmware, performing

real-time memory checking of memory vulnerabilities (e.g.,

use-after-free, buffer overflow, memory leak) in a unified

test environment would significantly improve the vulnerability

detection performance. Without firmware source code, this

goal is not well-supported by existing fuzzing techniques.

1It depends on the malloc_chunk data structure defined in glibc [9]. In the
32-bit Linux OS, the minimal size of the allocated memory chunk is 16 bytes.

B. Necessity For Efficient Fuzzing

After supporting memory checking instrumentation, detect-

ing the buffer overflow vulnerability shown in Line 19 requires

the test input buf to meet two conditions: 1) trigger the block

D; 2) contain appropriate values for variables data and other.

Considering the low test input throughput of firmware fuzzing,

the ideal goal should make block D explored more thoroughly.

The code snippet first obtains magic values and function

codes from the data packet according to the fixed offsets 4–5

and 8–9 in Lines 4–5. Line 8 determines whether the magic

value of 2 bytes is equal to 0xB888, and if not equal, it means

that the data packet is invalid and gets filtered out in Line 26.

The vast majority of test cases generated by representative

fuzzers, such as AFL [5], AFLFast [6] and FairFuzz [10],

try to maximize the traditional branch coverage. For example,

AFL chooses a seed as the preference to perform mutations

if it is the fastest and smallest input for any of the observed

branches. FairFuzz performs the restricted mutation strategy

on the selected seed to increase the probability of reaching

the same hard-to-reach branch. However, its mutation strategy

prefers to explore deeper branches rather than the wider ones,

which leads to local convergence problem. Just considering the

branch occurrence and ignoring the weight of the recorded

memory sensitive operations may cause two problems: 1)

branch BD would be reached too late; 2) the number of

times that block C and block D are executed may be seriously

unbalanced, where D is less frequently triggered.

EM-Fuzz aims that branch BD is reached as early as

possible and block D is executed more times than block C, via

the collaboration of the recorded memory sensitive operation

guidance. The former can be achieved by optimizing the

seed selection strategy and the mutation strategy of existing

fuzzers. Each seed in the seed queue can be first selected

with inverse probabilities to the occurrence frequency of

the branch. This optimization increases the chance that the

seed hitting the branch BE will be selected and mutated

instead of being discarded early, which helps cover new rare

branch BD early. In the mutation phase, if the selected seed

hits rare branches and branches with many memory sensitive

operations, EM-Fuzz applies the restricted mutation strategy to

the seed to maintain the depth of path exploration. The latter

can be implemented by adaptively updating seed mutation

energy during the mutation stage. If the seed hits a code block

that contains memory sensitive operations (e.g., malloc, free),

it gives the seed more mutation energy to increase the number

of times that such code block is covered with more test cases.

III. EM-Fuzz DESIGN

As presented in Fig. 1, EM-Fuzz contains two major mod-

ules: memory checking instrumentation and guided fuzzing.

By tightly integrating efficient fuzzing and real-time mem-

ory checking, analysts are able to locate serious security

threats in the firmware quickly. The memory checking in-

strumentation module completes the firmware instrumentation

task via memory hooking and library wrapping, which gains

the ability to record memory sensitive operations to guide

fuzzing and integrate common memory detectors to expose

3
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Fig. 1. The memory checking instrumentation module completes indispensable instrumentation, including recording memory sensitive operations to guide
fuzzing and inserting 10 common types of memory detectors to identify memory vulnerability. The fuzzing module is guided by branch information to generate
high-quality seeds to explore hard-to-reach regions, also by memory sensitive operations to continuously exercise regions that are prone to being attacked.

memory corruption vulnerabilities. Based on the firmware

emulator with instrumentation capability, the fuzzing module

seeks to generate high-quality test cases to explore hard-

to-reach regions with branch coverage information guidance

and trigger fragile regions that are prone to being attacked

with memory sensitive operations guidance. As a result, the

augmented firmware fuzzing not only ensures the depth and

breadth of path exploration but also improves the ability of

vulnerability exposure. During the entire fuzzing process, the

two components share two test case queues, including an input

queue I and a defect queue D.

A. Memory Checking Instrumentation

Memory checking instrumentation is responsible not only

for feeding back memory sensitive operations to guide fuzzing

but also for integrating memory detectors to check for memory

vulnerabilities thoroughly. It contains memory hooking, library

wrapping, and memory detector.

1) Memory Hooking: There are two main types of memory

hooking in EM-Fuzz: the instruction hooking and the function

hooking. The instruction hooking intercepts the memory read

and memory write instructions to heap addresses. This is used

to determine whether there are memory vulnerabilities. The

function hooking intercepts memory-related library functions

(e.g., malloc, free). Its purposes are to record memory sen-

sitive operations in the execution trace, and to add prologue

and epilogue actions.

For the instruction hooking, EM-Fuzz only hooks instruc-

tions that involve the heap memory access. Its purpose is to

obtain the marked states of heap memory addresses so that

memory detectors work. Therefore, we have to accurately

distinguish the heap memory space from the entire virtual

memory space. When EM-Fuzz loads the firmware into the

emulator, it initializes the heap bottom address as the brk
variable, denoted as heapBottom = brk. Whenever new heap

memory space is allocated, the value of the brk variable grows

to become the new heap top address. EM-Fuzz only hooks

the instruction whose memory address access is in the range

heapBottom and brk.

