
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020 4205

Suspension-Aware Earliest-Deadline-First
Scheduling Analysis

Mario Günzel, Graduate Student Member, IEEE, Georg von der Brüggen, Member, IEEE,
and Jian-Jia Chen, Senior Member, IEEE

Abstract—While the earliest-deadline-first (EDF) scheduling
algorithm has extensively been utilized in real-time systems, there
is almost no literature considering EDF for task sets with dynamic
self-suspension behavior. To be precise, there is no specialized
result for uniprocessor systems, besides the trivial suspension-
oblivious approach. The work by Liu and Anderson (in ECRTS
2013) and Dong and Liu (in RTSS 2016) for suspension-aware
multiprocessor global EDF can also be applied to uniprocessor
systems and therefore be considered the state-of-the-art. In this
work, two novel schedulability analyses (one for sporadic and one
for periodic task sets) for suspension-aware EDF on uniproces-
sor systems are proposed, which outperform the state-of-the-art
on such systems in empirical and theoretical comparison. We
further show that the analysis by Dong and Liu is in fact not
suspension-aware for uniprocessor systems.

Index Terms—Embedded software, real time systems.

I. INTRODUCTION

MANY embedded systems are comprised of recurrently
executed tasks that have to comply to timing con-

straints, e.g., a relative deadline related to the release time
of a task instance. Such real-time systems require both func-
tional and timing correctness and therefore (deterministic or
probabilistic) timing guarantees must be provided. This is
especially complex when a computation task assigned to the
processor may suspend itself, i.e., release the processor despite
being incomplete, to wait, for instance, for hardware accel-
erators (such as GPUs) or shared resources managed by a
multiprocessor locking protocol [9, Sec. 2]. One reason is
that most important classical timing analysis concepts, e.g.,
the critical instant theorem for static-priority scheduling by
Liu and Layland [16] and the demand bound function for
earliest-deadline-first (EDF) scheduling by Baruah et al. [1],
assume a work-conserving task behavior and are hence invalid
in the presence of self-suspension. Due to the high problem
complexity, a large number of research results in the area
of self-suspension have, unfortunately, recently been reported

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current ver-
sion October 27, 2020. This work was supported in part by the Deutsche
Forschungsgemeinschaft Project Sus-Aware under Project 398602212, and in
part by SFB876-A1 under Project 124020371. This article was presented in
the International Conference on Embedded Software 2020 and appears as part
of the ESWEEK-TCAD special issue. (Corresponding author: Mario Günzel.)

The authors are with the Department of Informatics, TU
Dortmund University, 44227 Dortmund, Germany (e-mail:
mario.guenzel@tu-dortmund.de; georg.von-der-brueggen@tu-dortmund.de;
jian-jia.chen@cs.tu-dortmund.de).

Digital Object Identifier 10.1109/TCAD.2020.3013095

flawed, as detailed in [9] where the authors listed six categories
of flaws and over 20 affected publications.

Applications of self-suspension in real-time embedded
systems are for example, I/O- or memory-intensive tasks, mul-
tiprocessor synchronization, hardware acceleration by using
co-processors and computation offloading, etc., detailed in
[9, Sec. 2] Two specific self-suspension task models have been
extensively explored in the literature, namely, the segmented (or
multisegment) self-suspension and the dynamic self-suspension
model. In the segmented self-suspension model all jobs of a
task have the same execution behavior, which is predefined
by a sequence of computation segments and self-suspension
intervals. In the dynamic self-suspension task model, each task
is defined by its total worst-case execution time and its total
maximum self-suspension time, where a job of task τi can
exhibit any number of self-suspensions of arbitrary duration
as long as the sum of the suspension (respectively, execu-
tion) interval lengths does not exceed the specified maximum
self-suspension (respectively, worst-case execution) time.

The segmented self-suspension model is suitable when the
execution of each instance of a task always follows a specific
structure. Prime examples are situations where a significant
part of the computation is offloaded to hardware accelerators,
which often can be modeled as a three-step process: 1) local
computation segment preparing the offloaded data, e.g., data
compression; 2) computation on the accelerator, i.e., the time
the task instance is suspended; and 3) a local computation
segment for post processing.

However, such a clear structure of a task’s self-suspension
behavior cannot always be assumed. For instance, it has been
reported that suspension-aware analysis can be applied to han-
dle suspension-based locks for multiprocessor synchronization
due to lock contention, usually termed as remote blocking.
Specifically, when partitioned or semi-partitioned multipro-
cessor scheduling paradigms are applied, the problem can
be modeled as self-suspending tasks in uniprocessor systems.
For details, please refer to [4] and [9]. Depending on dif-
ferent execution paths/conditions, a task may access different
mutually exclusive shared resources, and suspend when wait-
ing for remote resource access. Therefore, for a specific task,
the access pattern to the shared resources may differ for dif-
ferent task instances, i.e., the number of resource accesses,
their order, their location, and which resources are accessed
changes for individual task instances. As a result, the dynamic
self-suspension model is often utilized when considering
multiprocessor resource sharing protocols. Therefore, all the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4206 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

results reported in [9, Sec. 6] applied dynamic self-suspension
model to handle such dynamics.

While the segmented model can be seen as a precise but
restrictive model, the dynamic model is flexible but imprecise
when there is a small set of fixed suspension patterns. Hence,
hybrid self-suspension models that bridge the gap between
these two models have been recently proposed by von der
Brüggen et al. [22]. Which of these models is applied should
be decided based on the available information. Therefore,
scheduling algorithms and their schedulability tests for each
of the three models are required for different scenarios.

The well-defined suspension structure in the segmented self-
suspension model can be exploited to optimize the schedul-
ing policies, e.g., the fixed-relative-deadline (FRD) strategies
in [7], [19], and [21] and mapping to the master-slave problem
in [6]. Chen [5] and Mohaqeqi et al. [17] showed that verify-
ing whether a set of segmented self-suspension tasks can meet
their deadlines under static-priority scheduling is coNP-hard
in the strong sense.

For the dynamic self-suspension model the compu-
tational complexity of scheduler design remains an
open problem [5], [10]. Under static-priority scheduling,
Chen et al. [8] provided a unifying response time analysis
(RTA) framework, considering multiple approaches to model
the self-suspension time under a dynamic self-suspension
behavior, i.e., as computation, carry-in, blocking, or jitter.

For the dynamic self-suspension model under dynamic-
priority scheduling, the only well-known algorithm that has
been analyzed in the literature is preemptive EDF [16], which
assigns priorities to jobs due to their absolute deadlines. Under
EDF, jobs with an earlier absolute deadline have a higher
priority than those with later deadlines and ties are broken
arbitrarily. Although EDF is not optimal for scheduling self-
suspending task systems as shown in [20], EDF remains one
of the most adopted scheduling strategies.

The overall aim to create suspension-aware analysis is to
avoid counting suspensions that happen at the same time.
This can be achieved either by being pessimistic with count-
ing workload and dropping suspension completely, as we do
in Section IV, or by only removing the part of suspension
which is redundant from the analysis, as in Section V. Besides
the trivial suspension-oblivious schedulability analysis, the
following results have been provided in the literature:

1) Analysis by Devi [11, Th. 8], dating back to 2003, dedi-
cated to uniprocessor EDF. The review paper in [9] notes
that Devi does not give a proof of her analysis. This
analysis was proven to be wrong by a counterexample
provided by Günzel and Chen [14].

2) Analysis by Liu and Anderson [15], for global multipro-
cessor EDF. The analysis is valid for uniprocessor EDF
by setting the number of processors to 1.

3) Analysis by Dong and Liu [12], for global multiproces-
sor EDF. The analysis is valid for uniprocessor EDF by
setting the number of processors to 1.

Despite the possibility to apply the analyses of
Liu and Anderson [15] and Dong and Liu [12], the funda-
mental research question regarding the schedulability tests
for uniprocessor EDF considering dynamic self-suspension

remains open. In particular, there is no schedulability analysis
that is superior to the trivial suspension-oblivious analysis
for uniprocessor EDF. We believe that the fundamental
knowledge of uniprocessor EDF is a cornerstone to achieve
tight schedulability tests for more advanced multiprocessor
scenarios.

Contributions: In this article, we focus on schedulabil-
ity analysis for the dynamic self-suspension model under
preemptive EDF on a uniprocessor and provide two sufficient
schedulability tests for this setting. We limit our attention to
implicit-deadline real-time task systems, i.e., the relative dead-
line of a task is the same as its period (for periodic releases)
or minimum interarrival time (for sporadic releases). We prove
that the utilization-based schedulability test by Dong and
Liu [12] does not improve the suspension-oblivious approach,
if it is utilized for uniprocessor systems, in Section III. Our
contributions are as follows.

1) We provide an RTA for EDF in Section IV. If all
tasks have suspension, then this test dominates the
test developed by Liu and Anderson [15] applied to
implicit-deadline sporadic real-time tasks in uniproces-
sor systems. We also, present how this analysis can
be easily extended to multiprocessor global EDF in
Section IV-C.

