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Three-Input Gates for Logic Synthesis

Dewmini Sudara Marakkalage

Abstract—Most logic synthesis algorithms work on graph represen-
tations of logic functions with nodes associated with arbitrary logic
expressions or simple logic functions and iteratively optimize such graphs.
While recent multilevel logic synthesis efforts focused primarily on graphs
with 2-input nodes such as AND and OR gates, the recently proposed
paradigm of Majority-Inverter Graphs (MIGs) instead uses the 3-input
Majority gate as the node function. As this technique proved to be a
success, it is natural to ask: are there other 3-input gates better suited
for logic synthesis? Motivated by this question, we investigate the rel-
ative advantages of 3-input gates as constituents of logic networks. We
consider representative gates from each of the ten nondegenerate 3-input
NPN classes and study how powerful they are at representing Boolean
functions. Using SAT-based exact synthesis, we evaluate each 3-input
gate using the minimum number of such gates (together with inverters)
needed to synthesize all 4-input Boolean functions and a subset of fre-
quent 5-input and 6-input Boolean functions. We show that the logic gate
Dot(x,y,z) := x ® (z V xy) outperforms the rest in terms of expressive
power. We further confirm this observation by showing that Dot-Inverter
Graph representations are more than 14% smaller as compared to MIG
representations of EPFL benchmarks.

Index Terms—3-input gates, exact synthesis, logic synthesis.

[. INTRODUCTION

Given a Boolean function, what is the minimum-size circuit that
computes it? This is one of the driving questions in logic synthesis,
which is the process of optimizing logic representations under various
criteria. Decades of research on this have considered various circuit
models and produced many synthesis algorithms [1]-[4]. In general,
the problem of finding the smallest circuit for a given Boolean func-
tion is a computationally difficult task, and exact minimization is
reasonably fast only for Boolean functions with a small number of
inputs. Consequently, most synthesis algorithms do not find optimum
representations but focus on heuristic solutions. They usually work
on graph representations of logic functions where each node com-
putes an arbitrary logic expression (e.g., YLE [5] and MIS [6]) or
a simple logic function, and they try to incrementally modify such
graphs to minimize the size or depth.

Recent multilevel logic synthesis efforts on this front consid-
ered graphs with nodes computing 2-input ANDs and ORs together
with inverters (or NANDs and NORs), which included the well-
known And-Inverter Graphs (AIGs). An AIG is a directed acyclic
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graph (DAG) where each internal node has in-degree two and
represents a 2-input AND gate, and each directed edge is either com-
plemented or regular indicating the presence/absence of an inverter.
As an example, the logic synthesis tool ABC [2] uses AIGs as the
primary logic representation and implements associated rewriting
techniques [7], [8] for optimizing them. We call graph represen-
tations such as AIGs homogeneous as each internal node in the
graph computes the same logic function. Optimizing homogeneous
multilevel logic representations is typically more scalable and yields
better results.

Recently, Amardi et al. [9] proposed Majority-Inverter
Graphs (MIGs) as a new paradigm for logic synthesis. An
MIG is also a homogeneous DAG representation similar to an
AIG, but the internal nodes have in-degree three and represent
3-input majority gates. The authors further introduced a set of
algebraic rules for manipulating MIGs, proposed new synthesis
algorithms, and showed significant results for depth optimization
over ASIC and FPGA designs. The success of MIGs for logic
synthesis begs the question: are there other Gate-Inverter Graphs
(i.e., homogeneous DAGs where each internal node implements
the same 3-input logic gate)1 that are better suited for logic
synthesis?

The answer depends on several criteria, such as the expressive
power of the 3-input gate, the rules to manipulate such gate networks,
and practical considerations, such as the suitability of the gate
for physical design. This work primarily focuses on the expres-
sive power which measures how succinctly different Gate-Inverter
Graphs can represent Boolean functions in general. We consider
technology-independent logic synthesis, and hence we define the size
of a Gate-Inverter Graph as the number of gates in such a graph,
excluding inverters. We note that the homogeneity of Gate-Inverter
Graphs makes their manipulation using synthesis algorithms easier
as compared to the nonhomogeneous ones.