For the function hooking, EM-Fuzz directly calculates the

absolute virtual memory address of memory-operation related

library functions. When the emulator executes to the main

function, the library function __libc_start_main has been run

and its start address is stored in the .got.plt section of the

process. We can get the offset value of the __libc_start_main

function from the libc.so library file. Indirectly, the start

addresses of the memory-related library functions can be

calculated according to the start address and the offset value

of the known library function. The reason for not getting the

start address of these functions directly from the .got.plt table

is that other library functions (e.g., printf) may also call these

functions through an offset in the same library file, at which

point memory-related functions may have not been loaded in

the .got.plt table due to the lazy binding mechanism.

2) Library Wrapping: One of the main capabilities of

EM-Fuzz is to support heap memory vulnerability detection

for the firmware. With modifying the original memory-related

library functions, we can implement memory detectors that

require monitoring the entire heap memory state. EM-Fuzz

achieves this goal through the library wrapping technique [8],

which preserves the original heap layout.

We implement the library wrapping to add the prologue

and the epilogue to each memory-related library function.

The inserted prologues take precedence over the executions of

memory-related library functions, which modifies the function

parameters and assigns appropriate memory shadowing states

(detailed in Section III-A3) to different memory regions. The

epilogues are executed before the library functions return,

which modifies corresponding return values. For heap memory

of size P , as requested by the user code in Fig. 2(a), the

prologue re-layouts the virtual memory with the new memory

size Q shown in Fig. 2(b). The memory size P requested by

the user code (e.g., malloc) and the actual allocated memory

size Q satisfy the following equation:

min Q = m+ P + 16 + 4n− P +m

s.t. (4n− P) > 0

m = 8s, s, n ∈ N
∗

(1)

To give an example, if the user requests 5 bytes of heap

memory using malloc(5), the existence of the prologue causes

the actual allocation of 40 bytes, of which 16 bytes are two

redzones (m = 8 by default), 16 bytes are auxiliary padding, 3

bytes are system padding, and 5 bytes are available to the user.

Assuming that the start address of the allocated 40 bytes is

4
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0x804b008, the epilogue sets the return address to 0x804b010

before the malloc returns.

4� − P bytes4� − P bytes Q bytes

low
address

low
address

P bytes

left redzone

user request

auxiliary padding

system padding

right redzone

P bytes

16 bytes

� bytes

� bytes

user request

system padding

low
address unaddressable

uninitialized
or

defined

readable

unaddressable

unaddressable

(a) Memory layout of the original 
allocation-related library functions

(b) Memory layout of the new allocation-
related library functions with epilogues

(c) Illustration of marking memory 
areas with different states

Fig. 2. Memory layout and corresponding accessible states of the allocation-
related standard library functions.

3) Memory Detectors: Memory detectors must track the

memory usage states to detect memory vulnerabilities.

EM-Fuzz uses memory shadowing to mark the state of each

heap memory byte. The memory shadowing of each byte can

only be one of the following four items at a certain time:

• unaddressable: illegal heap memory that is not allowed

to be accessed by programs within the firmware.

• uninitialized: addressable heap memory that has been

allocated but has not been written.

• defined: addressable heap memory that has been allocated

and has been written.

• readable: addressable heap memory that is only readable

in the string processing library functions.

Fig. 2(b) and Fig. 2(c) illustrate the correspondence between

different heap memory regions and memory shadowing. Un-

addressable memory region includes not only the redzone and

the system padding, but also other memory addresses that are

not allocated. Memory region that satisfies the size of the user

code request can be either uninitialized or defined, depending

on whether the user code assigns values to them. The auxiliary

padding region is marked as readable, which is only usable in

string processing library functions.

TABLE I
HEAP MEMORY VULNERABILITY SUPPORTED BY EM-Fuzz

Memory detectors Implementation principle

buffer overflow
write to the system padding, auxiliary padding and right
redzone regions marked as unaddressable or readable state

buffer over-read
read from the system padding, auxiliary padding and right
redzone regions marked as unaddressable state

buffer underflow write to the left redzone marked as unaddressable state

buffer under-read read from the left redzone marked as unaddressable state

double free
mark the freed memory address for the first time, then
monitor the second free calling of the same address

use-after-free
mark the freed memory address for the first time, then
access address marked as the uninitialized or defined state

wild free
judge whether the address to be freed is the start address
of the heap memory

uninitialized access access memory address with the uninitialized shadowing

read invalid memory read from memory address marked as the unaddressable state

memory leak
hook the exit system call, reports the address and size of
the memory that are not in the unaddressable state

Table I lists ten common types of heap memory vulner-

abilities supported by EM-Fuzz for checking. Each type of

vulnerability corresponds to one memory detector in EM-Fuzz,

as shown in Column 1. Column 2 explains the simple imple-

mentation principle in EM-Fuzz. For example, buffer overflow

means writing data to an adjacent memory location that

overruns the buffer’s boundary. EM-Fuzz detects this behavior

by determining whether instructions write data to the system

padding, auxiliary padding, and right redzone regions marked

as the unaddressable or readable state. The memory leak

detector is a bit special, it hooks the exit system call and

counts memory bytes that are not in the unaddressable state.

If there is no readable state, reading data from heap memory

in the string handling functions is often accompanied by the

buffer over-read false positive. Taking the strlen function as an

example, in order to improve efficiency, it may not read the

character from heap memory byte by byte and determine if

there is a terminator ‘\0’. Different implementation versions

of the strlen function can read one word, double words, or

even 16 bytes (using the SSE instruction set) at a time, find the

terminator from the front to back and return the string length.