2) We further provide a utilization-based schedulability test
for periodic task systems in Section V, where we esti-
mate the amount of time where the processor is used
by other jobs during self-suspension. This is the first
schedulability test which dominates and improves the
trivial suspension-oblivious approach for uniprocessor
systems.

3) In addition to the theoretical improvement and domi-
nance of existing methods under different conditions, the
evaluation results in Section VI show that the response-
time-aware schedulability test performs significantly
better than the state-of-the-art.

II. TASK MODEL, SYSTEM MODEL, AND NOTATION

We consider a set T = {τ1, . . . , τk, . . . , τn} of n inde-
pendent recurrent real-time tasks, described by the dynamic
self-suspension model, in a uniprocessor system. Each task τi

releases an infinite number of task instances, called jobs, and
is described by τi = (Ci, Si, Di, Ti). The jobs are released
sporadically according to the minimum interarrival time (or
period) Ti > 0, which means that two consecutive job releases
are separated by at least Ti, and have a relative deadline
Di > 0. We assume an implicit-deadline task set, i.e., Ti = Di

for all tasks τi ∈ T. The execution and suspension behavior of
a task is described by its worst-case execution time Ci ∈ [0, Di]
and its maximum suspension time Si ∈ [0, Di]. A task set is
called schedulable, if for each task τi each job τi,j (with j ∈ N)
meets its deadline, i.e., a job τi,j released at time ri,j must
be able to execute Ci time units before its absolute deadline
di,j = ri,j+Di = ri,j+Ti. In addition, according to the dynamic
self-suspension model, each job may suspend itself as often
as desired as long as the maximum suspension time constraint
is not violated, where suspension means that the job that is

GÜNZEL et al.: SUSPENSION-AWARE EDF SCHEDULING ANALYSIS 4207

currently executed relinquishes the processor. While this may
allow other jobs to be executed, it may also result in the pro-
cessor running idle. For each task τi ∈ T, the utilization is
defined as Ui = (Ci/Ti), and the total utilization of the task
set is Usum = ∑n

i=1 Ui. We assume that Ci + Si ≤ Di for all
tasks τi ∈ T, since otherwise τi is not schedulable by default.

A special case of sporadic real-time systems are peri-
odic real-time systems, in which a periodic task τi releases
its jobs periodically with period Ti. For a periodic task
τi = (Ci, Si, Di, Ti, φi), in addition to the previously defined
parameters, the first job release of task τi happens at time φi

and is assumed to happen at time 0 if φi is omitted.
In this work, we examine how the worst-case response time

of a specific job J of task τk can be calculated when T is
scheduled by preemptive EDF scheduling [16], where jobs
with a smaller deadline have higher priority and ties are broken
arbitrarily. The analysis in Section IV is dedicated to sporadic
task systems, whilst the one in Section V is only valid for
periodic task systems. Both analyses assume dense time.

We define the following terminology to describe the possible
states of the processor P, both in relation to J.

Definition 1: At time t, the processor P is:
1) working on J, when J is the job executed by P, i.e., the

remaining execution time of J is reduced;
2) suspended for J, when J has suspended itself, i.e., the

remaining suspension time of J is reduced.
Definition 2: At time t, the processor P is:
1) working, while it is working on any job;
2) suspended, while it is suspended for at least one job but

not working on any job, i.e., the processor idles but at
least one previously released job has not been finished.

3) waiting, while it is neither working nor suspended, i.e.,
the processor idles and all previously released jobs have
been finished.

Remark 1: This distinction is made for the following rea-
sons.

1) If the processor is working on a job, then it is unavailable
for all lower priority jobs.

2) If the processor is suspended for a job, it is available to
lower priority jobs.

III. EXISTING METHODS

In this section, we recap existing schedulability tests for
dynamic self-suspending tasks under preemptive EDF schedul-
ing [16] that are applicable to implicit-deadline uniprocessor
systems. The method by Devi [11, Th. 8] is left out, since a
counterexample for the analysis has been provided in [14].

A. Suspension-Oblivious

Suspension-oblivious analysis interprets suspension time as
additional computation time. This approach can be very pes-
simistic, especially if some tasks have a large maximum
suspension time. Since implicit-deadline task sets without sus-
pension are schedulable under EDF if and only if their total
utilization is less or equal to 1, the schedulability test (detailed
in [9, Sec. 4]) is defined as follows.

Theorem 1 (Suspension-Oblivious): Let T =
{τ1, τ2, . . . , τn} be a system of n implicit-deadline sporadic
tasks with dynamic self-suspension. Then T is schedulable
using preemptive EDF if

∑n
i=1 [(Ci + Si)/Ti] ≤ 1.

B. Workload-Based Schedulability Test

The method by Liu and Anderson [15] is actually for-
mulated for multiprocessor systems, considering arbitrary-
deadline sporadic tasks.1 Furthermore, they added a tardiness
threshold, which is an upper bound on the amount of time
by which individual jobs may miss their deadline, to make
their analysis also available for soft real-time systems (where
a deadline overrun is considered a service degradation but not
system failure). Setting the number of processors to 1 and
the tardiness threshold to 0, their method can be applied to
implicit-deadline sporadic tasks in uniprocessor systems. For
each task τl ∈ T they estimate the workload Wc and Wnc with
and without carry-in jobs2 inside an interval of length ξl and
check whether the processor still has enough capacity to work
on and be suspended for a job of τl.3

Theorem 2 (Liu and Anderson [15]): Let
T = {τ1, τ2, . . . , τn} be a system of n implicit-
deadline sporadic tasks with dynamic self-suspension.
The task set is schedulable using preemptive EDF if
for all τl ∈ T, for all sl,j ∈ {0, 1, . . . , Sl}, and for all
ξl ∈ [Tl, [(Cl + sl,j +∑n

i=1 Ci)/((1 −∑n
i=1(Ci/Ti)))]) ∩ Z

the property
∑

τi∈τ s

max{Wnc(τi), Wc(τi)} +
∑

τj∈τ e

Wnc
(
τj
) ≤ ξl − Cl − sl,j (1)

holds, where τ s and τ e are subsets of T consisting of those
tasks τi which do have suspension time (Si �= 0) and those
which do not have suspension (Si = 0), i.e., which are
execution-only, and the values Wc(τi) and Wnc(τi) are estima-
tions for relevant work of τi with and without carry-in jobs,
defined by following.

1) Wc(τi) =
{

min{�(τi, ξl), ξl − Cl − sl,j + 1}, i �= l

min{�(τl, ξl) − Cl, ξl − Tl}, i = l
with �(τi, t)=(�(t/Ti)�−1)Ci+min{Ci, t−�(t/Ti)�Ti+Ti}.

2) Wnc(τi) =
{

min{�(ξl/Ti)	Ci, ξl − Cl − sl,j + 1}, i �= l

min{�(ξl/Tl)	Cl − Cl, ξl − Tl}, i = l.
We remark that Liu and Anderson [15] restrict only to

discrete time for their analysis, i.e., the periods, worst-case
execution times, and maximum suspension times of all tasks
are in Z≥0. This is not necessary for the methods which we
provide in Sections IV and V.

C. Utilization-Based Schedulability Test

The method by Dong and Liu [12, Th. 2] is also formu-
lated for multiprocessor systems. By setting the number of
processors to 1 their method can be utilized for the dynamic
self-suspension uniprocessor task model.

1For arbitrary-deadline tasks, there is no constraint on the relation of
deadline and period.

2Carry-in jobs are those which are released before the interval under
analysis and still interfere during the interval.

3We note that there is a typing error in this article, corrected here.

4208 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Theorem 3 (Dong and Liu [12, Th. 2]): Let
T = {τ1, . . . , τn} be a system of n implicit-deadline
sporadic tasks with dynamic self-suspension. The task
set is schedulable using preemptive EDF scheduling if∑n

i=1 [(Ci + Si)/Ti] ≤ 1 holds or if there exists some T0 ⊆ T

and some k ∈ {2, . . . , |T0|} with
∑�(k/2)	

i=1 Ei(T0) ≥ Tmax(T0),
where Ei(T0) is the ith minimum (Cj + Sj) among tasks
τj ∈ T0 and Tmax(T0) is the maximum task period of tasks in
T0, such that

∑

τi∈T

Ci

Ti
+

∑

τi∈T−T0

Si

Ti
+

k∑

i=1

vi(T0) ≤ 1 (2)

where vi(T0) is the ith maximum suspension ratio (Sj/Tj)

among tasks τj ∈ T0.
In fact this method is no improvement compared to the

suspension-oblivious schedulability test if it is formulated for
only one processor.

Proposition 1: The schedulability test by Dong and Liu as
formulated in Theorem 3 for uniprocessor systems is identical
to the suspension-oblivious test as in Theorem 1.

Proof: Assume that the schedulability test from Theorem 3
is superior to the suspension oblivious approach for the task set
T = {τ1, . . . , τn}. Then, we find some T0 ⊆ T and some k ∈
{2, . . . , |T0|} with

∑�(k/2)	
i=1 Ei(T0) ≥ Tmax(T0). By reordering

we assume that T0 = {τ1, . . . , τn0} and Ei(T0) = Ci+Si. Then
we have

1 ≤

⌊
k
2

⌋

∑

i=1

Ei(T0)

Tmax(T0)
<

k∑

i=1

Ei(T0)

Tmax(T0)
≤

k∑

i=1

Ci + Si

Ti

≤
n∑

i=1

Ci

Ti
+

k∑

i=1

vi(T0) +
n∑

i=n0+1

Si

Ti
.

