
ar
X

iv
:2

01
1.

08
80

5v
1

 [
cs

.F
L

]
 1

7
N

ov
 2

02
0

1

Recurrence in Dense-time AMS Assertions
Sayandeep Sanyal, Student Member, IEEE, Antonio Anastasio Bruto da Costa, Student Member, IEEE,

Pallab Dasgupta, Senior Member, IEEE

Formal Methods Laboratory, Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur

Abstract—The notion of recurrence over continuous or dense
time, as required for expressing Analog and Mixed-Signal (AMS)
behaviours, is fundamentally different from what is offered by
the recurrence operators of SystemVerilog Assertions (SVA). This
article introduces the formal semantics of recurrence over dense
time and provides a methodology for the runtime verification of
such properties using interval arithmetic. Our property language
extends SVA with dense real-time intervals and predicates con-
taining real-valued signals. We provide a tool kit which interfaces
with off-the-shelf EDA tools through standard VPI.

Index Terms—Sequence Expressions, Assertions, Recurrence,
Analog Mixed-Signal

I. INTRODUCTION

Assertion (property) language standards, such as SVA [1] and
PSL [2], are widely used in digital design verification, and
some of their recent features enable the specification of prop-
erties using real variables, including analog signals sampled
at discrete clock boundaries. Properties in SVA are based on
sequence expressions that capture sequences of Boolean events
separated by clock-cycle delays.

The clocked semantics of SVA can lead to precision related
problems when dealing with analog signals. For example,
consider the property: "The output Vout must cross 1.8 V within

2µs to 4.25µs of the input Vin crossing 3V". If the clock, clk,
has a period of 0.4µs, we may write this assertion in SVA as
follows:

wire x, y;

assign x = V(Vin) > 3;

assign y = V(Vout) > 1.8;

property DelayCheck;

@(posedge clk) $rose(x) |-> ##[5:11] $rose(y);

endproperty

assert property (DelayCheck);

Note that the real time interval, [2µs : 4.25µs], is approxi-
mated by the discrete interval [5 : 11] in terms of the number
of clock cycles of the clock, clk, of period 0.4µs. The loss
of precision due to this approximation may lead to missing a
failure as shown in Fig. 1. Here Vin crossed 3V exactly 4.3µs
after Vout crossed 1.8 V, which exceeded the real time interval,
but the assertion checker detects that the crossing took place
within the specified number of clock cycles.

In general over-approximation (equivalently, under-
approximation) produces false positives (equivalently, false
negatives). Increasing the precision of the assertion clock
reduces the chance of a false positive/negative, but it increases

The authors thank Intel corporation CAD SRS funding for partial support
of this research. The authors also acknowledge Antara Ain for building the
initial framework for the tool.

the number of cycles in the interval, and thereby the assertion
checking overhead. For this reason, existing literature,
including our own [7–14], advocates the use of dense time
assertion checking, which works using real interval arithmetic
as opposed to cycle based reasoning.

3

2

1

2 4 6

Vout

Vin

Clock Cycle : C2

Dense Time : 0.8µs

Clock Cycle : C13

Dense Time : 5.1µs

V

time (µs)
5 10 15 Cycle (C)

Fig. 1: Bugs can escape due to low precision sampling

The semantics of dense-time naturally allows properties
to hold continuously over a dense time period. We define
recurrence to mean that the truth of an expression holds true
continuously over a period of time. For example, consider the
requirement, "If the enable becomes true, and thereafter within

5ms the output voltage is above 3V for at least 2ms, then

within the following 0.7ms the out_good signal stays true for

at least 1ms." An intrinsic feature of such requirements is that
predicates must be true continuously over a time period. This
is fundamentally different from the notion of recurrence in
languages like SVA [1] and PSL [2], where recurrence means
a countable non-overlapping series of matches of a sequence
expression.

In this article, we propose the dense time semantics of
recurrence and our methodology for evaluating assertions
having recurrence operators as well as other operators. Since
recurrence operators are frequently used with other types of
operators in an assertion, we provide the integrated set of
interval arithmetic steps used in our tool, CHAMS. Results
on CHAMS are also provided at the end.

II. RECURRENCE IN AMS ASSERTIONS

This section demonstrates the use of recurrence operators over
dense-time. Consider the waveforms for the voltages of analog
nets, a, b, and c, shown in Fig. 2. Also shown are truth intervals
of some of the predicates over real variables (PORVs), and
the match/fail intervals of the assertions described below.

Example 1. If V (a) remains above 1.6 V for 2.3 ms, then

V (b) will be above 1.1 V.