To eliminate this type of false positives, we used auxiliary

padding marked as “readable” to filter out buffer over-reads

occurring in the string processing library functions.

B. Guided Fuzzing

The overall procedure of the additional memory sensitive

operation guided fuzzing is presented in Algorithm 1. Lines

1–17 are the main pseudocode implementation that will con-

tinuously execute until the timeout is reached or the fuzzing

is aborted purposely, where improvements to existing fuzzers

are specifically marked by gray boxes. The optimization is de-

signed to more easily explore hard-to-reach deep paths without

losing the breadth of path exploration and give fragile code

areas more opportunities for exhausted memory checking. The

details of each step are described below.

Algorithm 1: Memory sensitive fuzzing algorithm

Input: S: initial seed set
Output: I: test input queue that participates in mutation
Output: D: test input queue that makes firmware crash

1 Function DualGuidedFuzzing():

2 I = S, D = ∅

3 while !isTimeout do

4 seed = ChooseSeed(I) //branch frequency based skip rule

5 recordedMemoryOps = getRecordedMemoryOps(seed)

6
energy = CalculateMutation(seed, recordedMemoryOps)
//consider memory sensitive operations and selected frequency

7 rareBranchFlag = IsHitRareBranch(seed)

8 memSensitiveFlag = IsMemSensitiveBranch(seed)

9 for i from 1 to energy do

10 if rareBranchFlag or memSensitiveFlag then

11
mutatedCase = RestrictedMutation(i, seed)
//keep fixed offsets of the selected seed immutable

12 else

13 mutatedCase = RandomMutation(seed)
14 end

15 ProcessExecute(mutatedCase)
16 end

17 end

18 End Function

1) Fuzzing Controller: As the basis of the entire fuzzing

process, fuzzing controller receives feedback after executing

each test case derived from the mutation stage, including
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branch coverage and memory sensitive operations. It keeps

track of each branch that has been discovered and records

which test cases have covered the branch. Meanwhile, it is

responsible for updating the global threshold used to dynam-

ically separate common and rare branches. It also records

which memory sensitive operations (e.g., malloc, free) are

included in the execution trace of each test case. These

information provides sufficient support for subsequent seed

selection, energy assignment, and seed mutation.

2) Seed Selector: To cover hard-to-reach branches faster

and earlier, EM-Fuzz uses the seed skip principle based on

branch frequency to select seeds for mutation, which effec-

tively solves the problem that existing fuzzers [5], [6], [10]

may leave some hard-to-cover branches late or not discovered.

We use the term hit count to indicate the number of times

that a branch has been executed. EM-Fuzz initially performs

one round of mutation on each seed of the input queue I
to get the map M recording the hit count of each branch,

and to acquire all observed branches set B. Each time a newly

generated seed is executed, the values of M and B are updated.

Let n be the number of branches in seed S ∈ I , bj be the jth

branch, and mb represent the branch with the minimum hit

count. We use formula (2) to represent the probability that

seed S will be skipped based on the execution frequency of

each branch, where γ is a balanced constant.

P (S) =

(

1−
M−1 (mb)

∑n

j=1 M
−1 (bj)

)

· γ (2)

From the above formula, we know that seeds that execute

rare branches have a lower probability of being skipped. It

ensures that hard-to-reach regions that have been observed can

still be more easily covered. However, it also gives the seeds

that are not preferred in other fuzzers a certain probability of

being selected, which increases the chance to cover other hard-

to-reach regions that have not been seen before. In a similar

way, we can increase the skipping probability of seeds that

cover fewer memory sensitive operations.

3) Seed Mutator: This step consists of two phases: calcu-

late mutation energy and apply mutation strategy. They directly

determine when EM-Fuzz can achieve the maximum branch

coverage and how many vulnerabilities can be detected.

Mutation energy. EM-Fuzz takes the branch hit count and

the number of memory sensitive operations into account to

give different seeds the appropriate mutation energy on the

basis of AFLFast [6]. The firmware emulator in EM-Fuzz is

implemented with the function of memory checking instru-

mentation. During processing each test case, it records several

categories of memory sensitive operations, including allocation

functions (e.g., malloc, calloc), movement functions (e.g.,

memmove, strcpy), comparison functions (e.g., strcmp, memcmp),

release function (e.g., free), etc., which are library functions

easy to cause vulnerabilities.

Let c (S) denote the number of times that the seed S has

been chosen from the input queue I , f (S) represent the

number of fragile library functions in the execution trace of

the seed S , mb be the branch with minimum hit count among

the branches covered by seed S and M(mb) be its hit count.

The new mutation energy E is computed as the formula (3):

E = min

(

Eo
α

·
2c(S) ·max (1, f (S))

M (mb)
,U

)

(3)

where α > 1 is a constant that balances the relationship

between original AFL’s energy Eo and new EM-Fuzz’s energy

E , U is an upper bound on the number of mutations. It

improves AFLFast’s exponential energy allocation strategy by

additionally considering memory sensitive operations, which

increases the frequency of testing fragile code regions.

