
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. The final version of record is available at http://dx.doi.org/10.1109/TCAD.2020.3013050

Fusion-Catalyzed Pruning for Optimizing Deep
Learning on Intelligent Edge Devices
Guangli Li, Xiu Ma, Xueying Wang, Lei Liu, Jingling Xue, and Xiaobing Feng

Abstract—The increasing computational cost of deep neural
network models limits the applicability of intelligent applications
on resource-constrained edge devices. While a number of neural
network pruning methods have been proposed to compress the
models, prevailing approaches focus only on parametric operators
(e.g., convolution), which may miss optimization opportunities.
In this paper, we present a novel fusion-catalyzed pruning
approach, called FUPRUNER, which simultaneously optimizes
the parametric and non-parametric operators for accelerating
neural networks. We introduce an aggressive fusion method to
equivalently transform a model, which extends the optimization
space of pruning and enables non-parametric operators to be
pruned in a similar manner as parametric operators, and a
dynamic filter pruning method is applied to decrease the compu-
tational cost of models while retaining the accuracy requirement.
Moreover, FUPRUNER provides configurable optimization options
for controlling fusion and pruning, allowing much more flexible
performance-accuracy trade-offs to be made. Evaluation with
state-of-the-art residual neural networks on five representative
intelligent edge platforms, Jetson TX2, Jetson Nano, Edge TPU,
NCS, and NCS2, demonstrates the effectiveness of our approach,
which can accelerate the inference of models on CIFAR-10 and
ImageNet datasets.

Index Terms—Deep learning system, edge intelligence, neural
networks, model compression and acceleration.

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved remarkable
performance in various intelligence tasks, such as object

recognition [1], and become increasingly popular in mobile
and embedded platforms [2]. However, the inference of neural
networks, i.e., obtaining the predicted result by a pre-trained
model with a given input is a computation-intensive task,
performed cumbersomely on edge devices, which is limited
by the tight resource constraints, including processor, energy
and memory. Despite the fact that the inference procedure
can be performed in the cloud, i.e., computation of DNNs
can be offloaded to high-performance devices (e.g., cloud
servers), this approach is not suitable in several scenarios due

This work is supported by the National Key R&D Program of China
(2017YFB1003103), the Science Fund for Creative Research Groups of the
National Natural Science Foundation of China (61521092), and the Australian
Research Council Grants (DP170103956 and DP180104069). (Corresponding
author: Lei Liu.)

G. Li, X. Wang, L. Liu, and X. Feng are with the State Key Laboratory of
Computer Architecture, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China , and also with the University of Chinese
Academy of Sciences, Beijing 100190, China (email: liguangli@ict.ac.cn,
wangxueying@ict.ac.cn, liulei@ict.ac.cn, fxb@ict.ac.cn).

X. Ma is with the College of Computer Science and Technology, Jilin
University, Changchun 130012, China (email: maxiu18@mails.jlu.edu.cn).

J. Xue is with the School of Computer Science and Engineering, Uni-
versity of New South Wales, Sydney, NSW 2052, Australia (email: jin-
gling@cse.unsw.edu.au).

input

conv

conv

add

(a) Existing pruning methods. (b) FUPRUNER.

prune

input

conv*

add

input

conv

conv

add

prune

input

add

conv*

conv*

conv*

Fig. 1. Comparing optimized neural network operators in existing pruning
methods with FUPRUNER. The operator to be optimized is marked as the
yellow box while the pruned operator is marked as the green box. The pruned
operator reduces the number of parameters compared with the original one
and is marked with an “∗”. Especially, the element-wise addition operator has
been removed after pruning in FUPRUNER, as marked by the dashed gray box.

to the security concerns, real-time constraints, and unstable
network connectivity. As such, the technique for supporting
on-device inference has sparked an interest in both industry
and academia [3], [4]. On the one hand, several optimization
methods for compressing and accelerating neural networks,
such as pruning [5], have been proposed, which bring tol-
erable accuracy loss but decrease the cost of computation
and storage. On the other hand, developing intelligent edge
devices equipped with specialized hardware, such as Google
Tensor Processing Unit (TPU) [6] and Intel Neural Computer
Stick (NCS) [7], becomes an inevitable trend due to the
inefficiency of general-purpose hardware platforms (e.g., CPU)
for executing intelligent applications.

Neural network pruning is one of the effective ways to
optimize models by reducing redundant neurons and connec-
tions. Prior works on weight pruning [8]–[10] have succeeded
in achieving high sparsity as well as theoretically attractive
speedups. However, the non-structured schemes (i.e., irregular
sparsity) of pruned DNN operators are not implementation
friendly, which can hardly reach expected acceleration in real-
world applications. In contrast, filter pruning methods [11]–
[13], which selectively reduce unimportant filters, shrink a
model into a thinner one and achieve structured sparsity. As
such, the filter-level pruned models can adequately enjoy the
benefits of decreased convolution filters, providing realistic
performance improvements. For intelligent edge devices, their
run-time systems are usually closed-source or unmodifiable,
limiting the applicability of framework-dependent optimiza-
tions such as low-precision quantization [14]. In addition,
some of these optimizations also introduce extra computation
overheads. In contrast, the models optimized by filter pruning
will be independent from specific frameworks or libraries,
exhibiting better applicability and generality.

Nevertheless, the existing filter pruning methods [11]–

ar
X

iv
:2

01
0.

16
16

5v
2 

 [
cs

.N
E

] 
 2

9 
N

ov
 2

02
0

http://dx.doi.org/10.1109/TCAD.2020.3013050


2

[13] focus only on optimizing models by pruning parametric
operators such as convolution, as shown in Figure 1. The
non-parametric operators like an element-wise operation are
generally considered to be unimportant on the general-purpose
platforms such that they are rarely considered by neural
network pruning optimization, whereas it is a different story on
specialized intelligence platforms. In this paper, we analyze the
fine-gained operator-level performance of DNN models, rather
than end-to-end performance in previous studies [4], and find
that a non-parametric operator also plays an important role
when executed on the intelligent edge devices due to its time-
consuming process (Section III), which has, however, been
neglected before. To accelerate DNN models on intelligent
edge devices effectively, it is thus imperative to take the char-
acteristics of specialized intelligence hardware into account.

In this paper, we present FUPRUNER (Fusion-catalyzed
Pruner), a novel optimization approach that, unlike prior work,
prunes non-parametric and parametric operators simultane-
ously, aiming to accelerate the neural network inference on
intelligent edge devices with as little accuracy loss as possible.
The key idea is a new aggressive fusion scheme for enlarging
the optimization space for pruning, by transforming existing
operators and inserting auxiliary ones while preserving the
equivalence of neural network models, so that non-parametric
operators can be pruned in the same manner as parametric
operators. Moreover, FUPRUNER supports configurable opti-
mizations, including fusion option and pruning rate to enable
flexible trade-offs between the accuracy loss and inference
performance, making it possible to optimize models while
meeting the accuracy requirement. To the best of our knowl-
edge, FUPRUNER is the first neural network pruning approach
with the ability to prune non-parametric operators.

In summary, this paper makes the following contributions:
• We propose a novel fusion-catalyzed pruning approach,

namely FUPRUNER, to accelerate deep neural networks
on intelligent edge devices by pruning parametric and
non-parametric operators simultaneously.

• Our pruning technique facilitates flexible optimization
configurations, which allows users to optimize a model
in accordance with its requirements, thereby realizing
reasonable accuracy-performance trade-offs.

• We demonstrate the effectiveness and efficiency of
FUPRUNER by optimizing state-of-the-art deep neural
networks on CIFAR-10 and ImageNet datasets.

II. BACKGROUND AND RELATED WORK

In recent years, edge intelligence [2] has become more
and more popular, which benefits from the unprecedented
success of deep learning, making the research on efficient on-
device inference becomes an inevitable trend. In this section,
we first introduce the existing optimization technologies for
accelerating DNN models from the perspectives of software
down to hardware and then review the work most closely
related to this paper, namely, neural network pruning (Section
II-A) and operator fusion (Section II-B).
• Model Compression. Recent studies on model compression

techniques, including neural network pruning [5] and low-

precision quantization [14], modify neural networks by re-
ducing redundancy, thereby realizing inference acceleration.
In general, re-training processes are required for maintain-
ing the accuracy of optimized models. The optimized model
parameters are reconstructed from the original ones, and the
model compression can thus be regarded as an optimization
technique in the model design and development stage.

• Inference Frameworks. Existing deep learning frame-
works for on-device inference, including TensorFlow Lite
[15], PyTorch Mobile [16], NCNN [17], and MNN [18],
are equipped with the ability to analyze and optimize the
trained models by using system-level optimization (e.g.,
data layout selection, operator fusion and parallelization)
in the deployment stage. The major difference between
the optimizations in these inference frameworks and the
model compression is that the former usually focus only
on implementation without modifying the model itself.