In other words,
∑�(k/2)	

i=1 Ei(T0) ≥ Tmax(T0) implies that (2)
does not hold. Therefore, the schedulability test in Theorem 3
coincides with the suspension-oblivious schedulability test. We
note that in the proof we utilized that E�(k/2)	+1(T0) > 0, but
this holds since 0 < Tmax(T0) ≤ ∑�(k/2)	

i=1 Ei(T0) ≤ �(k/2)	 ·
E�(k/2)	(T0) ≤ �(k/2)	 · E�(k/2)	+1(T0).

In the remaining part of the paper, we omit this schedu-
lability test in the discussions since it is the same as the
suspension-oblivious approach for uniprocessor systems.

IV. METHOD 1: RESPONSE TIME ANALYSIS

In this section, we introduce a new method to test the
schedulability of an implicit-deadline sporadic task set under
preemptive EDF scheduling. For this purpose, we estimate the
interference from higher-priority jobs to calculate an upper
bound on the worst-case response time for each task. Although
RTA has been conducted for EDF in the classical setting with-
out self-suspension [2], [18], rigorous proofs are required to
derive suspension-aware RTA since it has been reported that
some seemingly correct extensions from classical real-time
schedulability analyses can be flawed, as explained in [9].

Let τk ∈ T = {τ1, . . . , τn} be any task and J some job of
τk. We denote the release time and the deadline of J by rJ

Fig. 1. Illustration of observations 1 (left) and 2 (right). Patterned areas are
interference by higher priority jobs.

and dJ = rJ + Tk, respectively. Let Bi
J(t) be the interference

by higher priority jobs of τi. The time where the processor
is working on jobs with higher priority than J, i.e., where it
is unavailable to J, during an interval [rJ, rJ + t] ⊆ [rJ, dJ]
is
∑n

i=1 Bi
J(t). The processor can work on and be suspended

for J during an interval [rJ, rJ + t] for t − ∑n
i=1 Bi

J(t) time
units. Hence, it finishes J during this interval if Ck + Sk ≤
t − ∑n

i=1 Bi
J(t). Equivalently, if J can not be finished during

[rJ, rJ + t], then Ck + Sk > t −∑n
i=1 Bi

J(t).
We derive the following two observations as depicted

in Fig. 1, which provide a general upper bound on the
response time and a sufficient schedulability condition. These
are (mainly implicitly) used in a similar way in classical
RTA and the underlying concepts are already applied for
self-suspending tasks as in [15].

Observation 1: If J meets its deadline, then we calculate
an upper bound on the response time of J by choosing the
minimal t with 0 ≤ t ≤ Tk, such that

Ck + Sk +
n∑

i=1

Bi
J(t) ≤ t. (3)

If no such t exists, then we can not give a guaranteed worst-
case response time, but the job may still meet its deadline,
e.g., if the job completes earlier than in its worst case.

Observation 2: If J does not meet its deadline, then it can
not be finished during the interval [rk, rk + Tk], i.e.,

Ck + Sk +
n∑

i=1

Bi
J(Tk) > Tk (4)

as illustrated on the right hand side of Fig. 2.
We start by determining the higher priority jobs which may

contribute to the response time of J. By the definition of EDF
scheduling, jobs with a larger absolute deadline than J have
a lower priority. We remove these jobs from the schedule for
ease of notation, since they do not affect the response time of
J. All jobs of the remaining schedule have deadline at most
dJ and therefore may have a higher priority than J.

When determining which higher priority jobs contribute to
the response time of J, we assume that all higher priority jobs
meet their deadline. Furthermore, for simplicity, we assume
that J is released at time rJ = 0. Other job releases and task
phases are shifted accordingly (to negative time instants if
necessary) and in the following, we consider the schedule after
this shift.

We know that Bk
J(t) = 0 since all jobs of τk with higher

priority than J ∈ τk meet their deadline which is at most 0.
For a task τi with i �= k there are at most �(Tk/Ti)	 of the

GÜNZEL et al.: SUSPENSION-AWARE EDF SCHEDULING ANALYSIS 4209

Fig. 2. Interference by higher priority jobs of task τi = (2, 0, 4, 4) during
the interval [rJ , fJ] = [0, 10]. Left: interference = 5. Right: interference = 4.

remaining jobs released in [0, t] ⊆ [0, Tk]. Furthermore, there
may be one additional overlapping job which is released before
0 but finishes after 0.

Lemma 1: For a task τi �= τk only the last �(Tk/Ti)	 + 1
jobs4 may be executed in [0, t].

Proof: The other jobs of τi have a deadline of at most Tk −
(�(Tk/Ti)	 + 1) · Ti ≤ Tk − (Tk/Ti) · Ti = 0. Since they meet
their deadline, they are finished before the release of J.

Remark 2: In fact only the last �(Tk/Ti)� jobs may be exe-
cuted in [0, t], which can be shown by a similar proof. Only
for convenience, we use the bound given in the lemma and
set the interference by the additional job to 0 if necessary.

For the last �(Tk/Ti)	 jobs of τi we estimate the time they
may be executed in [0, t] by Ci each. Although this seems to be
very pessimistic if t is very small, this estimation is sufficient
for our analysis. However, we have to be more careful with
the (�(Tk/Ti)	 + 1)th last job of τi which is released before 0
but may still finish after 0. Note that by our assumption, 0 is
not a lower bound on the phase but the release of J.

Definition 3: We define Ji to be the (�(Tk/Ti)	 + 1)th last
job of τi. The time Ji is interfering in [0, t] is denoted by Ai.

To derive a good response time bound in general, estima-
tion of the carry-in, i.e., interference by higher priority jobs
which are released before the job under analysis, is essential
as outlined in [2]. Since Ai is the interference by a cer-
tain job released before J, it serves the role of the carry-in.
Nevertheless, there is a slight difference as depicted in Fig. 2.
Although in the scenario on the left-hand side (LHS) the carry-
in and Ai coincide, the value of Ai is 0 in the right scenario
since the third last job of τi finishes before J is released. We
observe that Ai has its highest value when the interference is
maximized, i.e., on the LHS. Hence, independently examin-
ing Ai is relatively safe for estimating interference. This is not
the case for the carry-in, for which in general more caution is
required.

With this definition of Ai, the time a task τi �= τk is
interfering during [0, t] is

Bi
J(t) ≤

⌊
Tk

Ti

⌋

· Ci + Ai (5)

and we will examine how to estimate the interference Ai by
Ji during [0, t] later on. First, we show how the estimation for
Bi

J(t) can be utilized, assuming that Ai is given.

4We highlight that we consider a limited schedule here, which was obtained
by the original schedule. The last x jobs are the first x jobs counted from the
end of the schedule.

Lemma 2: We consider a job J of τk. If all higher priority
jobs meet their deadline and

Sk + Ck +
∑

i �=k

(⌊
Tk

Ti

⌋

· Ci + Ai

)

≤ Tk. (6)

holds, then also J meets its deadline.
Proof: If J does not meet its deadline, then we obtain by

Observation 2 that Tk < Sk + Ck +∑
i �=k Bi

J(Tk) ≤ Sk + Ck +∑
i �=k(�(Tk/Ti)	 · Ci + Ai), which contradicts (6).
Under the assumption, that Ai is given for all i, our

schedulability test can be formulated as follows.
Proposition 2: Let T = {τ1, . . . , τn} be an implicit-deadline

task set. If the equation

r̃k := Sk + Ck +
∑

i �=k

(⌊
Tk

Ti

⌋

· Ci + Ai

)

≤ Tk (7)

holds for all indices k ∈ {1, . . . , n}, then T is schedulable
by preemptive EDF and the worst-case response time of τk is
upper bounded by r̃k for each k ∈ {1, . . . , n}.

Proof: We use an indirect proof to show that T is schedu-
lable by preemptive EDF. In the following, we assume that T
is not schedulable. Let J be the job with the highest priority
whose deadline is not met and let τk be the task corresponding
to J. In this case, Lemma 2 shows that J is schedulable, which
contradicts our assumption.

We have proven that T is schedulable and are able to use
(5) together with (3) to upper bound the response time of each
job of τk by t = r̃k for k = 1, . . . , n.

The aforementioned proposition analyses the scenario with
worst-case release pattern, i.e., all jobs are released as late as
possible and the interference is maximized as on the LHS of
Fig. 2. In such a scenario Ai and the carry-in coincide. Hence,
in the following estimation of Ai we observe mainly typical
carry-in bounds as provided in [2], [15], and [18]. Hereinafter,
we provide rigorous proofs where suspension is integrated
seamlessly into carry-in analysis.