Mutation strategy. Drawing on the partial ideas of FairFuzz

and in combination with our proposed seed selection strategy,

EM-Fuzz applies different mutation strategies to different

seeds, where the restricted mutation strategy and the random

mutation strategy. Line 7 in Algorithm 1 first determines

whether the selected seed S covers rare branches. If so,

it performs the restricted mutation that continues to cover

hard-to-reach or memory sensitive branches. Otherwise, it

performs the random mutation that covers a wider range of

new branches. Let min_hit denote the minimum hit count

for all branches in B. As new test cases are executed, the hit

count of each branch also continues to increase, and only the

branches b ∈ B with the hit count M (b) that satisfy formula

(4) belong to rare branch rb.

M (b) < rarity_cutoff (4)

where rarity_cutoff is the threshold separating common and

rare branches, and its real-time value is 2⌈log2min_hint⌉.

If the selected seed hits a rare branch or a memory sensitive

branch, EM-Fuzz applies the restricted mutation strategy. It

first determines which fixed offsets of the selected seeds should

remain unchanged. Therefore, EM-Fuzz performs a round of

mutations on each byte of the seed S by trying three types

of operations: insertion, deletion, and replacement. If any

mutation operation on the fixed offsets makes newly obtained

test cases no longer hit the same rare branch as the original

seed S , then these fixed offsets belong to immutable key bytes,

and vice versa. These immutable bytes will remain unchanged

during the restricted mutation strategy, and EM-Fuzz performs

random mutation strategy on other offsets of the seed based

on the assigned mutation energy. For the selected seed that

does not hit a rare branch or a memory sensitive branch,

EM-Fuzz follows the original random mutation strategy of

AFL to increase the probability of finding new branches.

4) Process Execution: When executing each test case,

EM-Fuzz determines whether it causes the firmware to crash

or corrupt. If so, EM-Fuzz adds such test case to the defect

queue D, otherwise, it measures whether an interesting branch

ib is hit. One of the following two conditions makes a seed

interesting: 1) exercise a new branch that is not observed in the

previous branch set B, presented as ib /∈ B. 2) the number of

times that branch ib is executed by test case T is significantly

different from the number of executions by previous any test

case T ′ in input queue I , formulated as

∀T ′ ∈ I, ⌊log2(HS(T , ib))⌋ 6= ⌊log2(HS(T ′, ib))⌋ (5)

where HS(T , ib) represents the number of times that branch ib
is exercised by the test input T , ⌊log2(·)⌋ is the floor function

of the logarithm to the base of two.
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IV. IMPLEMENTATION AND EVALUATION

EM-Fuzz’s firmware emulator is augmented with memory

checking instrumentation based on the QEMU emulation plat-

form [11]. It mainly enhances the original QEMU in three

parts to achieve dynamic runtime instrumentation. First, when

QEMU starts to run a firmware binary, it loads shared mem-

orys to record branch coverage information and the number

of memory sensitive operations. Then, before each translation

block is executed, it instruments a value to uniquely identify

each translation block similar to AFL [5]. Therefore, when a

test case is processed, the transition relationship between two

contiguous translation blocks and the memory sensitive oper-

ation information can be updated to the corresponding shared

memory. Finally, when a memory-related library function call

is encountered during the execution of translation blocks, it

wraps the original library function and sets the appropriate

memory shadowing as described in Section III-A2. If memory

write/read instructions to heap addresses are encountered, it

calls back ten types of memory detectors embedded in the

enhanced QEMU to detect heap memory defects.

The augmented QEMU emulator works together with the

guided fuzzing module. Both of them are controlled by the

synchronous controller that is built on top of AFL [5]. To

reduce the impact of low throughput on firmware fuzzing,

we depend on the vital feedback from memory checking

instrumentation to get the memory-sensitive operations of the

closed-source firmware, and strengthen three functions of the

original AFL: allow each seed in the queue I to participate

in mutation according to the seed skipping principle, assign

mutation energy based on branch hit count and memory

sensitive operations, and apply appropriate mutation strategies

for different selected seeds.

We evaluate whether EM-Fuzz is able to address the bottle-

necks in testing real-world embedded firmware and efficiently

discover multiple types of vulnerabilities. We would like to

answer the following three research questions:

• RQ1: Efficiency in branch discovery. Is EM-Fuzz efficient

in improving branch coverage of firmware?

• RQ2: Effectiveness in vulnerability exposure. Is EM-Fuzz

effective in exposing multiple types of vulnerabilities?

• RQ3: Performance of memory detectors. What perfor-

mance can the detectors of EM-Fuzz achieve against

cross-architectures firmware?

A. Experiments Setup

We evaluate the performance of EM-Fuzz on six embedded

programs, including the ones that were also studied in other

works [6], [12]. They were from two types of embedded

device firmware as listed in Table II. The first type was

protocol programs (ICCP [13], IEC104 [14], and IEC61850

[15]) extracted from substation automation devices responsible

for time-critical information exchange between the control

center and remote terminal units (RTUs) in the power in-

dustry. The second type contains three widely-used programs

(security communication toolkit OpenSSL, data processing

libraries HTSlib and MXML) extracted from the OpenWRT

router firmware. We compare EM-Fuzz with two state-of-the-

art fuzzers to answer RQ1 and RQ2, including AFL [5], and

AFLFast [6]. RQ3 is responded by comparing with the widely-

used binary memory detector Dr. Memory [8].

