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Hard-ODT: Hardware-Friendly Online Decision
Tree Learning Algorithm and System

Zhe Lin , Member, IEEE, Sharad Sinha , Member, IEEE, and Wei Zhang , Member, IEEE

Abstract—Decision trees are machine learning models com-
monly used in various application scenarios. In the era of big
data, traditional decision tree induction algorithms are not suit-
able for learning large-scale datasets due to their stringent data
storage requirement. Online decision tree learning algorithms
have been devised to tackle this problem by concurrently training
with incoming samples and providing inference results. However,
even the most up-to-date online tree learning algorithms still
suffer from either high memory usage or high computational
intensity with dependency and long latency, making them chal-
lenging to implement in hardware. To overcome these difficulties,
we introduce a new quantile-based algorithm to improve the
induction of the Hoeffding tree, one of the state-of-the-art online
learning models. The proposed algorithm is lightweight in terms
of both memory and computational demand, while still maintain-
ing high generalization ability. A series of optimization techniques
dedicated to the proposed algorithm have been investigated from
the hardware perspective, including coarse-grained and fine-
grained parallelism, dynamic and memory-based resource shar-
ing, pipelining with data forwarding. Following this, we present
Hard-ODT, a high-performance, hardware-efficient and scalable
online decision tree learning system on a field-programmable
gate array (FPGA) with system-level optimization techniques.
Performance and resource utilization are modeled for the com-
plete learning system for early and fast analysis of the tradeoff
between various design metrics. Finally, we propose a design
flow in which the proposed learning system is applied to FPGA
run-time power monitoring as a case study. Experimental results
show that our proposed algorithm outperforms the state-of-the-
art Hoeffding tree learning method, leading to 0.05% to 12.3%
improvement in inference accuracy. Real implementation of the
complete learning system on the FPGA demonstrates a 384×
to 1581× speedup in execution time over the state-of-the-art
design. The power modeling strategy with Hard-ODT achieves
an average power prediction error within 4.93% of a commercial
gate-level power estimation tool.

Index Terms—Decision tree, field-programmable gate array
(FPGA), online learning, power modeling, quantile.
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I. INTRODUCTION

DECISION tree algorithms are a popular class of machine
learning algorithm and have been deployed in many

real scenarios [1]–[3], especially when multiple decision
trees are combined into powerful ensemble models, such as
XGBoost [4] and random forests [5]. Recently, the ensem-
ble of decision trees as deep forests [6] has been reported
to produce comparable performance compared to deep neu-
ral networks. However, there are several drawbacks that limit
the full exploitation of the traditional decision trees (e.g.,
IDT3 [7], CART [8], and C4.5 [9]). The first drawback is the
extensive memory consumption during the training process,
which is proportional to the size of datasets. Classic deci-
sion tree learners assume that the complete datasets can be
preloaded before training starts. This reduces their capability
to train with large-scale datasets, especially when, nowadays,
large amount of data is being generated daily. The second
disadvantage comes with the learners’ inability to adapt them-
selves to new data once the training process is terminated. In
the era of big data, the size of datasets is no longer the bottle-
neck of learning algorithms. Instead, the ability to effectively
learn from massive data and rationally make use of incoming
data becomes more fundamental and critical.

To broaden the applicability of decision tree algorithms,
extensions from traditional tree algorithms to batch learning
and online learning (or so-called incremental learning) have
been studied, which aim at adapting the models to incoming
data without losing previously learned knowledge. One of the
state-of-the-art online learning methods for streaming data is
the Hoeffding tree [10] algorithm and its variants [11]–[18].
The Hoeffding tree presents an enhancement of the deci-
sion tree induction algorithm which leverages the accumulated
samples to estimate the complete datasets statistically. It is
capable of performing training and inference concurrently.
The Hoeffding tree is widely used in various application
scenarios [19]–[22].

While efficient software implementation has been investi-
gated for processors to accelerate the Hoeffding tree [12],
[13], there are still many hindrances to the compact imple-
mentation and optimization of the Hoeffding tree design from
the hardware perspective. We identify two principal challenges
limiting Hoeffding tree implementation in hardware: 1) the
high cost of memory usage to store the required subset of
samples as well as characteristics in each leaf node and 2)
the high computational demand with dependency and long
latency between iterations in the learning process, which can
hamper efficient data processing with optimization schemes,
such as parallelism and pipelining. Furthermore, we observe a
tradeoff between the above two factors in the state-of-the-art
designs: the methods in [13] and [14], attempting to reduce the
memory usage, tend to extensively increase the computational
intensity and latency, and vice versa, as in the proposed



Fig. 1. Graphical and textual representation of a decision tree.

methods of [11] and [12]. The high and unbalanced need
of memory and computation makes the existing approaches
difficult to efficiently implement in hardware, especially on
field-programmable gate arrays (FPGAs) where memory and
digital signal processing (DSP) resources are both limited.
Motivated by the above challenges and observations, we seek
opportunities to implement and optimize the Hoeffding tree
in a hardware-friendly and scalable way, and also strive to
make use of resources in a more balanced manner. In this
article, we propose Hard-ODT, the first implementation of the
Hoeffding tree learning system on FPGA, with the following
contributions.

1) We first introduce a quantile-based algorithm for
Hoeffding tree induction, which uses lightweight com-
putation and constant memory, while preserving high
accuracy.

2) We present hardware optimization techniques dedicated
to the proposed algorithm, in order to achieve high
hardware efficiency and scalability. These includes dif-
ferent levels of parallelism, dynamic and memory-based
resource sharing, and pipelining with data forwarding.

3) We investigate optimization techniques for tree grow-
ing, categorical attribute learning and split judgment to
establish the complete online decision tree system on
FPGA.

4) We model performance and resource utilization for the
proposed online decision tree learning system on FPGA
for fast evaluation of the critical design metrics.

5) We develop a design flow to apply the proposed online
learning system to FPGA run-time power monitoring.

II. ALGORITHM AND CHALLENGES

A. Hoeffding Tree Induction Algorithm

The decision tree [23] learns the samples in the form of
a tree structure. A tree node can be categorized as 1) a
leaf/terminal node—a node associated with an output result
(i.e., a class label for classification or a value for regression)—
or 2) a decision/internal node—an intermediate node to decide
on one of its child nodes to go to. The training process is to
determine an if-then-else decision rule for every decision node
and an output value for every leaf node, simply based on a
certain split criterion computed with all the samples gathered
in the corresponding nodes. To make a new inference for an
unsolved case, the decision tree first starts with the root node
and moves each sample to child nodes iteratively until a leaf
node with inference result is reached, as shown in Fig. 1. The
induction flows of the online and offline decision tree algo-
rithms differ in the ways they make the split decisions: the
offline decision trees make split decisions with well-defined
datasets, while the online decision trees make the decisions
dynamically with an incoming data stream.

Algorithm 1: Traditional Hoeffding Tree Algorithm
input : samples denoted as (x, y)
output: Hoeffding tree denoted as HT

1 for each (xt, yt) coming at time t do
2 filter (xt, yt) to leaf l of HT
3 sample number in leaf l: nl ← nl + 1
4 update bin count (attri, valj, classk) nijk in leaf l
5 if split trial is activated then
6 compute left/right partitions according to nijk
7 compute G(·) for each attribute

8 if G(best) - G(2nd best) >

√
R2 ln(1/δ)

2nl
or

√
R2 ln(1/δ)

2nl
< τ

then
9 Split leaf l on the best attr.