There are 28 = 256 3-input Boolean functions to be considered as
potential 3-input gates. However, due to the zero cost of inverters and
the ability to rewire a gate’s inputs in any order, many of these 3-input
gates can be considered equivalent (the transformations do not incur
any additional cost). This notion of equivalence is called negation-
permutation-negation (NPN) equivalence [10], [11]. Formally, two
Boolean functions are NPN equivalent if one can be obtained from
the other using a combination of input negations, input permutations,
and output negation. Consequently, all n-input Boolean functions can
be partitioned into NPN equivalence classes. The 256 3-input func-
tions fall into 14 different NPN classes, out of which, four classes
only depend on at most two variables [f(x,y,z) =0, f(x,y,2) = x,
fx,y,2) =xAy, and f(x,y,2) = x®y]. Thus, we only consider the
remaining ten 3-input NPN classes that depend on all three variables
and select one function from each class as candidate gates for building

1Unlike the 3-input majority gate, a general 3-input gate can be asymmetric,
thus in such a DAG representation, the ordering of the fan-in must be specified
as well.
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TABLE I
TEN NPN CLASSES FOR 3-INPUT FUNCTIONS AND THEIR
REPRESENTATIVE FUNCTIONS

Class Expression Function Cube Name
#01 xXyz #80 @ And3
#06 x(y®z2) #28 @ XorAnd
#07 x(yvaz) #a8 @ OrAnd
#16 Xjzexyzeiyz #16 @ Onehot
#17 (xyz) #e8 @ Majority
#18 Xyzexyz #81 @ Gamble
#19 x®(zvxy) #52 @ Dot
#1b xX2y:z #d8 @ Mux
#le xeyz #6a @ AndXor
#69 xeyez #96 @ Xor3

Gate-Inverter Graphs. Table I summarizes the considered ten 3-input
NPN classes. In Table I, the column Class is the class representative,
which is the lexicographically smallest truth table (as two hexadec-
imal digits) for each NPN class, and Function represents the truth
table of the candidate function selected from each class. The column
Cube shows the minterms on the Boolean hypercube.

As our main result, we present a comparison of the expressive
powers of the 3-input gates mentioned in Table I. To this end,
we measure the minimum size of a Gate-Inverter Graph of each
type needed to compute each 4-input Boolean function using SAT-
based exact synthesis [12], [13]. These results imply that Dot gates
have the highest expressive power closely followed by Onehot gates
whereas And3 gates have the least expressive power. We further
confirm these results by running SAT-based exact synthesis for some
frequent 5-input and 6-input Boolean functions and using exact node
resynthesis on EPFL benchmarks [14]. We omit Xor3 gates from our
analysis as Xor3-Inverter Graphs are not universal representations (see
Section III-A).

II. SAT-BASED EXACT SYNTHESIS

We now introduce SAT-based exact synthesis as presented
in [12], [13], and [15], and show how it is applied to synthesize
3-input gate networks.

Exact synthesis is the problem of finding a logic network that exactly
meets its specification or determines whether it is impossible to do so.
In our case, given a 3-input gate .7, a non-negative integer r, and a
Boolean function f, the goal is to find whether there exists a .7 -Inverter
Graph of size r that computes f. Starting with » = 0 and incrementing
it until the synthesis algorithm finds a valid circuit, we determine the
minimum number of gates to compute f. In the following, we formalize
the notion of 3-input gate networks and show how to encode the exact
synthesis problem as a Boolean satisfiability (SAT) problem [13].
The exact synthesis algorithm uses a SAT solver to find a satisfying
assignment to the problem or to determine its unsatisfiability. If a
satisfying assignment is found, the algorithm decodes it into a valid
logic network. We refer the interested reader to [15] and [16] for a
detailed review of exact synthesis, while the first example of SAT-
based exact synthesis can be found in [17], and successive analyses
and improvements have been considered in [12] and [13].

A. 3-Input Gate Networks

Let P be a collection of 3-input Boolean operators ¢ : B3> B
where B = {0, 1} is the Boolean alphabet. We call P the set of
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primitives. (For the purpose of encoding as a SAT problem, we will
describe how to construct P in Section II-B.) Let f(xy,...,x,) be a
Boolean function on 7 inputs, and for notational convenience, define
xg = 0. We call a sequence (X1, X,42,...,%s4r) @ 3-input gate
network of size r if Xj = @j(xj,, X}y, Xj3) for all n+1 <j < n+r where
¢j € Pand 0 < j1,2,j3 < j. Note that such a network corresponds to
a DAG where each leaf node corresponds to an input variable or con-
stant 0, and each nonleaf node has in-degree three and corresponds to
some Boolean operator in P. The sequence (x,41, ..., Xs+r) defines a
topological ordering of nonleaf vertices. We say a given gate network
(X415 X425 - - - » Xp4r) computes f if f(xy, ..., xp) = Xptr.