Φ1 : {V(a)>1.6}[*0.0023] |-> {V(b)>1.1};

http://arxiv.org/abs/2011.08805v1

2

1.6
1.4
1.1

1.8 4

V(a)

V(c)
V(b)

d

0.5 4.22.3

4.1

2.1 5.5

Voltage

1 2 3 4 5

t (msec)

t (msec)

[0.5 : 4.2] V (a) > 1.6

V (b) > 1.1[2.3 : 4.1]

[1.8 : 4] V (c) > 1.4

Φ1

Φ2

Φ3

[2.8 : 4.1]

[2.3 : 3.8]

[2.1 : 3.7]

Failure : [3.8 : 4.1]

Fig. 2: Waveforms of signals and assertion matches

The syntax of the recurrence operator is similar to that of
SVA, but the semantics of recurrence of the PORV, V(a)>1.6,
is continuous over the specified dense time. The unit of voltage
is volts and the unit of time is seconds.
Example 2. Whenever V(b) is greater than 1.1 V, d will be

high at some later time between 0.2 msec and 1.3 msec, and

V(c) will remain above 1.4V until d becomes true.

Φ2 : {V(b)>1.1}|->

{V(c)>1.4}[*0.0002:0.0013]{d==1};

Example 3. If V(a) is higher than 1.6 V and within 1.3 msec

to 2.9 msec V(c) is higher than 1.4 V for 0.3 msec, then V(b)

will be greater than 1.1 at some time later between 0.4 ms

and 1.2 ms and d will be high until V(b)>1.1.

Φ3 : {V(a)>1.6}##[0.0013:0.0029]{V(c)>1.4}[*0.0003]

|-> {d==1} [*0.0004:0.0012] {V(b)>1.1};

The non-vacuous matches of these assertions are shown in
Fig. 2. The assertion ϕ2 also has failures. It may be noted that
AMS assertions can match or fail continuously over a period
of time.

III. FORMAL SEMANTICS

As in SVA, our language, Analog Mixed-Signal Assertion
Language (AMSAL), uses the notion of sequence expressions.
A property in AMSAL takes one of the following forms:
SEQ |-> SEQ

SEQ |-> ##[a:b] SEQ

where:
SEQ → BEXPR

| ∼ {BEXPR}

| {SEQ}[∗a]

| SEQ ##[a : b] SEQ

| {SEQ} [∗a : b] SEQ
In the syntax, BEXPR is a Boolean expression over events and
PORVs, and a, b ∈ R

+, b ≥ a. We use symbol φ for Boolean
expressions, ϕ for sequence expressions, and Φ for properties.
Definition 1. Predicate over Real Variables (PORVs) If

X={x1, x2, ..., xn} denotes the set of continuous variables,

then a Predicate over Real Variables, P , may be defined as,

P ::= f(x1, x2, ..., xn) ∼ 0, where f is a mapping,

f : R
n → R, and ∼ is a relational operator such that

∼ ∈ {>,≥}.

Other relational operators may be derived using ∼ along
with appropriate propositional connectives.

Definition 2. Events: Events are of the form @∗(P), where P

is a PORV and ∗ ∈ {+,−, }. @+(P), @−(P), @(P) are true

respectively at the positive edge, negative edge, both positive

and negative edge of the truth of P .

Boolean expressions in AMSAL are written over Boolean
propositions, PORVs, and events. The syntax for BEXPR is as
follows:

BEXPR → EVENT
| EVENT, ASGMT
| (CONJUNCT)
| (CONJUNCT) , ASGMT
| EVENT && (CONJUNCT)
| BEXPR OR BEXPR

CONJUCNT → CONJUNCT && PORV
| PORV

Definition 3. Satisfaction Relation: τ(t) |= ϕ is defined as

follows for Boolean expressions:

• τ(t) |= P iff P is a PORV, and P is true for signal

valuations in state τ(t) or P is a Boolean signal and

τP (t) = true.

• τ(t) |= D where D = P1 ∨ P2 ∨ ... ∨ PN iff

∃1≤i≤N τ(t) |= Pi, and Pi is a PORV.

• τ(t) |= C where C = P1 ∧ P2 ∧ ... ∧ PN iff

∀1≤i≤N τ(t) |= Pi, and Pi is a PORV.

• τ(t) |= E where E is an event on PORV P , iff either of

the following holds:

– E ≡ @+(P) : τ(t) |= P
∧

∃t′<t ∀t̂∈[t′,t) τ(t̂) 6|= P

– E ≡ @−(P) : τ(t) 6|= P
∧

∃t′<t ∀t̂∈[t′,t) τ(t̂) |= P

– E ≡ @(P) : τ(t) |= @+(P)
∨
τ(t) |= @−(P)

We now describe the simulation semantics of recurrence in
dense-time as used in AMSAL with an interpretation over a
simulation trace τ .

Definition 4. Simulation Trace A simulation trace τ is a

mapping τ : R≥0 → R
|V |, where V = {v1, v2, ..., vn} is

the set of variables (Boolean and Real) representing signals

of the system. The state of the system in τ at time t is given

as τ(t). For x ∈ V , its value at time t, in τ , is τx(t).

In Definition 5, state satisfaction for a Boolean expression
φ, that is τ(t) |= φ, is extended to sequence expressions with
support for recurrence with dense-time. Note that, a Boolean
expression is also a sequence expression.