• Specific Hardware. To solve the problem of inefficiency
on general-purpose hardware platform (e.g., CPU), many
intelligent edge devices with specialized hardware exist,
including Google Edge TPU [6], Intel NCS [7], NVIDIA
Jetson TX2 [19], and NVIDIA Jetson Nano [20]. In addi-
tion, several studies, such as VTA [21], deployed custom-
hardware designs based on FPGAs. While DNN models
can be deployed on these inteligent edge platforms by
specific runtime systems, which are usually closed-source
or unmodifiable, the model compression techniques can be
used to further optimize the inference performance.
Besides, there are several studies on the adaptive inference

for optimizing deep learning on embedded platforms, includ-
ing adaptive strategies for neural network inference [22]–[25]
and hardware/software co-design [26]–[28], which allow deep
neural networks to be configurable and executed dynamically
at runtime based on the resource constraints.

Our approach represents the first for model compression,
which essentially optimizes the DNN model by pruning and re-
training. Especially, we have designed an aggressive operator
fusion scheme to solve new problems in pruning domains and
our proposed approach is applied for accelerating models on
some specific hardware finally. The proposed approach has
two major advantages over the prior work. First, FUPRUNER
represents a framework-independent approach, increasing its
applicability in practice, as it requires neither special im-
plementations nor run-time system modifications. Second,
FUPRUNER does not incur any extra run-time overhead, make
it well suited to resource-constrained edge platforms.

A. Neural Network Pruning Methods

Unlike the early efforts on weight pruning methods [8]–[10]
that may cause the unstructured sparsity, filter pruning methods
shrink a DNN model into a thinner one by reducing the
redundant convolutional filters or channels, making structured
sparsity for optimized models to achieve realistic acceleration.
Li et al. [29] pruned unimportant filters with small `1-norm.
He et al. [12] performed a channel-level pruning based on
LASSO regression and least square reconstruction. Lou et al.
[11] selected the filter to be pruned according to the statistics



3

information. In addition to above studies on pruning filters
directly in an unrecoverable manner, recently, He et al. [13],
[30] proposed a “soft pruning manner” by dynamically pruning
filters during training, which enlarges the optimization space
and remains the model capacity, enabling the pruned filters
to be potentially recovered, thereby realizing higher accuracy.
Although the pruning methods are advocated in accelerating
models, the existing approaches focus only on parametric
operators (e.g., convolution). In this paper, our proposed
approach can prune non-parametric and parametric operators
simultaneously, leading to more efficiency for neural network
inference on intelligent edge devices. To the best of our
knowledge, FUPRUNER is the first pruning approach with the
ability of optimizing non-parametric operators.

B. Operator Fusion Techniques

In general, deep learning frameworks represent a neural
network architecture as a graph-based intermediate representa-
tion (IR) [31]–[33], known as a computation graph. Operator
fusion is a commonly used optimization [34], which fuses
two or more adjacent operators into a larger operator with
coarser granularity so that the overheads can be reduced as
well as the further low-level optimization can be facilitated.
For example, it can eliminate the intermediate results incurred
by executing a lot of fine-grained operators, reducing the over-
heads of data transformation and kernel invocation. Current
deep learning frameworks, including TensorRT [35], Tensor-
Flow [36], MXNet [37], and TVM [38], perform operator
fusion for a computation graph by using rule-based strategies
repetitively, by reducing gradually the number of operators
to be performed. Besides, Jia et al. proposed MetaFlow [39]
and TASO [40] to further explore the optimization space on
graph substitutions. The fusion rules are formally verified in
TASO, thereby achieving not only efficient but also correct
model optimizations at the system level. Currently, most of
the operator fusion techniques in the inference framework
are performed in the deployment stage, i.e., they are used to
optimize the models compressed in the development stage.
In this paper, we propose a new operator fusion scheme to
improve the pruning process from the perspective of model
compression, which enables FUPRUNER to optimize non-
parametric operators similarly as parametric operators.

III. MOTIVATION

A deep neural network model is composed of various
operators and different kinds of operators have different perfor-
mance characteristics due to different ways in which hardware
resources are used. Considering whether to utilize the training
process to learn the weights, the DNN operators can be
roughly divided into two categories: parametric operators and
non-parametric operators. On the one hand, for parametric
operators, the convolution operator (abbreviated as COP)
is arguably the most important component in contemporary
intelligent applications, which is utilized to perform feature
extraction. On the other hand, the non-parametric operators
that are mainly based on scalar calculation (abbreviated as
SOP), such as activation and element-wise addition, also

conv, 
57.07%

bn, 33.32%

add, 5.17%
relu, 2.22% others, 2.22%

(a) ARM CPU (b) Intel Xeon CPU

(c) Jetson Nano (d) Jetson TX2

conv, 
58.72%

bn, 31.32%

add, 5.25%
relu, 2.42% others, 2.29%

conv, 
95.71%

bn, 2.53%
add, 0.37% relu, 0.31%

others, 1.09%

conv, 
97.83%

bn, 1.37%
add, 0.22% relu, 0.18%

others, 0.40%

Fig. 2. The performance of the ResNet-18 model on different devices.
The model mainly consists of convolution (conv), batch normalization (bn),
element-wise addition (add), and ReLU activation (relu) operators.

provide indispensable functions. Neural network pruning is
a key optimization technique for edge intelligence, which
accelerates the inference by decreasing the computational cost
of operators. However, existing pruning methods mostly focus
only on optimizing COPs rather than SOPs, because the COPs
are relatively more time-consuming and take up most of the
execution time. The performance of SOPs is unattended, even
though the non-parametric operators are non-negligible for the
DNN inference on intelligent edge devices in practice.

Let S (S̄) be the set of pruned (non-pruned) operators in a
DNN model. The speedup achieved by a pruned model is:

Speedup =
1

(1− p (S)) + p(S)
a(S)

(1)

where p(S) is the percentage of the total execution time
spent on executing the operators in S, which implies that
p(S̄) = 1 − p(S), and a(S) is the speedup achieved for
accelerating S. Consequently, the best speedup is limited by
Amdahl’s law:

Speedup 6
1

1− p (S)
=

1

p(S̄)
(2)

This shows that the speedup is always limited by p(S̄) =
1−p(S), which cannot benefit from the pruning optimization.

While preliminary studies have characterized the end-to-
end performance for neural network models on intelligent
edge devices [4], their performance characteristics (e.g., the
ratio of its execution time over the total) remain unclear.
As an example, we compare the operator-level performance
between general-purposed devices (Intel Xeon CPU and ARM
Cortex CPU) and specialized devices (Jetson TX2, Jetson
Nano) by executing the ResNet-18 [1] on the ImageNet
dataset [41]. Figure 2 depicts the performance of ResNet-
18 model on different devices. As can be seen, for CPU
platforms, concentrating on pruning COPs is a reasonable
choice to accelerate DNN models because the p(S̄) is very
small. However, for intelligent edge platforms, optimizing



4

input

conv

conv

add

input

conv

conv

add

input

conv+

conv+

add

input

conv

conv

add

input

input

conv

conv

add

3
2

input

conv

conv

add

input

conv

conv

addbu
ild

in
g 

bl
oc

k 
#2

bu
ild

in
g 

bl
oc

k 
#1 1

O
rig

in
al

 D
N

N

xconv

(a) (b) (c) (d)

xconv

input

conv*

conv*

input

add

(e)

4

input

conv*

conv*

input

conv*

conv*

add

(f )

O
pt

im
iz

ed
 D

N
N


𝒑𝝋

conv*

conv*

conv*

conv*

bu
ild

in
g 

bl
oc

k 
#2

bu
ild

in
g 

bl
oc

k 
#1

Fu
si

on
?

Fu
si

on
?

xconv: auxiliary convolutionadd: element-wise addition conv+: fused convolution conv*: pruned convolutionconv: original convolution

Fig. 3. Overview of FUPRUNER. Each arrow represents an optimization step and the dotted block in the same color indicates the corresponding optimized
result. (a) to (d) describe the step-by-step optimization sequence that fuses and prunes the “building block #1”, (d) to (e) describe the pruning optimization
for non-fused “building block #2”, and (f) shows the final optimized DNN model.

SOPs can also achieve considerable acceleration due as p(S̄)
becomes non-negligible, which leads to new optimization
opportunities. Although the deep learning frameworks usually
optimize SOPs at the system level, there are few efforts on
optimizing non-parametric operators by the optimization of
model compression (e.g., pruning) in the development stage.
In this paper, we address the following challenging problem:
Can we optimize non-parametric operators of neural networks
in the model compression approach in a similar manner as for
parametric operators?

