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An Efficient Batch Constrained Bayesian
Optimization Approach for Analog Circuit

Synthesis via Multi-objective Acquisition Ensemble
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Abstract—Bayesian optimization is a promising methodology
for analog circuit synthesis. However, the sequential nature of the
Bayesian optimization framework significantly limits its ability
to fully utilize real-world computational resources. In this paper,
we propose an efficient parallelizable Bayesian optimization
algorithm via Multi-objective ACquisition function Ensemble
(MACE) to further accelerate the optimization procedure. By
sampling query points from the Pareto front of the probability
of improvement (PI), expected improvement (EI) and lower
confidence bound (LCB), we combine the benefits of state-of-the-
art acquisition functions to achieve a delicate tradeoff between
exploration and exploitation for the unconstrained optimization
problem. Based on this batch design, we further adjust the
algorithm for the constrained optimization problem. By dividing
the optimization procedure into two stages and first focusing
on finding an initial feasible point, we manage to gain more
information about the valid region and can better avoid sampling
around the infeasible area. After achieving the first feasible
point, we favor the feasible region by adopting a specially
designed penalization term to the acquisition function ensemble.
The experimental results quantitatively demonstrate that our
proposed algorithm can reduce the overall simulation time by
up to 74× compared to differential evolution (DE) for the
unconstrained optimization problem when the batch size is
15. For the constrained optimization problem, our proposed
algorithm can speed up the optimization process by up to 15×
compared to the weighted expected improvement based Bayesian
optimization (WEIBO) approach, when the batch size is 15.

Index Terms—Analog circuit synthesis, batch Bayesian opti-
mization, acquisition function, constrained optimization problem

I. INTRODUCTION

With the scaling integrated circuit (IC) technology, circuit
devices are becoming more complex and the parasite effect can
no longer be ignored, which in turn complicates circuit design.
Although digital circuit design has been automated for a long
time, analog circuits are still designed manually. Due to the
growing demands for high-performance, low-power and short-
to-market circuits, designing analog circuits manually has
become increasingly intractable. Therefore, automated analog
circuit design tools are in urgent need.

Analog circuit design consists of two steps: topology selec-
tion and device sizing. In this paper, we focus on the device
sizing problem, which can be formulated into both uncon-
strained and constrained optimization problem (§II). Since the
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computational cost of circuit simulations can be prohibitively
expensive and sometimes intractable, the evaluation budget
to search for the optimum circuit design should be kept
at a minimum level. What’s worse, the derivatives and the
convexity property of the circuit sizing problem are always
inaccessible. Thus, the corresponding optimization algorithm
should be able to handle the problems that are costly, noisy
and multi-modal.

Decades of scientific efforts have been devoted to develop-
ing efficient optimization algorithms, which generally fall into
two categories: model-based and simulation-based methods.
The model-based approaches try to speed up the optimization
process by constructing a cheap-to-evaluate substitute for the
circuit simulation. Designers prescribe their prior knowledge
about the analog circuit and manually derive the analytical
expression to approximate the circuit performance. The au-
tomated regression algorithms will also be taken into con-
sideration when the analytical expression can not be derived
or not available [1]. One influential model-based approach is
the geometric programming algorithm [2]–[4], which models
the circuit performance with posynomial approximation. Other
modeling strategies also exist, including artificial neural net-
work (ANN) [5]–[7], support vector machine (SVM) [8], and
Gaussian process regression (GPR) [9]–[14]. The disadvantage
that prevents model-based methods from being widely used
is that an accurate performance model is always hard to
derive manually or requires a large set of simulation data to
approximate. Besides, the generated model is not guaranteed
to be accurate all over the design space. Considering that
the constructed model may deviate from the real circuit
performance, the optimization results can also divert from the
real optimum.

The simulation-based approaches, on the other hand, view
the circuit performance as a black-box function and optimize it
on the fly. By leveraging the previously observed dataset, the
simulation-based approaches guide the search by proposing
the potential locations for evaluation. Since the computational
cost of circuit simulations can be prohibitively expensive, the
required number of evaluations should be kept at a minimum
level to accelerate the optimization process. Embodiments of
simulation-based approaches include the simulated annealing
(SA) [15], the evolutionary algorithm [16]–[18] [19], the
multiple start points (MSP) algorithm [20] [21], and the
particle swarm optimization (PSO) algorithm [22]–[24]. All
of these proposed algorithms try to mimic the physical or
biological process to fully explore the state space and avoid
stuck in the local optimum. The biggest limitation that hinders
the simulation-based approaches from being widely used is
their relatively low convergence rate.

Inspired by the above, the Bayesian optimization framework
has been proposed to fully accelerate the optimization pro-
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cess by combining the model-based and simulation-based ap-
proaches [9]–[13], [25]–[31]. It is quite suitable for problems
that don’t have a closed-form expression for the objective func-
tion and can only be observed through sampled values [25].
The Bayesian optimization algorithm is especially efficient in
situations when the sampled values are noisy, evaluations are
incredibly expensive, or the convexity properties are unknown.
Generally, there are two key elements in the Bayesian opti-
mization framework: the probabilistic surrogate model and the
acquisition function (§III). The surrogate model incorporates
our prior belief and provides a posterior distribution with the
observed dataset. The prescribed prior belief is the modeling
space of the possible latent function. The posterior distribution
means the surrogate model provides not only the predictive
means but also the corresponding uncertainty estimations. In
other words, the surrogate model works as a cheap-to-evaluate
substitute for the expensive latent function. The acquisition
function instead describes the data generation mechanism.
By leveraging the provided posterior distribution, it works
as a utility-based selection criterion that helps to direct the
sampling process. Instead of solely searching for the global
optimum over the predictive mean, the acquisition function
takes both exploration and exploitation into consideration. This
means the acquisition function favors the potential region with
high uncertainty estimations (exploration) and the area that is
predicted to be optimal with high probability (exploitation).
In this way, the acquisition function can better explore the
state space and help to select better candidate points. As
opposed to the model-based approaches that explore the design
space offline, the Bayesian optimization algorithm updates
the observed dataset incrementally and refines the surrogate
model to provide a more informative posterior distribution at
each iteration. It also gives us a theoretically-guaranteed global
optimum after a certain number of observations. In summary,
the Bayesian optimization algorithm opens a more fast and
efficient lane for global optimization. Thanks to the Bayesian
optimization framework, we can bypass the traffic jams of the
model-based methods that greatly depend on the accuracy of
the constructed model and the simulation-based approaches
that have relatively low convergence rate.

Although the Bayesian optimization algorithm has been
widely used to search the state space [9]–[12] [26] [28] [31],
the sequential decision-making nature of the acquisition func-
tion prevents it from being parallelized. Without parallelism,
the computational resources are not fully utilized and the op-
timization efficiency is greatly limited, especially in situations
when the multi-core workstations are available and the circuit
simulations are computationally intensive. To further tap the
potential of the Bayesian optimization framework, great efforts
have been made to make parallelism possible, which means
the algorithm can propose several data points at each iteration.
The simulation process can be distributed to different workers
on the workstation. However, there are two challenges in par-
allelizing the Bayesian optimization algorithm. The first one is
to avoid sampling redundantly around the same region, since
maximizing the existing state-of-the-art acquisition functions
naturally selects around the same region. The second one is
to maximize the information gain of each query point in the
batch. To solve these problems, most of the state-of-the-art
batch Bayesian optimization algorithms design a penalization
scheme that can penalize around the previously selected query

points and select the candidate points in a batch one by one,
like local penalization (LP) strategy [32], batched Bayesian
optimization algorithm based on the lower confidence bound
(BLCB) [33], parallelizable Gaussian process optimization
with upper confidence bound and pure exploration (GPUCB-
PE) [34], and parallelizable Bayesian optimization algorithm
with high coverage consideration (pHCBO) [29]. Another lim-
itation of the existing batch Bayesian optimization approaches
is that they solely rely on a single acquisition function. Al-
though there exist batch Bayesian optimization algorithms that
can use arbitrary acquisition functions [32] [35] to facilitate
the query points selection in a batch, most of the state-of-the-
art batch Bayesian optimization algorithms including BLCB
[33] and GPUCB-PE [34] depend solely on one acquisition
function, which can greatly limit their performance.