10 Initialize count nijk for each leaf

As one of the state-of-the-art online decision tree algo-
rithms, the Hoeffding tree exploits the potential for the
currently seen sample set to represent an infinite sample set
when making split decisions, as described in Algorithm 1. At
each leaf node, the Hoeffding bound (also known as Chernoff
bound) [24] is used to tell how close the current best split
approaches the optimal split given an infinite sample set.
Suppose we make n independent observations of a random
variable r within range R. The Hoeffding bound guarantees
that the true mean r of r will be at least E[r] − ε, with

ε =
√

R2 ln(1/δ)

2n
. (1)

Let G(ai) be the best measurement (e.g., gini impurity
reduction) of a chosen split attribute ai. The Hoeffding tree
searches for the best and second-best G(·) values amongst all
attributes. Given the sample set of size n for a specific node
and a desired δ, the Hoeffding bound justifies that the current
best attribute is the exact best attribute from an infinite dataset
with probability 1 − δ, if the following equation is satisfied:

G(Best attr.) − G
(
2nd Best attr.

)
>

√
R2 ln(1/δ)

2n
. (2)

An additional tie condition is applied: when the two best
attributes have close G(·), a split is taken if the Hoeffding
bound is lower than a certain threshold τ . That is

G(Best attr.) − G(2nd Best attr.) <

√
R2 ln(1/δ)

2n
< τ. (3)

B. Challenges

Studies [11]–[14] have introduced several methods to
improve the basic Hoeffding tree algorithm. These methods,
however, reveal two main challenges for hardware implemen-
tation.

1) High Cost of Memory Utilization: In VFML [12], both
numeric and categorical attribute values are preserved in a
fixed number of bins (denoted as nijk) in a first-come-first-
served manner. If all the bins are occupied, the newly coming
attribute values unseen in all the bins are simply discarded
during runtime. Although this method works well with cat-
egorical attributes of which values are discrete and the total
number can be determined in the compile time, it requires a
bin of large size to fit each numeric attribute per class per
node to achieve a wide value coverage. Hence, the memory
requirement grows significantly with the number of attributes.



Algorithm 2: Incremental Gaussian Approximation
input : samples denoted as (attrval, weight)
output: mean of Gaussian approximation denoted as M
output: variance of Gaussian approximation denoted as V

1 weight sum: w_sum ← first weight
2 variance sum: v_sum ← 0
3 M ← first attrval
4 for each sample (attrval, weight) in sample set do
5 w_sum ← w_sum + weight
6 Mprior ← M

7 M ← M + attrval−Mprior
w_sum

8 v_sum ← v_sum + (attrval − Mprior) × (attrval − M)

9 V ← v_sum
w_sum−1

This similarly exists in the method [14] using Greenwald and
Khanna summaries [25], which requires to construct sample
distribution from up to thousands of tuples per attribute-class
combination per node. The exhaustive binary tree method [11]
also suffers from injudicious use of memory because it needs
to dynamically allocate memory for sample storage.

2) High Computational Intensity With Dependency and
Long Latency: To reduce memory utilization, Gaussian-based
methods [13], [14] are applied to trade much higher com-
putational intensity for memory efficiency. For each numeric
attribute per class, the sample distribution is estimated in
a form of Gaussian distribution. As the Gaussian function
is determined by only two values, namely, mean and vari-
ance, the memory usage can be significantly compressed to
#attribute × #class × 2 per node. However, the incremental
update process of the mean and variance leads to high com-
putational demand, as shown in Algorithm 2. The requirement
of computation resources is proportional to both the num-
ber of attributes and classes. Besides this, the split judgment
stage also requires computing the cumulative density functions
(CDFs) at each split point, which entails even higher computa-
tional power. Moreover, the update process incurs long latency
and should be in order of time if the two successive iterations
work on the same label. In addition to the high computational
intensity, the long latency and data dependency further hinder
this method from being effectively optimized in hardware.

III. METHODOLOGY

As BRAM and DSP are limited resources for FPGAs, the
excessive use of either on-chip memory or computation units
in the aforementioned methods [11]–[14] is neither efficient
nor scalable while handling numeric attributes. The two design
challenges described above and their interplay should be taken
into consideration for joint optimization. To this end, we
propose to introduce an up-to-date quantile algorithm in the
induction of online decision trees.

A. Quantile Estimation Using Asymmetric Signum Functions

Quantiles [26] are cutting points dividing the range of
a probability distribution into a certain number of intervals
with equal probabilities. The quantile function Q(·) of a
continuous variable is defined as the inverse of the CDF,
F(z) = Pr(xt ≤ z). Specifically, Q(·) can be written as

Q(α) = F−1
X (α) = inf{x ∈ supp(FX) : α ≤ FX(x)}. (4)

The state-of-the-art quantile estimation using asymmetric
signum functions is studied in [27] and [28]. The quantile
approximation calibrates the quantiles in a sequential manner
according to every incoming sample. The quantile calibration

Algorithm 3: Hoeffding Tree Induction With Quantiles
input : streaming samples denoted as (x, y)
output: Hoeffding tree structure denoted as HT
Let ai (1 ≤ i ≤ |A|) denote the attribute in set A
Let cj (1 ≤ j ≤ |C|) denote the class in set C
Let αk(1 ≤ k ≤ |Q|) denote the quantile index

1 for each (xt, yt) ∈ sample set do
2 filter (xt, yt) to leaf f of HT
3 sample num. at f : nf ← nf + 1
4 for j from 1 to |C| do
5 sample num. in class j: nfj ← (yt == j) ? nfj + 1:nfj
6 for i from 1 to |A| do
7 max. attr. value: maxai ← (ai > maxai ) ? ai : maxai
8 min. attr. value: minai ← (ai < minai ) ? ai : minai
9 for j from 1 to |C| do

10 if yt == j then
11 for k from 1 to |Q| do
12 Qijt(αk) ← Qijt−1(αk)−λsgnα(Qijt−1(αk)−ai)

13 if split trial is activated then
14 for i from 1 to |A| do
15 for p from 1 to |P| do

16 pt ← maxai −minai|P|+1 × p + minai
17 for j from 1 to |C| do
18 left distribution L: distLij(pt) ← 0
19 for k from 1 to |Q| do
20 distLij(pt) ← (pt >

Qijt(αk)) ? distLij(pt) + 1:distLij(pt)

21 distLij(pt) ← distLij(pt)
|P| × nfj

22 distRij(pt) ← nfj − distLij(pt)
23 compute G(ai) for all pt

24 if G(best)-G(2nd best) >

√
R2 ln(1/δ)

2nf
or

√
R2 ln(1/δ)

2nf
< τ then

25 split l on the best attr & initialize new leaves

process from sample xt−1 to xt can be described as

Qt(α) = Qt−1(α) − λ sgnα(Qt−1(α) − xt) (5)

where sgnα(·) is the asymmetric signum function defined by

sgnα(z) =
{−α, if z < 0
1 − α, if z ≥ 0. (6)

B. Learning Numeric Attributes With Quantile
Approximation

To handle numeric attributes, we develop a new algorithm
in the Hoeffding tree induction process by applying the quan-
tile estimation with asymmetric signum functions, which is
described in Algorithm 3. The proposed algorithm encom-
passes two key features: 1) a separate set of quantiles is
maintained per attribute per class (lines 6–12) and 2) the
strategy to get left/right partitions based on the attribute dis-
tributions (lines 14–22) has been customized to support the
quantile method. Note that the number of quantiles to use
is determined by the characteristics of the datasets. This is
studied in Section VIII-B.