For the estimation of Ai we introduce two approaches, where
the first one examines the deadline of the overlapping job Ji

while the second one makes use of its response time.
Lemma 3: We can estimate Ai by

Ai ≤ min

{

Ci, Tk −
⌊

Tk

Ti

⌋

· Ti

}

=: Ã1
i . (8)

Proof: Since there are �(Tk/Ti)	 other jobs of τi between
the deadline of Ji and Tk, the deadline of Ji is at most
dJi = Tk − �(Tk/Ti)	 · Ti. Due to the assumption that all jobs
with higher-priority than J meet their deadline, Ji meets its
deadline as well and any possible interference by Ji must
happen in the interval from [0, dJi].

On the other hand, we also know that the interference by
Ji is bounded by the worst-case execution time Ci. Since both
values bound Ai, we take the minimum of them.

This estimation may be pessimistic, e.g., when
T1 � C1 > T2 > 0, as shown in Fig. 3 for the task set
T = {τ1, τ2} with τ1 = (C1 = 4, S1 = 0, D1 = T1 = 18)

and τ2 = (C2 = 1, S2 = 0, D2 = T2 = 3). If we estimate A1
by Ã1

1 = 3, then we can bound r̃2 only by 4 which exceeds

4210 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 3. For these tasks, Lemma 3 gives a bad estimation for A1.

the relative deadline T2 = 3. Actually, A1 = 0 and r̃2 = 1 is
smaller than T2. We note that r̃2 = 1 is even a precise bound
on the response time of τ2.

If (an upper bound of) the response time Ri of Ji is known,
Ai can be estimated with the following approach, that performs
much better for the task set in Fig. 3:

Lemma 4: We can estimate Ai by

Ai ≤ max

{

Tk + Ri −
(⌊

Tk

Ti

⌋

+ 1

)

· Ti, 0

}

=: Ã2
i (9)

where Ri is either the worst-case response time of τi or any
other upper bound on the response time of Ji.

Proof: Due to its definition, we know that the job Ji is
released not later than Tk − (�(Tk/Ti)	 + 1) · Ti and therefore
must be finished not later than Tk − (�(Tk/Ti)	 + 1) · Ti + Ri,
which may be less than 0 if Ji is actually finished before
time 0. As a result, the maximum amount of time that Ji may
interfere with the interval [0, t] ⊆ [0, Tk] is bounded by the
maximum of 0 or Tk + Ri − (�(Tk/Ti)	 + 1) · Ti, since the
interference cannot be negative.

The examination in this section leads to the following
response time bound R̃k which is not as tight as r̃k but directly
computable since it uses an estimation Ãi of Ai.

Lemma 5: Let J be a job of τk and let all jobs with higher
priority than J meet their deadline. Further, we define

R̃k := Ck + Sk +
∑

i �=k

(⌊
Tk

Ti

⌋

· Ci + Ãi

)

(10)

where each Ãi is defined as the minimum of Ã1
i and Ã2

i from
(8) and (9), i.e.,

Ãi := min

{

Ci, max

{

Tk + Ri −
(⌊

Tk

Ti

⌋

+ 1

)

· Ti, 0

}}

(11)

where Ri is an upper bound on the worst-case response time
of τi or Ri := Ti. If R̃k ≤ Tk, then J meets its deadline and
R̃k is an upper bound on the response time of J.

Proof: Lemmas 3 and 4 yield r̃k ≤ R̃k. If R̃k ≤ Tk, then we
also have r̃k ≤ R̃k ≤ Tk and by Proposition 2 the job J meets
its deadline. The response time of J is upper bounded by r̃k

and hence, also by R̃k.
Using this lemma, we obtain a response time bound valid

for all jobs J of τk. Hence, R̃k serves as a bound on the worst-
case response time of τk and can be used for the estimation
of Ãk for other tasks in Lemma 5.

Theorem 4: Let T = {τ1, . . . , τn} be a sporadic task set
whose tasks have implicit deadline. If for all τk ∈ T the value
R̃k from (10) is at most Tk, then the task set is schedulable by
preemptive EDF.

Proof: We know that R̃k ≥ r̃k for all k ∈ {1, . . . , n}. If
Tk ≥ R̃k for all k, then also Tk ≥ r̃k. Hence, by Proposition 2,

the task set T is schedulable by preemptive EDF and the
worst-case response time of each τk is upper bounded by
r̃k ≤ R̃k.

We can further improve the test by the following observa-
tions. If we do not estimate Ai by Ci, then we assume that
Ji interferes for the whole time interval until the deadline
(for Ã1

i), or until the finishing time (for Ã2
i). Although those

intervals intersect for different jobs, we add the interference
several times, which is overly pessimistic.

Proposition 3: Let I ⊆ {1, . . . , n} − {k} and let Ri be a
bound on the response time of Ji for all i ∈ I. If no such
bound is given, set Ri = Ti. We can estimate

∑
i∈I Ai as

∑

i∈I

Ai ≤ max

{

max
i∈I

{

Tk + Ri −
(⌊

Tk

Ti

⌋

+ 1

)

Ti

}

, 0

}

. (12)

Proof: We call fJi the finishing time and dJi the absolute
deadline of the job Ji from Definition 3. Moreover, we still
assume that rJ = 0. The job Ji, i ∈ I may interfere after the
release of J only during [0, max{maxi∈I{fJi}, 0}]. Furthermore,
the processor can only be occupied by one job at a time.
Hence, the sum of all interference of Ji, i ∈ I is bounded
by

∑
i∈I Ai ≤ max{maxi∈I{fJi}, 0}.

We know that dJi ≤ Tk − (�(Tk/Ti))Ti is an estimation of
the absolute deadline of Ji and fJi ≤ Tk+Ri−(�(Tk/Ti)	+1)Ti

is an upper bound on the finishing time of Ji if an estimation Ri

on the response time of Ji is given. Since Ji finishes on time,
we have fJi ≤ dJi and the estimation for the absolute deadline
is also valid for the finishing time. Using both estimations in∑

i∈I Ai ≤ max{maxi∈I{fJi}, 0} concludes the proof.
For a specific job Ji, the interval starting from 0 up to the

threshold given by the right hand side of (12) could also con-
tain the interference by other jobs which are not overlapping.
We use this observation to improve the test.

Proposition 4: Let i ∈ {1, . . . , n}−{k}. The interference by
the jobs of τi after a threshold m ∈ [0, Tk] is bounded by

⌈
Tk − m

Ti

⌉

· Ci. (13)

Proof: The interference can only occur for tasks with dead-
line after m. This is only possible for the last �[(Tk − m)/Ti]�
jobs. They contribute an interference of at most Ci each.

Both ideas can be used to define a better estimation R̃k

than in (10). With this new definition of R̃k, Lemma 5 and
Theorem 4 still hold. In the following we formulate this
improved schedulability test.

A. Response-Time-Based Schedulability Test

Let T = {τ1, . . . , τn} be a sporadic implicit-deadline task
set. Algorithm 1 is a sufficient test for the schedulabil-
ity of T by preemptive EDF scheduling. If Algorithm 1
returns schedulable, then all R̃k ≤ Tk, i.e., the task set T is
schedulable according to Theorem 4 and its improvements in
Propositions 3 and 4.

The algorithm estimates the response time of task τk

for k = n, . . . , 1. At first, in lines 4–6, it calculates
Ãk

i := Tk + Ri − (�(Tk/Ti)	 + 1)Ti from Lemma 4 where Ri

is an already computed response time bound (for i > k) or

GÜNZEL et al.: SUSPENSION-AWARE EDF SCHEDULING ANALYSIS 4211

Algorithm 1 Response-Time-Based Schedulability Test
1: Sort τ1, . . . , τn, such that T1 ≤ · · · ≤ Tn.
2: for k = n, . . . , 1 do
3: Ik: = {1, . . . , n} − {k}
4: for i ∈ Ik do Carry-in estimation from Lemma 4.

5: Ãk
i : =

⎧
⎨

⎩

Tk −
⌊

Tk
Ti

⌋
· Ti, i < k

Tk + R̃i −
(⌊

Tk
Ti

⌋
+ 1

)
· Ti, i > k

⎫
⎬

⎭

6: end for
7: for j ∈ Ik do Response time bounds for different thresholds.
8: mk

j : = max
{

Ãk
j , 0

}

9: Ik
j : =

{
i ∈ Ik

∣
∣
∣ Ãk

i ≤ Ãk
j

}

10: R̃k(j): = ∑

i∈Ik−Ik
j

min

{
⌊

Tk
Ti

⌋
+ 1,

⌈
Tk−mk

j
Ti

⌉}

Ci

+ ∑

i∈Ik
j

min

{
⌊

Tk
Ti

⌋
,

⌈
Tk−mk

j
Ti

⌉}

Ci

+ Ck + Sk + mk
j

11: end for Response time bound without threshold.
12: R̃k(0): = Ck + Sk + ∑

i∈Ik

(⌊
Tk
Ti

⌋
+ 1

)
Ci

13: R̃k: = min
{

R̃k(j)
∣
∣
∣ j ∈ Ik ∪ {0}

}

14: if R̃k > Tk then
15: return not schedulable
16: end if
17: end for
18: return schedulable

Ti. Then the algorithm tries out different thresholds mk
j . For

those tasks where Ai can be neglected (Ik
j) as in Proposition 3,

it just adds the interference of the other �(Tk/Ti)	 jobs after
the threshold, i.e., min{�(Tk/Ti)	,

⌈
[(Tk − mk

j)/Ti]
⌉
}Ci due to

Proposition 4. For the other tasks (Ik−Ik
j) we estimate Ai by Ci

with the bound from Lemma 3. Together with Proposition 4 we
obtain min{�(Tk/Ti)	+1,

⌈
[(Tk − mk

j)/Ti]
⌉
}Ci. The algorithm

then calculates the response time bound R̃k(j) by adding the
threshold mk

j , the interference after the threshold, and Ck +Sk.
Finally, the algorithm computes a response time bound R̃k(0)

for the threshold m = 0 (line 12). It derives the best bound by
taking the minimum (line 13).