B. Encoding as a SAT Problem

We encode our exact synthesis problem as a SAT problem using
the single selection variable (SSV) encoding [15], [16]. The SSV
encoding uses a single variable per Boolean operator to encode the
inputs of the operator. Namely, it uses binary variables sg ; ; x which
are set to 1 if x;, xj, and x; are the inputs for the £th operator in the
network.

In the SSV encoding, to reduce the number of variables, the vari-
ables sy ; ; x are only defined for i < j < k < ¢. However, since we
need repeated inputs in a gate’s fan-in and different fain-in orderings
for nonassociative operators, we add all input-permuted (with rep-
etitions) versions of an operator as primitives for SAT-based exact
synthesis.

To allow inverters at no additional cost, for every Boolean operator
¢(x,y,2), we add input negated versions (with appropriate normal-
ization as discussed later) to P. Furthermore, to avoid explicitly
considering constants as inputs, for each operator ¢(x,y,z) € P,
we also add its versions where subsets of inputs are replaced by
constants.

Note that the different primitives in P correspond to the different
fan-in configurations a 3-input gate in a Gate-Inverter Graph can have.
The primitives derived from input permutations with repetitions take
care of different fan-in orders and the possibility of repeated inputs
while the input negated versions of the primitives cover the existence
of complemented edges.

The SSV encoding also uses the symmetry-breaking assumption
that all logic primitives are normal (i.e., the output is zero when all
inputs are zero), thus, we negate any primitive that is not normal.
Note that, due to the zero-cost inverters, this normality assumption
does not affect the accuracy of the SAT-based exact synthesis.

III. EVALUATION METHOD AND RESULTS

In this section, we study how the 3-input gates of Table I can be
used as a basis of representing logic functions with larger support.
Using exact methods, we investigate the minimum number of each
3-input gates needed to compute each 2-input (Section III-A), 3-input
(Section III-B), and 4-input (Section III-C) logic functions. As the
main result, we summarize our findings for 4-input logic functions
in Table IV, which serves as a relative measure of the expressive
power of the considered 3-input gates. In Section III-D, we present
synthesis results of some frequent 5-input and 6-input functions, and
in Section III-E, we present the experimental results for Dot-Inverter
Graphs (DIGs) on EPFL benchmarks. Note that applying the same
exact methods for all 5-input NPN functions would be vastly time-
consuming in a conventional computing setting, and prohibitively so
for functions with even larger supports.

For exact synthesis, we use the SAT-based exact synthesis library
percy2 from EPFL logic synthesis libraries [18] with the SSV encod-
ing described in Section II as our SAT encoding method. Given a

2 Available at: https://github.com/lsils/percy.
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TABLE 11
NUMBER OF GATES TO SYNTHESIZE 2-INPUT AND & XOR GATES

2 SO T - T
g 2 B % £ =5 £ % % g
A g = T E § & & R
5 2 2 § ° §
2-input And 1 1 1 1 1 1 1 1 1 -
2-input Xor 1 1 1 1 1 1 2 3 3

logic gate .7 : B3 - B, to synthesize a Gate-Inverter Graph using
base gate .7 with percy, we first compute the correct set of prim-
itives. Note that 7 is one of the ten gates from Table I and recall
that the primitives should represent all versions of .7 obtained with
input permutations (with repetition), input negations, and replacing
some inputs with constants. However, recall that the SSV encod-
ing uses the assumption that all primitives are normal. Hence, we
replace any not normal primitive with its complement. Formally,
let Q7 ={J(a,b,c) : (a,b,c) € {x,%,,9,270, 1}3}. Then, we
define the set of primitives P as follows: for each ¢ € Q 7, if
q(0,0,0) = 0 then we add g to P4, otherwise we add g to P 4.
Using the set of primitives P g, we invoke percy’s exact synthesis
algorithm using the standard synthesis engine with ABC’s BSAT?2 as
the SAT solver, which is a modified MiniSAT solver [2], [19].