A straightforward method [12] to deduce the partitions is
to view each sample as a split point and compute distribution
individually: for an attribute i and a specific sample’s attribute
as the split point pti, an arbitrary sample is sorted to the left
partition if its attribute value ai ≤ pti, or otherwise, it is filtered
to the right partition. In our algorithm, we learn the samples
with quantiles and represent sample distribution in CDF: each
quantile value Q(αk) indicates that the percentage is αk for the
samples with the attribute values smaller than Q(αk). In this
way, sample storage is not required.

Fig. 2 illustrates how the overall partitioning strategy works.
We generate a set of split points evenly distributed in the full



Fig. 2. Partition strategy in the proposed algorithm, illustrated with one
attribute, two labels, and eight quantiles.

Fig. 3. Using eight quantiles to estimate the CDF of normal distribution
with a round-down scheme.

range of attribute values. These split points are compared to
the quantiles individually to find out the interval of two quan-
tiles [Q(αk), Q(αk+1)] containing the split point. Afterwards,
the sample number in each partition can be determined. The
portion of samples with attribute values smaller than or equal
to Q(αk) goes to the left partition, whereas the others go to
the right partition. By this method, the sample distribution in
the left partition is rounded down to the nearest quantile, with
an example shown in Fig. 3.

The proposed algorithm overcomes the tradeoff between
memory and computation, and presents a more rational
and balanced solution compared with state-of-the-art meth-
ods [11]–[14]. The advantages of this proposed method are
threefold.

1) The sample characteristics are fully generalized and
encapsulated in a set of quantiles, dispensing with the
need to store any samples in the training iterations. The
memory requirement is reduced to #attribute ×#label ×
#quantile per leaf node. This outperforms existing meth-
ods [11], [12] which require large attribute or sample
storage.

2) The computation demand is notably reduced compared
with the memory-efficient yet computation-intensive
method, Gaussian method [13], [14]: only comparison
and subtraction are involved in quantile approximation,
whereas Gaussian approximation entails expensive com-
putation as shown in Algorithm 2. The complexity of
partition deduction is also effectively simplified with the
proposed method.

3) The problem of data dependency can be resolved with
hardware optimization through deliberate parallelism
and pipelining, as introduced in Section IV-C.

IV. ARCHITECTURE DESIGN

A. System Overview

The system overview of the Hoeffding tree implementation
is depicted in Fig. 4. Starting from the sample buffer, the
tree management engine first reads and decodes the sample
information. At the same time, it fetches relevant tree nodes

Fig. 4. System overview of the Hoeffding tree implementation with the
proposed algorithm.

from the tree node storage and filters the samples to the leaf
nodes in a pipelined way. Thereafter, both the inference engine
and training engine start processing the samples.

In the learning process, samples are decomposed into sep-
arate attributes and the characteristics of each attribute are
learned and stored independently. When a split trial is invoked
at a leaf node, for each numeric attribute, a partition deduc-
tion unit uses the quantiles and split points to deduce left and
right partitions. As for categorical attributes, the sample counts
of all attribute-class combinations form a histogram, which is
similar to the quantiles for numeric attributes.

The partition information of every attribute is then processed
by a split quality measurement unit to compute the split gain
for each split point. Then, the best and second-best split gains
are identified, and the split decision is given by the Hoeffding
bound judgment unit. If a split is taken, the split information
is sent back to the split controller to update the tree structure.

B. Tree Management Units

The tree management units maintain two operations: 1) fil-
tering samples to different leaf nodes, which requires tree
traversing and 2) splitting leaf nodes by overwriting the tree
node memory after receiving split requests.

The tree traversing process for each sample starts from the
root node down to a specific leaf node, thus involving several
rounds of memory reading. Considering the case of streaming
data input, the tree memory may receive multiple read requests
from different samples concurrently. Multiport memory can
be used to support this feature. However, the required port
number is linearly related to the tree depths. FPGA BRAMs
naturally support up to two ports, and increasing the port size
turns out to be an inefficient solution. We observe that the
samples are processed at different tree levels sequentially and
the samples from different time steps require memory reading
from different tree levels. Hence, we separate the node storage
according to tree levels, as depicted in Fig. 5(a), and dual-
port memory is enough to support both node splitting and tree
traversing for streaming samples. The idea of using a separate
memory structure has been adopted in DT-CAIF [29], whereas
we develop a fine-grained pipeline structure for each tree level.
All the tree levels together form a deep pipeline.



Fig. 5. (a) Decision tree architecture. (b) Tree management pipeline structure.
(c) Bit decomposition of tree node memory.

The fine-grained pipeline needs to support both tree travers-
ing and node splitting. A three-stage pipeline is formed, as
shown in Fig. 5(b). The tree traversing routine consists of
node reading (R), attribute selection (A), and branch decision
(B) stages. As for node splitting, split information (mainly the
split node level, node ID, split coefficient, and attribute index)
from the training engine is passed across different tree levels.
When a leaf node is reached, the corresponding memory ele-
ment is overwritten by the split information to replace the leaf
node with an internal node. Moreover, two new leaf nodes are
generated in the next level and the split pipeline also writes in
the new leaf nodes the training elements they are associated
to. This is related to the dynamic leaf node-element allocation
scheme discussed in Section IV-C. All the operations relevant
to the split are completed in the split (S) stage, after which
two nop (N) states are followed. The bit information stored in
the memory for branch decision is shown in Fig. 5(c).

C. Learning Numeric Attributes

In our proposed Algorithm 3, recall that we maintain a set of
quantile values per numeric attribute per class for a single leaf
node. Optimization techniques are investigated for accelerat-
ing quantile learning from the hardware perspective, which
can be summarized as: 1) attribute-level (coarse-grained)
and quantile-level (fine-grained) parallelism; 2) dynamic and
memory-based resource sharing; and 3) pipelining with data
forwarding for data dependency removal.

Attribute-Level (Coarse-Grained) and Quantile-Level (Fine-
Grained) Parallelism: As shown in line 6 to line 12 of
Algorithm 3, different attributes are independent and, within
each attribute, the quantiles Q(·) per class are also indepen-
dent of each other. This allows us to speed up the quantile
computation process with both attribute-level and quantile-
level parallelism, as shown in Fig. 6. Note that we do not
take class-level parallelism even though it is possible. This
is because each sample contains a unique class label but has
multiple attributes. The learning process only needs to update
the set of quantiles matching the sample label. Based on
this fact, parallelizing at class level does not offer any bene-
fit. Instead, we seek opportunities for class-level optimization
through resource sharing and pipelining.

Dynamic and Memory-Based Resource Sharing: For each
leaf node, it is required to maintain a number of quantiles
per attribute per class. If hardware copies are simply repli-
cated for each leaf node, both the memory and arithmetic
resource utilization becomes too expensive for hardware to
implement. In light of this problem, we develop a dynamic leaf

Fig. 6. Exploiting attribute-level and quantile-level parallelism.

Fig. 7. Dynamic leaf node-element allocation scheme.

node-element allocation scheme as the tree grows dynamically
and a memory-based resource sharing mechanism for quantile
update routine.

To differentiate between a leaf node of the tree and the phys-
ical resource allocated for a leaf node in the training process,
we call the former a leaf node, while we denote the latter as an
element. A leaf node is only temporarily being a leaf node, and
it may be split as samples assemble. Therefore, it is not neces-
sary to statically allocate physical resources to each leaf node.
We devise a dynamic leaf node-element allocation scheme,
as shown in Fig. 7. The training engine maintains a node-
element table to keep track of the leaf node-element pairs.
During the split process, the split controller generates new
leaf node-element pairs and sends them back to the training
engine. The training engine then updates the leaf node-element
relationship in the table. In this way, the leaf node-element
allocation change dynamically and resource reuse in hardware
is facilitated.