B. Theoretical Evaluation

We compare the RTA presented in this section with the
existing tests summarized in Section III.

Comparison With Suspension-Oblivious: Although we show
in Section VI that our method has a better performance,
both schedulability tests do not dominate each other. There
are task sets which pass our schedulability test, although the
suspension-oblivious approach, see Theorem 1, cannot give
any schedulability guarantees.

Example 1: We assume that T = {τ1, τ2} consists of:
1) τ1 = (C1 = 1, S1 = 2, D1 = T1 = 5);
2) τ2 = (C2 = 1, S2 = 3, D2 = T2 = 7).

The worst-case response times for the tasks are bounded by:
1) R̃2 = 1 + 3 + (�(7/5)	 + 1) · 1 = 6 ≤ 7 = T2;
2) R̃1 = 1 + 2 + (�(5/7)	 + 1) · 1 = 4 ≤ 5 = T1.

Hence, T is schedulable according to our test. However,
for the condition in Theorem 1 we obtain [(1 + 2)/5] +
[(1 + 3)/7] > 1.

On the other hand, there are some task sets that are
schedulable by Theorem 1 but not according to our test:

Example 2: The task set T = {τ1, τ2} with two tasks τ1 =
(C1 = 3, S1 = 0, D1 = T1 = 6) and τ2 = (C2 = 10, S2 =
0, D2 = T2 = 20) is schedulable by Theorem 1. Our method
however computes the value R̃2 = 10+�[(20 − 2)/6]	·3+2 =
21 which is higher than the relative deadline of task τ2.

Comparison With the Workload-Based Schedulability Test
by Liu and Anderson: Comparing their estimations with the
ones described in this section yields the following.

Proposition 5: If all tasks are self-suspending tasks, our
method dominates the analysis by Liu and Anderson from [15]
applied to implicit-deadline tasks in uniprocessor systems.

Proof: For contradiction, we assume that our schedula-
bility test fails but the one described in Theorem 2 suc-
ceeds. At first, we want to find a possible value for ξl.
If the algorithm described in Section IV-A stops without
determining the schedulability of the task set, then there
is some l ∈ {0, 1, . . . , n} with R̃l > Tl. We deduce
that Tl < R̃l ≤ R̃l(0) = Cl + Sl + ∑

i �=l(�(Tl/Ti)	 +
1) · Ci ≤ Cl + Sl + Tl

∑
i(Ci/Ti) + ∑

i Ci. This implies
Cl + Sl + ∑

i Ci > Tl · (1 − ∑
i(Ci/Ti)) and hence

[(Cl + Sl +∑
i Ci)/(1 −∑

i(Ci/Ti))] > Tl. We conclude that
the interval [Tl, [(Cl + Sl +∑

i Ci)/(1 −∑
i(Ci/Ti))]) is not

empty and ξl = Tl has to be considered in the schedulability
test according to Theorem 2.

By setting ξl = Tl and sl,j = Sl, we obtain
∑

τi∈τ s

max{Wnc(τi), Wc(τi)} +
∑

τj∈τ e

Wnc
(
τj
) ≤ Tl − Cl − Sl. (14)

Furthermore, we know that the set τ e is empty and τ s =
T by assumption. Hence, the LHS of inequality (14) is∑

τi∈T max{Wnc(τi), Wc(τi)} and we can estimate it from
below by Wnc(τl) +∑

τi �=τl
Wc(τi) ≤ LHS.

The computation of Wnc(τl) yields that Wnc(τl) =
min{�(Tl/Tl)	Cl − Cl, Tl − Tl} = 0, and Wc(τi), i �= l is
defined by Wc(τi) = min{�(τi, Tl), Tl − Cl − Sl + 1} with
�(τi, Tl) = (�(Tl/Ti)�−1)Ci +min{Ci, Tl −�(Tl/Ti)�Ti +Ti}.

By using the four inequalities5 Tl − Cl − Sl + 1 ≥ 0,
(�(Tl/Ti)� − 1) ≥ 0, Ci ≥ 0 and Tl − �(Tl/Ti)�Ti + Ti ≥
Tl −((Tl/Ti)+1)Ti +Ti = 0, we obtain that Wc(τi) is not neg-
ative for all i �= l. We conclude that Wc(τi) = �(τi, Ti) since
otherwise the LHS from (14) would be at least Tl −Cl −Sl +1
and hence Tl − Cl − Sl + 1 ≤ LHS ≤ Tl − Cl − Sl, which is a
contradiction.

In the following, we show that even:

�(τi, Tl) =
⌊

Tl

Ti

⌋

Ci + min

{

Ci, Tl −
⌊

Tl

Ti

⌋

Ti

}

(15)

holds. For all Tl which are not in ZTi, we know that
�(Tl/Ti)� − 1 = �(Tl/Ti)	. By using this in the definition of
�(τi, Tl), we obtain the result from (15). In the other case
Tl ∈ ZTi, we have �(Tl/Ti)� = (Tl/Ti) = �(Tl/Ti)	 which
yields �(τi, Tl) = ((Tl/Ti)− 1)Ci + min{Ci, Tl − (Tl/Ti) · Ti +
Ti} = (Tl/Ti)Ci = �(Tl/Ti)	Ci + min{Ci, Tl − �(Tl/Ti)	Ti}.

5We know that Tl ≥ Cl + Sl since otherwise T is not schedulable and both
schedulability tests would fail.

4212 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

We conclude that if the test by Liu and Anderson as in
Theorem 2 indicates schedulability of the task system, then
the inequality Cl +Sl +∑

τi �=τl
�(Tl/Ti)	Ci +min{Ci, L(i)} ≤ Tl

with L(i) = Tl −�(Tl/Ti)	Ti holds. It is left to show that from
this inequality also R̃l ≤ Tl follows.

Let I := {i ∈ {1, 2, . . . , n} | i �= l, L(i) ≤ Ci}. If the set I is
empty, then R̃l(0) = Cl+Sl+∑

τi �=τl
�(Tl/Ti)	Ci+min{Ci, L(i)}

and we get R̃l ≤ R̃l(0) ≤ Tl, which contradicts the assump-
tion that R̃l > T̃l. Otherwise, if I is not empty, we define
j̃ := arg maxi∈I{Al

i}. If there is not a unique integer for
the maximum, we choose one among them. In the follow-
ing we show that the right hand side of R̃l(j̃) ≤ Cl +
Sl + ∑

τi �=τl
�(Tl/Ti)	Ci + ∑

i∈Il−Il
j̃
Ci + max{Al

j̃
, 0} is at most

Cl + Sl +∑
τi �=τl

(�(Tl/Ti)	Ci + min{Ci, L(i)}). The term Cl +
Sl + ∑

τi �=τl
�(Tl/Ti)	Ci exists in both expressions. Therefore,

we consider only the remaining part
∑

i∈Il−Il
j̃
Ci + max{Al

j̃
, 0}.

Since Al
j̃
≤ L(j̃) ≤ Cj̃ and 0 ≤ L(j̃), we have max{Al

j̃
, 0} ≤

L(j̃) = min{Cj̃, L(j̃)} for the second summand. Furthermore, if
i ∈ Il − Il

j̃
, then by definition Al

i > Al
j̃

and i /∈ I. Hence, we

obtain L(i) > Ci and
∑

i∈Il−Il
j̃
Ci = ∑

i∈Il−Il
j̃
min{Ci, L(i)} ≤

∑
i �=l
i �=j̃

min{Ci, L(i)} for the first summand. We conclude that

in the case I �= ∅, the inequality R̃l(j̃) ≤ Cl + Sl +∑
i �=l�(Tl/Ti)	Ci +∑

i �=l min{Ci, L(i)} ≤ Tl also holds, which
contradicts our assumption.

We note that we did not examine, whether our schedulability
test still dominates the method by Liu and Anderson [15] if
some tasks are execution-only (i.e., τ e �= ∅).

C. Remarks on Extensions

For a more rigorous proof and dominance discussion
we focused our attention on the fundamental case with
implicit-deadline uniprocessor systems. Nevertheless, with
minor adjustment, the RTA can also be applied to constrained-
deadline sporadic real-time task sets, in which Di ≤ Ti for
every τi. Furthermore, this analysis which is based on (7) in
Proposition 2 can be modified to handle global EDF on M
processors as follows:

r̃k := Sk + Ck +
∑

i �=k

(⌊
Tk
Ti

⌋
· Ci + Ai

)

M
≤ Tk. (16)

That is, 1) when task τk suspends, no job is executed on any
of the M processors and 2) when task τk executes on one
processor all M − 1 processors idle.