IV. PROPOSED APPROACH

In this section, we will give a comprehensive introduction
of FUPRUNER, and highlight the key novelty of our approach:
pruning neural networks catalyzed by operator fusion.

A. Overview

Figure 3 gives the workflow of our approach and shows
that how we can optimize non-parametric operators using
the pruning process. Given a pre-trained deep neural network
model, FUPRUNER will optimize it in terms of user-defined
parameters, fusion options and pruning rates. The fusion
option determines the building blocks to be fused (marked with
a “2�”), and the pruning rate (pϕ) determines the number of
filters to be deleted for operators. These parameters control the
degree of optimization being applied, enabling the accuracy
and performance tradeoffs to be made. With reference to ¬-¯
in the figure, we summarize our optimization steps as follows:
¬ Inserting and Transforming Operators. The non-

parametric operators in the original model are difficult to be
fused, which is limited by their different computation modes
from the parametric operators. To extend the opportunities
of optimization for operator fusion, we insert or transform
some operators in the original model, while maintaining the
equivalence before and after the model transformation.

 Fusing Operators. Unlike existing operator fusion meth-
ods that focus on decreasing the model’s computational
cost, we utilize operator fusion techniques to merge non-
parametric operators into parametric operators so that the

non-parametric operators can be pruned in later steps,
which, however, may degrade the performance due to the
operators inserted or transformed in step ¬. Note that the
architecture of the fused model is different from the original
one, whereas they are equivalent.

® Pruning Fused Operators. The auxiliary operators and
non-parametric operators are fused into other operators in
the fused model, leading to the dilated weights of the
corresponding fused operators, i.e., the fused operators have
more filters than before. Therefore, we perform a filter
pruning process to decrease the number of such filters.

¯ Pruning Whole Model. The other operators except for the
fused operators will be pruned according to the rate pϕ,
so that a much smaller optimized model is obtained. We
prune not only parametric operators but also non-parametric
operators in the final optimized model by combining filter
pruning with operator fusion techniques.

B. Aggressive Operator Fusion

Existing operator fusion techniques usually perform a di-
minishing fusion approach, which gradually reduces the num-
ber of neural network operators by fusing and transforming
the execution order of operators if necessary. On the one hand,
these fusion methods are performed only in the deployment
stage, whereas integrating the fusion approach into the model
compression in the development stage may facilitate the model
optimization. On the other hand, the conservative fusion
scheme may miss the opportunities for further optimizing
models. In this paper, we have designed an aggressive fusion
scheme, which relies on inserting auxiliary operators and
transforming existing operators while keeping the equivalency,
to explore more optimization spaces, enabling the possibility
of pruning non-parametric operators.

1) Inserting and Transforming Convolution Operators: We
define two auxiliary convolution operators: an auxiliary con-
volution operator for channel-wise fusion (denoted as xconv-
C) and an auxiliary convolution operator for filter-wise fusion
(denoted as xconv-F). xconv-C, which is designed for the
concatenation structures, merges the output of a convolution



5

conv
W

concat

output

input

conv
W

concat

output

input

xconv-𝒞

W
new conv

W

output

input

W

concat

conv
W

add

output

input input

conv
W

add

output

input input

W
new conv

W

output

input

W

concat

input

concatxconv-ℱ

(a
) c

ha
nn

el
-w

is
e 

fu
si

on
 

(b
)f

ilt
er

-w
is

e 
fu

si
on

 

~

~

~
~

Original Structure Inserting and Fusing Auxiliary Operators Fused Structure

Fig. 4. Inserting auxiliary convolution operators: (a) the inserting and fusing
procedure of xconv-C, and (b) the procedure of xconv-F .

with another data, and xconv-F , which is responsible for
the element-wise addition structures, performs addition of the
output of a convolution and another data, as shown in Figure
4. new conv denotes a fused convolution operator, which is
generated by the operators in dotted boxes. We use the con-
catenation structure as an example to demonstrate the approach
for channel-wise fusion. The input of the structure is denoted
by x and the output by y. To achieve the equivalence, the
weights of the auxiliary convolution operators are composed
by specific identity matrices (denoted as W̃ ), so that x =
xconv(x, W̃ ). First of all, we can represent the original struc-
ture as y = concat(conv(x,W ), x). Then, we insert a xconv-
C into the structure: y = concat(conv(x,W ), xconv(x, W̃ )).
By their definitions, we can fuse conv and xconv-C into a
new conv along the dimension of C, and consequently, obtain
the fused structure: y = new conv(x, concat(W, W̃ )). As
such, despite the introduced operators, the output of the neural
network remains unchanged. The approach for fusing addition
structures, by fusing add into new conv in element-wise
addition structures, is similar. The major difference between
filter-wise and channel-wise fusion lies in the dimension of the
concatenation operation for fusing the convolution operators.
In addition, the input of new conv in the fused element-
wise addition structure is a concatenation of the two original
input’s. In practice, we can optimize common structures in
deep neural networks by leveraging xconv-C and xconv-F
cooperatively, as discussed below.

Figure 5 depicts the approach for fusing a basic residual
block, which is a popular structure in state-of-the-art neural
networks, by inserting auxiliary convolution operators. We use
k × c× r × s to represent the configuration of a convolution
operator, where k denotes the number of filters, c denotes the
channels, r denotes the height of filters, and s denotes the
width of filters. There are two 3×3 convolution operators and
a shortcut from input to the element-wise addition operator in
the original structure. In order to be fusible, the filter size of
auxiliary operators must be the same as that for the existing
convolution operators, i.e. 3×3. Moreover, C in xconv-C is
the same as that for the first convolution operator and K in
xconv-F is the same as the second convolution operator. Then,
the convolution and auxiliary operators can be fused along
the dimension of C or K, as shown in Figure 5(c). Thus, the

input
32xHxW

conv
64x32x3x3

conv
16x64x3x3

add

input
32xHxW

new conv
64x32x3x3

new conv
16x64x3x3

add

xconv-𝒞
32x32x3x3

xconv-ℱ
16x32x3x3

⇔

(a) (b)

input
32xHxW

new conv
96x32x3x3

new conv
16x96x3x3

⇔

(c)

Fig. 5. An example of aggressive fusion for a basic residual block: (a) original
structure; (b) inserting auxiliary convolution operators (highlighted in yellow);
(c) fusing original operators and auxiliary operators to new operators.

input
32xHxW

conv
64x32x3x3

conv
16x64x3x3

add

conv
16x32x1x1

input
32xHxW

conv
64x32x3x3

conv
16x64x3x3

add

xconv-𝒞
32x32x3x3

pconv-ℱ
16x32x3x3

input
32xHxW

new conv
96x32x3x3

new conv
16x96x3x3

⇔ ⇔

(a) (b) (c)

Fig. 6. An example of aggressive fusion for a residual block with a projection
shortcut: (a) original structure; (b) inserting auxiliary convolution (highlighted
in yellow) and padding convolution operators (highlighted in orange); (c)
fusing original operators and auxiliary operators to new operators.

element-wise addition operator in the structure is reduced.
By inserting auxiliary convolution operators, the shortcut

connection can be reduced. However, sometimes there are
operators on the connection, hindering their applicability.
As such, we propose padded convolution operators, pconv-
C and pconv-F for channel-wise and filter-wise fusion. The
padded convolution operator is transformed from an existing
convolution operator in neural networks by padding weights.
For example, a 1×1 convolution operator can be transformed
to a 3×3 convolution operator by padding weights with zeros
and remains to produce the same output.

Figure 6 depicts the approach for fusing a residual block
with projection shortcut by inserting auxiliary convolution
operators and transforming padded convolution operators.
There is a 1×1 convolution operator on the shortcut, which
cannot directly be fused with other operators. As such, we
transform the 1×1 convolution operator to a 3×3 padded
convolution operator, pconv-F , which can be fused with the
second original 3×3 convolution operator (green area). After
that, the fusion of the structure can be completed in a similar
way to the basic residual block.

2) Adjusting Batch Normalization Operators: Batch nor-
malization [42], a useful technique that standardizes the inputs
for each mini-batch, has been widely used in contemporary
deep neural networks, which can improve the performance
and stability. Generally, the batch normalization operator (ab-
breviated as bn) can be formalized as:

BN(x) = ωx+ λ (3)

where
ω =

γ√
σ2
B + ε

(4)



6

conv
W

concat

output

input

bn

conv
W

concat

output

input

xconv-𝒞
W

bn bn
𝜔, 𝜆 new conv

W

output

input

Wconcat

new bn concat

𝜔, 𝜆

𝜔, 𝜆

conv
W

add

output

input input

conv
W

add

output

input input

W
xconv-ℱ

bn
𝜔, 𝜆

bn
new conv

W

output

input

W

concat

input

concat

bn
𝜔, 𝜆

update

(a
) c

ha
nn

el
-w

is
e 

fu
si

on
 

(b
)f

ilt
er

-w
is

e 
fu

si
on

 

~

𝜔, 𝜆~ ~

𝜔, 𝜆~ ~

~

~

~

𝜔, 𝜆

Fig. 7. Disposing batch normalization operators. (a) shows the adjusting
procedure of batch normalization operators with xconv-C, and (b) shows the
procedure with xconv-F .