Although a large body of scientific literature has been
published on developing a well-designed batch Bayesian op-
timization algorithm [27] [33]–[35], almost all these works
solely focus on the unconstrained optimization problem – the
constrained optimization problem is rarely considered. In this
paper, we propose an efficient batch Bayesian optimization
algorithm that can handle both unconstrained and constrained
optimization problems. By randomly sampling data points
from the Pareto front of the state-of-the-art acquisition func-
tions, our proposed algorithm naturally maintain diversity in
a batch while maximizing the information gain per obser-
vation for the unconstrained optimization problem. For the
constrained optimization problem, we divide the optimization
process into two stages to better explore the design space:
(1) seeking the first feasible point and (2) searching for the
global optimum that satisfies the constraints. In this way, we
can focus on finding the first valid point before taking both
constraints and objective into consideration. A preliminary
version of this paper was published in [27]. We test our
algorithm on four real-world analog circuits to quantitatively
demonstrate the efficiency and effectiveness of our proposed
algorithm. For the unconstrained optimization problem, our
proposed algorithm can reduce the simulation time by up to
74× compared to DE [17] when the batch size is 15. For the
constrained optimization problem, our proposed algorithm can
speed up the optimization process by up to 15× compared to
WEIBO [10] when the batch size is 15.

The remainder of this paper is organized as follows. Section
§II gives the problem formulation of the analog circuit device
sizing problem. Section §III introduces the background knowl-
edge of our proposed algorithm. Section §IV presents the
fundamental challenges of parallelizing Bayesian optimization
framework and the MACE algorithm for the unconstrained
optimization problem. Section §IV explicitly presents our
improved batch constrained Bayesian optimization algorithm
and the spirit behind it. In section §VI, we report the exper-
imental results and analytically compare the performances of
our proposed algorithm with the state-of-the-art optimization
algorithms. We conclude the paper in section §VII.

II. PROBLEM FORMULATION

In this section, we formulate the analog circuit device sizing
problem into the unconstrained optimization problem (§II-A)
and the constrained optimization problem (§II-B).
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A. Unconstrained Optimization Problem
For a given circuit topology, the analog circuit optimization

problem can be formulated as an unconstrained optimiza-
tion problem by combining several circuit performances with
weighting parameters:

minimize FOM =

M∑
i=1

αifi(x), (1)

where x ∈ Rd represents the input vector constructed by d
design variables, fi(·) stands for the i-th performance matric
of M circuit performances, αi is the i-th weighting parameter,
and FOM denotes our interested Figure of Merit. For simplic-
ity of denotation, we only consider the minimization problem
in this paper.

B. Constrained Optimization Problem
The analog circuit device sizing problem can also be for-

mulated as a constrained optimization problem:

minimize FOM
s.t. ci(x) < 0

∀i ∈ 1 . . . Nc,

(2)

where Nc denotes the number of constraints, and ci(·) is the
i-th constraint function. The target of the circuit design is
to search for a circuit design that minimizes the FOM while
satisfying constraints.

III. REVIEW OF BAYESIAN OPTIMIZATION

In this section, we introduce the background knowledge
of our proposed algorithm and give a brief overview of the
Bayesian optimization framework based on the Gaussian pro-
cess regression model in §III-A. We also outline several state-
of-the-art acquisition functions and highlight their selection
principles in §III-B.

A. Bayesian Optimization

Algorithm 1 Bayesian Optimization Framework
Require: The size of the initial dataset Ninit, and the maxi-

mum number of iteration Niter

1: Randomly sample a initial dataset D0 = {X,y}
2: for t = 0→ Niter do
3: Construct a Gaussian process regression model with
Dt

4: xt ← argmaxxα(x;Dt)
5: yt = f(xt)
6: Dt+1 ← {Dt, {xt, yt}}
7: end for
8: return Best y recorded after optimization

Bayesian optimization framework has demonstrated signif-
icant potential in approximating the global optimum with a
relatively small number of evaluations [10]–[13], [27]–[29],
[33]. It gains efficiency by leveraging both the surrogate
model and the acquisition function [25]. The surrogate model
works as a simplified representation of the costly simulation
process by taking the whole history of optimization into
considerations. The informative posterior distribution provided

by the surrogate model includes the predictive mean and well-
calibrated uncertainty estimation. The acquisition function
prioritizes data points in the candidate pool and guides the
search by proposing a sequence of promising data points. A
comprehensive review of the Bayesian optimization framework
can be found in [25], and the corresponding framework is
presented in Algorithm 1.

The Gaussian process regression model is one of the most
commonly used surrogate models in the Bayesian optimiza-
tion framework [36]. Given a d-dimensional input design
variable x, we assume the unknown objective function as
y = f(x) + ε, where ε denotes the observation noise
N(0, σ2

n). Let us assume the accumulated observations as
D = {X,y}, where X represents a set of design variables
X = {x1,x2, · · · ,xN}, and y denotes the corresponding
N observations y = {y1, y2, · · · , yN}. By capturing our
prior belief about the performances of the unknown objective
function with predefined mean function m(x) and kernel
function k(xi,xj), the Gaussian process regression model can
provide posterior distribution for an arbitrary location x∗ as
follow [36]:{
µ(x∗) = k(x∗, X)[K + σ2

nI]−1y

σ2(x∗) = k(x∗,x∗)− k(x∗, X)[K + σ2
nI]−1k(X,x∗),

(3)
where µ(x∗) is the predictive mean, σ(x∗) denotes the uncer-
tainty estimation, k(x∗, X) = kT (X,x∗), and K = k(X,X)
is the corresponding covariance matrix. In this paper, we set
m(x) = 0 and the kernel function as the squared exponential
(SE) covariance function:

kSE(xi,xj) = σ2
fexp(−1

2
(xi − xj)

T Λ−1(xi − xj)). (4)

In equation (4), σf denotes the variance, Λ = diag(l1, · · · , ld)
is a d × d diagonal matrix, and li represents the length
scale of the i-th dimension. The hyperparameter vector θ =
(σn, σf , l1, · · · , ld) can be determined during the model train-
ing process. For more detailed discussion about Gaussian
processes, we refer readers to [36].

B. Acquisition Function

The acquisition function in the Bayesian optimization algo-
rithm works as a cheap-to-evaluate utility function to guide the
sampling decisions. Instead of exploring the design space only
with the predictive mean, the acquisition function leverages
the uncertainty estimation to explore the unknown area, until
they are confidently ruled out as suboptimal. In this way, the
acquisition function favors not only the current promising area
with high confidence but also the unknown region with large
uncertainty estimation. In other words, the acquisition function
trades off between the exploration and exploitation based on
the posterior beliefs provided by the surrogate model. There
are three most widely used acquisition functions.

The Probability of Improvement (PI). Given the current
minimum objective function value τ in the dataset, the proba-
bility of improvement function tries to measure the probability
an arbitrary x exceeds the current best. The corresponding
formulation is as follow [37]:

PI(x) = Φ(λ), (5)
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where Φ(·) is the cumulative distribution function (CDF) of
standard normal distribution. Following the suggestion of [38],
we introduce a small positive jitter ξ to encourage exploration
and set λ = (τ − ξ − µ(x))/σ(x). In this paper, we fix ξ as
0.001.

The Expected Improvement (EI). Compared with PI that
only measures the probability of improvement and treats the
improvement equally, the expected improvement function tries
to measure the amount of improvement upon the current best
τ . By maximizing the expected improvement function, we can
expect that the observation x will not only exceed the current
best but also exceed the current best value at the highest
magnitude. The corresponding formulation can be expressed
as [39]:

EI(x) = σ(x)(λΦ(λ) + φ(λ)), (6)

where φ(·) is the probability density function (PDF) of stan-
dard normal distribution.

The Lower Confidence Bound (LCB). Compared with
the improvement-based strategies like PI and EI, the lower
confidence bound function tries to guide the search from an
optimistic perspective. With the carefully designed coefficient
β, the cumulative regret is theoretically bounded [40] [41].
Thus, the convergence of the Bayesian optimization algorithm
is guaranteed. The corresponding formulation is:

LCB(x) = µ(x)− βσ(x). (7)

In this paper, we follow the suggestion of [38] and set
β =

√
2νlog(td/2+2π2/3δ), where t denotes the number of

iterations, ν and δ are two user-defined parameters. In this
paper, we fix ν = 0.5 and δ = 0.05. By minimizing the LCB
function, the global optimum can be achieved within a limited
number of observations.