V. METHOD 2: REDUNDANT SELF-SUSPENSION ANALYSIS

Our second approach is an improvement of the suspension-
oblivious schedulability test, which is stated in Theorem 1.
The underlying utilization-based test [16] is exact for periodic
tasks without suspension, i.e., the test succeeds if and only if
the task set is schedulable. The overall aim of this section is
to provide a suspension-aware version of that test.

The central observation is that the processor can be sus-
pended for several jobs and additionally work on a lower pri-
ority job at the same time, as already mentioned in Remark 1.
The suspension-oblivious approach is not aware of this fact

and adds the time where the processor is suspended for a job
as additional execution time to the workload. In the follow-
ing, we estimate the number of jobs by which the processor is
only suspended while it is also suspended for or working on
lower priority jobs, and exclude their suspension time from
the workload. To make the estimations possible we have to
restrict to periodic task sets, where time between recurrent
job releases is exactly the period. We note that by omitting
the implicit-deadline restriction our analysis would become
incorrect, too.

Let T = {τ1, . . . , τn} be a periodic implicit-deadline task
system. We consider an EDF-schedule of jobs released by this
task system. Furthermore, we assume that it is not schedulable,
i.e., that there exists a job in the schedule that does not meet
its deadline.

A. Preparation

Since we consider a periodic task system, the release pattern
of the jobs is fixed, depending on the given phases. For a given
schedule, we reorganize the task system and the schedule to
fulfill the following conditions.

Remark 3 (Revision of the EDF Schedule):
1) The property C1 + S1 ≤ · · · ≤ Cn + Sn holds. This is

accomplished simply by reindexing.
2) For each task, no additional job at the beginning can

be added without preserving the minimal phase, i.e., for
φ := min{φi} the property φi − φ < Ti holds for all i.
More specifically, φi ∈ [φ, φ + Ti] for all i. This is
achieved by adding empty jobs without any execution
or suspension time of τi periodically between φi and
min{φi} until φi − φ < Ti holds.

3) All jobs have full execution and suspension time, i.e.,
the processor is working on and suspended for each job
the amount of time given by the worst-case execution
and maximum suspension time. This is achieved by the
undermentioned procedure. Lemma 6 proves that this
step does not transform any EDF schedule with deadline
misses into an EDF schedule without deadline misses.

We note that the addition of empty jobs in step (2) has no
impact on the response times of the other jobs. After ensuring
Property (2) we denote the jobs in the schedule by J1, J2, . . .,
sorted by their priorities. Inductively, we modify the schedule
again by using the following procedure for the mth job Jm,
m = 1, 2, . . . , to obtain Property (3).

1) If the processor is now working on any of the jobs
J1, . . . , Jm−1 at a time frame where it was before sus-
pended for or working on Jm, we move this execution
or suspension time of Jm to the end of that job.

2) We add additional (pseudo) execution and suspension
time at the end of Jm such that it equals the worst case.

Lemma 6: By using the procedure described above, the
response time of each job does not decrease.

Proof: We use induction and prove that after the mth step,
J1, . . . , Jm interfere at least the same time frames as before
and the response time of Jm is not decreased.

For the first job, we can just add additional suspension and
execution time at the end. This can not decrease the response

GÜNZEL et al.: SUSPENSION-AWARE EDF SCHEDULING ANALYSIS 4213

time of that job and J1 interferes at least the same time frames
as before, possibly even more.

A modification of the mth job does not affect the response
times of the higher priority jobs J1, . . . , Jm−1. By induction,
those higher priority jobs interfere for at least the same time
frames as before. Therefore, and because we only add execu-
tion and suspension time, the response time of Jm does not
decrease. If the processor was before suspended for or work-
ing on Jm, then it is now either still in the same state or it
is occupied by any of the jobs J1, . . . , Jm−1. Hence, the pro-
cessor is occupied by J1, . . . , Jm at least at the same time
frames as before, i.e., the interference by J1, . . . , Jm may only
be increased.

By Lemma 6, if the original EDF schedule has a dead-
line miss, the new EDF schedule with its jobs in the setting
described in Remark 3 also has a deadline miss.

B. Proof of the Schedulability Test

We assume that the requirements from Remark 3 are met
by the task set. Let J be the job with the highest priority
which does not meet its deadline. Let this deadline be td.
Furthermore, let t−1 be the last time before td where the pro-
cessor is not suspended, or working on J or jobs with higher
priority. We delete all jobs which are finished before t−1 or
have lower priority than J. This does not affect the response
times of the remaining jobs.

For notational brevity, the remaining schedule from time
t−1 to td is called σ for the rest of the proof. According to
the above definition, the jobs that are executed in the time
interval [t−1, td] have release time ≥ t−1 and deadline ≤ td.
Hence, there are at most �[(td − t−1)/Ti]	 jobs of task τi in
the schedule σ .

Moreover, by the above definition of the interval [t−1, td]
and the schedule σ , the processor is either working on a job or
suspended at any time point from t−1 to td. Suppose that Vrun
(Vsus, respectively) is the amount of time that the processor is
working (suspended, respectively) from t−1 to td. Since one
job misses its deadline, we know that

td − t−1 = Vrun + Vsus

<
∑

τi∈T

⌊
td − t−1

Ti

⌋

Ci +
∑

τi∈T

⌊
td − t−1

Ti

⌋

Si. (17)

The condition td − t−1 <
∑

τi∈T�[(td − t−1)/Ti]	(Ci + Si)

implies that 1 <
∑

τi∈T [(Ci + Si)/Ti], which concludes the
suspension-oblivious schedulability test in Theorem 1.

Instead of applying Vsus ≤ ∑
τi∈T�[(td − t−1)/Ti]	Si, our

utilization-based analysis intends to construct a tighter bound
for Vsus and is based on the following observation.

Observation 3: Suppose that there are two jobs J and J† in
schedule σ . If we have [rJ, dJ] ⊆ [rJ†, rJ† + RJ†], where rJ

(dJ) is the release time (deadline) of J and RJ† is the response
time of J†, then the suspension time of job J only contributes
to the suspension in the schedule σ when J† suspends at the
same time. In this case, the suspension of the processor due
to J is already covered by the suspension of J† and does not
have to be considered in the estimation of Vsus.

Let l be the highest index among those tasks which do have
remaining jobs after these deletions. Let tl−1 and tld be the first
release and last deadline of the remaining jobs of τl, respec-
tively. If l = 1, then there is only one task τl in the remaining
schedule in the time interval [t−1, td] and the deadline miss of
τl implies that Cl + Sl > Dl = Tl, which violates our assump-
tion that Cl + Sl ≤ Dl. We therefore only have to consider the
scenario where l ≥ 2.

For each of the [(tld − tl−1)/Tl] jobs, we utilize it as J† in
Observation 3 and then quantify the jobs J that satisfy the
condition [rJ, dJ] ⊆ [rJ†, rJ† + RJ†].

Lemma 7: Suppose that job J† is a job of τl in the sched-
ule σ and Cl + Sl ≥ Ti for a certain task τi. Then, at least
�[(Cl + Sl)/Ti]	 − 1 different jobs of task τi are jobs J that
satisfy the condition in Observation 3.

Proof: Since the execution time plus the suspension time
of job J† is Cl + Sl in the schedule σ due to Property
(3) in Remark 3, the response time of job J† is at least
Cl + Sl. Moreover, since task τi is periodically released with
Property (2) in Remark 3, the first job release of task τi after
rJ† must be earlier than rJ† + Ti. Therefore, there are at least⌊

[(rJ† + Cl + Sl − (rJ† + Ti))/Ti]
⌋ = �[(Cl + Sl)/Ti]	−1 jobs

of task τi with release time ≥ rJ† and deadline ≤ rJ†

+ Cl + Sl.
We already calculated the number of jobs of τl in the sched-

ule σ by [(tld − tl−1)/Tl]. However, to perform a similar proof
as for the suspension-oblivious test in (17), the term (tld − tl−1)

is impractical and we need to cancel out (td − t−1) instead.
Hence, we estimate (tld − tl−1) with respect to (td − t−1).

Lemma 8: The ratio of tld − tl−1 to td − t−1 is at least (1/3).
Proof: Since the other jobs are deleted, we have [tl−1, tld] ⊆

[t−1, td]. If the remaining part on the right side of the interval
would be more than Tl, i.e., td − tld > Tl, then there would
be another job of τl released at tld with higher priority than J,
which does not exist by the definition of tld. Furthermore, if
tl−1 − t−1 > Tl, then there would be enough space for another
job with deadline at tl−1 and release time after t−1. By Property
(2) in Remark 3, the phase of τl is smaller than tl−1 and the
additional job in fact exists. This contradicts the definition of
tl−1. We conclude that [tl−1, tld] ⊆ [t−1, td] ⊆ [tl−1 −Tl, tld +Tl].