TABLE II
EMBEDDED PROGRAMS EXTRACTED FROM REAL-WORLD FIRMWARE FOR

EXPERIMENTAL EVALUATION

Program Firmware Type Version Architecture

ICCP Substation automation
system (SAS)

V1.5 X86
IEC104 V1.0.0 X86

IEC61850 V1.3.1 ARM32

OpenSSL
Router

V1.0.1b
ARM32HTSlib V1.8

MXML V2.12

We run the experiments on a 64-bit machine with 36 cores

(Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz), 128GB

of main memory, and Ubuntu 16.04.6 LTS as the host OS.

For each tool, we run each firmware program ten times for

24 hours. We repeat each program ten times with the same

seed file to reduce the randomness of fuzzing. The results

reported in subsequent experiments are summarized after ten

independent runs for each target tested.

B. Efficiency in Branch Discovery

Here we answer the RQ1 about what coverage EM-Fuzz

can achieve within the limited time. We chose the number of

branches covered by the 24-hour fuzzing as a guideline for

evaluating the efficiency. Fig. 3 depicts the trend of branch

discovery, indicating the total number of branch tuples found

by each tool on average at each time point over ten 24-hour

runs. On all fuzzed programs, EM-Fuzz eventually achieves a

higher number of branches covered, with the EM-Fuzz curve

above the other curves in Fig. 3. EM-Fuzz covers an average of

3,386 branches on all six firmware programs, which is 93.98%

and 46.89% more than that of AFL and AFLFast, respectively.

For the specific OpenSSL program, EM-Fuzz covers as

many as 7,862 branches, which is 1.78× more than AFL

and 0.49× more than AFLFast. We can also see that the

curves of AFL and AFLFast on four programs eventually

become stable and no longer increase, which is referred to as

“saturation”. Excluding the OpenSSL and MXML programs,

AFL saturates after approximately 5 hours of fuzzing on the

other 4 programs. Excluding the IEC104, OpenSSL and HT-

Slib programs, AFLFast reaches saturation at approximately

16 hours. However, EM-Fuzz still presents a trend toward an

increase in the number of branches covered on all programs in

the 24-hour fuzzing. The reason is that the mutation strategy of

EM-Fuzz moves toward the earlier coverage of rare branches,

making it easier to explore deeper program paths in a short

period of time. For the IEC61850 protocol program, its valid

input may contain several specific fields, in which different

fields match different application functions, and EM-Fuzz

generates more interesting test inputs to cover a series of

branches corresponding to these functions. The experiment

results imply EM-Fuzz’s excellence not only in the number

of branch discovery but also in the speed boost.
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(a) ICCP protocol program (b) IEC104 protocol program

(c) IEC61850 protocol program (d) OpenSSL program

(e) HTSlib library (f) MXML utilities

Fig. 3. Number of branches covered by contrast tools averaged over 10 runs.

The ICCP and IEC104 protocal programs showed less

improvement in branch coverage than that of the other four

programs. Two reasons contributed to this situation. First,

we conducted the reverse analysis of the binary of the six

programs, and found that the size of these two programs was

smaller, and the number of branches was significantly less

than the other four programs. Therefore, even a small increase

in branch coverage is not trivial. And the prior study [16]

showed that even small increases in branch coverage can

obtain more defects finding capability after a certain amount

of coverage is achieved. Second, as time progresses, rare

branches gradually became common branches and the number

of other rare branches rediscovered was inadequate. Therefore,

EM-Fuzz’s mutation strategy cannot give full play to its value.

C. Effectiveness in Vulnerability Exposure

Here we answer the RQ2 and focus on whether EM-Fuzz

can expose multiple types of vulnerabilities in firmware effec-

tively. We choose the number and time for illustration.

1) Total Number of Vulnerabilities: The ability to expose

vulnerabilities is an important indicator of fuzzers. Therefore,

we count the number of vulnerabilities that have been con-

firmed officially, including reproducing existing known vul-

nerabilities and discovering previously unknown ones. After

running each program ten times with each tool, we fill the

total number of officially confirmed vulnerabilities discovered

by each tool into Table III. Column 1 refers to the firmware

names. Column 2 represents the identifier information for

each vulnerability, where ‘CVE-XXX’ means that the vul-

nerabilities have been officially confirmed and assigned with

the unique CVE identifier in the U.S. national vulnerability

database [17], and ‘Bug-XXX’ means that the vulnerabilities

have been reported the corresponding product vendors and

officially confirmed, the previously unknown vulnerabilities

are marked with ⋆. Columns 3, 5, and 7 indicate whether the

three tools in comparison expose each vulnerability, and if

so, the corresponding cell is filled with the check mark (X);

otherwise, it is empty.

From Table III, we can see that EM-Fuzz discovers a total

of 23 vulnerabilities, which are 16 and 13 more than AFL and

AFLFast, respectively. The 16 of the 23 vulnerabilities found

by EM-Fuzz are previously unknown. The two compared tools

together found only 6 of the 16 previously unknown vulnera-

bilities. Among the four vulnerabilities in the ICCP protocol

program, AFL and AFLFast only found one segmentation fault

vulnerability (shortened to SIGSEGV). A similar situation also

exists for the IEC104 protocol program. The improvement

is mainly brought by the real-time memory checker and

the memory sensitive operation information acquired by the

extra memory instrumentation. It can not only expose those

vulnerabilities that would not result in crashes, but also helps

to learn the energy of test input and generate test inputs that

explore deeper and fragile program regions more often. For

example, neither AFL nor AFLFast exposes the SIGSEGV

vulnerability identified by Bug-2019-0921 in the IEC104 pro-

tocol program. Likewise, they found no vulnerabilities in the

HTSlib library that accesses high-throughput sequencing data

in ten runs. These show that EM-Fuzz has a better ability to

detect vulnerabilities in embedded firmware.