A memory-based resource sharing scheme is designed to
collaboratively work with the dynamic leaf node-element
allocation scheme for further resource sharing. This scheme
leverages two facts: 1) each sample is only sorted to one
leaf node, so only one element will be activated for quantile
update per sample and 2) for each attribute, only the set of
quantiles corresponding to the sample label will be activated
per sample. Since the quantile learning process is the same
for all classes and elements, except that the quantile values
are different, we devise the following memory-based resource
sharing scheme: for each attribute, all the classes of all ele-
ments share one set of quantile computation logics and all
the corresponding quantile values are stored in one memory.
When a sample is used for training, the set of quantiles cor-
responding to the specific element and class is fetched, and
later, the updated values are stored back to the same memory
location. Element and class values together form the memory
addresses. Putting it all together, a single quantile computa-
tion unit with memory-based resource sharing is depicted in
Fig. 8. To support this mechanism, each leaf node in the tree



Fig. 8. Single quantile computation unit with the memory-based resource
sharing scheme.

Fig. 9. (a) Pipelining stages with data forwarding. (b) Hardware realization
of data forwarding.

memory preserves a field denoted as leaf information to train-
ing shown in Fig. 5(c). Provided a new split, the two new leaf
nodes along with their assigned element IDs are sent from the
training engine to the tree node memory for update. For each
sample after tree traversing, the element ID associated with
its reached leaf node and the raw sample data are sent to the
training engine.

Pipelining With Data Forwarding: There exists data depen-
dency for quantile computation: two successive samples sorted
to the same leaf node should update the same element in
a sequential way. For the method with Gaussian approxima-
tion, the long latency of the update process, as described in
Algorithm 2, makes it difficult to overcome this dependency.
For the proposed quantile computation architecture in Fig. 8,
the computation is reduced to a comparison and a subtraction
per quantile unit, which allows us to fully exploit the pipeline
architecture with data forwarding to resolve data dependency.

We propose a 5-stage pipeline architecture for the quan-
tile update routine, as shown in Fig. 9(a). The first stage (F)
fetches a sample from the sample buffer. The second stage (B)
decides on the execution branch to take, including element ini-
tialization in the dynamic leaf node-element allocation scheme,
quantile computation and quantile output for the split trial. In
the next stage (R), the quantile unit selected by the element
and class is read out. Afterwards, the quantile is updated in
the computation stage (C) following (5), and is written back
to the same memory location in the writing stage (W).

In stage C, we address the data dependency problem by the
adoption of a dedicated data forwarding method, as shown in
Fig. 9(b), which aims at providing the flexibility that, when the
quantiles are updated while not yet written in the memory, they
are directly passed to the quantile computation engine if the
addresses between these two computation periods match. We
keep track of the results and quantile memory addresses of the
prior two computation periods, which are managed by stage
C and stage W, respectively. Stage C has a higher forwarding
priority over stage W when both memory addresses match the
one currently processing, because stage C provides the most
up-to-date results. This data forwarding allows us to bypass
memory operations when dependency occurs and eventually
leads to a throughput of one sample per cycle.

Fig. 10. Histogram update with status table.

D. Learning Categorical Attributes

The process of learning categorical attributes is similar to
learning numeric attributes. However, the value and size of
each categorical attribute is determined by dataset characteris-
tics, which can be known in design time. Therefore, counting
the number of occurrence for each attribute-class combina-
tion gives a histogram of the distribution without any loss
of information. In a split trial for categorical attributes, each
attribute value is used as a split point individually: the samples
with the attribute value equal to the split point is filtered to
the left, or otherwise, it is sorted to the right.

The optimization methods, except the dynamic leaf node-
element allocation scheme, can be migrated to categori-
cal attributes seamlessly. However, to support the dynamic
leaf node-element allocation scheme, the histograms of all
attribute-class combinations for an element need to be ini-
tialized simultaneously. This brings difficulties as we apply
memory-based resource sharing in which the same dual-port
histogram memory is shared amongst different class labels,
and multiple write requests to the same memory is inefficient
for FPGA design. To overcome this problem, we additionally
implement a status table for histograms. Every memory unit in
the status table represents an individual histogram, and each bit
indicates the status of a column of this histogram. To initialize
a histogram when a new leaf node-element pair is assigned,
only the corresponding memory unit in the status table, instead
of all units in the histogram, needs to be reset. The training
routine first checks the status table for each incoming sample,
and follows either of the two situations (i.e., initialization or
increment) as depicted in Fig. 10. The relevant status bit is set
to high when the first sample comes after initialization.

E. Simplification of Split Measurement With
Hoeffding Bound

The study in [30] has shown that the choice of split mea-
surement method does not exert a significant impact on the
accuracy of decision tree induction. We adopt gini impurity [8]
as it is commonly used and has low computational demand.

Gini impurity is a measure of the chance for an example
to be incorrectly classified if it is randomly labeled according
to the distribution of the labels. Let pj be the probability of
examples being labeled as class j (j ∈ 1, 2, . . . , |C|) in the
dataset S. Gini impurity can be represented as

gini(S) = 1 −
|C|∑
j=1

p2
j . (7)

The split quality for a given partition is based on the reduc-
tion in gini impurity after a split is taken. If S is split into



the left subset SL and right subset SR, the reduction in gini
impurity can be described by

G = �gini = gini(S) − |SL|
|S| gini(SL) − |SR|

|S| gini(SR). (8)

We combine the split measurement with the Hoeffding
bound judgment for joint optimization in hardware. Let SL,j
and SR,j be the subset of SL and SR labeled in j, respectively.
We reorganize the reduction in gini impurity G as follows:

G = 1

|S|

⎛
⎝ 1

|SL|
|C|∑
j=1

∣∣SL,j
∣∣2 + 1

|SR|
|C|∑
j=1

∣∣SR,j
∣∣2
⎞
⎠+ gini(S) − 1.

(9)

Putting the gini impurity reduction and Hoeffding bound
together, the calculation can be reorganized as

GB1−GB2

= 1

|S|

⎡
⎢⎢⎢⎢⎢⎣
⎛
⎝ 1∣∣SB1,L

∣∣
|C|∑
j=1

∣∣SB1,L,j
∣∣2+ 1∣∣SB1,R

∣∣
|C|∑
j=1

∣∣SB1,R,j
∣∣2
⎞
⎠

︸ ︷︷ ︸
split quality

−
⎛
⎝ 1∣∣SB2,L

∣∣
|C|∑
j=1

∣∣SB2,L,j
∣∣2+ 1∣∣SB2,R

∣∣
|C|∑
j=1

∣∣SB2,R,j
∣∣2
⎞
⎠
⎤
⎥⎥⎥⎥⎥⎦.

(10)

To search for the best and second-best attributes, we only need
to compute the split quality denoted in (10) for each split point,
instead of the full term of gini impurity reduction in (9). After
that, the whole term of (10) is computed for Hoeffding bound
judgment. This noticeably simplifies the calculation for each
split point.

To further optimize the computation, we eliminate the divi-
sion (1/|S|) in (10) by prestoring and looking up the values in
memory. The square-sum calculation in the split quality term
is realized with a pipelined multiplier-adder tree.

V. PERFORMANCE MODEL

In this section, we analyze and model the performance met-
rics of the online decision tree. These principal metrics are
inference latency, throughput and execution time. The infer-
ence latency describes the execution cycles for a sample to
pass through the inference engine and get prediction results.
The throughput reflects the total data volume that is processed
per unit time. The execution time represents the overall system
operation time for an application with a dataset.