Apart from the above mentioned acquisition functions, there
are also some other types of acquisition functions, including
entropy search (ES) [42], Thompson sampling (TS) [43], pre-
dictive entropy search (PES) [44], max-value entropy search
(MES) [45] and knowledge gradient (KG) [46], [47]. It is
also possible to explore the state space with a portfolio of
acquisition functions [48], [49].

IV. BATCH BAYESIAN OPTIMIZATION

In this section, we first identify the fundamental challenges
in parallelizing Bayesian optimization algorithm (§IV-A). We
then explicitly describe our batch algorithm design and the
spirit behind it (§IV-B). Finally, we briefly review the multi-
objective algorithm that we use to facilitate the optimization
procedure (§IV-C).

A. Challenges for Batch Bayesian Optimization
Since the traditional state-of-the-art acquisition functions

generally work as a utility function and help to explore the
design space by prioritizing the candidate data points, they
naturally work in sequential mode and tend to select the
same location repetitively. Due to the information gap between
decisions and observations, classical works on batch Bayesian
optimization generally address this problem by penalizing
around the previous selections and sampling query points in
a batch one by one. Compared to sequential Bayesian opti-
mization, there are two fundamental challenges for designing
an efficient parallelizable Bayesian optimization algorithm:

• C1: How to maximize the information gain of each data
point?

• C2: How to maintain high diversity within each batch?

To tackle C1, most of the existing batch Bayesian opti-
mization algorithms simply guide the search with traditional
acquisition functions like EI, PI and LCB. However, consider-
ing that no single acquisition function can always outperform
others [48], searching the design space by relying on solely
one acquisition function can greatly limit the efficiency of the
optimization procedure.

To address C2, most of the existing batch Bayesian opti-
mization algorithms introduce a carefully designed penaliza-
tion scheme to reduce sampling around the same region redun-
dantly. For example, LP [32] proposes to penalize around the
previous decisions in the batch with a manually designed local
penalization strategy by introducing the Lipschitz constant as
local repulsion. BLCB [33] instead heuristically encourages
diversity in a batch with fake observations. Since the uncer-
tainty estimations for arbitrary locations do not depend on the
objective values, it penalizes around the previous decisions
in a batch by taking advantages of the modeling property
of the Gaussian process regression model. GPUCB-PE [34]
is an exploratory batch design that combines the benefits
of the upper confidence bound (UCB) policy and the pure
exploration strategy to improve the selection efficiency from
a theoretical perspective. pBO [29] proposes to select the
batch with different weighting parameters to balance between
the exploration and exploitation and encourage diversity in
a batch. Based on pBO, pHCBO [29] further introduces
a specially designed penalization scheme to prevent cluster
sampling by the same weighting parameter.

In other words, the solution to C2 adopted by major batch
designs is to propose locations for evaluation by mimicking
the sequential process. Specifically, to maximize the payoff
of each observation, the state-of-the-art batch policies reduce
redundantly sampling over the same region and marginalize
around the previous elements in a batch by introducing a
carefully designed local repulsive term. Nonetheless, this
solution is not good enough. The problem is that a manually
designed penalization scheme always introduces human biased
presumptions into the batch selection procedure, thus, tends
to be overconfident about the decision-making process. For
LP [32], the Lipschitz constant itself requires lots of effort to
approximate and the corresponding approximation can deviate
from its real value, thus, hinders the efficiency of the selection
procedure. For BLCB [33], the batch policy generally assumes
the objective value of each previous selection equals to the
predictive mean, which deteriorates the performance of BLCB
for problems that have a quick changing response surface.
For GPUCB-PE [34], the specially designed pure exploration
procedure focuses on reducing the systematic uncertainty and
is not efficient enough for searching the global optimum. The
penalization scheme proposed by pHCBO [29] is not efficient
enough, since the refined surrogate model itself will provide a
reduced uncertainty estimation for the new batch design and
will naturally penalize around the previous batch.

We next describe how to truly overcome C1 and C2 by
detailing our batch algorithm design.
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Fig. 1. An illustration of the posterior distribution provided by the Gaussian
process regression model and the corresponding Pareto-optimal set of the
multi-objective acquisition function ensemble.

B. Batch Bayesian Optimization via Acquisition Function En-
semble

The behavior of space exploration for a Bayesian opti-
mization algorithm is largely determined by its acquisition
function. Different acquisition functions are designed un-
der the guidance of different selection principles, thus, tend
to propose different candidate points for evaluation. Each
acquisition function has its strengths and weaknesses. For
example, PI selects data points that maximize the probability
of improvement and is naturally biased towards exploitation.
For problems with multiple local optima, PI tends to be too
conservative and is not efficient enough for exploring the
design space. EI instead takes the magnitude of improvement
into consideration and guides the search in a greedy manner.
By pickling data points that are compatible with the current
best, EI tries to obtain improvement in each step. However, due
to its greedy-choice property, EI function is not guaranteed to
guide the search towards the right direction and convergence
to the global optimum for a given number of iterations. LCB
guides the search by minimizing the cumulative regret bound
and theoretically guarantees the convergence after a relative
number of iterations. But the exact value of the hyperparameter
β is hard to define, since the requirement for exploration and
exploitation could differ for different problems. For a given
evaluation budget, LCB is also not guaranteed to achieve
the best optimization results. In other words, no acquisition
function works best in every scenario and no free lunch in
optimization [48], [50]. Therefore, searching the design space
by solely relying on a single acquisition function can greatly
limit the efficiency and effectiveness of the optimization
procedure.

To fill this gap, we propose a parallelizable Bayesian
optimization algorithm based on the Multi-objective ACqui-
sition function Ensemble (MACE). By sampling data points
simultaneously from the Pareto front of PI, EI and LCB,
we combine the benefits of the state-of-the-art acquisition
functions and capture the best tradeoff between exploration
and exploitation (C1). In this way, we can maximize the
information gain of each selected data point without intro-
ducing human biased knowledge, while naturally encouraging

diversity within the batch even without penalization scheme
(C2). Other acquisition functions like KG and ES can also
be incorporated into MACE framework to facilitate the space
exploration procedure. The corresponding formulation is as
follow:

minimize LCB(x),−PI(x),−EI(x). (8)

In Figure 1, we give an illustration of the proposed Pareto-
optimal set of the multi-objective acquisition function en-
semble. The overall framework of the proposed parallelizable
Bayesian optimization algorithm via multi-objective acquisi-
tion function ensemble is presented in Algorithm 2. Compared
with most of batch Bayesian optimization algorithms that
select data points one by one, our parallelizable Bayesian
optimization framework naturally maintains diversity within
each batch and simultaneously selects candidate points as a
whole.

Algorithm 2 MACE algorithm
Require: The size of the initial dataset Ninit, the maximum

number of iteration Niter, and the batch size B.
1: Randomly sample an initial dataset D0 = {X,y}
2: for t = 0→ Niter do
3: Construct a Gaussian process regression model with

training dataset Dt

4: Generate a Pareto-optimal dataset Pt with equation (8)
5: Randomly sample B data points Xt =
{xt,1,xt,2, · · · ,xt,B} from Pt

6: Evaluate the sampled data points yt =
{f(xt,1), f(xt,2), · · · , f(xt,B))}

7: Dt ← {Dt−1, {Xt,yt}}
8: end for
9: return Best y recorded after optimization

C. Multi-objective Optimization
To obtain the Pareto-optimal set of the acquisition func-

tion ensemble, we introduce the multi-objective optimization
algorithm to facilitate the optimization procedure. The multi-
objective optimization algorithms aim to optimize several
objective functions at the same time, which can be expressed
as:

minimize f1(x), f2(x), · · · , fm(x). (9)

Unlike the single-objective optimization, there is usually no
single data point that has the best performances for all ob-
jective functions and the objective functions can contradict
with each other. Instead of getting a single global optimum,
we can only generate a Pareto-optimal set that no data point
dominates any other. For arbitrary data points a and b, we call
a dominates b if:

∀i ∈ {1, · · · ,m}fi(a) ≥ fi(b) ∧
∃i ∈ {1, · · · ,m}fi(a) > fi(b).