Definition 5. Extended Satisfaction Relations: τ(t) |=e ϕ is

recursively defined for a sequence expression ϕ, to be true iff:

• {ϕ1}[
∗a], a> 0 : (∀t′∈[0:a] τ(t − t′) |=e ϕ1)

• ϕ1##[a:b]ϕ2 : τ(t) |=e ϕ2 ∧ t ∈ [t′ + a : t′ + b] ∧
τ(t′)|=eϕ1

• {ϕ1}[
∗a:b]ϕ2 : τ(t) |=e ϕ2 ∧ ∀t′∈[0:a]τ(t− t′)|=eϕ1

where ϕ1 and ϕ2 are sequence expressions.

The satisfaction of a temporal expression has a begin time
and an end time for a match of the expression, known
respectively as the begin match and end match for a sequence

3

expression. The relation |=e describes the end-match for a
sequence expression. Due to the nature of the truth of a
temporal property over analog artifacts, an end-match at time
t for sequence expression ϕ may be associated with multiple
begin-match time points, and vice versa.

Definition 6. Begin Match: We define B(τ, ϕ, t) as the set of

time points t̂ such that there exists a match of ϕ in τ starting

at t̂ and ending at t. Formally, for τ(t) |=e ϕ, t̂ ∈ B(τ, ϕ, t)
is said to be a begin match for ϕ’s end-match at time t iff:

• {ϕ1}[
∗a]: a> 0, t′ = t− a, t̂ ∈ B(τ, ϕ1, t

′)

• ϕ1##[a:b]ϕ2 or {ϕ1}[
∗a:b]ϕ2 : (t′ ∈ B(τ, ϕ2, t)) ∧

(t′′ ∈ [t′ − b : t′ − a]) ∧ (τ(t′′) |=e ϕ1) ∧ (t̂ ∈
B(τ, ϕ1, t

′′))

where ϕ1 and ϕ2 are sequence expressions.

Definition 7. Match of an assertion: We say that an assertion

has matched at time t iff t is an end match of the antecedent

and is a begin match of the consequent. Hence, the asser-

tion ϕ1|->ϕ2 matches trace τ non-vacuously at time t, iff

∃t′≥t (τ(t) |=e ϕ1

∧
t′ ∈ B(τ, ϕ2, t)).

Note that an assertion vacuously match at time t, when

τ(t) 6|=e ϕ1. An assertion fails at time t iff it has no vacuous

nor non-vacuous match at time t.

In the following section, we propose an interval abstraction
that enables computing the match of assertions over dense
time.

IV. INTERVAL ARITHMETIC FOR AMSAL

In this section we discuss how the match of a property
interpreted over dense-time may be computed, by recursively
interpreting the truth of expressions in the property as opera-
tions over time intervals.

Definition 8. Time Interval: A time interval I is a nonempty

convex subset of R≥0 expressed as [a : b], (a : c), [a : c), and

(a : c] where a, b, c ∈ R≥0 and b ≥ a, c > a. l(I) and r(I)
are used to denote the left ends and right ends respectively of

interval I .

For an interval I , the Minkowski operators are as follows.
The Minkowski sum, I ⊕ [c : d], where c, d ∈ R≥0, c ≤ d, is
computed as, I ⊕ [c : d] = [l(I) + c : r(I) + d]. Similarly, the
Minkowski difference, I ⊖ [c : d], where c, d ∈ R≥0, c ≤ d,
is computed as, I ⊖ [c : d] = [l(I) − d : r(I) − c]. Note that
any interval [a : b], where a > b is a null interval.

Definition 9. Truth Interval: Time interval I is a truth

interval of ϕ, where ϕ is a PORV, event, Boolean signal, or

Boolean expression iff ∀t∈I τ(t) |= ϕ. For each PORV, event,

Boolean signal, or Boolean expression, ϕ, Iϕ(τ) is the set of

all truth intervals of ϕ in τ .

For trace τ , Iτ = [L : R] is the time interval over which
the trace is defined. In this context, the complement of a truth
interval I , the false interval, is denoted Ī = {t′|t′ ∈ Iτ , t

′ 6∈ I}.
In general, a sequence expression may be expressed as: φ1

θ1 φ2 θ2 · · · θn−1 φn, where ∀1≤i≤n φi is a Boolean ex-
pression of propositions, PORVs and events, and ∀1≤j<n θj is
a list of sequence operators of the form ##[a:b], [*a:b] and
[*a]. If θj contains a sequence of operators, they are always
applied to φj from left to right. The following definitions

describe the interval arithmetic interpretation for sequence
expressions.
Definition 10. Interval Set I(τ): For trace τ , I(τ) is choice

of truth intervals, 〈IP1
, IP2

, ..., IPk
〉, IPi

∈ IPi
(τ), ∀Pi ∈ Pϕ,

where Pϕ is the set of all Boolean propositions, PORVs and

events defined in the assertion ϕ. For ease of use IP (τ) =
IP ∈ I(τ).