A. Inference Latency

The latency measurement starts from a single input sam-
ple already transferred to the FPGA to the point where the
inference results are ready to be sent out to off-chip memory
from the FPGA. The overall inference latency Loverall encom-
passes three major components: 1) buffer delay Lbuff; 2) tree
traverse delay Ltree; and 3) prediction delay Lpred. Equation
(11) describes this relationship

Loverall = Lbuff + Ltree + Lpred. (11)

The buffer delay Lbuff accounts for two buffers, the input
sample buffer and the internal data buffer between the tree
traverse unit and the prediction unit. Each buffer takes four
cycles for the data to be stored and outputted according to the
profiling results of the Xilinx FIFO IP block [31]. Therefore,
Lbuff is eight in our case. The tree traverse delay Ltree corre-
sponds to the latency incurred by sorting a sample from the
root node down to a leaf node in the tree body. As described
in Section IV-B, the tree traverse unit is customized with both
intralevel and interlevel pipeline. Putting it all together, Ltree
can be formulated as

Ltree = Plevel × Dtree (12)

where Plevel denotes the number of pipeline stages per tree
level, which are three according to Section IV-B, and Dtree
is the user-defined maximum tree depth. The prediction delay
Lpred describes the delay to provide inference results given
the sample and leaf node information after the tree traverse.
As majority vote is adopted as the inference strategy, the data
count per label and maximum data count per leaf node are
maintained and updated for each leaf node. Accordingly, a
three-stage pipeline is designed for this purpose with read,
predict and update stages deployed in order. The read stage
fetches the corresponding label and maximum data counts of
the leaf node from the memory, the predict stage provides
the inference result based on the majority vote strategy, and
finally, the update stage conducts current label count and max-
imum label count increment. According to this pipeline, the
prediction unit offers inference results at the second pipeline
stage, and it takes two cycles for result outputting per sample,
and therefore, Lpred is two.

B. Throughput

Our design is fully pipelined and the design is able to pro-
cess one sample per cycle. Under this situation, the full-load
throughput of the FPGA TPFPGA is formulated as

TPFPGA = [
log2(L) + BN × N + BC × C

]× f

with BN = 32, BC = max
{⌈

log2(Vi)
⌉
: 1 ≤ i ≤ C

}
(13)

where the first term of TPFPGA is the sample size that is mainly
determined by the number of numeric attributes N, the number
of categorical attributes C and the number of labels L in the
target application, and f is the operating frequency given after
the application going through logic synthesis, placement and
routing. BN and BC are the bitwidths of numeric and categor-
ical attributes, respectively. The numeric attributes are 32-bit
fixed-point data in our design, so BN is 32. BC is the bitwidth
required to cover the range of all categorical attribute values,
which is computed as shown in (13), with Vi representing the
number of attribute values for the ith categorical attribute.

Besides the design throughput, the overall throughput
should also be responsible for the DDR bandwidth. The mea-
sured DDR bandwidth is reported as 9.5 GB/s for reading
(denoted as DBWRD) and 8.9 GB/s for writing (denoted as
DBWWR) [32]. In our case, the bottleneck of DDR accessing
is caused by reading samples. Finally, the overall throughput
TPoverall of the complete system is given by

TPoverall = min(TPFPGA, DBWRD). (14)



C. Execution Time

The overall execution time Texe for an application can be
generalized as

Texe = Cexe

f
(15)

where Cexe is the execution cycles of the target application
given a specific dataset, and f is the operating frequency. The
execution cycles can be described by

Cexe = Cper−sample × S + Ccold−start (16)

where Cper−sample is the amortized execution cycles for each
sample, S denotes the sample size of the used dataset, and
Ccold−start represents the execution cycles used to bring the
design pipeline into its normal operation at the system startup
stage. During profiling in the experiments, Cper−sample is
observed to be 1.047, which is close to one. This corresponds
to the fact that our design is fully pipelined with an initiation
interval (II) equal to one, capable of processing a new input
every clock cycle. Ccold−start corresponds to the following
phases at the system startup stage: 1) data reading, buffer-
ing and writing; 2) pipeline filling and draining; and 3) sample
accumulation at leaf nodes, split decision feedback and update.

VI. RESOURCE MODEL

We introduce a resource model to investigate the relation-
ship between application characteristics and the corresponding
resource overheads. This model can help designers understand
the resource decomposition of different components in the
design, and it also offers fast and early-stage resource evalu-
ation simply based on some application parameters. As DSPs
and BRAMs are scarce resources for FPGA and the hardware
implementation of online decision trees is both memory and
computation intensive, we focus on modeling the DSP and
BRAM resource utilization.

A. DSP Utilization

We assume that all multiplications use the DSPs for high
performance. In this design, we use integer multipliers with
16-bit, 24-bit and 32-bit configurations for the fixed-point
multiplications in the design, each consuming one, two, and
four DSP slices, respectively. The DSPs are utilized by 1) the
numeric attribute learning; 2) the categorical attribute learn-
ing; and 3) the split decision, as formulated in the following
equation:

Doverall = Dnumeric + Dcategorical + Dsplit. (17)

DSP in Numeric Attribute Learning: For numeric attribute
learning, a number of multipliers are used in the computa-
tion of Gini impurity after several split attempts are provided,
which is denoted as the split quality term in (10). Regarding
each attribute, the multiplications are involved in 1) squaring
the sample counts per label in both the left and the right par-
titions and 2) normalizing the left and the right square sums
with the partition sum, respectively. In light of this, the DSP
utilization for numeric attribute learning Dnumeric is given by

Dnumeric = (3 × L + 12) × N (18)

where L is the number of labels, and N is the number of
numeric attributes. From (18), we can observe that the DSP
utilization for numeric attribute learning is determined by the

number of labels and the number of numeric attributes, which
are intrinsically decided by the application characteristics.

DSP in Categorical Attribute Learning: For categorical
attribute learning, the multiplications are similarly utilized in
the computation of the split quality term. The main differ-
ence between the numeric attribute learning and the categorical
attribute learning is the representation of sample distribution
per attribute-class combination: for numeric attribute learning,
the sample distribution is learned in the form of quantiles,
and 32-bit fixed-point representation is used to maintain the
precision, whereas for categorical attribute learning, the sam-
ple distribution is preserved in a histogram which records the
occurrence of samples, and 16-bit integer is enough to cover
a large range. This contributes to the differences in the DSP
utilization for the computation of the same split quality term
for numeric and categorical attribute learning. Accordingly, the
DSP utilization for categorical attribute learning Dcategorical is
generalized as

Dcategorical = (2 × L + 4) × C (19)

where C represents the number of categorical attributes.
Similar to numeric attribute learning, the DSP utilization for
categorical attribute learning is also determined by the num-
ber of labels and the number of categorical attributes in the
dataset.

DSP in Split Decision: For split decision, a 32-bit multiplier
is used to multiply the normalization term (1/|S|) with the
subtraction result of split quality terms, as shown in (10).
Therefore, four DSPs are used for split decision after the Gini
computation, so Dsplit equal to four.

B. BRAM Utilization

The online decision tree requires intensive usage of BRAM
resources in both the inference and the training processes.
We decompose the complete design into inference, numeric
attribute learning and categorical attribute learning, and sep-
arately study their BRAM utilization. The BRAM utilization
model is constructed according to the state-of-the-art Xilinx
Ultrascale+ FPGA BRAM features [33].