Let h be the number of jobs of τl in σ defined by the quo-
tient [(tld − tl−1)/Tl], then we obtain [(tld − tl−1)/(td − t−1)] ≥
[(h · Tl)/(h · Tl + 2 · Tl)] = [h/(h + 2)]. Since h ∈ Z≥1
and [h/(h + 2)] ≤ [((h + 1))/((h + 1) + 2)] for all h ∈
Z≥1, we get [h/(h + 2)] ≥ (1/3) and [(tld − tl−1)/(td − t−1)]
≥ (1/3).

Now, we can conclude the schedulability test.
Theorem 5: Let T = {τ1, . . . , τn} be a set of implicit-

deadline periodic tasks with dynamic self-suspension and
C1 + S1 ≤ · · · ≤ Cn + Sn. For notational brevity, let δl

i
denote the indication function which is 1 if Cl + Sl ≥ Ti

and 0 otherwise. If for all l ∈ {1, . . . , n} the property

Cl + Sl

Tl
+

l−1∑

i=1

Ci + Si

(
1 − 1

3
Ti
Tl

(⌊
Cl+Sl

Ti

⌋
− 1

)
· δl

i

)

Ti
≤ 1

(18)

4214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

holds, then the task set is schedulable by preemptive EDF. We
set

∑l−1
i=1 Xi = 0 when l is 1 for notational brevity.

Proof: We prove this theorem by contraposition. Suppose
that there is a job missing its deadline, and we construct
the remaining schedule σ in time interval [t−1, td] as defined
above, in which a job misses its deadline in the schedule σ .
Let l be the highest index among those tasks with at least one
job in schedule σ . We define C′

i := Ci + Si for all i.
We first focus on the scenario when l ≥ 2. Let h be the

number of jobs of task τl in the time interval [t−1, td], i.e.,
h is [(tld − tl−1)/Tl]. By Lemma 8 and the definition of periodic
tasks, we have [(td − t−1)/3Tl] ≤ h ≤ [(td − t−1)/Tl].

We can use Lemma 7 and Observation 3 to reduce the
contribution of the suspension time to Vsus from a certain
task τi for i = 1, 2, . . . , l − 1. Together with an argument
similar to that resulting in the condition in (17), we have
td − t−1 < hC′

l + ∑l−1
i=1(�[(td − t−1)/Ti]	C′

i − h(
⌊
(C′

l/Ti)
⌋ −

1)δl
iSi) ≤ [(td − t−1)/Tl]C′

l + ∑l−1
i=1([(td − t−1)/Ti]C′

i −
[(td − t−1)/3Tl](

⌊
(C′

l/Ti)
⌋−1)δl

iSi) =: A. The second inequal-
ity is due to [(td − t−1)/3Tl] ≤ h ≤ [(td − t−1)/Tl].

Moreover, when l is 1, the schedule σ has only jobs from τ1
in [t−1, td]. That means td − t−1 < h ·C′

l ≤ [(td − t−1)/Tl] ·C′
l,

i.e., the condition td − t−1 ≤ A holds also when l = 1.
Therefore, by dividing both sides of td − t−1 ≤ A with td −

t−1, which is > 0, the deadline miss of a job in the schedule
σ implies the existence of l = 1, 2, . . . , n and 1 < (C′

l/Tl) +
∑l−1

i=1(Ci/Ti)+[(Si(1 − (1/3)(Ti/Tl)(
⌊
(C′

l/Ti)
⌋− 1) · δl

i))/Ti].
As a result, the negation of the above condition, i.e., for
all l = 1, 2, . . . , n with the condition in (18), implies the
schedulability of the task set under preemptive EDF.

C. Theoretical Evaluation

We provide some observations about the theoretical behav-
ior of the schedulability test provided in this section in
comparison to the prior methods detailed in Section III and
our RTA in Section IV.

Comparison With Suspension-Oblivious: The redundant
self-suspension schedulability test proposed in Theorem 5
dominates the existing utilization-based suspension-oblivious
analysis applied to periodic task sets, since the LHS of (18) is
at most the total utilization if we consider suspension time as
additional execution time. Our method performs better if one
task has a big sum of suspension and execution time compared
to the period of the other tasks.

Example 3: For the task set T = {τ1, τ2} with two tasks
τ1 = (C1 = (1/17), S1 = (1/3), D1 = T1 = 1) and
τ2 = (C2 = 14, S2 = 0, D2 = T2 = 21) suspension-oblivious
analysis concludes that the task set is not schedulable, since
the total utilization is > 1. Our test however indicates
schedulability: At first we observe that for l = 1, we have
[(C1 + S1)/T1] = [((1/17) + (1/3))/1] = (20/51) ≤ 1.
For l = 2, we compute (1/3)(T1/T2)(�[(C2 + S2)/T1]	 −
1) = (1/3)(1/21) · 13 = (13/63). The test in (18) yields
(14/21)+ [((1/17) + (1/3)(1 − (13/63)))/1] ≤ 1. Hence, the
task set is schedulable.

Comparison With Response Time Analysis in Section IV:
Both schedulability tests proposed in this article do not

dominate each other. To prove this, we again use Example 1
and Example 2 with periodic task sets. Since neither C1 +
S1 ≥ T2 nor C2 + S2 ≥ T1, our utilization-based approach
coincides with the suspension-oblivious schedulability test,
which is superior in Example 2 and inferior in Example 1.

Comparison With the Workload-Based Schedulability Test
by Liu and Anderson: To show that the schedulability test by
Liu and Anderson [15] and the one described in this section
also do not dominate each other, we use similar examples with
periodic task sets.

The method by Liu and Anderson is superior for Example 1.
For l = 1 only sl,j = 2 and ξl = 5 is possible. By compu-
tation we obtain Wc(τ1) = 0, Wnc(τ1) = 0, Wc(τ2) = 1, and
Wnc(τ2) = 0. Since 1 ≤ 5 − 1 − 2 = 2, (1) holds. For l = 2
no choice of sl,j and ξl is possible. Hence, the test says that
the task set is schedulable. Since C2 + S2 = 4 < 5 = T1,
our schedulability test is the same as the suspension-oblivious
approach. Therefore, our test can not conclude schedulability.

For a task set that is similar to the one presented in
Example 2, our method is superior to the one by Liu
and Anderson: Let τ1 = (C1 = 3 − ε, S1 = ε, D1 = T1 = 6)

and τ2 = (C2 = 10 − ε, S2 = ε, D2 = T2 = 20) with ε ∈
(0, (1/3)). The periodic task set is not deemed schedulable
by our response-time-based analysis in Section IV. Since it
dominates the schedulability test by Liu and Anderson [15]
if all tasks have suspension as discussed in Section IV-B,
their test also fails for this example. We have R̃2(0) =
10+(�(20/6)	 + 1)·(3−ε) and R̃2(1) = 10+�[(20 − 2)/6]	·
(3−ε)+2. Hence, the value for R̃2 is 10+3·(3−ε)+2 = 21−3ε

which is bigger than 20 for ε < (1/3). Our response-time-
based analysis in Section IV as well as the approach by Liu
and Anderson [15] both fail.

On the other hand we know that the example is schedula-
ble by the suspension-oblivious approach since the value for∑

i [(Ci + Si)/Ti] does not change compared to Example 2.
Since our redundant self-suspension schedulability test dom-
inates the suspension-oblivious test, it also implies schedula-
bility.

VI. EXPERIMENTAL EVALUATION

We evaluated synthesized task sets to compare the proposed
methods with the approaches from the literature. The metric
to compare is the acceptance ratio with respect to the task
set utilization, i.e., the percentage of task sets that has been
accepted for the specific utilization value. We generated 1000
task sets for each of the analyzed utilization levels in the range
of 0% to 100% with steps of 1%.

For each task set, we first generated a set of implicit-
deadline tasks. We adopted the UUniFast method [3] to
generate a set of utilization values Ui with the given goal
Usum, and applied the suggestion by Emberson et al. [13] to
generate the periods of the tasks according to a log-uniform
distribution with two orders of magnitude. To be precise,
log10 Ti is a uniform distribution and the resulting Ti values are
in [1ms, 100ms]. Accordingly, the execution time was set to
Ci = Ti·Ui and the relative deadline was set to the task periods,
i.e., Di = Ti. We converted them to dynamic self-suspending

GÜNZEL et al.: SUSPENSION-AWARE EDF SCHEDULING ANALYSIS 4215

(a) (b) (c)

(d) (e) (f)

Fig. 4. Comparison of our schedulability tests with the state-of-the-art. (a) Uniform suspension in [0.0-0.1], 10 tasks. (b) Uniform suspension in [0.1-0.3],
10 tasks. (c) Uniform suspension in [0.3-0.6], 10 tasks. (d) Log-uniform suspension in [0.0001-0.1], 5 tasks. (e) Log-uniform suspension in [0.0001-0.1],
10 tasks. (f) Log-uniform suspension in [0.0001-0.1], 20 tasks.

tasks by generating the suspension lengths of each task accord-
ing to a uniform distribution in either of three ranges, i.e., the
targeted self-suspension length.