λ = β − ω · µB (5)

The µB and σ2
B are the mean and variance for a mini-batch,

and the ε is a constant for numerical stability. The γ and
β are the learned parameters for scale and shift. The batch
normalization can be seen as an affine transformation and the
detailed algorithm can be seen in [42]. The architecture of
neural network that contains bn operators is more complex to
achieve an equivalence transformation.

Figure 7 depicts the procedure of disposing batch normal-
ization operators. For the channel-wise fusion, an auxiliary
bn operator (ω̃ = 1 and λ̃ = 0) is inserted, which will
not influence the result. Then, the original bn operator and
auxiliary bn operator can be fused into a new bn operator.
For the filter-wise fusion, the bn operator remains unchanged
in the fused block to achieve equivalency. However, the bn
operator will disturb the result of xconv-F . As such, we
update the weights of xconv-F by using the parameters of bn
(i.e., perform a inverse operation of bn on the W̃ ). In this way,
the aggressive fusion method can be applied to the structures
which have bn operators.

C. Dynamic Filter Pruning
The fusion process is an equivalence transformation (i,e,. the

models before and after fusion are equivalent), enabling the
opportunity of pruning SOPs in the original model by fusing
some SOPs into COPs. The fused model reduces the SOPs
of the model but the COPs are dilated, which is because the
weights of auxiliary operators are merged into original opera-
tors. Fortunately, we note that the involved weights in auxiliary
convolutions and padded convolutions are dramatically sparse,
which have more potential for compression. As such, the
fused model will be pruned to reduce the redundant weights.
In FUPRUNER, we use a soft filter pruning scheme [13],
which prunes the filters dynamically. Unlike the classical static
pruning scheme, the pruned filters in dynamic pruning scheme
can be updated and recovered in the training stage, which has
more model capacity and higher accuracy.

We divide the pruning process into two situations: 1) we
prune the operators that involve new weights by the aggressive

Algorithm 1: Dynamic Filter Pruning
Input: X (training data), pϕ (pruning rate),
emax (training epoch), W (original weights)
Output: W ∗ (pruned weights of model)

1 for i← 1 to emax do
2 Update the parameters W by using data X;
3 foreach op ∈ model do
4 if op.type = COP then
5 n← the filter number of op;
6 Calculate the `2-norm for the filters;
7 if op is fused then
8 m← the orginal filter number of op;
9 Zeroize the lowest n−m filters;

10 else
11 Zeroize the lowest pϕ × n filters;

12 Obtain the pruned model parameters W ∗ from W ;
13 return W ∗;

fusion, which prunes the model to recover the original size,
i.e., the weights involved by fusion are pruned after basic
pruning and the SOPs are reduced; 2) we use a pruning rate
pϕ to prune the weights of non-fused COPs. As such, the
COPs and SOPs of the neural network model are optimized
simultaneously. For each training epoch, we dynamically select
the filters to be pruned according to their `2-norm:

‖Wk‖2 =

√√√√ c∑
t=1

r∑
i=1

s∑
j=1

w2
t,i,j (6)

where Wk denotes the k-th filter in a convolution operator,
and wt,i,j denotes an element of Wk that resides in the i-th
row and j-th column in the t-th input channel.

The dynamic filter pruning approach is summarized in
Algorithm 1. For each epoch, the weight parameters W are
updated by using training data (Line 2). Then, for each COP,
we obtain its filter amount n and calculate the `2-norm for
all filters (Lines 5-6). The filters with low `2-norm will be
pruned (masked by the zero matrices). The fused operators
are pruned out of n−m filters (Lines 8-9), where m indicates
the filter amount of the original operators not fused, while
the non-fused operators are pruned out of pϕ × n filters
(Line 11). For dynamic filter pruning, the weights of pruned
filters can still be updated in the next epoch, which retains
the learning capability. Finally, the pruned model parameters
W ∗ are obtained from the updated W according to the mask
information in the last training epoch, i.e, the masked filters
are removed (Lines 12-13).

V. EXPERIMENTAL SETUP

Evaluation Platforms. We perform the procedure of fusion
and pruning on a cloud server with Intel Xeon CPUs and an
NVIDIA Tesla V100 GPU. We evaluate the performance of
our approach on five representative intelligent edge devices,
which contain different machine learning (ML) acceleration
modules, including Jetson TX2, Jetson Nano, Coral Dev
Board (Edge TPU), Movidius Neural Compute Stick (NCS),



7

TABLE I
THE SPECIFICATIONS FOR THE INTELLIGENT EDGE DEVICES USED.

Category GPU-Based Edge Devices ASIC-Based Edge Devices

Platform Jetson TX2 [19] Jetson Nano [20]
Coral Dev Board
(Edge TPU) [6]

Movidius
Neural Compute Stick [7]

Neural
Compute Stick 2 [43]

CPU
2 Denver

& Cortex-A57
Cortex-A57 Cortex-A53 N/A N/A

ML Acceleration
Module

256-Core
Pascal GPU

128-Core
Maxwell GPU

Edge TPU Myriad X VPU Myriad 2 VPU

Memory 8 GB 4 GB 1 GB N/A N/A
Inference

Framework
Caffe Caffe TensorFlow Lite OpenVINO OpenVINO

and Neural Compute Stick 2 (NCS2). Table I describes the
specifications of these intelligent edge devices. The optimized
model will be executed on the inference framework supported
by the target platform. Especially, the Jetson TX2 and Jetson
Nano run Linux-based operating systems. We leverage the
Caffe framework [44], a plain deep learning framework, to
evaluate the inference performance of models on both, so that
can avoid interference of the optimizations other than ours.

Benchmark Datasets. We evaluate our approach on two rep-
resentative image classification benchmarks: CIFAR-10 [45]
and ImageNet (ILSVRC2012) [41]. CIFAR-10 contains 60000
images (50000 for training and 10000 for testing), classified
in ten categories. ImageNet is a large-scale dataset, which has
more than one million images classified in 1000 categories.

Neural Network Models. In this paper, we focus on opti-
mizing the state-of-the-art residual neural network (ResNet)
models [1]. As revealed in previous studies [12], the ResNet
models are less redundant and more challenging to compress.
Moreover, the shallower versions of ResNet models are se-
lected, which have smaller sizes and less computation, due
to the limited resources of edge devices. Table II describes
the architectures of the models, including ResNet-20 and
ResNet-32 for CIFAR-10, and ResNet-18 and ResNet-34 for
ImageNet. In this table, the building blocks are shown in
brackets and the succeeding “×number” denotes the numbers
of blocks stacked. A convolution operator (conv) is denoted
as a tuple of the size and number of its filters, while a fully-
connected operator (fc) is denoted as a number of its output
dimensions. Especially, each building block in residual neural
networks except conv1 and fc ends with an element-wise
addition operator (add), as shown in Figure 5 and Figure 6.

Optimization Setting. The fusion and pruning of FUPRUNER
approach are based on the PyTorch framework [46]. In the
pruning stage, its default data argumentation strategy is uti-
lized. Meanwhile, we use the same setting of hype-parameters
and training schedules as [13]. The fusion options are denoted
as “x/n”, where n is the number of stages contained in
the model, and x is the number of stages to be fused. For
simplicity, we set the stages to be fused in order according to
the stage numbers. We prune the fused convolution operators
of neural networks, which retains exactly the same number of
filters as before fusion. We set the same continued pruning
rates, from 0 to 0.3, for all non-fused convolution operators.
As such, the fusion option and pruning rate are utilized to

TABLE II
THE ARCHITECTURES OF THE RESIDUAL NEURAL NETWORKS.

Layer Structure 20 32 Structure 18 34

conv1
[

3×3, 16
]
×1 ×1

[
7×7, 64

]
×1 ×1

stage1
[

3×3, 16
3×3, 16

add

]
×3 ×5

[
3×3, 64
3×3, 64

add

]
×2 ×3

stage2
[

3×3, 32
3×3, 32

add

]
×3 ×5

[
3×3, 128
3×3, 128

add

]
×2 ×4

stage3
[

3×3, 64
3×3, 64

add

]
×3 ×5

[
3×3, 256
3×3, 256

add

]
×2 ×6

stage4 - - -
[

3×3, 512
3×3, 512

add

]
×2 ×3

fc
[

10
]

×1 ×1
[

1000
]

×1 ×1

balance accuracy and performance.