BRAM in Inference: In the inference stage, the BRAM
resources are modeled by

Binference = Bbuff_i + Btree + Bpred (20)

where Bbuff_i, Btree and Bpred denote the BRAMs utilized by
data buffering, tree traverse and prediction, respectively.

Bbuff_i consists of input and internal buffers with RAMs
and FIFOs. These are a small portion in Binference, and can be
regarded as a constant in the design. The Bbuff_i is observed
to be 32 through profiling.

Btree represents the memory used for tree node storage. To
increase the efficiency of pipelining in the design, we allocate
one individual memory for each tree level, and the over-
all utilization is to add up the BRAMs utilized for different
components, as given by

Btree =
Dtree∑

level=1

Blevel (21)

where Dtree denotes the maximum tree depth that is set by
users, and level is the currently evaluated tree level. The num-
ber of tree nodes for different levels are different, which can
be generalized as

Node(level) = 2level−1. (22)



Due to this observation, the BRAM utilization also differs
for different tree levels. We separately formulate the BRAM
utilization according to specific tree levels

Blevel=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if level=1⌈
33+Dtree+�log2(Dtree)�+�log2(C+N)�

18

⌉
,

if level ∈ [2, 11]⌈
33+Dtree+�log2(Dtree)�+�log2(C+N)�

36

⌉
× 2level−11+4,

if level ≥ 12
(23)

where C is the number of categorical attributes and N is the
number of numeric attributes. For the first level, there is only
one root node, so only registers are used to simply buffer
the root node and no BRAM memory is required. For the
levels between 2 and 11, the number of nodes is no larger
than 1024. Under this circumstance, the BRAM utilization is
determined by the data width. In contrast, when the tree level
further increases, the BRAM utilization is also influenced by
the data size, namely, the number of nodes in the tree level.

Bpred can be decomposed into sample label storage of leaf
nodes, and majority class update and memorization for leaf
nodes, as shown in Section V-A. Bpred can be described as

Bpred =
⌈
2�log2(E)�+�log2(L)�−10

⌉
+
⌈

E

1024

⌉

+
⌈
12 + L + ⌈log2(L)

⌉
18

⌉
×
⌈

E

1024

⌉
. (24)

BRAM in Numeric Attribute Learning: BRAMs are exten-
sively used in numeric attribute learning for 1) internal data
buffering and 2) quantile learning, as shown in the following
equation:

Bnumeric = Bbuff_n + Bquantile. (25)

There are several internal RAMs and FIFOs in numeric
attribute learning for the purpose of internal data storage,
ranging from sample storage, element status preservation,
attribute/label range capturing to coefficient buffering, etc.
The overall BRAM utilization for data buffering can be
summarized as

Bbuff_n = N ×
(
8 + 2L +

⌈⌈
log2(E)

⌉+ ⌈log2(L)
⌉+ 32

18

⌉)

+ N ×
⌈

E

1024

⌉
×
(
5 + 4L +

⌈
1 + 6L

18

⌉
+
⌈
2L

3

⌉)
(26)

where N, L, and E denote the number of numeric attributes,
the number of labels in the target application, and the number
of elements in the hardware design, respectively.

Regarding the quantile estimation, a set of quantiles are
maintained per attribute-class combination for each leaf node,
as described in Section III-B. As a result, the quantile storage
gives rise to a major proportion of the overall BRAM utiliza-
tion in the design. The following equation models the BRAM
utilization for the quantile learning:

Bquantile =N ×
(⌈

2�log2(E)�+�log2(L)�−10
⌉

×2Q+
⌈
8Q

9

⌉
× L

)
(27)

Fig. 11. Buffer organization for histogram storage.

where Q represents the adopted number of quantiles per quan-
tile set in the design. The first term of (27) describes the
resources used for quantile initialization, storage and update.
The second term represents the intermediate buffers to transfer
the results between quantile learning and partition deduction.

BRAM in Categorical Attribute Learning: Different from
the quantile learning for numeric attributes, the categorical
attribute learning process instead adopts a histogram repre-
sentation, as described in Section IV-D. The total number of
BRAMs used for categorical attribute learning is described by

Bcategorical = Bbuff_c + Bhisto. (28)

Multiple buffers are allocated to store input and internal
data for histogram update and partition deduction. The BRAM
utilization for data buffering is given by

Bbuff_c =
(⌈

2L

3

⌉
+ 2

)
×
⌈

E

1024

⌉
+ 10 × C (29)

where C, E, and L denote the number of categorical attributes,
the number of elements and the number of labels of the design,
respectively.

To learn from categorical attributes, a histogram is main-
tained for each combination of attribute value and label in
each leaf node. To enhance memory bandwidth for parallel
data processing, we partition the memory in the dimension of
attribute values, and allocate dual-port memory for every two
attribute values, as shown in Fig. 11. The attribute values are
used as enable signals to select the memory unit to access.
Besides the memory utilization for histogram, there are also
some buffers allocated to record the sum and status of his-
togram elements. Putting it all together, the BRAM utilization
for histogram representation is

Bhisto =
C∑

i=1

⌈
Vi
2

⌉∑
j=1

(⌈
2�log2(E)�−9

⌉
+ 3

×
⌈
2�log2(E)�+�log2(L)�−11

⌉
+
⌈
2�log2(E)�+�log2(L)�−13

⌉
+
⌈

E

8192

⌉)
(30)

where Vi denotes the total number of attribute values for the
ith categorical attribute in the application.

VII. FPGA RUN-TIME POWER MONITORING WITH
ONLINE LEARNING

In this section, we study how Hard-ODT, the online deci-
sion tree learning system proposed in prior sections of this
article, can be further utilized for FPGA run-time power mon-
itoring. We note that state-of-the-art research works [34], [35]
have focused on offline power modeling strategies, which



Fig. 12. Overall CAD flow for offline FPGA power modeling [35].

models the FPGA power consumption by collecting samples
for training beforehand. The work [34] proposed a computer-
aided design (CAD) flow to train decision tree models as
power indicators, and devised a lightweight architecture design
to support model integration into the target application. The
work [35] further improved upon the design flow in [34] to
devise a customized ensemble modeling method and an inte-
gration strategy to boost the accuracy of power prediction.
These methods target power model establishment with an
offline sampling strategy, which incurs limited adaptability of
the created predictors and a long development period. More
specifically, the offline power modeling flow is not able to deal
with data streams with changing statistical distribution which
is known as concept drift [13]. Moreover, the relatively long
development time of the offline power models hinders efficient
power model deployment.

In light of these problems, we investigate how our proposed
online learning system can be used for FPGA run-time power
estimation. With the proposed online learning system, the
power models do not need to be completely determined
before the applications are implemented onboard, and instead,
the applications’ power characteristics can be learned dur-
ing real execution. Furthermore, the power models developed
offline can be used as pretrained models during online power
modeling. This section describes the corresponding CAD flow.

A. Review of Offline FPGA Power Modeling

We review the basics of the offline FPGA power modeling
flow [35], as depicted in Fig. 12. To start with, a given design
should pass through synthesis, placement and routing to be
transformed into circuit-level representation. Next, the power
modeling flow is executed, which comprises three subflows:
1) activity trace flow; 2) power trace flow; and 3) model
synthesis flow. In the first flow, a set of signals are identi-
fied and monitored to produce attributes as power indicators.
The extracted signal activities in a period form an activ-
ity trace. At the same time, power simulation (.saif ) files
are generated during simulation, which are used to perform
power estimation using vendor tools (e.g., Vivado power ana-
lyzer). Following these two flows, the model synthesis flow
takes the activity traces and power traces as input, conducts
attribute selection, state clustering, hyperparameter tuning,
and model training/ensemble. Finally, the offline power mod-
els are integrated into the target designs for run-time power
prediction.