2) Types of Vulnerabilities Found: We analyze the ability

of each tool to expose each type of vulnerability. Table IV

lists the statistical results, where each vulnerability belongs to

only one specific type and is not shared with other types. From

Table IV, we can see that EM-Fuzz performs better in reporting

the number of vulnerabilities in each category. The first six

types of vulnerabilities discovered by EM-Fuzz accounts for

12 of a total of 23 vulnerabilities, with a ratio of 52.17%.

Neither AFL nor AFLFast can report any vulnerabilities re-

lated to heap out-of-bounds access. After analyzing these 12

vulnerabilities, we find that seven of them only slightly cross

the corresponding heap boundary. It is not enough to cause the

firmware to crash, so AFL and AFLFast can not expose them.

With the implemented heap memory detectors, EM-Fuzz can

accurately report heap memory issues in firmware programs.

Aside from heap memory vulnerabilities, we focus on the

last three types of vulnerabilities in Table IV. As they would

easily result in crashes, each tool in the comparison performs

well. AFL and AFLFast expose 7 and 10 vulnerabilities,

reaching only 63.64% and 90.91% of these three types of

vulnerabilities that are found by EM-Fuzz, respectively. The

reason is similar to the previous illustration that EM-Fuzz

applies the optimized fuzzing strategy for firmware. The

traditional branch and the additional memory sensitive oper-

ation information guide the fuzzing to more easily explore

hard-to-reach deep paths, and give fragile code areas more

opportunities for exhaustive fuzzing. These statistics show that

the traditional fuzzing approaches perform well in detecting
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TABLE III
LIST OF VULNERABILITIES FOUND BY EACH TOOL WITHIN 24 HOURS

Program Identifier Type
AFL AFLFast EM-Fuzz

Found(?) Time(h) Found(?) Time(h) Found(?) Time(h)

ICCP

Bug-2019-0923⋆ segmentation fault X 8 X 7 X 6
Bug-2019-0925⋆ wild free X 5
Bug-2019-0928⋆ buffer over-read X 2
Bug-2019-1003⋆ buffer overflow X 12

IEC104

Bug-2019-0912⋆ buffer over-read X 5
Bug-2019-0915⋆ stack overflow X 16 X 10
Bug-2019-0918⋆ segmentation fault X 4 X 4 X 5
Bug-2019-0921⋆ segmentation fault X 8 X 6

IEC61850

CVE-2018-18834 buffer overflow X 3
CVE-2018-18937 NULL pointer dereference X 10 X 9 X 7
CVE-2018-19093 segmentation fault X 15 X 14 X 11
CVE-2018-19185 buffer overflow X 2
CVE-2018-19121 segmentation fault X 22 X 17 X 8
CVE-2018-19122 NULL pointer dereference X 21 X 13
CVE-2019-6136⋆ segmentation fault X 13

OpenSSL
CVE-2016-2108 buffer underflow X 13
Bug-2019-0824⋆ stack overflow X 6 X 5 X 5

HTSlib
CVE-2018-13843⋆ memory leak X 7
CVE-2018-13844⋆ memory leak X 8
CVE-2018-13845⋆ buffer over-read X 5

MXML
CVE-2018-19764⋆ stack overflow X 19 X 7 X 3
CVE-2018-20004⋆ use-after-free X 6
CVE-2018-20005⋆ memory leak X 5

Total 7 - 10 - 23 -

* Previously unknown vulnerabilities are marked with ⋆. Vulnerabilities found by each tool over ten 24-hour runs are marked with X.

TABLE IV
THE NUMBER OF EACH TYPE OF VULNERABILITIES FOUND BY THE

CONTRAST TOOLS ON THE SIX FIRMWARE PROGRAMS

Catagory AFL AFLFast EM-Fuzz

buffer overflow 0 0 3
buffer underflow 0 0 1
buffer over-read 0 0 3

wild free 0 0 1
use after free 0 0 1
memory leak 0 0 3

NULL pointer dereference 1 2 2
stack overflow 2 3 3

segmentation fault 4 5 6

Total 7 10 23

vulnerabilities that cause the target to crash. In contrast, with

real-time memory checking of EM-Fuzz, we can detect more

vulnerabilities in embedded firmware.

3) Time of Vulnerability Discovery: Although EM-Fuzz can

cover more branches faster and find more vulnerabilities, we

want to know how long it takes to expose a vulnerability.

Columns ‘Time’ in Table III lists the minimum time at which

the three tools in comparison expose each vulnerability in ten

runs. The empty cell indicates that the corresponding tool

does not find the vulnerability in ten 24-hour experiments.

We can see that it took EM-Fuzz 13 hours to expose all 23

vulnerabilities, of which 17 of the 23 vulnerabilities could be

exposed within 10 hours. On the whole, AFL and AFFLFast

require 1.71× and 1.54× more time on average than EM-Fuzz

to expose vulnerabilities, respectively. For example, AFL re-

quires 22 hours to expose the CVE-2018-19121 vulnerability,

and AFLFast requires 21 hours to expose the CVE-2018-

19122 vulnerability. In contrast, the CVE-2018-19185 vulner-

ability in the IEC61850 protocol program can be reported by

EM-Fuzz in 2 hours.