(10)

We refer the entire non-dominated design space as the Pareto-
optimal front.

A large body of literature has been published on multi-
objective optimization algorithms, including non-dominated
sorting genetic algorithm II (NSGA-II) [51], efficient global
optimization algorithm with Gaussian processes model
(ParEGO) [52], the multi-objective evolutionary algorithm
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based on decomposition (MOEA/D) [53], the improved
strength Pareto evolutionary algorithm (SPEA2) [54], the
specially designed multi-objective particle swarm optimiza-
tion (OMOPSO) algorithm [55], the speed-constrained multi-
objective particle swarm optimization algorithm (SMPSO)
[56]. In this paper, we use differential evolution for multi-
objective optimization (DEMO) algorithm [57] to obtain the
Pareto-optimal set of the proposed acquisition function and
facilitate the optimization procedure. In this paper, we fix the
population size as 100 and the number of evaluations as 2000
during the acquisition function optimization procedure.

V. CONSTRAINED BATCH BAYESIAN OPTIMIZATION

Due to the limitations in real-world circuit design, some
circuit performances should be kept below a certain level.
Therefore, we propose a refined MACE algorithm to handle
this constrained optimization problem. To fully maximize the
information gain for both objective and constraints, we divide
the optimization procedure into two stages: (1) seeking the
first feasible point (§V-A), (2) searching for the global opti-
mum that satisfies constraints (§V-B). §V-C summarizes our
proposed batch constrained Bayesian optimization algorithm.

A. Seek the First Feasible Point

For the constrained problem, we decide to first focus on
finding the first feasible point when there is no feasible point
in the dataset. In this way, we can not only obtain the first
feasible point more quickly but also provide more information
about the feasible region for further optimization. One of the
most widely used acquisition functions to favor the feasible
region is the probability of feasibility (PF):

PF(x) =

Nc∏
i=1

Φ(−µi(x)

σi(x)
). (11)

By maximizing the probability of feasibility, we favor the
region that is more likely to satisfy the constraints and reduce
sampling around the invalid area. However, the sequential
decision-making nature of the PF function prevents it from
being parallelized. Also, the value of the PF function is easy
to be zero even if there is only one constraint that violates
the design specification, which significantly reduces its ability
to prioritize candidate data points in practice. It is noteworthy
that this problem deteriorates when the number of constraints
increases.

To address this problem, we introduce two additional pe-
nalization terms to better prioritize data points and parallelize
the optimization procedure. Intuitively, to reduce the amount
of constraint violation, we can simply minimize the constraint
that has a predictive mean higher than zero, i.e.,

minimize
Nc∑
i=1

max(0, µi(x)). (12)

However, this fitness measurement relies solely on the pre-
dictive mean and tends to be overconfident. For the region
with high uncertainty estimation, the provided predictive mean
is less reliable. For the region with low predictive uncer-
tainty, the surrogate model has much higher confidence in
its prediction and the corresponding predictive mean is more
trustworthy. This means that treating constraints equally is

not cost-efficient and we should pay more attention to the
constraint that has a higher confidence measurement. In other
words, the amount of effort we should spend on making an
arbitrary constraint feasible is negatively correlated with the
uncertainty estimation. Therefore, we refine equation (12) and
scale the predictive mean of each constraint with its estimated
confidence measurement. The corresponding formulation is as
follow:

minimize
Nc∑
i=1

max(0,
µi(x)

σi(x)
). (13)

With this adaptive measurement of the constraint violation,
we focus on optimizing the constraint that violates the design
specification and greatly speed up the process of searching
for the first feasible point. However, for the region with
predictive mean below zero, the adaptive constraint violation
measurement can no longer handle the constraints.

To compensate disadvantages of the PF function and the
adaptive constraint violation estimation, we select both PF and
equation (13) to guide the search. In this way, the adaptive
constraint violation measurement can help to prioritize data
points when the PF function value is zero. The PF function
can help to prioritize data points when the predictive means
of all constraints satisfy design specifications and the expected
constraint violation value is zero. To achieve a more extensive
coverage over the Pareto front of exploration and exploitation,
we also introduce the naive constraint violation measurement
in equation (12) to encourage exploration. In other words, we
select query points by sampling B data points from the Pareto
front of the following equation:

minimize − PF(x),

Nc∑
i=1

max(0, µi(x)),

Nc∑
i=1

max(0,
µi(x)

σi(x)
).

(14)
Thus, we can not only increase the information gain about the
feasible region for each selected data but also parallelize the
optimization procedure.

B. Search for the Global Optimum

After finding out the first feasible point, we will try to
search the state space by penalizing around the region with
a high probability of violating the constraints and minimize
the objective function by balancing between the exploration
and exploitation.

The state-of-the-art constrained Bayesian optimization al-
gorithm WEIBO [10] handles the design specifications by
weighting the expected improvement function with the prob-
ability of feasibility. By penalizing around the region that
has a much higher probability to violate the constraints, the
weighted expected improvement (wEI) [58], [59] function
favors the points that maximize the objective function while
still satisfying the constraints.

However, WEIBO is designed to work in sequential mode,
which greatly limits its efficiency. To cope with batch con-
strained Bayesian optimization, we build upon the spirit of wEI
by combining our acquisition function ensemble in equation
(8) with the previously designed penalization strategies in
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equation (14) to reduce sampling around the infeasible region.
The corresponding formulation is as follow:

minimize LCB(x),−PI(x),−EI(x),−PF(x),
Nc∑
i=1

max(0, µi(x)),

Nc∑
i=1

max(0,
µi(x)

σi(x)
).

(15)

Also, to reduce sampling around the region that is more
likely to violate the constraints, we propose a recommendation
pruning strategy and select query points that satisfy:

Nc∑
i=1

max(0,
µi(x)

σi(x)
) <= ρ. (16)

where ρ is a user-defined parameter and we fixed it as 0.05
in this paper. With this specially designed recommendation
pruning strategy, we favor the region with high probability to
be valid while achieving a better tradeoff between exploration
and exploitation. In this way, we can prevent the acquisition
function from spending too much effort around the region that
is likely to violate the constraints.

C. Summary
The overall framework of our proposed constrained batch

Bayesian optimization algorithm is presented in Algorithm
3. By dividing the optimization procedure into two stages,
we first focus on searching for the first feasible point be-
fore taking both constraints and objective into consideration.
After obtaining the first feasible point, the updated surrogate
model provides more informative posterior distribution about
whether an arbitrary design satisfies constraints. Therefore, the
overall time consumption of the optimization process can be
significantly reduced. By adopting a new penalization scheme,
we guide the decision-making process in parallel by favoring
the potential area with better objective function value and
penalizing around the region that is likely to violate the
constraints. Thanks to the above, the global optimum that
satisfies constraints can be reached after a limited number of
iterations.

VI. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the performances
of MACE on four real-world analog circuits to show the
benefit of our batch design. We examine the efficiency and
effectiveness of MACE on both constrained and unconstrained
optimization problems and quantitatively compare its perfor-
mances with the state-of-the-art optimization algorithms. Our
proposed MACE algorithm is implemented in Python with
GPy [60] and Platypus1 libraries. All circuit performances
are generated with commercial HSPICE circuit simulator. All
experiments are conducted on a Linux workstation with two
Intel Xeon CPUs and 128GB memory.