B. Online FPGA Power Modeling

The CAD flow of FPGA run-time power monitoring with
online learning is shown in Fig. 13. This design flow shares
the activity trace flow and power trace flow with the offline

Fig. 13. Overall CAD flow for our proposed online power modeling.

modeling method [34], [35]. Herein, the activity traces and
power traces are collected to feed in the model generation flow.
The model generation flow encompasses attribute selection,
power clustering, hardware-aware parameter tuning and model
integration, which determines the parameters related to the
overall architecture of the online learning system, and then
creates and integrates the model into the target design. Note
that even though the tree architecture is determined in design
time, the model training process has not been conducted at
this stage, which differentiates this online power monitoring
flow from the offline power modeling flow [34], [35].

C. Model Generation Flow

The model generation flow consists of four subflows:
1) attribute selection; 2) power clustering; 3) hardware-aware
parameter tuning; and 4) model integration. In the remain-
der of this section, we illustrates each of the above subflows
individually.

Attribute Selection: In the activity trace flow, we extract
a series of signals with high switching activities to produce
attributes as power indicators, based on the heuristic that the
signals with higher activities tend to show a richer body of
behaviors matching the power patterns. However, we also note
that attributes with high switching activities may be correlated
(e.g., an input and an output of the same LUT), or exhibit
repetitive patterns (e.g., the clock signal). Simply using sig-
nals with high activities is not able to guarantee the quality of
the extracted attributes. As a result, we identify the attribute
quality by adopting an attribute selection method to filter out
redundant attributes. Specifically, recursive attribute elimina-
tion is used. Taking the complete attribute set as the input, the
recursive attribute elimination method first trains a decision
tree model with all attributes, and ranks different attributes
by a criterion to quantify attribute importance, such as the
Gini impurity in CART decision tree [8]. The attributes with
least importance are pruned away. The number of attributes is
constrained by the hardware-aware parameter tuning.

Power Clustering: We note that the up-to-date power man-
agement techniques [36], [37] do not require the precise power
values for decision making, and therefore, some errors induced
in the power monitoring schemes are allowed. Based on this
observation, we implement a power clustering stage following
the attribute selection in order to trim down the complexity
of power representation. This power clustering flow brings
two main benefits. First, the resource utilization of the model
implementation can be significantly reduced. The complex-
ity of decision tree hardware implementation in terms of
classification and regression is different. The decision tree



Fig. 14. Power clustering flow.

classification employs Gini impurity in CART algorithm [8]
as shown in (8), information gain in ID3 algorithm [7] or
gain ration in C4.5 [9] as the split criteria. These split crite-
ria only require the knowledge of the sample distributions.
However, for decision tree regression, the split criteria are
the standard deviation reduction [38] or decrease in vari-
ance [16]. These split criteria for regression necessitate the
computation of mean and variance before and after the split
at each split point, and require that each sample value to be
recorded for this computation, thus introducing larger resource
overhead regarding both memory and computation compared
to distribution computation in classification. Our optimized
hardware implementation for online decision tree classifica-
tion algorithm can be applied seamlessly after converting the
problem formulation from regression to classification through
power clustering. Second, by incorporating the power cluster-
ing stage, we exert additional control to the resource overhead
by parameterizing the number of classes in power monitoring,
i.e., the number of clusters for power values.

We apply k-means clustering on the original power traces
from power estimation of FPGA vendor tools, as shown in
Fig. 14. Then, we replace the original power value in each
power trace with the center value of the cluster it belongs
to. To determine the number of clusters offering the best
performance, we use the Silhouette score [39] as the evalu-
ation metric, while taking into account the constraints set in
the following hardware-aware parameter tuning. It also gives
an option for the designers to set the number of clusters under
different requirements of power granularity/resource usage.

Hardware-Aware Parameter Tuning: The online decision
tree implementation may result in high memory usage as well
as DSP usage. To avoid excessive overhead of this additional
monitoring hardware, we leverage the models proposed in
Section VI to achieve hardware-aware parameter tuning dur-
ing attribute selection and power clustering. We focus on the
optimization of BRAM utilization which is the bottleneck
as indicated by the experiments in Section VIII. First, the
BRAM is widely used in the decision tree inference engine
for storing node information in different levels. We observe
through experiments that a shallow decision tree is usually
enough for power prediction. As a result, to maintain desir-
able performance while incurring acceptable overheads, we
adopt a maximum tree depth of seven for the inference engine
design. Second, as described in Section VI-B, the BRAM uti-
lization is jointly determined by the number of labels (L), the
number of numeric attributes (N), the number of categorical
attributes (C), the number of quantiles (Q), and the number of
elements (E). We need to keep a balance among all these fac-
tors to maintain a small footprint for the generated hardware.
To keep the BRAM utilization below 20% of the design, we set
L ≤ 5, N ≤ 8, E = 64, and Q = 8. We constrain the attribute
selection and power clustering in Section VII-C to comply
with these requirements, and we fine tune the parameters by
evaluating the model accuracy through cross-validation.

TABLE I
RESOURCE UTILIZATION AND FREQUENCY OF FPGA DESIGNS

Model Integration: At this stage, we have obtained the list
of signals to monitor and the number of attributes from the
attribute selection stage, and we have also determined the clus-
ter center values and the number of clusters from the power
clustering stage. With these parameters defined, the Hard-ODT
for power monitoring can then be constructed as depicted in
Fig. 13. To capture signal activities, we instrument an activ-
ity counter [35] for each of the selected signals in the target
design to capture their toggle rates in real time. These activ-
ity counters bring negligible effect to the design as reported
in [35]. The power monitoring engine, Hard-ODT, together
with the activity counters are integrated into the target design
to implement and run onboard.

VIII. EXPERIMENTS

A. Experimental Setup

In the experiments, we put our main focus on online tree
learning. The differences in traditional, batch and online tree
learning have been studied in prior works [10], [40] and are
not elaborated in this article. We first implement the software
version of our proposed algorithm in StreamDM-C++[13],
the state-of-the-art software toolkit supporting the Hoeffding
tree. The parameter settings related to the Hoeffding bound
are nmin = 200, npt = 10, τ = 0.05, δ = 10−3, and λ = 0.01,
according to [10], [13], and [28]. The maximum leaf num-
ber is 1024, and the maximum tree depth is 15. We use a
32-bit fixed-point data representation with a 30-bit fraction
for numeric attributes, after normalizing the data to within
the range of [−1,1], if necessary. We evaluate the design
with five large datasets: Bank Marketing (Bank), MAGIC
Gamma Telescope (Telescope), Australian New South Wales
Electricity Market (Electricity), Covertype and Person Activity
(Person) from the UCI machine learning repository [41] and
related works [13], [42]. The optimized hardware is designed
in Verilog and implemented on the Xilinx VCU1525 plat-
form [43] using SDAccel 2018.2. Table I shows the size of
datasets and information about FPGA implementation. The
datasets are transferred from CPU to off-chip memory (DDR4)
on the FPGA platform through PCIe.

B. Tuning the Number of Quantiles

We tune the number of quantiles in a wide range to eval-
uate the model performance. The evaluation methodology is
Interleaved-test-then-train: each sample is first passed through
testing before it is applied for training. This is a commonly
used evaluation method for online learning models, and the
model performance is evaluated by inference accuracy for the
entire datasets. In this way, both the online training and testing
phases fully utilize the whole datasets, which is different from
offline training methods that require a train-test division and
need to separately evaluate training and testing accuracy.