1) Short Suspension: [0.0(Ti − Ci), 0.1(Ti − Ci)].
2) Moderate Suspension: [0.1(Ti − Ci), 0.3(Ti − Ci)].
3) Long Suspension: [0.3(Ti − Ci), 0.6(Ti − Ci)].

Furthermore, we considered log-uniformly distributed self-
suspension in [0.0001(Ti − Ci), 0.1(Ti − Ci)]. We compared
the following methods.

1) Our RTA detailed in Section IV.
2) Our utilization-based analysis that examines redundant

self-suspension (Section V).
3) Combination of the above methods, denoted by ours

combined, i.e., if one of them returns schedulable, this
test succeeds.

4) The suspension oblivious approach, see Section III-A.
5) The workload analysis by Liu and Anderson [15], see

Section III-B.
6) The utilization-based method by Dong and Liu [12], see

Section III-C.
The results with uniformly distributed self-suspension with ten
tasks per task set are shown in Fig. 4(a)–(c), and the results
with log-uniformly distributed self-suspension are shown in
Fig. 4(d)–(f) with 5, 10 and 20 tasks per task set. The
utilization-based method is omitted, since it provided the same
results as the suspension oblivious approach. While for com-
parison with the redundant self-suspension method, we assume
that all tasks are periodic, comparison between the other
methods is based even on the sporadic counterparts.

The RTA clearly outperforms the state-of-the-art for all
cases with uniform distributed self-suspension length as
depicted in Fig. 4(a)–(c). As expected, the acceptance ratio

is reduced for all schedulability test if the suspension interval
gets longer. The workload analysis by Liu and Anderson [15]
always drops very quickly, but, contrary to the utilization-
based analyses, still accepts some task sets for longer sus-
pension intervals. The redundant self-suspension and the
suspension oblivious approach only perform reasonably good
for short suspension as in Fig. 4(a).

Redundant self-suspension and suspension oblivious show
enhanced performance for short log-uniformly distributed self-
suspension as in Fig. 4(d)–(f). Interestingly, we can see that
those results depend on the number of tasks. The less tasks are
in the task set, the better performs redundant self-suspension
compared to RTA, i.e., in Fig. 4(d) and (e) the former provides
better results while in Fig. 4(f) it depends on the utilization.

The result of ours-combined shows another aspect of the
relation of our proposed methods. For Fig. 4(a)–(e) its curve
lies almost directly on the individually better performing
curve, i.e., the largest gap is 1.3%. On the other hand for
Fig. 4(f) we observe additional benefit for combining both
tests of up to 14.6% increase of acceptance ratio.

As proven in Section V, the redundant self-suspension
method dominates the suspension oblivious approach. Table I
summarizes the acceptance ratio gain, where the gain of accep-
tance ratio of A compared to B is computed by subtracting
the acceptance ratio of B from the acceptance ratio of A. in
different utilization ranges of experiments (d)–(f). We further
examine how this improvement changes if the period range is
extended from [1, 100] to [1, 10000], indicated by (d)’–(f)’. In
almost all cases, the average acceptance ratio gain increases.
We note that the extended periods do not significantly impact
the performance of the schedulability test compared to each
other which is why the plots for (d)’–(f)’ are omitted. As

4216 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE I
AVERAGE ACCEPTANCE RATIO GAIN [%] OF REDUNDANT

SELF-SUSPENSION COMPARED TO SUSPENSION OBLIVIOUS. (d)–(f) ARE

EXPERIMENTS FROM FIG. 4 AND (d)’–(f)’ ARE THE SAME EXPERIMENTS

WITH PERIODS PULLED FROM [1, 10000]

depicted in the table, an average acceptance ratio gain of up
to 1.89% is observed.

VII. CONCLUSION

Despite the importance of preemptive dynamic-priority
scheduling, there is no schedulability test dedicated to
suspension-aware analysis for the dynamic self-suspension
model in uniprocessor systems. The only applicable meth-
ods known from the literature are the methods by
Liu and Anderson [15] and Dong and Liu [12] that were
originally designed for global EDF and are also valid for
uniprocessor systems. We propose two schedulability tests
that they improve those state-of-the-art methods for unipro-
cessor systems, both theoretically and in the evaluation. In the
future, we plan to further explore the necessary schedulability
conditions and tighten the sufficient schedulability condi-
tions. We will also explore the computational complexity of
deriving an exact schedulability test for implicit-deadline peri-
odic/sporadic task systems with the dynamic suspension under
preemptive EDF, which has been noted as an open problem
in Section VIII-B2 in the review paper by Chen et al. [9].

ACKNOWLEDGMENT

The authors thank Prof. Cong Liu for acknowledging a
typing error in the formulation of the schedulability test for
EDF in [15] and for confirming the correct formulation used
in Theorem 2.

REFERENCES

[1] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proc. 11th Real-Time
Syst. Symp. (RTSS), 1990, pp. 182–190.

[2] M. Bertogna and M. Cirinei, “Response-time analysis for globally sched-
uled symmetric multiprocessor platforms,” in Proc. Real Time Syst.
Symp. (RTSS), 2007, pp. 149–160.

[3] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real Time Syst., vol. 30, nos. 1–2, pp. 129–154, 2005.

[4] B. B. Brandenburg. (2019). Multiprocessor Real-Time
Locking Protocols: A Systematic Review. [Online]. Available:
http://arxiv.org/abs/1909.09600

[5] J.-J. Chen, “Computational complexity and speedup factors analyses for
self-suspending tasks,” in Proc. Real Time Syst. Symp. (RTSS), 2016,
pp. 327–338.

[6] J.-J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen,
“Scheduling self-suspending tasks: New and old results,” in Proc.
Euromicro Conf. Real Time Syst., 2019, pp. 1–23.

[7] J.-J. Chen and C. Liu, “Fixed-relative-deadline scheduling of hard real-
time tasks with self-suspensions,” in Proc. Real Time Syst. Symp. (RTSS),
2014, pp. 149–160.

[8] J.-J. Chen, G. Nelissen, and W.-H. Huang, “A unifying response
time analysis framework for dynamic self-suspending tasks,” in Proc.
Euromicro Conf. Real Time Syst. (ECRTS), 2016, pp. 61–71.

[9] J.-J. Chen et al., “Many suspensions, many problems: A review of self-
suspending tasks in real-time systems,” Real Time Syst., vol. 55, no. 1,
pp. 144–207, 2019.

[10] J.-J. Chen, G. von der Brüggen, W.-H. Huang, and C. Liu, “State of
the art for scheduling and analyzing self-suspending sporadic real-time
tasks,” in Proc. 23rd IEEE Int. Conf. Embedded Real Time Comput. Syst.
Appl. (RTCSA), 2017, pp. 1–10.

[11] U. C. Devi, “An improved schedulability test for uniprocessor periodic
task systems,” in Proc. 15th Euromicro Conf. Real Time Syst. (ECRTS),
2003, pp. 23–32.

[12] Z. Dong and C. Liu, “Closing the loop for the selective conversion
approach: A utilization-based test for hard real-time suspending task
systems,” in Proc. Real Time Syst. Symp. (RTSS), 2016, pp. 339–350.

[13] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in Proc. Workshop Anal. Tools Methodol.
Embedded Real Time Syst. (WATERS), 2010, pp. 1–6.

[14] M. Günzel and J. Chen, “On schedulability analysis of EDF schedul-
ing by considering suspension as blocking,” 2020. [Online]. Available:
arXiv.abs/2001.05747.

[15] C. Liu and J. H. Anderson, “Suspension-aware analysis for hard real-
time multiprocessor scheduling,” in Proc. 25th Euromicro Conf. Real
Time Syst. (ECRTS), 2013, pp. 271–281.

[16] C.-L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[17] M. Mohaqeqi, P. Ekberg, and W. Yi, “On fixed-priority schedulability
analysis of sporadic tasks with self-suspension,” in Proc. Real Time
Netw. Syst. (RTNS), 2016, pp. 109–118.

[18] J. C. Palencia and M. G. Harbour, “Response time analysis of EDF
distributed real-time systems,” J. Embedded Comput., vol. 1, no. 2,
pp. 225–237, 2005.

[19] B. Peng and N. Fisher, “Parameter adaption for generalized multiframe
tasks and applications to self-suspending tasks,” in Proc. Embedded Real
Time Comput. Syst. Appl. (RTCSA), 2016, pp. 49–58.

[20] F. Ridouard, P. Richard, and F. Cottet, “Negative results for scheduling
independent hard real-time tasks with self-suspensions,” in Proc. Real
Time Syst. Symp. (RTSS), 2004, pp. 47–56.

[21] G. von der Brüggen, W. Huang, J. Chen, and C. Liu, “Uniprocessor
scheduling strategies for self-suspending task systems,” in Proc. ACM
Real Time Netw. Syst. (RTNS), 2016, pp. 119–128.

[22] G. von der Brüggen, W.-H. Huang, and J.-J. Chen, “Hybrid self-
suspension models in real-time embedded systems,” in Proc. Int. Conf.
Embedded Real Time Comput. Syst. Appl. (RTCSA), 2017, pp. 1–9.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