4) EM-Fuzz’s Time Overhead: In the same running en-

vironment, we selected four open-source projects (Coreutils

[18], libpng [19], zlib [20], yaml-cpp [21]) that were also

studied in other works [6], [12] to evaluate the time overhead

introduced by EM-Fuzz. Using the QEMU emulator without

memory checking instrumentation to run these projects costs

about 3–5× more than running them directly on the native

processor. When the memory checking instrumentation is

turned on, the time cost will increase by an average of 1.5×
again to 4.5–6.5×.

D. Performance of Memory Detectors

We answer the RQ3 about whether EM-Fuzz can accurately

detect heap memory vulnerabilities against diverse architec-

ture firmware in a unified test environment. To illustrate the

accurateness and versatility, we compare EM-Fuzz’s memory

checker module with the state-of-the-art memory checker Dr.

Memory [8], both of which run on the server with the X64

architecture as described in Section IV-A. Since Dr. memory

does not have the ability to generate test cases automatically,

we save all test cases derived from the fuzzing phase of

EM-Fuzz. When using Dr. memory to test firmware, these

test cases are input in turn. Because the main ability of Dr.

Memory is to detect heap memory vulnerabilities, therefore,

for a better and fairer comparison with Dr. Memory, only heap

memory vulnerabilities are counted here. All detected heap

memory vulnerabilities are summarized and deduplicated, and

the results are listed in Table V.

EM-Fuzz can detect 12 heap memory vulnerabilities on

all six firmware programs, while Dr. Memory can only de-

tect 4 heap memory vulnerabilities on X86-based programs.

EM-Fuzz, like the well-known memory checker Dr. Memory,

accurately detects 3 and 1 heap memory vulnerabilities in

ICCP and IEC104 programs, respectively. This implies that
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TABLE V
NUMBER OF HEAP MEMORY VULNERABILITIES DETECTED

Program Dr. MemoryEM−Fuzz EM-Fuzz

ICCP 3 3
IEC104 1 1

IEC61850 - 2
OpenSSL - 1
HTSlib - 3
MXML - 2

Total 4 12

EM-Fuzz can accurately identify heap memory vulnerabilities

in firmware. The reason Dr. Memory cannot work on the

other four programs is that DynamoRIO [22], its instru-

mentation framework, also requires running on the ARM-

based machine to detect ARM architecture firmware. Different

from it, EM-Fuzz can use a unified test environment, such

as on the X86 machine, to detect the memory vulnerability

of multi-architecture firmware by using the emulator imple-

mented with memory checking instrumentation. This feature

makes EM-Fuzz more efficient and practical, which can use

resource-rich servers to fuzz cross-architecture firmware and

additionally expose memory vulnerabilities hidden in them.

E. Real Vulnerability Case Study

During the experiment, EM-Fuzz exposes two serious vul-

nerabilities that can easily cause denial-of-service (DoS),

CVE-2016-2108 on OpenSSL and Bug-2019-0921 on IEC104.

Taking the CVE-2016-2108 vulnerability as an example, its

CVSS (Common Vulnerability Scoring System) score [23]

is the highest of 10.0, meaning it is a vulnerability prone

to catastrophic consequences. Consider the test input shown

in Fig. 4, which is the data object description structure that

follows the Abstract Syntax Notation One standard (ASN.1).

In order to implement network communication, the ASN.1

parser asn1parse encodes the left data structure of Fig. 4

into the serialized binary stream based on specific encoding

rules, such as DER, PEM. As shown in the code snippet of

Fig. 4, existing fuzzers have difficulty generating test inputs

to trigger the branch condition of Line 422 that contains the

vulnerability implementation. When the parser deserializes the

binary stream, if the value of the INTEGER type is ‘0x-

0’, the parser produces a buffer underflow with an out-of-

bounds write in the i2c_ASN1_INTEGER function. The immediate

consequence of buffer underflow is that the chunk field of

the allocated heap is inadvertently modified, which causes the

parser to crash when releasing the corrupted heap memory.

The deserialization and serialization process allows remote

attackers to corrupt memory, indirectly leading to a denial-

of-service vulnerability.

Only EM-Fuzz has ever reproduced the high-risk vulnera-

bility during the experiment. With EM-Fuzz’s fuzzing strategy,

it is easier to generate well-formed test inputs and assign

such test inputs more mutation energy, which increases the

probability that other contents except ‘0x-0’ are correct. It

will keep “sequence" and “INTEGER” immutable; otherwise,

the parsing logic will enter the error handling branch.

asn1=SEQUENCE:a
[a]
=INTEGER:0x-0

asn1=SEQUENCQ:a
[a]
=INTEGER:0x-0

Correct Syntax Wrong Syntax

422    if (BN_is_negative(bn)) //Vulnerability snippet in i2c_ASN1_INTEGER
423       ret->type = V_ASN1_NEG_INTEGER;
424    else
425       ret->type = V_ASN1_INTEGER; 

Fig. 4. Examples of data object description structures to trigger the crash and
the corresponding vulnerable code snippet in OpenSSL.

V. DISCUSSION

In this section, we discuss the limitations of EM-Fuzz and

indicate future research efforts. The first possible threat is

the type of vulnerability EM-Fuzz can discover. Although

EM-Fuzz has integrated the efficient greybox fuzzing and the

memory checking to augment the capability of vulnerability

discovery on the embedded firmware, it mainly focuses on

finding the following categories of vulnerabilities in firmware,

including program crashes, execution timeouts, silent memory

corruptions, and some logical bugs (e.g., an infinite loop).