VI. EVALUATION

In this section, we demonstrate the effectiveness of our
proposed approach, which successfully optimizes DNN mod-
els with a negligible accuracy loss. Specifically, we focus on
answering two research questions:
• RQ1. Can FUPRUNER prune the DNN models effectively

with a negligible accuracy loss?
• RQ2. Can FUPRUNER accelerate the end-to-end inference

of deep neural networks on intelligent edge devices?

A. RQ1. The Model Accuracy

We compare FUPRUNER with state-of-the-art acceleration
methods, including MIL [47], PFEC [51], SFP [13] and
ASFP [30]. For fairness, the accuracy numbers are directly
cited from the corresponding papers. While the architecture
of a baseline model is the same for all methods, the accuracy
numbers are slightly different due to different experimental
hyper-parameters, such as learning rate and data augmentation.
As such, we report not only the accuracy of optimized models
but also the baseline models. We use “Acc. Drop” to illustrate
the accuracy dropping of the optimized model compared to the
original model. Furthermore, we run each experiment three
times and report the result as (mean ± std), where mean
represents the average and std the standard deviation, and
all the accuracies of compressed models are evaluated on the
cloud server with the same environment.



8

TABLE III
THE ACCURACY OF PRUNED RESIDUAL NEURAL NETWORK MODELS ON THE CIFAR-10 DATASET.

Model Method Top-1 Acc.
Baseline (%)

Top-1 Acc.
Pruned (%)

Top-1 Acc.
Drop (%) Fusion Option Pruning Rate (%)

ResNet-20

MIL [47] 91.53 91.43 0.10 N/A N/A
SFP-0.1 [13] 92.20 92.24 -0.04 N/A 10.0%
SFP-0.2 [13] 92.20 91.20 1.00 N/A 20.0%
SFP-0.3 [13] 92.20 90.83 1.37 N/A 30.0%

FUPRUNER-1/3 92.60 (±0.27) 92.86 (±0.02) -0.26 1/3 0.0%
FUPRUNER-2/3 92.60 (±0.27) 92.58 (±0.10) 0.02 2/3 0.0%
FUPRUNER-3/3 92.60 (±0.27) 92.34 (±0.05) 0.26 3/3 0.0%

FUPRUNER-1/3-0.1 92.60 (±0.27) 92.77 (±0.19) -0.17 1/3 10.0%
FUPRUNER-1/3-0.2 92.60 (±0.27) 92.28 (±0.13) 0.32 1/3 20.0%
FUPRUNER-1/3-0.3 92.60 (±0.27) 91.65 (±0.16) 0.95 1/3 30.0%
FUPRUNER-3/3-0.3 92.60 (±0.27) 91.40 (±0.05) 1.20 3/3 30.0%

ResNet-32

MIL [47] 92.33 90.74 1.59 N/A N/A
SFP-0.1 [13] 92.63 93.22 -0.59 N/A 10.0%
SFP-0.2 [13] 92.63 90.63 2.00 N/A 20.0%
SFP-0.3 [13] 92.63 90.08 2.55 N/A 30.0%

FUPRUNER-1/3 93.41 (±0.16) 93.29 (±0.09) 0.12 1/3 0.0%
FUPRUNER-2/3 93.41 (±0.16) 92.40 (±0.09) 1.01 2/3 0.0%
FUPRUNER-3/3 93.41 (±0.16) 92.32 (±0.08) 1.09 3/3 0.0%

FUPRUNER-1/3-0.1 93.41 (±0.16) 93.33 (±0.02) 0.08 1/3 10.0%
FUPRUNER-1/3-0.2 93.41 (±0.16) 93.23 (±0.14) 0.18 1/3 20.0%
FUPRUNER-1/3-0.3 93.41 (±0.16) 92.55 (±0.26) 0.86 1/3 30.0%
FUPRUNER-3/3-0.3 93.41 (±0.16) 91.94 (±0.07) 1.47 3/3 30.0%

TABLE IV
THE ACCURACY OF PRUNED RESIDUAL NEURAL NETWORK MODELS ON THE IMAGENET DATASET.

Model Method Top-1 Acc.
Baseline (%)

Top-1 Acc.
Pruned (%)

Top-1 Acc.
Drop (%)

Top-5 Acc.
Baseline (%)

Top-5 Acc.
Pruned (%)

Top-5 Acc.
Drop (%)

ResNet-18

MIL [47] 69.98 66.33 3.65 89.24 86.94 2.3
SFP-0.3 [13] 70.23 60.79 9.44 89.51 83.11 6.4

ASFP-0.3 [30] 70.23 68.02 2.21 89.51 88.19 1.32
XNOR-Net++ [48] 69.30 57.10 12.2 89.20 79.90 9.30
Bi-Real Net [49] 69.30 56.40 12.9 89.20 79.50 9.70
CI-BCNN [50] 69.30 59.90 9.40 89.20 84.18 5.02
FUPRUNER-1/4 69.76 70.97 (±0.03) -1.21 89.08 89.85 (±0.03) -0.77
FUPRUNER-2/4 69.76 70.75 (±0.07) -0.99 89.08 89.81 (±0.03) -0.73
FUPRUNER-3/4 69.76 70.61 (±0.01) -0.85 89.08 89.70 (±0.06) -0.62
FUPRUNER-4/4 69.76 70.39 (±0.44) -0.63 89.08 89.55 (±0.17) -0.47

FUPRUNER-4/4-0.2 69.76 69.69 (±0.25) 0.07 89.08 89.35 (±0.08) -0.27
FUPRUNER-4/4-0.3 69.76 68.24 (±0.45) 1.52 89.08 88.21 (±0.27) 0.87

ResNet-34

MIL [47] 73.42 72.99 0.43 91.36 91.19 0.17
PFEC [51] 73.23 72.17 1.06 - - -

SFP-0.3 [13] 73.92 72.29 1.63 91.62 90.90 0.72
ASFP-0.3 [30] 73.92 72.53 1.39 91.62 91.04 0.58

Bi-Real Net [49] 73.30 62.20 11.1 91.30 83.90 7.40
CI-BCNN [50] 73.30 64.93 8.37 91.30 86.61 4.69
FUPRUNER-1/4 73.32 74.28 (±0.11) -0.96 91.42 91.90 (±0.07) -0.48
FUPRUNER-2/4 73.32 74.23 (±0.04) -0.91 91.42 91.76 (±0.04) -0.34
FUPRUNER-3/4 73.32 73.85 (±0.03) -0.53 91.42 91.61 (±0.04) -0.19
FUPRUNER-4/4 73.32 73.10 (±0.05) 0.22 91.42 91.23 (±0.03) 0.19

FUPRUNER-4/4-0.2 73.32 72.86 (±0.07) 0.46 91.42 91.13 (±0.08) 0.29
FUPRUNER-4/4-0.3 73.32 72.14 (±0.05) 1.18 91.42 90.66 (±0.02) 0.76

We evaluate our approach on the CIFAR-10 dataset by using
ResNet-20 and ResNet-32 models, as shown in Table III. The
top-1 accuracy of each method is reported in the table. Besides
classical filter pruning methods, we also compare the proposed
approach with MIL [47], an acceleration method that in-
volves new efficient structures into the original neural network
models. We perform two pruning approaches: 1) conservative
pruning: we only prune the filters of dilated convolution

operators incurred by aggressive fusion, which is denoted as
“FUPRUNER-(fusion option)”, according to the fusion option;
2) continued pruning: we further prune non-fused convolution
operators based on the conservative pruned models to achieve
simultaneous optimization for SOPs and COPs, which is
denoted as “FUPRUNER-(fusion option)-(continued pruning
rate)”. For instance, the “FUPRUNER-1/3” means that we fuse
building blocks in the first stage of the neural network and



9

7

7.5

8

8.5

9

9.5

10
P1 P2

18

19

20

21

22

23

24
P1 P2

24

26

28

30

32

34

36
P1 P2

0

10

20

30

40
P1 P2

4.8

5

5.2

5.4

5.6

5.8

6

6.2
P1 P2

0

5

10

15

20
P1 P2

28

30

32

34

36

38
P1 P2

0

20

40

60

80
P1 P2

0

10

20

30

40

50

60
P1 P2

6.5

7

7.5

8

8.5
P1 P2

Jetson TX2 Jetson Nano Edge TPU NCS NCS2

In
fe

re
n

ce
 T

im
e 

(m
s)

