
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022 597

An Efficient Hardware Design for Accelerating
Sparse CNNs With NAS-Based Models

Yun Liang , Senior Member, IEEE, Liqiang Lu , Yicheng Jin , Jiaming Xie,
Ruirui Huang, Member, IEEE, Jiansong Zhang, Member, IEEE, and Wei Lin

Abstract—Deep convolutional neural networks (CNNs) have
achieved remarkable performance at the cost of huge compu-
tation. As the CNN models become more complex and deeper,
compressing CNNs to sparse by pruning the redundant connec-
tion in the networks has emerged as an attractive approach to
reduce the amount of computation and memory requirement. On
the other hand, FPGAs have been demonstrated to be an effec-
tive hardware platform to accelerate CNN inference. However,
most existing FPGA accelerators focus on dense CNN models,
which are inefficient when executing sparse models as most of
the arithmetic operations involve addition and multiplication with
zero operands. In this work, we propose an accelerator with
software–hardware co-design for sparse CNNs on FPGAs. To
efficiently deal with the irregular connections in the sparse con-
volutional layers, we propose a weight-oriented dataflow that
exploits element–matrix multiplication as the key operation. Each
weight is processed individually, which yields low decoding over-
head. Then, we design an FPGA accelerator that features a tile
look-up table (TLUT) and a channel multiplexer (CMUX). The
TLUT is designed to match the index between sparse weights
and input pixels. Using TLUT, the runtime decoding overhead
is mitigated by using an efficient indexing operation. Moreover,
we propose a weight layout to enable efficient on-chip memory
access without conflicts. To cooperate with the weight layout,
a CMUX is inserted to locate the address. Finally, we build
a neural architecture search (NAS) engine that leverages the
reconfigurability of FPGAs to generate an efficient CNN model
and choose the optimal hardware design parameters. The exper-
iments demonstrate that our accelerator can achieve 223.4-309.0
GOP/s for the modern CNNs on Xilinx ZCU102, which provides
a 2.4×–12.9× speedup over previous dense CNN accelerators on
FPGAs. Our FPGA-aware NAS approach shows 2× speedup over
MobileNetV2 with 1.5% accuracy loss.

Manuscript received October 30, 2020; revised January 18, 2021; accepted
February 23, 2021. Date of publication March 17, 2021; date of cur-
rent version February 21, 2022. This work was supported in part by the
Beijing Natural Science Foundation under Grant JQ19014; in part by the
Beijing Academy of Artificial Intelligence (BAAI); and in part by the Key-
Area Research and Development Program of Guangdong Province under
Grant 2019B010155002. This article was recommended by Associate Editor
W. Zhang. (Corresponding author: Yun Liang.)

Yun Liang is with the Center for Energy-efficient Computing and
Applications, Peking University, Beijing 100871 China, and also with Peng
Cheng Laboratory, Shenzhen 518066, China (e-mail: ericlyun@pku.edu.cn).

Liqiang Lu, Yicheng Jin, and Jiaming Xie are with the Center for Energy-
efficient Computing and Applications, Peking University, Beijing 100871
China (e-mail: liqianglu@pku.edu.cn; yicheng.jin@pku.edu.cn;
jmxie@pku.edu.cn).

Ruirui Huang, Jiansong Zhang, and Wei Lin are with Alibaba Cloud intel-
ligence, Alibaba Group, Hangzhou 330110, China (e-mail: ruirui.huang@
alibaba-inc.com; muduan.zjs@alibaba-inc.com; weilin.lw@alibaba-inc.com).

Digital Object Identifier 10.1109/TCAD.2021.3066563

Index Terms—Accelerator, convolutional neural network
(CNN), FPGA, neural architecture search (NAS), sparse.

I. INTRODUCTION

INSPIRED by the biological nervous system, deep learning
has recently achieved remarkable accuracy improvement.

Convolutional neural networks (CNNs), the most commonly
used model in deep learning, have been adopted in vari-
ous domains, including image and speech recognition [1]–[4].
The significant accuracy improvement of CNNs comes at
the cost of huge computational complexity as it requires a
comprehensive assessment of all the regions across the fea-
ture maps. Toward such overwhelming computation pressure,
FPGAs have emerged as a promising solution due to their high
performance, energy efficiency, and programability [5]–[8].