A. Synthesizing 2-Input NPN Classes

The only two nontrivial NPN classes of 2-inputs are the AND and
the XOR function. Table II shows the number of gates needed to
compute the 2-input AND and the 2-input XOR functions using each
3-input gate type. Concerning the 2-input XOR function, note that it
takes two 3-input OrAnd gates to implement the 2-input XOR gate,
while the Majority and And3 gates need three instances each. Indeed,
these three are the only monotone> ones out of the ten functions.
Moreover, the Majority and And3 gates are also symmetric.

As Table II shows, all the gates except Xor3 can construct the
2-input AND gate. Note that AND and Inverter are a complete set
of Boolean operators. It means AIGs can represent any Boolean
function and are thus called here a universal representation. The
results of Table II imply that all Gate-Inverter Graphs where “Gate”
is any 3-input gate from Table I except Xor3 are universal (i.e.,
each “Gate” forms together with inverter a complete set of Boolean
operators). The Xor3-Inverter Graph is not a universal representation
as the truth-table of each node in such a graph must have an even
number of “1” s in the output column which prevents them from
representing a Boolean function that has an odd number of 1 s in
the output column. Hence, in the following, we restrict our focus to
the remaining nine 3-input gates.

B. Synthesizing 3-Input NPN Classes

In this section, we synthesize the ten 3-input NPN classes using
the selected gates. Note that these classes are the 3-input functions
we considered in Table 1. Table III summarizes the synthesis results.
Each column represents one of the nine candidate gates for univer-
sal 3-input Gate-Inverter Graphs and shows the number of gates to
compute each of the other 3-input functions. For example, the third
column is for 3-input Mux gates. It means that, to implement the
Dot function, two Muxes are needed, while, to implement the Onehot
function, we need three Muxes, etc.

It is worth noting that Dot and Onehot gates need the smallest
number of gates to compute the remaining three input classes. As
noted previously, the monotone functions OrAnd, Majority, and And3

3The representative function is monotone. For other NPN classes, no
member function is monotone.
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TABLE III
NUMBER OF GATES TO SYNTHESIZE 3-INPUT NPN CLASSES

- - -} o 2
g 25 £ E = £ g
8 8 £ % % E £ 5 E
s S & ® <

<} < KX O =
Dot 1 2 2 2 2 2 2 4 3
Onehot 2 1 3 3 3 3 4 4 4
ux 2 2 1 2 2 3 2 3 3
AndXor 2 2 2 1 2 2 3 4 4
XorAnd 2 2 2 2 1 2 2 3 3
Gamble 3 3 3 3 2 1 3 4 3
OrAnd 2 2 2 2 2 2 1 2 2
Majority 2 2 2 3 3 2 2 1 4
And3 2 2 2 2 2 2 2 2 1
Xor3 2 2 2 2 2 2 4 3 6
Total 20 20 21 22 21 21 25 30 33

need a high number of gates to synthesize other functions. However,
the property of symmetry does not appear to affect the expressiveness
as demonstrated by the Onehot gate.

Also note that no 3-input function pair needs five gates, whereas
implementing Xor3 needs six And3 gates. This implies that for And3
gates, implementing the Xor3 function is significantly more complex
than implementing the remaining functions in Table III.

C. Synthesizing 4-Input NPN Classes

The results of the previous section hint that Dot and Onehot gates
seem to outperform the rest in their expressive power. We further
confirm this claim by synthesizing all 222 4-input NPN classes using
each type of 3-input gates. Table IV shows, for each 3-input gate
7 and for each gate count r, the number of 4-input NPN classes
(number of 4-input functions) whose synthesis needs r gates of type
7. For example, consider the first column: There are two 4-input
NPN classes (ten functions) that do not need any Dot gate (i.e., the
trivial functions), three classes (252 functions) that need only one
Dot gate (2-input And and Xor, and the Dot function itself), 32 NPN
classes (9128 functions) that need two Dot gates, etc. The last row
shows the total number of gates needed to separately synthesize all
4-input NPN classes (all 4-input functions).

As shown in Table IV, the nine 3-input gates roughly correspond
to three categories. The Dot and Onehot gates outperform the rest
and use the smallest number of gates to represent 4-input functions.
On the other side of the spectrum, OrAnd, Majority, and And3 gates
use the most number of gates. Notice that, for the And3 gate, there is
one NPN class whose synthesis needs nine gates. Unsurprisingly, it
turns out to be the NPN class of the 4-input Xor function (recall that
the synthesis of the 3-input Xor (Xor3) function needed six 3-input
And gates). The remaining four gates fall in the middle of the two
former categories.