Original Model 

FUPRUNER-1/3

FUPRUNER-2/3

FUPRUNER-3/3

FUPRUNER-3/3-0.1

FUPRUNER-3/3-0.2

FUPRUNER-3/3-0.3

Filter Pruning-0.3

1
.2

0
x

1
.1

9
x 1
.1

1
x

1
.1

3
x

1
.1

0
x

1
.0

5
x

1
.1

2
x

1
.0

6
x

1
.0

6
x

1
.1

2
x

1
.0

5
x

1
.1

0
x

1
.1

0
x

1
.2

2
x

1
.2

1
x

1
.1

8
x

1
.1

6
x

1
.1

0
x

1
.1

0
x

1
.1

0
x

R
es

N
et

-2
0

R
es

N
et

-3
2

P1: Conservative Pruning

P2: Continued Pruning

Fig. 8. Comparing the inference performance results among the original model, the models optimized by FUPRUNER, and the models optimized by classic
filter pruning on CIFAR-10. The left-most blue bar denotes the inference time of the original DNN model, the three bars in P1 denote the conservative pruning
by FUPRUNER, and the three bars in P2 denote the continued pruning. The above-bar numbers denote the relative speedups over the original model.

then prune the fused convolution operators to recover the size
of the model. The “FUPRUNER-1/3-0.3” means that we prune
non-fused convolution operators of the neural network with
the pϕ = 0.3 based on the model of “FUPRUNER-1/3”. Firstly,
FUPRUNER can prune SOPs with a negligible accuracy loss.
For example, the optimized ResNet-20 model by “FUPRUNER-
1/3” fuses and prunes about 1/3 building blocks without any
accuracy loss, and the model by “FUPRUNER-3/3”, which
fuses and prunes all the element-wise addition operators from
stage1 to stage3, drops only by 0.26% in accuracy. When
performing the continued pruning approach that further prunes
COPs, the performance of FUPRUNER also outperforms other
state-of-the-art methods. As can be seen, our approach exhibits
less accuracy loss compared to other methods for the same
pruning rate. The accuracies of some pruned models, such as
the ResNet-20 models with “SFP-0.1” [13] and “FUPRUNER-
1/3”, are even better than the baseline model. This shows that
the filter pruning approach has a regularization effect and can
reduce the over-fitting of neural network models.

We also evaluate our approach on ImageNet, a large-scale
dataset, by using ResNet-18 and ResNet-34 models, as shown
in Table IV. We report the top-1 accuracy and top-5 accuracy
for each method and the results on ImageNet are similar to
those on CIFAR-10. Our approach can prune SOPs without
any accuracy loss in most cases. The optimized ResNet-34
model by “FUPRUNER-4/4”, which fuses all building blocks,
only drops by 0.22% in top-1 accuracy and 0.19% in top-
5 accuracy. Furthermore, the models optimized by contin-
ued pruning achieve better performance compared to other
methods. These experimental results show the effectiveness
of FUPRUNER, which prunes SOPs and COPs simultaneously
and achieves comparable performance as original models. We
have also compared our approach with several state-of-the-
art neural network binarization methods, including XNOR-
Net++ [48], Bi-Real Net [49], and CI-BCNN [50]. While the
binarized models enjoy the potential of storage compression
and acceleration, their performance degradation is unsatisfac-
tory for real intelligent applications.

B. RQ2. The Realistic Acceleration

We address RQ2 by evaluating the performance of single-
batch inference on representative intelligent edge devices. We
compare the original model with the models optimized by
FUPRUNER with different optimization settings. The inference
time reported of a model is the average of 1000 runs.

1) Results on CIFAR-10. Figure 8 depicts the results on
CIFAR-10 dataset. As for optimized models by FUPRUNER,
we set fusion option ∈ {1/3, 2/3, 3/3} for conservative
pruning (P1), and we set fusion option = 3/3 and pϕ ∈
{0.1, 0.2, 0.3} for continued pruning (P2). Moreover, the clas-
sic filter pruning approach with the rate = 0.3 is used as the
reference. There are three observations. First, the fused models
with conservative pruning outperforms the original models,
providing the evidence for superior performance benefits ob-
tainable from non-parametric operator pruning. Second, the
optimized models by continued pruning cannot always yield
acceleration, and may even lead to performance degradation,
with, e.g., the continued pruning results on NCS. This is
because the convolution operators with special sizes have
more efficient implementations in deep learning frameworks.
For example, the convolution operators with 64 filters often
perform faster than those with 63 filters, even though the
latter have fewer filters, because the regular data size is more
conducive to the optimizations such as parallelization. Finally,
FUPRUNER outperforms classic filter pruning approaches,
which prune only COPs, with the pruning rate = 0.3, in most
cases. The classic filter pruning approaches prune a little more
convolution operators than our approach (are thus faster on
some devices such as Edge TPU), because the fused operators
will not continue to be pruned in FUPRUNER.

2) Results on ImageNet. Table V gives the best speedup
over the original model for each optimization combination of
(fusion option, pϕ) in {1/4, 2/4, 3/4, 4/4}×{0, 0.1, 0.2, 0.3}
on ImageNet. We report some results obtained by FUPRUNER
with different optimization parameters, the best optimization
parameter values (Best Param.) and their speedups achieved.
Moreover, we use the classic filter pruning approach with the
pruning rate = 0.3 as a reference in the last column (Ref-0.3).
The results demonstrate the flexibility of FUPRUNER, that is,



10

TABLE V
THE BEST SPEEDUPS OF THE OPTIMIZED NEURAL NETWORK MODELS ON THE IMAGENET DATASET.

Model Device
FUPRUNER Ref-0.3

Speedups (for Some Selected Combinations) Best Param. Speedup Speedup
1/4 2/4 3/4 4/4 4/4-0.1 4/4-0.2 4/4-0.3

ResNet-18

Jetson TX2 1.02× 1.06× 1.09× 1.12× 1.15× 1.22× 1.33× 3/4-0.3 1.34× 1.30×
Jetson Nano 1.02× 1.06× 1.07× 1.13× 1.14× 1.21× 1.35× 3/4-0.3 1.35× 1.29×
Edge TPU 1.02× 1.02× 1.03× 1.03× 1.04× 1.15× 1.30× 1/4-0.3 1.43× 1.42×

NCS 1.00× 1.01× 1.02× 1.02× 0.18× 0.22× 0.23× 4/4 1.02× 0.21×
NCS2 1.01× 1.03× 1.04× 1.06× 1.01× 1.10× 1.19× 2/4-0.3 1.24× 1.22×

ResNet-34

Jetson TX2 1.02× 1.04× 1.07× 1.09× 1.12× 1.19× 1.29× 2/4-0.3 1.33× 1.33×
Jetson Nano 1.02× 1.05× 1.09× 1.10× 1.11× 1.22× 1.33× 3/4-0.3 1.37× 1.25×
Edge TPU 1.02× 1.01× 1.01× 1.03× 1.02× 1.13× 1.28× 1/4-0.3 1.46× 1.46×

NCS 1.00× 1.01× 1.01× 1.01× 0.19× 0.23× 0.23× 4/4 1.01× 0.21×
NCS2 1.01× 1.03× 1.06× 1.07× 1.04× 1.15× 1.25× 2/4-0.3 1.33× 1.32×

TABLE VI
THE PERFORMANCE RESULTS FOR THE OPTIMIZED NEURAL NETWORK MODELS ON THE CIFAR-10 DATASET.

Model Optimization
Param.

Top-1
Acc. (%)

Inference Times on Jetson TX2 (ms) Inference Times on Intel NCS2 (ms)
Sys. Conv Add BN Others Total Sys. Conv Add BN Others Total

R
es

N
et

-2
0

Baseline 92.60 1.81 2.22 0.74 4.41 0.36 9.55 2.10 0.86 0.54 1.92 0.40 5.83

F
U

P
R

U
N

E
R

1/3 92.86 1.63 2.17 0.51 4.48 0.44 9.22 2.06 0.86 0.34 1.93 0.48 5.67
2/3 92.58 1.58 2.10 0.25 4.25 0.50 8.67 2.07 0.84 0.17 1.84 0.55 5.47
3/3 92.34 1.44 1.97 - 3.98 0.57 7.97 2.05 0.82 - 1.79 0.63 5.28

3/3-0.1 92.41 1.44 1.99 - 4.00 0.56 7.99 2.08 0.81 - 1.91 0.62 5.42
3/3-0.2 91.92 1.42 1.98 - 4.03 0.58 8.01 2.04 0.81 - 1.89 0.62 5.36
3/3-0.3 91.40 1.46 1.98 - 3.98 0.57 7.99 2.05 0.79 - 1.83 0.62 5.30

3/3* 92.34 0.60 1.86 - - 0.57 3.03 1.14 0.88 - - 0.16 2.18
3/3-0.3* 91.40 0.63 1.89 - - 0.59 3.11 1.15 0.85 - - 0.17 2.17