For the unconstrained optimization problem, we first run
the experiments in sequential mode to demonstrate that our
acquisition function design can achieve a better tradeoff
between exploration and exploitation. We also evaluate the
performances of MACE in three different batch sizes (B=5,
10, 15) to explore the impact of batch size and shows the
effectiveness of our proposed batch design. To ensure a fair
comparison, we run each Bayesian optimization algorithms

1https://github.com/Project-Platypus/Platypus

Algorithm 3 Constrained MACE algorithm
Require: The size of the initial dataset Ninit, the maximum

number of iteration Niter, and the batch size B.
1: Randomly sample an initial dataset D0 = {X,y}
2: for t = 0→ Niter do
3: Construct Gaussian process regression model with

training dataset Dt

4: if The first feasible point has been achieved then
Generate a Pareto-optimal dataset with equation (15), and
pruning the candidate pool with equation (16) to get Pt

5: else Generate a Pareto-optimal dataset Pt with equa-
tion (14)

6: end if
7: Randomly sample B data points Xt =
{xt,1, · · · ,xt,B} from Pt

8: Evaluate the sampled data points yt =
{f(xt,1), · · · , f(xt,B)}

9: Dt+1 = {Dt, {Xt,yt}}
10: end for
11: return The best optimization result that satisifies the

constraints.

with the same simulation budget, regardless of the batch size.
To give a quantitative measurement of the cost-effectiveness
and stability of each algorithm, we run each algorithm 20 times
to reduce the random fluctuations and present the optimiza-
tion results in terms of the best-case, worst-case, mean, and
standard deviation. To differentiate between the sequential and
batch mode, we label different methods using batch policy type
followed by the batch size.

In sequential mode, we compare the performances of
MACE with 3 state-of-the-art optimization algorithms: (1) DE
[17], which is an optimization strategy based on differential
evolution. (2) EI [39], which is an improvement-based acquisi-
tion function for Bayesian optimization framework that guides
the search by maximizing the expected improvement. (3) LCB
[40], which is an optimistic strategy that traverses the design
space with theoretical cumulative regret bound.

In batch mode, MACE is compared with 6 state-of-the-art
batch policies based on the Bayesian optimization framework:
(1) pBO [29], which selects the batch by introducing weighting
parameter to balance between the exploration and exploitation.
(2) pHCBO [29], which encourages diversity in a batch by
introducing a well-designed penalization scheme. (3) LP-EI
[32], which explores the design space with EI and maintains
diversity in a batch with local penalization term. (4) LP-LCB
[32], which guides the search with LCB and introduces a local
repulsive term to penalize around the early decisions in a
batch. (5) BLCB [33], which reduces redundantly sampling
around busy locations with hallucinated observations. (6)
GPUCB-PE [34], which combines the benefits of UCB policies
with pure exploration queries in the same batch to improve
information gain per observation.

To further investigate the relative merits of different ac-
quisition function ensembles, we also compare MACE with
3 additional batch alternatives in both sequential and batch
mode: (1) PI-EI, which selects the batch from the Pareto front
of PI and EI. (2) EI-LCB, which explores the design space
with EI and LCB ensemble. (3) PI-LCB, which combines the
benefits of PI and LCB to guide the search.
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Fig. 2. The schematic of the two-stage operational amplifier circuit, which
is reproduced from [20].

For the constrained optimization problem, we compare the
performances of MACE with 6 well-designed optimization
algorithms: (1) WEIBO [10], is a Bayesian optimization algo-
rithm based on the weighted expected improvement function.
(2) GASPAD [26], is a surrogate mode-aware evolutionary
search algorithm that favors the valid region with the selection-
based constraint handling method. (3) MSP [20], is a self-
adaptive multiple starting point approach that tries to approx-
imate the global optimum by learning from the previous local
search. (4) DE [17], is an optimization algorithm based on
the differential evolutionary methodology. (5) PSO [61], is the
particle swarm optimization methodology that tries to mimic
the biological process to obtain the global optimum. (6) SA
[19], is the simulated annealing algorithm that guides the
search by simulating the physical process. To further investi-
gate the impact of the two-stage approach, we also compare the
performance of MACE with its one-stage counterpart oMACE,
which only selects the batch with the second stage design of
MACE framework.

To ensure a fair comparison, we respectively run each
algorithm 12 times to average the random fluctuations and
present the number of runs that satisfy the constraints. To
quantitatively evaluate the performances of each algorithm, we
present the optimization results in terms of the mean, median,
best-case and worst-case results. For simplicity of comparison,
we record the equivalent simulation time consumption with the
equivalent number of circuit simulations on average to achieve
the final circuit design (Avg. # Sim). We also record the
number of runs that successfully find feasible designs for each
algorithm (# Success). For each algorithm, we also present the
constraint function values of the best design in all runs.

A. Two-Stage Operational Amplifier

The schematic of the two-stage operational amplifier circuit
is presented in Figure 2. As proposed in [20], this circuit
is implemented in a SMIC 180nm process and has a total
of 10 design variables, including lengths and widths of the
transistors, the resistance of the resistors, and the capacitance
of the capacitors. In this circuit, we seek to maximize the
open-loop gain (GAIN), the unity gain frequency (UGF), and
the phase margin (PM) at the same time. We evaluate the
performances of MACE on both unconstrained and constrained
optimization problems.

Unconstrained optimization. For the unconstrained opti-
mization problem, our formulated design specification is as

TABLE I
THE UNCONSTRAINED OPTIMIZATION RESULTS OF THE TWO-STAGE

OPERATIONAL AMPLIFIER CIRCUIT.

Algo Best Worst Mean Std
DE 685.44 680.65 682.19 1.56

LCB 690.35 685.02 688.68 1.51
EI 690.29 670.49 688.07 4.98

PI-EI 690.35 690.27 690.34 0.03
EI-LCB 690.35 690.27 690.34 0.03
PI-LCB 690.35 688.09 690.23 0.49
MACE 690.36 690.27 690.34 0.03
pBO-5 690.36 688.00 689.59 1.01

pHCBO-5 690.36 615.27 678.47 20.82
LP-EI-5 690.15 664.68 685.15 8.34

LP-LCB-5 690.18 660.42 685.25 8.87
BLCB-5 690.33 685.70 688.69 1.28

GPUCB-PE-5 690.35 618.41 679.33 23.52
PI-EI-5 690.35 653.74 687.72 9.42

EI-LCB-5 690.35 680.24 689.35 2.56
PI-LCB-5 690.35 689.85 690.28 0.13
MACE-5 690.36 690.27 690.33 0.03
pBO-10 690.36 535.80 676.45 39.49

pHCBO-10 690.36 641.83 685.67 12.24
LP-EI-10 689.93 633.32 677.67 17.25

LP-LCB-10 690.12 663.58 685.37 6.51
BLCB-10 690.36 685.09 688.77 1.47

GPUCB-PE-10 690.28 575.75 658.14 37.18
PI-EI-10 690.35 655.14 684.33 10.91

EI-LCB-10 690.27 673.54 686.31 4.98
PI-LCB-10 690.35 533.55 682.30 34.13
MACE-10 690.36 685.45 690.00 1.26
pBO-15 690.35 558.18 673.52 34.15

pHCBO-15 690.36 608.29 681.25 22.71
LP-EI-15 689.70 609.82 677.53 20.54

LP-LCB-15 687.88 641.51 668.71 15.77
BLCB-15 690.36 685.78 688.73 1.36

GPUCB-PE-15 689.35 612.63 672.49 22.15
PI-EI-15 690.32 500.57 659.80 56.18

EI-LCB-15 690.07 654.13 678.93 11.55
PI-LCB-15 690.35 522.36 681.03 36.45
MACE-15 690.35 682.97 688.96 2.28

follow:

maximize 1.2×GAIN + 10.0×UGF + 1.6× PM. (17)

To fully tap the potential of MACE, we conduct experiments
in both sequential and batch mode. In batch mode, we run
each algorithm with 3 different batch sizes (B=5, 10, 15) to
demonstrate the impact of different batch sizes. For algorithms
in Bayesian optimization literature, we set the size of the initial
dataset as 20 and limit the maximum number of simulations
as 270, regardless of the batch size. For DE, the simulation
budget is set to be 20000. To ensure a fair comparison,
we repetitively run each algorithm 20 times to eliminate the
random fluctuations. The unconstrained optimization results
are presented in Table I.

We start with examining the experimental results in sequen-
tial mode, which are presented in the top block of Table I.
Clearly, MACE not only outperforms the state-of-the-art opti-
mization algorithms on average, but also have a much smaller
deviation. Compared with DE, our proposed algorithm reduces
the simulation time by 74× while obtaining better optimization
results. Compared with EI, LCB, PI-EI, EI-LCB and PI-LCB,
MACE demonstrates a much higher convergence rate and more
stable performance. This clearly shows that MACE can better
guide the search by simultaneously maximizing the immediate
improvement value and the cumulative regret of each candidate
point in sequential mode. Another interesting observation is
that the acquisition function ensembles (PI-EI, EI-LCB, PI-
LCB and MACE) always obtain better optimization results
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TABLE II
THE CONSTRAINED OPTIMIZATION RESULTS OF THE TWO-STAGE OPERATIONAL AMPLIFIER CIRCUIT.