D. Synthesizing Frequent 5-Input and 6-Input Functions

In this section, we consider the effectiveness of the considered nine
3-input gates in representing some frequent S-input and 6-input func-
tions. For this purpose, we computed the 50k most popular S-input
and 6-input functions from the LUT mapping of the EPFL bench-
marks [14] and classified them according to NPN-classification. We
obtained 387 5-input NPN classes and 1905 6-input NPN classes on
which we apply our exact synthesis method. To keep the runtime
under control, we set a maximum conflict limit for the SAT solver
of 10M (5-input) and 1M (6-input), respectively.

For the 5-input classes, 316 (out of 387) classes are synthesized—
within the conflict limit—by all nine Gate-Inverter Graphs. In
Table V, we summarize the results for these 316 NPN classes which
confirm the trend observed in Table IV. Dot uses a fewer number of
gates, while And3 and Majority have the highest number of gates.
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TABLE IV
CLASSIFICATION OF THE 222 4-INPUT CLASSES (65536 4-INPUT FUNCTIONS)
Gate Count Dot Onehot Mux AndXor XorAnd Gamble OrAnd Majority And3
0 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10)
1 3 (252) 3 (124) 3 (156) 3 (156) 3 (156) 3 (92) 2 (240) 2 (80) 2 (112
2 32 (9128) 18 (2856) 17 (3224) 15 (2776) 18 (2336) 13 (1272) 14 (3020) 5  (640) 4 (544)
3 158  (51770) 151 (50490) 92 (31554) 86 (27202) 83 (26786) 63 (14242) 46 (14528) 18 (3300) 13 (2508)
4 27 (4376) 48 (12056) 100 (29936) 110 (34864) 109 (35032) 115 (41856) 89 (30854) 42 (10352) 46 (14944)
5 - - - - 8  (656) 6 (528) 7 (1216) 26 (8064) 55  (15064) 117 (40064) 68 (24024)
6 - - - - - - - - - - 14 (1810) 35 (11058) 55 (17376)
2 N N ) _ } - : 1 32) 26 (5680)
8 - - - - - - - - - - 5  (336)
9 - - - - - - - - - 1 2)

Total 649 (191322) 684 (205530) 753 (224290) 761 (229410)

759 (231394) 808 (253106) 883 (259500) 1036 (319560) 1134 (335342)

TABLE V
RESULTS ON 316 FREQUENT 5-INPUT NPN CLASSES

- i = ] 2

o - = =
Gate s < ¥ % 5 'E 2 & 3
Count =] = = 5 < X ) é

S g P~ S o s
2 - - 2 1 3 - 4 - 2
3 97 7 49 58 68 18 72 11 12
4 208 249 204 189 180 154 136 60 73
5 11 60 56 68 65 143 90 131 94
6 - - 5 - - 1 14 114 83
7 - - - - - - - - 52
Total 1178 1317 1277 1272 1255 1391 1302 1612 1664

TABLE VI

RESULTS FOR 1905 FREQUENT 6-INPUT NPN CLASSES

- i L] K = E-
Gate 13 % ¥ % - 'E - 5 3
Count a = = 5 s = ) 2

8 g & & S =
3 6 - 15 31 51 1 65 7 12
4 551 33 262 400 424 75 377 55 96
5 931 923 965 771 815 796 490 296 323
6 - - 32 - - 31 162 421 254
CLE 417 949 631 703 615 1002 811 1126 1220

It is also worth mentioning that And3 and Majority have the highest
number of nonsynthesized classes (conflict limit exceeded) equal to
59 and 30 classes (out of a total of 387), respectively.

Regarding the 6-input classes, only 213 classes (out of 1905) were
synthesized by all 9 Gate-Inverter Graphs within the conflict limit of
IM. We thus present the complete set of results on all 1905 classes,
showing also the number of classes that could not be synthesized
within the conflict limit. The results are shown in Table VI, and they
confirm our previous observations as well. Note that the row CLE in
Table VI reports the number of conflict limit exceeded cases - thus
the number of non-synthesized classes. The Dot gate synthesizes the
highest number of classes (1488) within the conflict limit, and it uses
at most 5 gates on each synthesized class. On the other side, And3
and Majority could synthesize only 779 and 685 classes within the
conflict limit, respectively.