The truth interval for a sequence expression is viewed
as having two contexts, a begin match and an end match

context, as defined by Definitions 5 and 6. For non-temporal
artifacts such as PORVs, events and Boolean expressions, the
two contexts evaluate to the same set of truth intervals. The
computation of the begin and end match truth intervals for
a sequence expression is computed recursively. As defined
earlier, sequence operators are left associative. Brackets may
also be used to describe sequences that break away from the
default semantics. In general the computation is defined below.
Definition 11. Begin and End Match Truth Intervals: Given

a choice I(τ) of truth intervals, the end match interval,

ME(ϕ, I(τ)), and begin match interval, MB(ϕ, I(τ)), for

sequence expression ϕ is defined as follows:
ME(ϕ, I(τ))

= ME(ϕ̂, I(τ)) ∩ IP (τ) , ϕ ≡ ϕ̂
∧

P

= ME(ϕ̂, I(τ)) ∪ IP (τ) , ϕ ≡ ϕ̂
∨

P

= [l(ME(ϕ1, I(τ))) + a : r(ME(ϕ1, I(τ)))] , ϕ ≡ {ϕ1}[
∗a]

= (ME(ϕ1, I(τ))⊕ [a : b]) ∩ME(ϕ2, I(τ)) , ϕ ≡ ϕ1 ##[a:b]ϕ2

= ME({ϕ1}[∗a], I(τ)) ∩ ME(ϕ2, I(τ)) , ϕ ≡ {ϕ1} [∗a:b]ϕ2

MB(ϕ, I(τ))

= MB(ϕ̂, I(τ)) ∩ IP (τ) , ϕ ≡ ϕ̂
∧

P

= MB(ϕ̂, I(τ)) ∪ IP (τ) , ϕ ≡ ϕ̂
∨

P

= MB(ϕ1, [l(ME(ϕ, I(τ))) : r(ME(ϕ, I(τ)))] − a) , ϕ ≡
ϕ1[

∗a]

= MB(ϕ1, (ME(ϕ, I(τ))⊖ [a : b]) ∩ME(ϕ1, I(τ))),

ϕ ≡ ϕ1##[a:b]ϕ2 or ϕ ≡ {ϕ1}[
∗a:b]ϕ2

We recursively prove that the arithmetic defined in Defini-
tion 11 correctly computes the time points defined by assertion
match semantics in Definitions 5 and 6.

The fundamental case, when ϕ is Boolean (BEXPR), is
straightforward. The intervals of truth for the ∧ and ∨ op-
erations are respectively computed using the ∩ and ∪ set
operations over intervals [17]. In these cases, the begin and
end-matches are identical. For each of the four semantic
rules, let τ(t) |=e ϕ, that is t is an end-match time point.
We prove the arithmetic assuming the interval set I(τ), a
labelled set of truth intervals, one for each P ∈ Pϕ. Let
ME(ϕ, I(τ)) = [l : r] be a non-empty end-match interval.
We use D(.) : R+ → I , to generalize a time point to a time
interval, in the context of a quantifier.
Theorem 1. The end-match intervals computed in Defini-

tion 11 correctly compute matches according to the semantics

defined in Definition 5.

Proof. Let ME(ϕ1, I(τ)) = [l1 : r1] and ME(ϕ2, I(τ)) =
[l2 : r2] be end-match truth intervals for ϕ1 and ϕ2.

• ϕ ≡ {ϕ1}[*a]:

4

D(t′) = [0 : a] and D(t) = [l, r]. Since τ(t − t′) |=e

ϕ1, D(t − t′) = [l1, r1]. Hence, for a non-empty end-
match interval for ϕ, r1 − l1 ≥ a. Also, the earliest time
point in ME(ϕ, I(τ)) is l = min(t−t′)∈D(ϕ1)(t − t′) +
maxt′∈[0:a](t

′) = l1 + a. While the latest time point is
r = max(t−t′)∈D(ϕ1)(t− t′) = r1.

• ϕ ≡ ϕ1 ##[a:b] ϕ2: Using the domains of t and t′,
we have, D(t) = [l2 : r2] ∩ (D(t′) ⊕ [a : b]) = [l2 :
r2] ∩ [l1 + a : r1 + b]

• ϕ ≡ {ϕ1}[
∗a:b]ϕ2: As shown earlier, for a non-

empty end-match, the right-hand side of the conjunction
evaluated to the interval [l1 + a : r1]. Hence D(t) =
[l2, r2] ∩ [l1 + a : r1] .

Theorem 2. The begin-match intervals computed in Defini-

tion 11 correctly compute matches according to the semantics

defined in Definition 6.

Proof. Let t̂ ∈ B(τ, ϕ, t). We compute D(t̂) as follows:

• ϕ ≡ {ϕ1}[*a]: D(t′) = D(t) − a = [l − a : r − a]. So
D(t̂) = MB(ϕ1, [l− a : r − a])

• ϕ ≡ ϕ1 ##[a:b] ϕ2 or {ϕ1}[
∗a:b]ϕ2: D(t) = [l : r],

D(t′′) = ([l : r]⊖ [a : b])∩ME(ϕ1,D(t)), hence D(t̂) =
MB(ϕ1,D(t′′))

Definition 12. Match Truth Interval for an Assertion : Given

a choice of I(τ) on a simulation trace τ , the match truth

interval IM for an assertion Φ is computed as follows:

• Φ : ϕ1 |-> ϕ2, IM = ME(ϕ1, I(τ)) ∩MB(ϕ2, I(τ)).
• Φ : ϕ1|-> ##[a:b]ϕ2, IM = ME(ϕ1, I(τ)) ∩
(MB(ϕ2, I(τ)) ⊖ [a : b]).