Algo oMACE-5 MACE-5 oMACE-10 MACE-10 oMACE-15 MACE-15 WEIBO GASPAD MSP DE PSO SA
UGF/MHz 40.00 40.01 40.00 40.00 40.02 40.03 40.03 40.20 40.01 40.10 fail fail

PM/o 61.03 61.03 60.98 60.99 60.94 60.93 60.87 60.83 61.43 60.95 fail fail
GAIN(mean) 90.05 90.06 89.93 89.93 89.75 89.94 89.61 89.24 89.42 89.42 fail fail

GAIN(median) 90.05 90.11 89.96 90.00 89.96 90.07 89.73 89.24 89.35 89.38 fail fail
GAIN(best) 90.18 90.18 90.14 90.15 90.16 90.18 90.15 89.95 89.95 89.67 fail fail

GAIN(worst) 89.89 89.84 89.55 89.57 88.61 89.81 87.71 88.50 89.00 89.09 fail fail
Avg. # Sim 103 74 53 39 36 32 170 385 5263 5931 fail fail
# Success 12/12 12/12 12/12 12/12 12/12 12/12 12/12 12/12 12/12 12/12 0/12 0/12

compared to EI and LCB, which rely solely on a single
acquisition function to search the state space. This reveals that
the acquisition function ensemble can combine the benefits of
several acquisition functions and increase the information gain
per data point.

Now we move on to analyze the performances of MACE in
batch mode. As expected, MACE consistently outperforms the
state-of-the-art batch policies for the same batch size, which
demonstrates both the efficiency and effectiveness of our batch
design. Compared with pBO, pHCBO, LP-EI, LP-LCB, BLCB
and GPUCB-PE that select data points iteratively and greedily
for each batch, MACE simply constructs the batch at once by
randomly selecting query points from the Pareto front of PI, EI
and LCB. In this way, MACE combines the strengths of several
state-of-the-art acquisition functions. Instead of designing the
penalization scheme manually and penalizing around the early
observations in a batch with human biased presumptions,
MACE naturally maintains diversity within the same batch.
The optimization results of pBO and pHCBO, when the batch
size is 5, further reveal that manually design penalization
scheme sometimes can even hinder the optimization process.
Compared with PI-EI, EI-LCB and PI-LCB that guide the
search with only two acquisition functions, MACE consistently
achieves better optimization results across different batch
sizes. This indicates that different acquisition functions have
different characteristics in selecting query points, and the
efficiency of the acquisition function ensemble improves with
the increasing number of selected acquisition functions. The
comparably small deviations across different batch sizes also
demonstrate the stability and robustness of MACE.

To further analyze the impact of batch size, we compare
the optimization results across different batch sizes. From an
information gain perspective, the performances in sequential
mode can always be seen as a baseline for the batch policies
with the same acquisition function for decision selections. The
optimization results of EI, LCB, PI-EI, EI-LCB and PI-LCB
in sequential mode are consistently better compared to its
batch counterparts. This is because the two-stage operational
amplifier circuit requires more exploitation than exploration
to optimization. Compared with all the other batch policies
the optimization results of which deteriorate quickly with
the increase of the batch size, MACE demonstrates strong
stability and robustness in terms of both the average results
and the standard deviations. For BLCB, despite getting similar
results for different batch sizes, its consistently outperformed
optimization results of BLCB reveal that searching the design
space by solely relying on a single utility function can greatly
limit the efficiency of decision making. The experimental
results of the unconstrained optimization problem provide
quantitative evidence for the efficiency and robustness of our
batch design. Another noteworthy phenomenon is that with a

fixed number of selected acquisition functions, different acqui-
sition function combinations have different behavior patterns.
With the increase of the batch size, the performance of PI-
LCB deteriorates much slower than PI-EI and EI-LCB. This
is due to the fact that PI tends to do more exploitation, LCB
tends to do more exploration and EI stays relatively in the
middle. Thus, PI-LCB naturally has better coverage over the
exploitation-exploration Pareto front than PI-EI and EI-LCB.
With the increase of the batch size, PI-EI and EI-LCB become
too conservative and PI-LCB starts to outperform them.

Constrained optimization. For the constrained optimiza-
tion problem, our formulated design specification is as follow:

maximize GAIN

s.t. UGF > 40MHz,

PM > 60o.

(18)

In this experiment, we compare the performances of MACE
and oMACE with the state-of-the-art constrained optimization
algorithms, including WEIBO, GASPAD, MSP, DE, PSO
and SA. To fully explore the potential of our constrained
batch design, we test both MACE and oMACE in 3 different
batch sizes (B=5, 10, 15) and fix the maximum number of
simulations as 620, regardless of the batch size. For MACE
and oMACE, the size of the initial dataset is 20. For WEIBO,
we randomly sample 20 initial data point and set the simulation
budget as 200. For GASPAD, we limit the maximum number
of simulations as 500. As for the rest of the algorithms, we
limit the simulation budget as 10000. To reduce the random
fluctuations and fairly compare the experimental results, we
repetitively run each algorithm 12 times. The corresponding
optimization results are presented in Table II.

It is worth notice that the optimization results of both PSO
and SA fail to meet the constraints, which means the design
specification is hard to satisfy. Compared with DE, MSP, GAS-
PAD and WEIBO, MACE respectively reduces the simulation
time by up to 185×, 164×, 12× and 5×, while obtaining
relatively better optimization results. The experimental results
quantitatively demonstrate that the optimization process can
be significantly sped up by proposing a batch of data points at
each iteration and assigning the circuit simulation to different
workers. Also, the fact that MACE consistently outperforms its
one-stage counterpart regardless of the batch size shows that
the two-stage policy can greatly reduce sampling around the
infeasible region, thus, accelerate the optimization procedure.
We further investigate the impact of different batch sizes.
Although the performance of MACE deteriorates slightly with
the increase of the batch size, MACE still obtains much
better optimization results in terms of mean, median, best-case
and worst-case results when the batch size 15. This clearly
demonstrates the robustness and stability of our proposed
algorithm.
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Fig. 3. The schematic of the class-E power amplifier circuit, which is
reproduced from [27].

B. Class-E Power Amplifier
The second circuit we evaluate MACE with is the class-E

power amplifier circuit, which is shown in Figure 3. Imple-
mented in a 180nm TSMC process, this circuit has a total of
12 design variables. The corresponding circuit performances
are generated via the commercial HSPICE circuit simulator.
For this circuit, our target of design is to maximize the
power-added efficiency (PAE) and the output power (Pout)
simultaneously.

Unconstrained optimization. Our formulated design spec-
ification for the unconstrained optimization problem is:

maximize 3× PAE + Pout. (19)

To ensure a fair comparison, we run each algorithm 20
times to average the random fluctuations. For DE, we set
the maximum number of simulations as 15000. For the rest
of the Bayesian optimization algorithms, we compare the
performances with a fixed simulation budget across different
batch sizes to fully explore the potential of our proposed
algorithm. Specifically, we set the size of the initial dataset
as 20 and limit the maximum number of simulations as
470. The corresponding unconstrained optimization results are
presented in Table III.

We start with analyzing the performances of MACE in
sequential mode presented in the top block of Table III.
Compared with EI and LCB, the acquisition function en-
sembles achieve much better optimization results with the
same simulation budget. This observation again shows that the
sampling efficiency of the acquisition function ensembles is
much higher than the state-of-the-art acquisition functions. By
searching the design space with several acquisition functions,
the acquisition function ensembles can combine the benefits
of the state-of-the-art utility functions and better guide the
search. The fact that MACE consistently outperforms PI-EI,
EI-LCB and PI-LCB further confirms that the performance of
the acquisition function ensemble improves with the increasing
number of acquisition functions. Compared with DE, MACE
reduces the simulation time by up to 42× while obtaining more
competitive optimization results. The superior performance of
MACE in terms of the best-case result further shows that
MACE has great potential in selecting the query point. Our
results demonstrate that MACE can lead the search more
efficiently and effectively.