R
es

N
et

-3
2

Baseline 93.41 3.32 3.40 1.24 7.02 0.52 15.49 2.22 1.37 0.89 3.02 0.54 8.05

F
U

P
R

U
N

E
R

1/3 93.29 2.73 3.37 0.83 7.06 0.64 14.64 2.19 1.38 0.55 3.01 0.68 7.81
2/3 92.40 2.18 3.34 0.43 6.93 0.76 13.63 2.23 1.35 0.27 2.94 0.80 7.58
3/3 92.32 1.92 3.23 - 6.71 0.88 12.74 2.19 1.33 - 2.87 0.91 7.31

3/3-0.1 92.60 2.40 3.21 - 6.44 0.86 12.91 2.17 1.33 - 3.09 0.92 7.51
3/3-0.2 92.41 2.46 3.19 - 6.48 0.85 12.98 2.21 1.31 - 3.03 0.90 7.45
3/3-0.3 91.94 2.27 3.17 - 6.49 0.85 12.79 2.18 1.28 - 2.97 0.89 7.33

3/3* 92.32 0.93 2.95 - - 0.85 4.73 1.75 1.42 - - 0.16 3.33
3/3-0.3* 91.94 0.97 2.88 - - 0.85 4.70 1.75 1.38 - - 0.17 3.29

we can get the best optimized model by adjusting the fusion
option and pruning rate. Compared with the original model,
the optimized models by FUPRUNER achieve significant per-
formance improvements on most evaluated edge platforms. In
addition, the accuracy of optimized model by FUPRUNER is
higher than the corresponding reference model (Ref-0.3), as re-
vealed in Table IV. As such, the performance of our approach,
which has the less accuracy loss, outperforms the classic filter
pruning approaches. One observation is that the speedups of
the pruned models by continued pruning are more noticeable
than those on CIFAR-10, which is attributed to the larger sizes
of input images in the ImageNet dataset. These results show
that FUPRUNER provides a flexible optimization framework
and can achieve realistic performance improvements.

3) Analysis of Optimized Models. Table VI gives the per-
formance results for the optimized models under a range of
optimization parameters on CIFAR-10. To this end, we have
selected Jetson TX2 (a GPU-based edge device) and NCS2 (an
ASIC-based edge device) as the two representative platforms.
The total execution time for a neural network model consists
of the times spent on the system invocation, denoted as “Sys.”,
and the forward computation of different operators, including

“Conv” (convolution operators), “Add” (element-wise addition
operators), “BN” (batch normalization operaters) and “Oth-
ers”. Our results demonstrate the performance improvements
achieved from each component for the end-to-end inference.
First, the execution time of non-parametric operators such
as “Add” is non-negligible on edge platforms, indicating the
necessity for optimizing non-parametric operators. Second,
our approach has successfully reduced the execution time
of “Add” with conservative pruning. The performance of
“Conv” can be further improved by continued pruning. For
example, the optimized ResNet-32 model with “FUPRUNER-
3/3” decreases the execution time of “Add” from 1.24 ms to
0.00 ms on Jetson TX2, meaning that all the add operators in
neural networks have been pruned away. Furthermore, we can
merge a BN operator into its previous convolution operator
by adjusting and updating the weights, a common system-
level optimization approach [52], with the results of the BN-
merged models denoted as “*”. There is neither an element-
wise addition operator nor a batch normalization operator
in the final pruned model, thereby enabling us to reduce
significantly the execution time of neural network inference on
edge intelligent devices. Overall, our experimental results have



11

TABLE VII
THE PERFORMANCE OF THE FUSED MODELS WITHOUT FILTER PRUNING.

Model Inference Times (ms)
Original 1/3 Fused 2/3 Fused 3/3 Fused

ResNet-20 11.21 12.03 12.18 12.18
ResNet-32 16.97 18.34 18.73 18.89

Pruning Rate

T
op

-1
 A

cc
ur

ac
y 

(%
) FUPRUNER-1/3

84

86

88

90

92

94

0 0.1 0.2 0.3 0.4 0.5
86
87
88
89
90
91
92
93

0 0.1 0.2 0.3 0.4 0.5
87
88
89
90
91
92
93

0 0.1 0.2 0.3 0.4 0.5

FUPRUNER-2/3 FUPRUNER-3/3

Pruning Rate Pruning Rate

R
es

N
et

-2
0

84

86

88

90

92

94

0 0.1 0.2 0.3 0.4 0.5
Pruning Rate Pruning Rate Pruning Rate

88
89
90
91
92
93
94

0 0.1 0.2 0.3 0.4 0.5
87
88
89
90
91
92
93
94

0 0.1 0.2 0.3 0.4 0.5

T
op

-1
 A

cc
ur

ac
y 

(%
)

R
es

N
et

-3
2

Optimized 
Model

Original
Model

Fig. 9. Model accuracy regarding different pruning rates. The orange line
denotes the original model while the blue line denotes the optimized model.

confirmed the effectiveness of our approach for optimizing
non-parametric operators on intelligent edge devices.

C. Ablation Study

To analyze each component of our proposed approach,
ablation studies are conducted.
1) Operator Fusion without Pruning. Table VII shows the

inference time of fused models without pruning on NCS
with the original model used as a baseline. The fused model
is more time-consuming than the original one due to the
extra auxiliary operators fused into, illustrating the necessity
of conservative pruning after fusion.

2) Verifying Pruning Rates. Figure 9 shows the model accuracy
of different pruning rates for ResNet-20 and ResNet-32. The
accuracy of the optimized model decreases with the increase
of pruning rate and drops observably when the pruning rate
is more than 30%. Therefore, we set the filter pruning rate
of FUPRUNER from 0 to 0.3 in this paper.

3) Selection of the Fused Building Blocks. We compare the
accuracy of fusing different building blocks for ResNet-20,
as shown in Table VIII. We use “(stage1, stage2, stage3)”
to denote the number of fused building blocks for each
stage of the model. The accuracy may further improve
if we carefully select the building blocks to be fused in
FUPRUNER based on hyper-parameter tuning.

VII. DISCUSSION

Generality. This paper focuses on the convolutional neural
network, a widely used architecture that plays an important
role in contemporary intelligent tasks. The proposed auxiliary
operators are currently based on the computational pattern of
convolution operations. To extend our work to other scenarios
such as optimizing recurrent neural networks, we need to

TABLE VIII
THE TOP-1 ACCUARCY OF RESNET-20 WITH DIFFERENT FUSED BLOCKS.

Fused Building Blocks
in (stage1, stage2, stage3)

Top-1 Accuracy (%)
pϕ = 0.1 pϕ = 0.2 pϕ = 0.3

Fusing 3/9

Building Blocks
(3,0,0) 92.93 92.15 91.46
(1,1,1) 92.40 92.46 91.83

Fusing 6/9

Building Blocks
(3,3,0) 92.54 92.12 91.47
(2,2,2) 93.04 92.30 91.84

analyze the performance characteristics of the target model on
edge devices and design a new set of auxiliary operators for
the structures to be optimized. Nevertheless, FUPRUNER pro-
vides a new generic framework for optimizing non-parametric
operators in the model compression approach similarly as for
parametric operators, which can be generalized to support
other structures and model acceleration domains.
Applicability. FUPRUNER represents a framework-indepen-
dent approach, making it more generally applicable than other
algorithm-level acceleration approaches, as it requires neither
special implementations nor run-time system modifications.
Moreover, FUPRUNER does not incur any extra run-time
overhead, making it well suited for resource-constrained edge
devices. To determine that whether a DNN model on a target
device can be accelerated by our approach or not, we can
start with an analysis of the performance characteristics of
the model on the device. To achieve a realistic acceleration
in the optimized model by Equation 1, the time proportion
of non-parametric operators in end-to-end inference must be
non-negligible. As revealed in our experimental results, the
performance characteristics of neural networks on intelligent
edge devices are different from those on general-purposed
platforms, providing more optimization opportunities for prun-
ing non-parametric operators. We envision for FUPRUNER
to become a useful acceleration technique for future edge
intelligence.
Soundness. The transformation of a computational graph is
equivalence-preserving in the aggressive fusion method, with-
out causing any loss of accuracy, as described in Section IV-B.
However, the accuracy of a model may possibly decrease when
applying our catalyzed-pruning approach to achieve both ac-
celeration and compression. In this case, FUPRUNER provides
configurable optimization options for controlling fusion and
pruning, allowing performance/accuracy trade-offs to be made.
Limitations. Although FUPRUNER shows the benefits of
pruning parametric and non-parametric operators, there is
room for further improvements. First, we observe that pruning
parametric or non-parametric operators has no significant opti-
mization effect on some platforms, such as NCS, and pruning
filters may even lead to performance degradation. Therefore,
in addition to focusing on the model compression itself, it is
meaningful to design a mechanism to determine whether the
compressed model has realistic acceleration. Second, several
hyper-parameters, such as fusion option and pruning rate, are
necessary and predefined by the user in our approach so
that a tuning process is needed currently. We will explore
how to automatically set the reasonable optimization hyper-
parameters. Finally, the accuracy of optimized models mainly
depends on the filter pruning algorithm used and our ag-



12

gressive operator fusion method can be combined with any
filter pruning algorithm. Therefore, using different pruning
strategies for different fused models is another future research
direction.