Theorem 3. The match truth interval computed in Definition

12 correctly computes matches according to the semantics

defined in Definition 7.

Proof. Consider each statement in Definition 7.

• Φ : ϕ1 |-> ϕ2, Follows directly from Definition 7
• Φ : ϕ1|->##[a:b]ϕ2, t ∈ IM iff t |=e ϕ1 and ∃t′, t′′,
t′ ∈ B(τ, ϕ2, t

′′) for t′′ > t′ and t ∈ [t′ − b : t′ − a].
Hence IM = ME(ϕ1, I(τ)) ∩ (MB(ϕ2, I(τ)) ⊖ [a : b])

A. Evaluating Property Matches

Consider the property describing the settling time of the output
voltage Vout for an arbitrary circuit, as given below. Given the
continuum of time when various predicates in the property are
true, as shown in Figure 3, we describe how the truth of the
property is evaluated using the definitions presented in the
earlier sections.

property SettlingTime{};

@+{V(Vout),0.1*1.2} |-> ##[0.001:0.004]

{V(Vout)>=0.95*1.2 && V(Vout)<=1.05*1.2}[*0.002];

endproperty

Let the event in the antecedent be denoted as E1 and the
PORV in the consequent is denoted as P1. We re-write the
assertion as follows: E1 |-> ##[0.001:0.004] P1[

∗0.002],
where

0.7 3.8 7.9

Vout

E1

P1

MB(P1[
∗0.002])

⊖[0.001 : 0.004]

E1 |− >

##[0 : 0.006]

0.12

1.14

1.26

5.9

MB(P1[
∗0.002])

4.9

P1[
∗0.002]

t (msec)

Fig. 3: Bottom-up evaluation of assertions.

AMS Circuit Simulator

Circuit Netlist /
Behavioural Model

Testbench

CHAMS

V
P
I
M
et
h
o
d
s

Monitoring
Data Structures

Property (ϕ)

Property
Parser

V
P
I
C
al
lb
ac
k
s

Event Monitors

Interval
Arithmetic

CoreM
at
ch

D
et
ec
t

Fig. 4: CHAMS Tool Flow

E1 : @+{V(Vout),0.1*1.2}, and
P1 : {V(Vout)>=0.95*1.2 && V(Vout)<=1.05*1.2}

Let for trace τ , IE1
(τ) = 〈[0.7ms : 0.7ms]〉 and

IP1
(τ) = 〈[1.6ms : 2.03ms], [2.41ms : 2.66ms], [3.04ms :

3.55ms], [3.8ms : 7.9ms]〉. Figure 3 demonstrates the bottom-
up approach used for computing the truth of the assertion. The
begin and end of E1 and P1 are computed using Definition 11.
Following the conditions mentioned in Section IV the assertion
is computed to be true for the time interval [0.7ms : 0.7ms].

V. THE CHECKER FOR AMS (CHAMS) TOOL

In this Section, we describe CHAMS, an online assertion
checking tool for AMS. CHAMS works with off-the-shelf
EDA tools to verify dense time AMS assertions during simu-
lation. This paper extends CHAMS with recurrence operators.
An overview of the tool is shown in Fig. 4.

A. Inputs

The inputs to the tool are a circuit netlist/behavioural model,
its testbench and the assertions that need to be checked.
Assertions are written in the syntax described in Section III.
The assertion specification is analysed to automatically gener-
ate monitor codes (as explained in the following subsection)
containing VPI-callback functions for the monitoring of events
and PORVs affecting the truth of the assertion.

B. Monitor Generation

In order to maintain truth intervals and thereby compute
the truth of the assertion, CHAMS generates Verilog-AMS

5

(VAMS) monitors and injects them into the VAMS testbench
for the circuit. Note that it is not mandatory to have a VAMS
testbench. In its absence monitor codes may also be placed in
an independent module having access to circuit ports.

A monitor consists of standard VPI callbacks which send
information about the state of the circuit to the checker
CHAMS. CHAMS in turn maintains a data structure in which
it updates the truth intervals for each sub-expressions bottom-
up. It uses interval arithmetic to do this, and thereby computes
the truth of the assertion. We demonstrate this using the
property settling time described in the following example.
Example 4. Rising Sequence: If the enable is asserted and

the output voltage Vout crosses 10% of its rated value of 1.2V
within 100µs, then thereafter, within 1ms to 4ms Vout must

reach its steady state (explained below).

property RisingSequence{};

@+{enable} ##[0:0.0001] @+{V(Vout),0.1*1.2}

|-> ##[0.001:0.004]

{V(Vout)>=0.95*1.2 && V(Vout)<=1.05*1.2}[*0.002];

endproperty

Here steady state means, V(Vout) remains within ±5% of
the rated voltage 1.2V for at least 2ms, and we express this
requirement using the recurrence operator in the consequent
of the above assertion. In time linear in the length of the
property, CHAMS generates VAMS monitors, one for each
event, and two for each predicate and Boolean expression.
For the property above, the following monitors are generated.