We now move on to investigate the performances of MACE
with the state-of-the-art batch policies in the batch mode. To
fully exploit the latent capacity of MACE and demonstrate

TABLE III
THE UNCONSTRAINED OPTIMIZATION RESULTS OF THE CLASS-E POWER

AMPLIFIER CIRCUIT.

Algo Best Worst Mean Std
DE 4.56 4.33 4.43 0.08

LCB 4.10 3.59 3.89 0.14
EI 4.13 3.52 3.85 0.19

PI-EI 5.80 4.20 4.63 0.34
EI-LCB 5.11 4.09 4.45 0.25
PI-LCB 4.83 3.99 4.49 0.26
MACE 6.12 3.85 4.79 0.57
pBO-5 4.61 3.76 4.17 0.19

pHCBO-5 4.42 3.66 4.16 0.16
LP-EI-5 4.17 3.51 3.87 0.19

LP-LCB-5 4.26 3.43 3.82 0.26
BLCB-5 4.73 4.07 4.23 0.14

GPUCB-PE-5 4.51 3.62 4.17 0.19
PI-EI-5 4.60 3.55 4.22 0.27

EI-LCB-5 5.88 3.79 4.43 0.51
PI-LCB-5 4.98 3.65 4.49 0.31
MACE-5 4.83 3.76 4.51 0.31
pBO-10 4.34 3.80 4.11 0.16

pHCBO-10 4.82 3.79 4.17 0.23
LP-EI-10 4.60 3.49 3.86 0.28

LP-LCB-10 4.26 3.59 3.88 0.20
BLCB-10 4.46 3.94 4.26 0.13

GPUCB-PE-10 4.40 3.66 4.04 0.21
PI-EI-10 4.82 2.85 4.13 0.52

EI-LCB-10 4.97 3.39 4.29 0.38
PI-LCB-10 5.65 3.61 4.46 0.45
MACE-10 5.54 3.73 4.64 0.46
pBO-15 4.61 3.87 4.17 0.19

pHCBO-15 4.31 3.67 4.10 0.16
LP-EI-15 4.33 3.50 3.87 0.23

LP-LCB-15 4.28 3.58 3.85 0.17
BLCB-15 4.70 4.10 4.30 0.13

GPUCB-PE-15 4.20 3.54 3.93 0.17
PI-EI-15 4.78 3.06 4.14 0.43

EI-LCB-15 4.96 3.67 4.20 0.30
PI-LCB-15 4.77 3.31 4.28 0.37
MACE-15 5.41 3.39 4.32 0.42

the impact of different batch sizes, we run each algorithm
in 3 different batch sizes (B=5, 10, 15) and compare the
experimental results with the state-of-the-art batch policies.
Overall, MACE consistently outperforms the state-of-the-art
batch policies with respect to the same batch size. For pBO,
pHCBO, LP-EI and LP-LCB, the corresponding optimization
results for different batch sizes are comparably the same
and sometimes even better than their sequential counterparts.
This reveals that batch policy doesn’t necessarily lead to
penalized information gain per data point. The fact that the
performances of BLCB improve with the increase of the
batch size further demonstrates that a relative magnitude
of batch size encourages exploration. Besides, the class-E
power amplifier circuit actually requires more exploration than
exploitation to fully search the design space. For GPUCB-
PE, the optimization results indicate that GPUCB-PE naturally
encourages more exploitation than exploration. As for MACE,
the consistently competitive performances, regardless of the
batch size, demonstrate that MACE can achieve a better trade-
off between exploration and exploitation. Instead of relying on
a single acquisition function to guide the search, MACE selects
query points from the Pareto front of the acquisition function
ensemble. Therefore, MACE can always select more infor-
mative data point to better facilitate the optimization process.
The experimental results presented in Table III demonstrate
the efficiency and effectiveness of MACE for both sequential
and batch mode.

Constrained optimization. Our formulated design specifi-
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TABLE IV
THE CONSTRAINED OPTIMIZATION RESULTS OF THE CLASS-E POWER AMPLIFIER CIRCUIT.

Algo oMACE-5 MACE-5 oMACE-10 MACE-10 oMACE-15 MACE-15 WEIBO GASPAD MSP DE PSO SA
Pout/dBm 2.11 3.36 2.23 2.73 3.04 2.94 2.04 2.21 2.31 2.21 2.33 2.01

PAE(mean) 0.83 0.85 0.83 0.84 0.80 0.83 0.74 0.78 0.73 0.73 0.71 0.66
PAE(median) 0.80 0.81 0.79 0.80 0.79 0.80 0.75 0.75 0.71 0.72 0.70 0.67

PAE(best) 0.97 1.06 0.97 1.10 0.92 1.03 0.76 0.95 0.98 0.77 0.86 0.72
PAE(worst) 0.75 0.76 0.73 0.70 0.75 0.73 0.73 0.72 0.66 0.69 0.66 0.60
Avg. # Sim 156 124 63 70 51 52 583 516 2580 3657 3610 2986
# Success 12/12 12/12 11/12 12/12 12/12 12/12 12/12 12/12 12/12 12/12 12/12 7/12

TABLE V
THE CONSTRAINED OPTIMIZATION RESULTS OF THE LOW-POWER THREE-STAGE AMPLIFIER CIRCUIT, THE RESULTS OF MSP, DE, PSO AND SA COME

FROM [10].

Algo oMACE-5 MACE-5 oMACE-10 MACE-10 oMACE-15 MACE-15 WEIBO GASPAD MSP DE PSO SA
GAIN/dB 101.36 102.37 101.25 102.65 102.58 101.08 100.67 100.82 100.81 102.73 102.39 102.49
UGF/MHz 0.92 0.92 0.92 0.92 0.93 0.92 0.93 0.94 0.98 0.96 0.96 1.05

PM/o 52.52 52.50 52.51 52.70 53.50 52.51 53.10 52.66 53.22 54.62 54.25 56.70
GM/dB 19.80 19.53 19.86 19.50 19.55 19.50 19.58 19.83 22.30 20.62 21.32 20.92

SR+(V/µs) 0.21 0.20 0.20 0.20 0.24 0.20 0.19 0.21 0.23 0.21 0.23 0.25
SR-(V/µs) 0.41 0.37 0.51 0.43 0.37 0.48 0.41 0.54 0.51 0.54 0.51 0.49
Iq(mean) 31.67 30.61 33.01 30.67 33.10 29.91 37.78 35.08 49.60 41.26 44.22 59.78

Iq(median) 30.87 29.83 32.41 29.75 33.38 30.24 34.90 35.64 48.29 40.70 43.16 53.56
Iq(best) 29.34 27.27 28.26 27.18 29.24 26.54 29.28 29.26 32.06 37.32 37.18 46.34

Iq(worst) 36.74 35.65 38.22 34.98 36.59 32.80 49.89 38.77 75.32 46.09 59.56 83.48
Avg. # Sim 166 172 85 80 58 57 396 743 2163 2400 2417 620
# Success 12/12 12/12 12/12 12/12 12/12 12/12 12/12 12/12 9/12 12/12 12/12 5/12

cation for the constrained optimization problem is:

maximize PAE

s.t. Pout > 2.0dBm,
(20)

In this experiment, we test both MACE and oMACE with a
fixed simulation budget for different batch sizes to explore the
impact of batch size. For MACE, oMACE and WEIBO, we
randomly sample 20 initial data points and set the maximum
number of simulations as 920. For GASPAD, the simulation
budget is limited to 600. For the rest of the algorithms, the
maximum number of simulations is 5000. To average the
random fluctuations, we run each algorithm 12 times and
present the mean, median, best-case and worst-case results.
The corresponding constrained optimization results are pre-
sented in Table IV.