However, EM-Fuzz does not show sufficient superiority to

web security-related vulnerabilities in firmware, such as XSS

and command injection. The main reason is that the current

implementation does not include suitable monitors to identify

such vulnerabilities that usually do not cause crashes. A

feasible solution is to set up a proxy-based server in the local

network to determine whether the monitor server is accessed

by the firmware, and thus identifying XSS and command

injection vulnerabilities [3].

Another threat is that fuzzinging may fall into a state where

branch coverage is saturated, even though we have proposed

several optimized fuzzing strategies for embedded firmware

to better balance the depth and breadth of branch discovery.

However, as the fuzzing time progresses, there may be some

special filtering mechanisms in the firmware code (e.g., CRC

checksum and hash mapping) causing the fuzzing stuck. That

means it needs to take lots of efforts to discover new branches.

When no new branch is found after the threshold is exceeded,

a feasible solution is to use symbolic execution to generate test

cases to bypass certain branches that are difficult to cover [24].

VI. RELATED WORK

A. Binary Fuzzing Techniques

Black-box [2], [25], [26] and greybox [5], [6], [10], [12],

[27], [28], [29] techniques play a dominant role in the field

of binary fuzzing when the source code is not available.

Mutation-based black-box fuzzers [25], [26] mutate the cor-

responding proportion of bits within the test inputs according

to the specified fuzzer ratio. SymFuzz [26] adaptively sets

the fuzzer ratio by determining dependencies between the

execution trace and the bit positions of a test input. Generation-

based black-box fuzzers [2] generate inputs from scratch based
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on specifications. Peach [2] relies on the predefined data

model that describes the input data format and state model

that describes specific test input generation strategies to guide

the fuzzing. The limitation of black-box fuzzing techniques is

that the test input generation process lacks feedback from the

program execution trace and results in low code coverage.

The greybox fuzzing techniques collect code coverage in-

formation, which directly affects the seed set involved in the

mutation process. AFL [5] is the representative of many such

techniques, which continually generate test inputs through

deterministic and random mutations. AFLFast [6] optimizes

AFL’s strategy of selecting the next seed for mutation, where

it preferentially mutates the seeds covering the low-frequency

path. Similar to AFLFast, AFLGo [30] implements a simulated

annealing-based power schedule, which helps to fuzz some

target areas in the target binary. FairFuzz [10] modifies the

mutation algorithm of AFL. It purposefully mutates specific

bytes of selected seeds in both the deterministic and random

mutation stages. PAFL [31] utilizes efficient guiding infor-

mation synchronization and task division to extend existing

fuzzing optimizations [6], [10] of single mode to industrial

parallel mode. Combining fuzzing techniques with symbolic

execution or program analysis [24], [32], [33] is another im-

provement in the field of greybox binary testing. For example,

Driller [24] uses fuzzing to explore program paths under test

most of the time. However, when the fuzzing becomes stuck, it

uses concolic execution to generate new inputs for conditions

that the fuzzer can not satisfy. However, these greybox fuzzing

techniques are applicable to desktop binaries with a specific

hardware architecture, and their usability and efficiency in

embedded firmware are greatly reduced without the instru-

mentation to support the memory checker for vulnerabilities

that would not result in crash.

B. Binary Memory Checking

Memory vulnerability checking is an important means of

ensuring binary security. Common binary memory checking

tools rely on different stages (e.g., compile-time, link-time,

and runtime) of instrumentation to insert detection logic.

Purify [34] is one of the first commercial memory inspection

tools, relying on link-time instrumentation to detect use after

free and memory leak vulnerabilities. MemCheck [7] is the

most widely used tool for checking memory vulnerabilities. It

implements memory checking on the Valgrind [35] dynamic

instrumentation platform by first converting binary instructions

into the VEX [35] intermediate representation (VEX-IR), then

inserting detection algorithms on the VEX-IR, and finally

converting them back to the binary instructions. Based on

the DynamoRIO [22] instrumentation framework, Dr. memory

[8] uses the code cache mechanism to support heap-based

memory checking for binaries running on multiple operating

systems. Parallel Inspector [36] is a memory and threading

error debugger built on the Pin [37] dynamic instrumentation

framework for the IA-32, x86-64 and MIC instruction set

architectures. The above tools are workable on the premise that

they can be installed in the same running environment (e.g.,

same CPU architecture) as the binary under test. Furthermore,

those tools depend on extra test cases to trigger the execution

and analysis procedure.

VII. CONCLUSION

In this paper, we present EM-Fuzz, an augmented fuzzing

technique via memory checking to enhance vulnerability

discovery capabilities on embedded firmware. Based on the

dynamic instrumentation, we can insert multiple vulnerability

checkers to detect those vulnerabilities that would not crash the

system, and collect the sensitive memory operations to guard

the fuzzer to generate more high-quality test cases and perform

exhaustive memory checking on those fragile code regions.

The experimental results on real-world embedded firmware

manifest EM-Fuzz ’s excellence not only in the number of

vulnerability discovery but also in the speed boost. It has

exposed 23 security vulnerabilities, 16 of which are newly

discovered previously unknown vulnerabilities. In the future,

we plan to extend EM-Fuzz by supporting more architectures

and integrating more checkers for memory security threats.
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