assign flag_2 = flag_2_0 && flag_2_1;

always @(posedge enable)

$checkerCall(0,0,$abstime);

always @(cross(Vout-0.1*1.2,+1,1e-9,1e-6)

$checkerCall(0,1,$abstime);

always @(cross(Vout-0.95*1.2,+1,1e-9,1e-6)

flag_2_0 = 1’b1;

always @(cross(Vout-0.95*1.2,-1,1e-9,1e-6)

flag_2_0 = 1’b0;

always @(cross(Vout-1.05*1.2,+1,1e-9,1e-6)

flag_2_1 = 1’b0;

always @(cross(Vout-1.05*1.2,-1,1e-9,1e-6)

flag_2_1 = 1’b1;

always@(posedge flag_2)

$updateTruthInterval(0,2,+1,$abstime);

always@(negedge flag_2)

$updateTruthInterval(0,2,-1,$abstime);

The callbacks indicated in these monitors invoke the CHAMS
assertion checker code whenever any event relevant to the
assertion is detected during simulation. The first monitor
issues a callback when enable goes high, the second monitor
issues a callback when Vout crosses 0.1 ∗ 1.2V , and the
third monitor examines the truth of the compound predicate
V(Vout)>=0.95*1.2 && V(Vout)<=1.05*1.2.

For each sub-expression, CHAMS maintains begin match
(MB) and end match (ME) intervals. When the begin and
end match for both the antecedent and the consequent are
available, the truth of the assertion is evaluated, as given in
Definition 12. In general, for a sequence ϕ1 〈op〉 ϕ2 containing

sub-sequences ϕ1 and ϕ2, where 〈op〉 ∈ {##[a:b], [*a],

[*a:b]}, treating 〈op〉 as left-associative, when ϕ1 is found
to be true, CHAMS monitors simulation progress for a time
of at least b (or a, for [*a]) time units before deciding the
match/fail of the sequence.

Definition 13. Depth of a Sequence Expression The depth

of a sequence expression ϕ, recursively defined as follows:
D(ψ) = 0

D(ϕ [∗a]) = D(ϕ) + |a|
D(ϕ1 ##[a : b]ϕ2) = D(ϕ1) +D(ϕ2) + b

D(ϕ1 [∗a : b]ϕ2) = D(ϕ1) +D(ϕ2) + b
where ψ is a Boolean expression.

For an assertion ϕ1 |-> ϕ2, evaluated over trace τ , to
decide the truth of the assertion at time point t, where
t ∈ ME(s1, I(τ)), CHAMS allows simulation to progress
upto t+D(ϕ2).

VI. EMPIRICAL STUDIES

AMS assertion checking is relevant in two contexts, one in
which the analog components are transistor level netlists,
and one in which the analog components are replaced by
behavioural models for accelerating simulation at the full-chip
level. In order to study the overhead of our tool CHAMS, we
have used two implementations of a Low Dropout Regulator
(LDO) as test cases, namely a light-weight behavioural model
written in Verilog-AMS, and an industry standard transistor
level netlist of the same LDO. Several properties were coded
in AMSAL, of which two are shown as illustrative examples.

Property 1. Settling time : The settling time of the LDO

should be less than 6 ms. The settling time is defined as the

time taken by the system to settle down within ±5% of the

rated voltage 3.2V and stay there for at least 2 ms.

property SettlingTime{};

@+{V(Vout),0.1*3.2} |-> ##[0:0.006]

{V(Vout)>=0.95*3.2 && V(Vout)<=1.05*3.2}[*0.002];

endproperty

Property 2. Power Sequencing: The power domain sourced

by the LDO should not be enabled until the output of the

LDO remains within ±5% of the rated voltage 3.2V for at

least 10 ms. The enable signal for the power domain sourced

by the LDO is called en.

property Power_Sequencing{};

~{V(Vout)>3.15 && V(Vout)<3.25} |->

~{@+{en}}[*0.01];

endproperty

Table I shows the results of our empirical studies. In
addition to the LDO, we also examined an industrial Buck
Regulator netlist. All simulations were run using Cadence on
a 2.33 GHz Intel-Xeon server with 32GB RAM. Column 3
represents the accuracy of the generated Verilog-AMS cross
events used for monitoring the assertions. Both the Verilog-
AMS BMOD and the transistor netlist of the circuit are run for
the simulation time given in the table’s second column. The
standalone simulation time of the circuit, without assertion
monitoring using CHAMS, is given in the fourth column. The
fifth column shows the simulation time when the circuit is run

6

TABLE I: Results from Empirical Studies

DESIGN STATISTICS

#Nodes #Transistors #Resistors #Capacitors #Diodes
LDO Netlist 1434 336 1269 861 6
Buck Netlist 1787 2455 495 350 67

SIMULATION RESULTS

CPU Sim.Time
Assertions

Simulation
Time

Cross Event
Accuracy
(sec, Volt)