As expected, MACE achieves much better optimization
results than the state-of-the-art optimization algorithms. The
fact that SA and oMACE fail to successfully find a feasible
design in all runs shows that the design specification is hard
to satisfy. Considering that MACE successfully obtains valid
designs in all runs and consistently outperforms oMACE, the
two-stage approach can greatly help to relieve the burden of
searching for the feasible region. Compared with WEIBO,
GASPAD, MSP, DE and PSO, MACE reduces the simulation
time by up to 11×, 9×, 49×, 70× and 69× respectively.
Considering that GASPAD achieves better optimization results
than WEIBO while requiring less simulation time on average,
the response surface of the design specification can be well
approximated with a relatively small number of data points.
This also reveals that the constrained optimization of the
class-E power amplifier circuit requires more exploitation than
exploration. Another noteworthy phenomenon is that MACE
exhibits much higher sampling efficiency compared to WEIBO
when the batch size is 15. Considering that both MACE and
WEIBO are assigned with the same amount of simulation
budget, this suggests that our proposed batch policy can greatly
accelerate the optimization process without penalization of the
information gain per data points.
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Fig. 4. The schematic of the low-power three-stage amplifier circuit, which
is reproduced from [10].

C. Low-Power Three-Stage Amplifier
The third circuit for testing is the low-power three-stage

amplifier circuit. The corresponding schematic is presented
in Figure 4, which is proposed in [62]. In this circuit, there
are a total of 24 design variables, including the lengths and
widths of the transistors, the capacitance and resistance and
the bias current. For this circuit, we only run experiments on
the constrained optimization problem.

Constrained optimization. Our formulated constrained de-
sign specification is:

minimize Iq

s.t. GAIN > 100dB,
UGF > 0.92MHz,
PM > 52.5o,

GM > 19.5dB,
SRR > 0.18V/µs,
SRF > 0.2V/µs,

(21)

where Iq is the static current, GAIN denotes the DC gain, UGF
represents the unit gain frequency, PM stands for the phrase
margin, GM means gain margin, SRR and SRF refers to the
rising and falling slew rate.
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TABLE VI
THE CONSTRAINED OPTIMIZATION RESULTS OF THE CHARGE PUMP CIRCUIT, THE RESULTS OF WEIBO, GASPAD, MSP, DE, PSO AND SA COME

FROM [10].

Algo oMACE-5 MACE-5 oMACE-10 MACE-10 oMACE-15 MACE-15 WEIBO GASPAD MSP DE PSO SA
diff1 5.43 5.59 5.56 5.50 5.98 5.86 6.58 6.83 17.81 17.97 fail fail
diff2 4.75 4.44 4.50 4.48 5.10 4.45 5.30 5.28 16.82 15.49 fail fail
diff3 0.06 0.15 0.12 0.06 0.10 0.14 0.24 0.29 1.51 1.84 fail fail
diff4 0.06 0.22 0.24 0.07 0.12 0.18 0.37 0.40 2.57 3.56 fail fail

deviation 0.39 0.20 0.27 0.37 0.22 0.18 0.41 0.33 0.38 0.39 fail fail
FOM(mean) 3.47 3.43 3.52 3.49 3.75 3.65 3.95 4.00 11.80 11.85 fail fail

FOM(median) 3.44 3.44 3.53 3.40 3.70 3.55 3.97 4.99 11.67 12.31 fail fail
FOM(best) 3.29 3.22 3.26 3.28 3.50 3.28 3.48 3.74 8.26 9.29 fail fail

FOM(worst) 3.77 3.61 3.95 3.88 4.16 4.30 4.48 4.43 14.03 13.40 fail fail
Avg. # Sim 131 139 73 72 44 50 790 2328 1599 1538 fail fail
# Success 12/12 12/12 12/12 12/12 12/12 12/12 12/12 12/12 12/12 12/12 0/12 0/12

dnb

i5u

M2

pd

cpout

M1

QUENCH
Vref

Vin
Vout

upb

VDD

pdb

i10u

upup

dn

upb

dnb dn

Vin

Vref
Vout

VDD

Fig. 5. The schematic of the charge pump circuit, which is reproduced from
[20].

In this experiment, we randomly sample 20 initial data
points and set the maximum number of simulations as 920
for both MACE and oMACE, regardless of the batch size.
For WEIBO, we initially sample 20 data points and limit the
simulation budget as 720. For GASPAD, the simulation budget
is limited as 1000. For the rest of the algorithms, we fix the
maximum number of simulations as 3000. To ensure a fair
comparison, we run each algorithm 12 times to reduce the
random fluctuations. The constrained optimization results of
the low-power three-stage amplifier circuit are presented in
Table V.

In this experiment, both SA and MSP fail to meet the design
specification in all runs. Compared with WEIBO, GASPAD,
DE and PSO, MACE reduce the simulation time consumption
by up to 6×, 13×, 42× and 42× respectively, while achieving
higher sampling efficiency. The fact that both MACE and
oMACE consistently outperform the state-of-the-art optimiza-
tion algorithms again confirms the efficiency and effectiveness
of our proposed batch policy. Another interesting observation
is that the performance of oMACE deteriorates quickly with
the increase of the batch size, while MACE achieves relatively
the same optimization results across different batch sizes. This
clearly demonstrates the robustness and effectiveness of the
two-stage approach.

D. Charge Pump

The last circuit we evaluate MACE with is the charge
pump circuit, the schematic of which is presented in Figure 5.
Implemented in a SMIC 40nm process, there are a total of 36
design variables. In this circuit, our target of design is to let
the current difference between M1 and M2 stay under 40µA.
For this circuit, we only run experiments on the constrained
optimization problem.

Constrained optimization. The formulated design specifi-
cation for the constrained optimization problem is as follow:

minimize FOM

s.t. diff1 < 20µA,

diff2 < 20µA,

diff3 < 5µA,

diff4 < 5µA,

deviation < 5µA,

(22)

where

diff1 = max∀PV T (IM1,max − IM1,avg),

diff2 = max∀PV T (IM1,avg − IM1,min),

diff3 = max∀PV T (IM2,max − IM2,avg),

diff4 = max∀PV T (IM2,avg − IM2,min),

diff =

4∑
i=1

diffi ,

deviation = max∀PV T (|IM1,avg − 40µA|)
+ max∀PV T (|IM2,avg − 40µA|),

FOM = 0.3× diff + 0.5× deviation.
(23)

In this experiment, we run both MACE and oMACE in
3 different batch sizes and compare experimental results
with WEIBO, GASPAD, DE, PSO, and SA. For MACE and
oMACE, we set the size of the initial dataset as 20 and fix
the simulation budget as 830, regardless of the batch size. For
WEIBO, we initially sample 120 data points and limit the
overall simulation budget as 1000. For the rest of the algo-
rithms, we fix the maximum number of simulations as 2500.
Again, to ensure a fair comparison, we run each algorithm 12
times to average the random fluctuations. The corresponding
mean, median, best-case and worst-case optimization results
are presented in Table VI.

In this experiment, PSO and SA fail to find feasible designs
in all 12 runs. Compared with WEIBO, GASPAD, MSP and
DE, MACE again achieves much better optimization results
while reducing the simulation time by 15×, 46×, 31× and
30×. This shows that MACE has much higher convergence
rate and explore the design space more efficiently than the
state-of-the-art optimization algorithms. One interesting ob-
servation is that GASPAD achieves worse optimization results
compared to WEIBO while requiring much more simulation
time on average. This indicates that the response surface of the
corresponding design specification is multi-modal and requires
a large set of data points to approximate. The fact that MACE
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consistently outperforms oMACE across different batch sizes
again suggests that the two-stage policy helps to provide
more information about the feasible region and can greatly
accelerate the optimization procedure.

VII. CONCLUSION

In this paper, we propose a batch Bayesian optimization
algorithm based on the acquisition function ensemble. Our
algorithm can handle both unconstrained and constrained op-
timization problems. By sampling data points from the Pareto
front of PI, EI and LCB, we combine the benefits of state-of-
the-art acquisition functions and achieve a delicate tradeoff
between exploration and exploitation for the unconstrained
optimization problem. Fueled with this explicitly designed
batch policy, we further refine the algorithm to handle the
constrained optimization problem by dividing the optimization
procedure into two stages. By first focusing on finding the
feasible designs, we manage to collect more information about
the feasible region. We further reduce sampling around the
invalid region while exploring the potential area by adopting
a carefully designed penalization term. The experimental re-
sults demonstrate the robustness and cost-effectiveness of our
proposed algorithm.
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