VIII. CONCLUSION

In this paper, we have introduced FUPRUNER, a novel
fusion-catalyzed pruning approach to optimize deep neural
network models, which prunes parametric and non-parametric
operators simultaneously for a faster inference on intelligent
edge devices. Evaluation with state-of-the-art residual neural
networks on representative edge platforms has demonstrated
the effectiveness of our approach. We would like to apply
FUPRUNER to more complex intelligent applications, such as
object detection, in the future work.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning
for the internet of things with edge computing,” IEEE network, vol. 32,
no. 1, pp. 96–101, 2018.

[3] J. Cheng, P.-s. Wang, G. Li, Q.-h. Hu, and H.-q. Lu, “Recent advances in
efficient computation of deep convolutional neural networks,” Frontiers
of Information Technology & Electronic Engineering, vol. 19, no. 1, pp.
64–77, 2018.

[4] R. Hadidi, J. Cao, Y. Xie, B. Asgari, T. Krishna, and H. Kim, “Char-
acterizing the deployment of deep neural networks on commercial edge
devices,” in IEEE International Symposium on Workload Characteriza-
tion, 2019, pp. 1–14.

[5] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state
of neural network pruning?” arXiv preprint arXiv:2003.03033, 2020.

[6] Google. (2020) Edge TPU. [Online]. Available: https://cloud.google.c
om/edge-tpu

[7] Intel. (2020) Intel movidius neural compute stick. [Online]. Available:
https://software.intel.com/en-us/articles/intel-movidius-neural-compute

-stick
[8] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-

nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[9] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances in neural information processing systems, 2016, pp.
1379–1387.

[10] X. Dong, L. Liu, G. Li, P. Zhao, and X. Feng, “Fast CNN pruning via
redundancy-aware training,” in International Conference on Artificial
Neural Networks. Springer, 2018, pp. 3–13.

[11] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 5058–5066.

[12] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1389–1397.

[13] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” in Proceedings of the
27th International Joint Conference on Artificial Intelligence, 2018, pp.
2234–2240.

[14] Y. Guo, “A survey on methods and theories of quantized neural net-
works,” arXiv preprint arXiv:1808.04752, 2018.

[15] Google. (2020) TensorFlow Lite. [Online]. Available: https://www.tens
orflow.org/lite/

[16] Facebook. (2020) PyTorch mobile. [Online]. Available: https:
//pytorch.org/mobile/home/

[17] Tencent. (2020) NCNN. [Online]. Available: https://github.com/Tence
nt/ncnn

[18] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou, Y. Yang, Z. Cui,
Y. Cai, T. Yu et al., “MNN: A universal and efficient inference engine,”
arXiv preprint arXiv:2002.12418, 2020.

[19] NVIDIA. (2020) Jetson TX2 developer kit and modules. [Online].
Available: https://www.nvidia.com/en-us/autonomous-machines/embe
dded-systems/jetson-tx2

[20] ——. (2020) Jetson nano developer kit and modules. [Online].
Available: https://www.nvidia.com/en-us/autonomous-machines/embe
dded-systems/jetson-nano

[21] T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A. Krish-
namurthy, “VTA: an open hardware-software stack for deep learning,”
arXiv preprint arXiv:1807.04188, 2018.

[22] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 475–480.

[23] J. Yu, L. Yang, N. Xu, J. Yang, and T. S. Huang, “Slimmable neural
networks,” in 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, 2019.

[24] P. Panda, A. Ankit, P. Wijesinghe, and K. Roy, “FALCON: Feature
driven selective classification for energy-efficient image recognition,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 36, no. 12, 2017.

[25] V. S. Marco, B. Taylor, Z. Wang, and Y. Elkhatib, “Optimizing deep
learning inference on embedded systems through adaptive model se-
lection,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 19, no. 2, pp. 1–28, 2020.

[26] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda, “Runtime configurable
deep neural networks for energy-accuracy trade-off,” in 2016 Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). IEEE, 2016, pp. 1–10.

[27] N. K. Jayakodi, A. Chatterjee, W. Choi, J. R. Doppa, and P. P. Pande,
“Trading-off accuracy and energy of deep inference on embedded
systems: A co-design approach,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2881–
2893, 2018.

[28] N. K. Jayakodi, S. Belakaria, A. Deshwal, and J. R. Doppa, “Design
and optimization of energy-accuracy tradeoff networks for mobile plat-
forms via pretrained deep models,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 19, no. 4, pp. 1–24, 2020.

[29] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[30] Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, and Y. Yang, “Asymptotic soft
filter pruning for deep convolutional neural networks,” IEEE transactions
on cybernetics, pp. 1–11, 2019.

[31] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,
A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi et al.,
“Intel ngraph: An intermediate representation, compiler, and executor
for deep learning,” arXiv preprint arXiv:1801.08058, 2018.

[32] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein et al., “Glow: Graph
lowering compiler techniques for neural networks,” arXiv preprint
arXiv:1805.00907, 2018.

[33] X. Dong, L. Liu, P. Zhao, G. Li, J. Li, X. Wang, and X. Feng, “Acorns: A
framework for accelerating deep neural networks with input sparsity,”
in 2019 28th International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE, 2019, pp. 178–191.

[34] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, and D. Qian,
“The deep learning compiler: A comprehensive survey,” arXiv preprint
arXiv:2002.03794, 2020.

[35] H. Vanholder, “Efficient inference with TensorRT,” 2016.
[36] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.

[37] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[38] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Yan, L. Wang, Y. Hu, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “TVM: end-to-end optimization
stack for deep learning,” arXiv preprint arXiv:1802.04799, 2018.

[39] Z. Jia, J. Thomas, T. Warszawski, M. Gao, M. Zaharia, and A. Aiken,
“Optimizing dnn computation with relaxed graph substitutions,” in
Proceedings of the 2nd Conference on Systems and Machine Learning
(SysML’19), 2019.

[40] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken,
“TASO: optimizing deep learning computation with automatic genera-
tion of graph substitutions,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 47–62.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. IEEE, 2009, pp. 248–255.

https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu
https://software.intel.com/en-us/articles/intel-movidius-neural-compute-stick
https://software.intel.com/en-us/articles/intel-movidius-neural-compute-stick
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano


13

[42] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[43] Intel. (2020) Intel neural compute stick 2. [Online]. Available:
https://software.intel.com/en-us/neural-compute-stick

[44] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[45] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems, 2019, pp. 8024–8035.

[47] X. Dong, J. Huang, Y. Yang, and S. Yan, “More is less: A more
complicated network with less inference complexity,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5840–5848.

[48] A. Bulat and G. Tzimiropoulos, “Xnor-net++: Improved binary neural
networks,” in 30th British Machine Vision Conference (BMVC), 2019,
p. 62.

[49] Z. Liu, W. Luo, B. Wu, X. Yang, W. Liu, and K.-T. Cheng, “Bi-
real net: Binarizing deep network towards real-network performance,”
International Journal of Computer Vision, vol. 128, no. 1, pp. 202–219,
2020.

[50] Z. Wang, J. Lu, C. Tao, J. Zhou, and Q. Tian, “Learning channel-wise
interactions for binary convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 568–577.

[51] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” in 5th International Conference on Learning
Representations, 2017, pp. 1–13.

[52] D. Kang, E. Kim, I. Bae, B. Egger, and S. Ha, “C-GOOD: C-code gener-
ation framework for optimized on-device deep learning,” in Proceedings
of the International Conference on Computer-Aided Design, 2018, pp.
1–8.

https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/neural-compute-stick

	I Introduction
	II Background and Related Work
	II-A Neural Network Pruning Methods
	II-B Operator Fusion Techniques

	III Motivation
	IV Proposed Approach
	IV-A Overview
	IV-B Aggressive Operator Fusion
	IV-B1 Inserting and Transforming Convolution Operators
	IV-B2 Adjusting Batch Normalization Operators

	IV-C Dynamic Filter Pruning

	V Experimental Setup
	VI Evaluation
	VI-A RQ1. The Model Accuracy
	VI-B RQ2. The Realistic Acceleration
	VI-C Ablation Study

	VII Discussion
	VIII Conclusion
	References