Ckt. only
Ckt. +

CHAMS
%

Overhead

LDO Behavioural Model in Verilog-AMS

1e-4, 1e-3 11m 05s 7.78

1e-6, 1e-4 11m 57s 16.21

RisingSequence,
Settling Time,

Overshoot,
Power_Seq

300ms

1e-9, 1e-6

10m 17s

13m 38s 32.57

LDO Transistor Level Netlist

1e-4, 1e-3 22m 46s 10.61

1e-6, 1e-4 23m 42s 15.14
RisingSequence,
Settling Time,

Overshoot
40ms

1e-9, 1e-6

20m 35s

26m 7s 26.88

Buck Regulator Transistor Level Netlist

1e-4, 1e-3 3h 10m 14s 1.16

1e-6, 1e-4 3h 11m 07s 1.63
RisingSequence,
Settling Time,

Overshoot
250 µs

1e-9, 1e-6

3h 8m 3s

3h 17m 53s 5.23

with the assertion checker tool. A comparison of the last two
columns indicates the overhead of the assertion monitoring.

The overhead shown in the results are largely due to the
multiple VPI callbacks that have to be executed to accurately
maintain the dense truth intervals for the PORVs. The major
takeaway is that the assertion monitoring is online, hence
a failure will be reported at the very instance when the
assertion fails. Thus the designer can stop the simulating in-
between whenever an assertion fails. Another appealing feature
of CHAMS is that it is a completely automated tool which
requires minimum user intervention.

VII. RELATED WORK

In our past work on AMS-LTL we extended temporal logic to
express assertions for AMS [9] and further proposed adding
property variables to the logic in AMS-LTLL [10]. We also de-
scribe mechanisms for AMS property checking using standard
simulators [11] and proposed using auxillary state machines
to aid in testing and verification flows. In Ref. [12] we discuss
how dense-time debugging windows for property matches and
failures may be chosen and refined. We also introduced a
language a mechanism for the analysis of features [13], [14].
Features are quantitative properties for AMS systems that
specify a set of behaviours over which analog measurements
are computed. The language of features is developed to be
similar to SVA, which is a widely used property specification
language for discrete domains in the Semiconductor industry.
SVA, itself, was primarily developed for digital systems and
therefore is limited in its capacity to express AMS properties.

In work proposed by other groups, the proposed languages
either do not support recurrences or lack the ability to monitor
properties online with off-the-shelf AMS circuit simulators. In
Ref. [15], [16], an assertion monitoring tool is presented which

analyzes output signals to compute the truth of assertions. The
assertion language is developed by incorporating Timed Reg-
ular Expression (TRE) [19] into STL and suitable algorithms
are presented for their match computation [20], [21]. Although
TREs offer a rich set of operators, they lack support for
events, delays, and restricts I in 〈ϕ〉I to have integer endpoints
only. Authors in [22], [23] have designed an FJS-type online
algorithm for computing whether a timed word matches a
given specification, taken in the form of a timed automaton.
In our approach, we use interval arithmetic and support a
language with artifacts from circuits. Unlike other offerings,
CHAMS can interact with industrial circuit simulators to
guarantee accuracy of property matches. Furthermore, given
the fact that we primarily target the semiconductor industry as
our use-case, and the fact that SVA is already extensively used
in the field, adoption of an SVA-like language would be easier
for verification engineers. Other attempts have been made to
express properties for AMS in PSL and evaluate these using
modern analog simulators such as Spectre [18]. Assertions
written on analog ports can be evaluated on a predefined digital
clock, or at an analog event (such as a cross event in Verilog-
AMS) introducing analog to the assertion checking process.
However, dense-time temporal properties can not be expressed
in the proposed format.

Property languages for AMS over dense-time, developed
using SVA-like syntax do not presently support specification of
recurrence. Deciding property matches and failures for prop-
erties involving recurrent behaviours, that hold continuously
over a period of time, requires a different mechanism when
compared with those without recurrence.

VIII. CONCLUSION

We believe that recurrence over continuous time is necessary
to express many properties of AMS designs. Our proposal
for recurrence operators in AMS addresses this requirement.
We deliberately choose a syntax similar to SVA for ease of
verification engineers conversant with SVA. However proper-
ties expressed in our language AMSAL are evaluated by our
tool CHAMS using interval arithmetic as opposed to cycle
based evaluation of SVA. The ability of CHAMS to work
with standard commercial circuit simulators has facilitated its
integration into the verification tool flow of multiple semicon-
ductor companies.