TABLE II
INFERENCE ACCURACY USING DIFFERENT NUMBERS OF QUANTILES

(a) (b) (c)

Fig. 15. Gaussian and quantile estimation of true CDFs of three representative attributes with different statistical distributions from Electricity dataset. (a) attr.
distr. similar to Gaussian distr. (b) attr. distr. similar to exponential distr. (c) attr. distr. similar to linear distr.

Experimental results in Table II show that the inference accu-
racy may be degraded significantly as the number of quantiles
becomes either too small or too large, especially for the Person
dataset. When the quantile number is small, the learning ability
of the model may be constrained, because the learned distri-
bution is too coarse-grained to provide effective information.
Conversely, if the quantile number becomes too large, the gen-
eralization ability may be impaired as well, since the design is
more prone to noise in the datasets. Setting the quantile num-
ber between 8 and 32 provides high accuracy with desirable
robustness. Considering the fact that memory and computation
demand is proportional to the number of quantiles, we adopt a
unified quantile number of 8 in the hardware design. One can
also tune the quantile number to best fit a target dataset.

C. Comparison With Batch Learning on FPGA

The up-to-date method to cope with decision tree learn-
ing with large datasets on FPGA is through batch learning.
The work [42] presented a state-of-the-art FPGA architecture
for batch-based decision trees. Covertype is used as the only
benchmark in [42], and it serves as the baseline for comparison
in Table III. The accuracy and overall resource usage are not
given, but study in [10] has proven that both Hoeffding tree
and batch tree can lead to the same results for large datasets
asymptotically. Table III shows that our proposed online learn-
ing design can offer an up to 4-orders-of-magnitude speedup in
execution time in comparison to [42]. This significant speedup
stems from the difference in communication patterns. The
work [42] involves a number of rounds of transmission for
the same samples from and to the off-chip DDR memory in
the training process per batch: it reads the sample set at the
start of a split process and writes back the subset of sam-
ples in each resulting split. By contrast, our proposed online
training architecture only requires reading each sample once
in the entire learning process, thus reducing a large amount of
high-cost interchip communication.

D. Comparison With the State-of-the-Art on Processors

StreamDM-C++ [13] reported that Gaussian method pro-
vided the best performance amongst prior methods [11]–[14],

TABLE III
PERFORMANCE COMPARISON: BATCH LEARNING

AND ONLINE LEARNING

so it is used as the baseline in this article. Regarding inference
accuracy, our proposed algorithm with eight quantiles out-
performs the Gaussian method for all five benchmarks, with
0.05% to 12.3% improvement, as shown in Table II.

The results of CDF approximation using the quantile
method and Gaussian method account for this gap in accuracy.
Three attributes with representative statistical distributions in
the Electricity dataset are selected to illustrate the results, as
shown in Fig. 15. The sample set is the subset in the root
node before it is split. The CDF of the first attribute is close
to the Gaussian function, and thereby, the Gaussian method
provides slightly better fitting results than the quantile method.
However, regarding the second and third attributes, the quan-
tile method outperforms the Gaussian method. The Gaussian
method assumes that the sample distribution conforms with
Gaussian distribution, and lead to poor approximation quality
for distributions dissimilar to Gaussian. By contrast, the quan-
tile method makes no presumption of any distribution, and
hence, it offers accurate approximation for various distribu-
tions. In other words, the quantile method has a wider scope
of applicability than the Gaussian method, which accounts for
the improvement in accuracy.

For the execution time, we integrate the quantile method in
StreamDM-C++ and run this toolkit with both the Gaussian
and quantile methods on the Xeon E5-2680 platform under
2.6 GHz. As shown in Table IV, our proposed hardware
designs on FPGA achieve 423× to 1526× speedup over
the Gaussian method and 384× to 1581× speedup over the
quantile method in software implementation, respectively.

E. Performance and Resource Modeling

We evaluate the accuracy of performance and resource
models proposed in Sections V and VI, respectively. Results



TABLE IV
COMPARISON OF SOFTWARE AND HARDWARE EXECUTION TIME

TABLE V
ACCURACY OF EXECUTION TIME, DSP, AND BRAM MODELING

are shown in Table V, and the corresponding real val-
ues of performance and resource metrics are described in
Table IV and Table I, respectively. Experimental results
demonstrate the correctness of design profiling and the effi-
cacy of our performance and resource models in evaluating
the execution time, DSP and BRAM utilization, with aver-
age modeling accuracy reaching up to 94.62%, 100%, and
98.78%, respectively. These analytical models offer early and
fast performance/resource evaluation of the resulted hardware
designs, which can significantly expedite the process of trading
off between different design metrics and selecting the suitable
devices for implementation.

F. FPGA Power Monitoring With Online Learning

We collect 40 000 samples to evaluate the accuracy and
resource overhead of our online modeling method for run-time
power on FPGA. To determine the architecture parameters of
the online decision tree models, only the first 5000 samples are
used, while the others are used to train the model in real time.
As a comparison, we build offline decision tree models [35],
with 32 000 samples used for model parameter tuning. To com-
pare these two cases fairly, 80% of the samples are used to
train the models and the rest 20% are used for testing. We set
the sampling period to be 3 μs. The benchmarks we used are
from different application categories of Polybench [44].

The power modeling accuracy and the corresponding
resource overheads regarding online and offline models are
shown in Table VI. In Table VI, the accuracy for online deci-
sion tree is on par with that of the traditional decision tree,
with only a 0.03% difference. The results verify that the online
decision tree approaches the traditional decision tree when the
sample size is large enough [10], [40]. Regarding resource uti-
lization, the online decision tree model consumes on average
3.63% of LUT, 2.40% of FF, 13.39% of BRAM, and 2.04%
of DSP. It is worth noting that the online decision tree model
requires only 15.6% of samples for offline modeling since
these samples are only used to select suitable attributes and
determine the tree architectures. This speedup in development
time is accompanied by moderately larger resource overheads.
Moreover, the proposed online decision tree learning method

TABLE VI
RESOURCE OVERHEADS AND ACCURACY USING HARD-ODT

FOR FPGA RUN-TIME POWER MONITORING

can make use of the offline power models as pretrained mod-
els and it is able to learn from samples with various statistical
distributions, as demonstrated in Section VIII-D, which distin-
guishes itself from the offline modeling approach with higher
efficacy.

IX. CONCLUSION

Online decision tree algorithms suffer from either high
memory usage or high computational intensity with depen-
dency and long latency. In this article, we introduce an
efficient and scalable quantile-based induction algorithm for
the Hoeffding tree, and we investigate hardware optimization
techniques specific to this algorithm. After that, we build Hard-
ODT, a hardware-friendly online decision tree learning system
with system-level optimizations. Furthermore, a performance
model and a resource model are proposed for early eval-
uation of design metrics and tradeoff between performance
and resource. Finally, we investigate how the proposed online
learning system can be used for FPGA run-time power
monitoring as a case study. Experimental results show that
our design remarkably reduces memory and computational
demand, showing 384×–1581× speedup in execution time
over the state-of-the-art design while achieving 0.05%–12.3%
improvement in accuracy, which enables the online decision
trees to be used for applications requiring fast response time,
and makes it more efficient for online decision tree architec-
ture search. Regarding power modeling efficacy, the proposed
online power modeling strategy is on par with the tradi-
tional offline power modeling method, whereas it requires a
much smaller number of samples to be collected. Moreover,
the quantile-based algorithm-hardware co-design methodology
can also benefit a wide range of machine learning methods,
such as ensemble learning, quantile regression and imbalanced
dataset resampling.
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