E. Benchmark Results

Motivated by the high expressive power of Dot gates, in this
section, we evaluate DIGs on EPFL benchmarks suite [14]. The
experimental setup is to alternatively perform 4-LUT mapping and
exact node resynthesis for several iterations. To elaborate, we first
map each benchmark into a 4-LUT network using ABC command
“if -a -K 4, and then use the node resynthesis implementation
of EPFL synthesis library mockturtle* to rewrite each 4-LUT with the
smallest DIG using SAT-based exact synthesis results generated using
percy. To speed up the process, we use a database of precomputed

4Available at: https://github.com/lIsils/mockturtle.

TABLE VII
EXPERIMENTAL RESULTS ON EPFL BENCHMARKS

Benchmark Optimized AIG Optimized MIG Optimized DIG

Name size depth size depth size depth size depth
adder 1020 255 1020 255 511 130 511 255
bar 3336 12 3336 12 3060 13 2246 11
div 57247 4372 43566 4417 57247 4372 43421 4401
hyp 214335 24801 214335 24801 163627 9434 147392 17159
log2 32060 444 32060 444 25866 349 23144 318
max 2865 287 2865 287 2396 233 2230 229
multiplier 27062 274 27062 274 20566 318 17273 261
sin 5416 225 5416 225 4601 187 3995 149
sqrt 24618 5058 19127 6077 22830 4379 17027 6045
square 18484 250 18484 250 14966 245 12743 251
arbiter 11839 87 11839 87 9023 63 8515 63
cavlc 693 16 693 16 693 16 644 19
ctrl 174 10 131 8 128 7 117 8
dec 304 3 304 3 304 3 304 3
i2c 1342 20 1324 16 1325 19 1105 18
int2float 260 16 248 18 255 17 202 19
mem_ctrl 46836 114 46836 114 45365 145 37114 130
priority 978 250 586 131 978 250 664 125
router 257 54 257 54 235 58 202 32
voter 13758 70 12309 74 8589 74 7385 64
Total 462884 36618 441798 37563 382565 20312 326234 29560

DIGs for all 4-input NPN classes. The same process of mapping
into a 4-LUT network with ABC followed by node resynthesis is
repeated until the size of the resulting Gate-Inverter Graph size does
not reduce any further. For comparison, we perform the same exper-
iment where node resynthesis is performed with exact MIGs and
exact 2-input AIGs, and our results, presented in Table VII, indicate
an overall size reduction of more than 14% for DIGs as compared
to MIGs.

IV. DISCUSSION

In this article, we studied whether there exist better logic primitives
for homogeneous logic representations. In particular, we considered
different 3-input logic gates and analyzed their expressive power
using SAT-based exact synthesis. We show that the 3-input logic
gate Dot is the most powerful in terms of expressibility and it uses
a significantly fewer number of gates to represent 4-input func-
tions as compared to And3 or Majority gates. We further supported
this observation with results for frequent 5-input and 6-input NPN
classes.

Our results show that monotone gates (And3, Majority, and OrAnd)
have less expressive power as compared to nonmonotone ones even in
the presence of zero-cost inverters. This is intuitive as we certainly
need a combination of monotone gates to represent nonmonotone
functions. However, somewhat counter-intuitively, the symmetric
property of the gates seems not to affect their expressibility as sug-
gested by the results for Onehot gates when synthesizing 4-input
functions. In general, if a function is highly asymmetric in its vari-
ables, this means that permuting the inputs makes it compute different
logic functions. In particular, a single Dot gate can compute six dif-
ferent logic functions by just permuting its inputs. Thus, intuitively,
a few of them are sufficient to compute a large number of logic
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functions. On the other hand, a symmetric function, such as Onehot
stays the same when inputs are permuted, hence one would expect
its expressive power to be relatively low.

The high expressive power of Dot gates yields concise logic repre-
sentations as evident from our experiments. Thus, DIGs are attractive
candidates for technology-independent intermediary logic representa-
tions as optimization algorithms can run faster with less memory on
smaller graphs. Moreover, this also inspires emerging technologies
to consider physical implementations of Dot gates.

To the best of our knowledge, our work is the first comprehensive
study of the efficiency of 3-input primitives in representing logic
networks, and we believe it will trigger exciting further research
in logic representations, optimizations, and implementation of logic
networks in emerging technologies. One interesting research direction
is to understand the manipulation capabilities of different homoge-
neous 3-input logic networks as it is another important factor besides
the expressive power that affects the utility of logic representations
in logic optimization.
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