REFERENCES

[1] “SystemVerilog 3.1a Language Reference Manual"
[2] “IEEE Standard for Property Specification Language (PSL)"
[3] S. Konrad and B. H. Cheng, “Real-time specification patterns", Proceed-

ings of the 27th international conference on Software engineering. ACM,

2005, pp. 372–381.
[4] R. Alur and T. A. Henzinger, “Real-time logics: Complexity and expres-

siveness", Information and Computation,vol. 104, no. 1, pp. 35–77, 1993.
[5] R. Alur, T. Feder, and T. A. Henzinger “The Benefits of Relaxing

Punctuality", J. ACM, vol. 43, no. 1, pp. 116–146, Jan. 1996. [Online].
Available: http://doi.acm.org/10.1145/227595.227602

[6] R. Alur and T. A. Henzinger, “A Really Temporal Logic", J. ACM,
M, vol. 41, no. 1, pp. 181–203, Jan. 1994. [Online]. Available:
http://doi.acm.org/10.1145/174644.174651

[7] A. Ain and P. Dasgupta “Interpreting Local Variables in AMS Assertions
during Simulation", IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2018
[8] R. Mukhopadhyay, S. K. Panda, P. Dasgupta, and J. Gough, “Instrument-

ing AMS Assertion Verification on Commercial Platforms", ACM TODAES

2009

http://doi.acm.org/10.1145/227595.227602
http://doi.acm.org/10.1145/174644.174651

7

[9] S. Mukherjee, P. Dasgupta, S. Mukhopadhyay, S. Little, J. Havlicek,
and S. Chandrasekaran, “Synchronizing AMS Assertions with AMS Sim-
ulation: From Theory to Practice", ACM Trans. Des. Autom. Electron.

Syst, vol. 14, no. 2, pp. 21:1–21:47, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1497561.1497564

[10] S. Mukherjee, P. Dasgupta, “Incorporating Local Variables in Mixed-
Signal Assertions", TENCON 2009 - 2009 IEEE Region 10 Conference,
Singapore, 2009, pp. 1-5.

[11] S. Mukherjee, P. Dasgupta, “Assertion Aware Sampling Refinement: A
Mixed-Signal Perspective", IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 31, no. 11, pp. 1772-1776, Nov.
2012.

[12] S. Mukherjee, P. Dasgupta, “Computing Minimal Debugging Windows
in Failure Traces of AMS Assertions", IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 31.11 (2012): 1776-1781.
[13] A.Ain, A.A.B.D. Costa, and P. Dasgupta, “Feature Indented Asser-

tions for Analog and Mixed-Signal Validation", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 35.11 (2016):
1928-1941.

[14] A.A.B.D Costa, G. Frehse, and P. Dasgupta, “Formal Feature Interpre-
tation of Hybrid Systems", IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 37.11 (2018): 2474-2484.
[15] D. Ničković, O. Lebeltel, O. Maler, T. Ferrère, D. Ulus, “AMT 2.0:

Qualitative and quantitative trace analysis with extended signal temporal
logic", Tools and Algorithms for the Construction and Analysis of Systems

2018

[16] D. Ničković, O. Maler, “AMT: A property-based monitoring tool for
analog systems", International Conference on Formal Modeling and Anal-

ysis of Timed Systems. Springer, Berlin, Heidelberg, 2007.
[17] Maler O., Nickovic D. (2004) Monitoring Temporal Properties of Con-

tinuous Signals. In: Lakhnech Y., Yovine S. (eds) Formal Techniques, Mod-
elling and Analysis of Timed and Fault-Tolerant Systems. FTRTFT 2004,
FORMATS 2004. Lecture Notes in Computer Science, vol 3253. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30206-3_12

[18] P. Bhattacharya, D. O’Riordan, W. Hartong, “Mixed signal assertion-
based verification", Design and Verification Conference and Exhibition,

2011
[19] “Timed regular expressions", Journal of ACM 2002 vol.

49, no. 2, pp. 172–206, Mar.2002. [Online]. Available:
http://doi.acm.org/10.1145/506147.506151

[20] Ulus D., Ferrère T., Asarin E., Maler O. (2014) Timed Pattern Matching.
In: Legay A., Bozga M. (eds) Formal Modeling and Analysis of Timed
Systems. FORMATS 2014. Lecture Notes in Computer Science, vol 8711.
Springer, Cham. https://doi.org/10.1007/978-3-319-10512-3_16

[21] Ulus D., Ferrère T., Asarin E., Maler O. (2016) Online Timed Pattern
Matching Using Derivatives. In: Chechik M., Raskin JF. (eds) Tools and
Algorithms for the Construction and Analysis of Systems. TACAS 2016.
Lecture Notes in Computer Science, vol 9636. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-49674-9_47

[22] Waga, Masaki, Ichiro Hasuo, and Kohei Suenaga. “Efficient Online
Timed Pattern Matching by Automata-Based Skipping.” Formal Modeling
and Analysis of Timed Systems (2017): 224–243

[23] Waga M., André É. (2019) Online Parametric Timed Pattern Matching
with Automata-Based Skipping. In: Badger J., Rozier K. (eds) NASA
Formal Methods. NFM 2019. Lecture Notes in Computer Science, vol
11460. Springer, Cham. https://doi.org/10.1007/978-3-030-20652-9_26

http://doi.acm.org/10.1145/1497561.1497564
http://doi.acm.org/10.1145/506147.506151

	I Introduction
	II Recurrence in AMS Assertions
	III Formal Semantics
	IV Interval Arithmetic for AMSAL
	IV-A Evaluating Property Matches

	V The CHecker for AMS (CHAMS) Tool
	V-A Inputs
	V-B Monitor Generation

	VI Empirical Studies
	VII Related Work
	VIII Conclusion
	References