In a typical CNN model, each neuron is regarded as a
node in the network while the weight represents connections
between nodes in two adjacent layers. Pruning the connections
in the deep neural networks has been proved as an effective
solution to compress the overall computation and memory
requirements of these models while maintaining high accu-
racy. In general, compression techniques can be divided into
two categories: 1) unstructured compression and 2) structured
compression. The unstructured compression techniques prune
the weights with irregularity in a fine-grain manner of pix-
els [9]–[11]. For example, Han et al. [9] have shown that
there is significant redundancy (up to 90%) for certain DNNs,
which can be pruned without sacrificing accuracy. The struc-
tured compression aims at pruning the networks with a certain
shape in the weight [12]–[15]. However, the structured prun-
ing often leads to a lower compression rate as it shows a strict
mathematical formalization.

In this article, we mainly focused on accelerating CNNs
with unstructured compression on FPGAs. Our approach
can also be applied to structure compression. Though prun-
ing techniques theoretically reduce the number of operations
in the convolution algorithm and potentially provide the
opportunity for faster inference process, existing accelera-
tors on FPGAs for dense models are not suitable for sparse
CNN models. Most of these works optimize their dataflows
based on loop operations, such as loop interchange and loop
unrolling [16]–[20]. The dense accelerator can result in high
hardware inefficiency since most multiplication operations

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-9076-7998
https://orcid.org/0000-0002-3801-6847
https://orcid.org/0000-0001-6966-1219

598 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 1. Typical convolutional layer.

Fig. 2. Invalid computation caused by redundant connections in sparse
CNNs. (a) Spatial dimension. (b) Input channel dimension. (c) Output channel
dimension.

involve zero operands [5], [6], [16], [21]–[25]. The imple-
mentation of sparse DNNs has been studied in recent years
on FPGAs [26]. These accelerators mainly focus on the fully
connected (FC) layers, which use matrix-vector multiplication
operations and are used for recurrent neural networks (RNNs)
and LSTMs. However, the major operators of the modern
CNN’s computation are convolution operations. For example,
the convolution operations occupy 90% of the total computa-
tion in GoogLeNet. Although the spatial convolution can be
mapped to matrix–vector multiplications, this will increase the
local memory requirement since the pixels in the input feature
maps have to be copied multiple times when being flattened
to a vector.

The challenges to design an efficient FPGA accelerator can
be summarized as follows.

1) The convolutional layers involve complex connections
between input feature maps and output feature maps for
sparse CNNs. Clearly, each output pixel is connected
with part of the input pixels through the sliding kernels.
The connection becomes irregular when the network
becomes sparse. It is difficult to design a dataflow to deal
with the irregularity but can leverage the high parallelism
of FPGA and maintain FPGA efficiency.

2) The sparse weights are encoded in sparse format,
which requires extra coordinate computation to locate
the weights. However, the distribution of the sparse
weights (nonzeros) is irregular, which leads to inefficient
memory access and low on-chip bandwidth utilization.

3) A CNN model generally consists of different types
of convolutional layers. Given a specific architecture
design, the performance can be different when the layer
parameter changes. Therefore, it is challenging to design
a hardware-friendly CNN model that can maximize the
performance.

To address the first challenge, we propose a weight-oriented
dataflow where each PE performs element–matrix multiplication
instead of spatial convolution. Here, the element refers to the
sparse weight and the matrix refers to the input tile. In this
dataflow, the sparse weights are processed separately. By doing
this, we successfully avoid the design issues related to sparsity,
such as irregular connections, load imbalance, etc. For the
second challenge, we propose a weight layout, which can
enable efficient on-chip memory access of the weights. In this
layout, the weights processed in parallel are stored continuously,
and the results are accumulated from different BRAM banks
to avoid access conflicts. Moreover, we design an efficient
accelerator for sparse CNNs that features a tile look-up table
(TLUT) and a channel multiplexer (CMUX). TLUT can reduce
the overhead of runtime index matching and CMUX helps to
locate the output address easily when updating the results.
Finally, we build a neural architecture search (NAS) engine
based on analytical models that are used to predict the latency
and resource utilization. For a specific deep learning task, we use
the engine to explore the design space and identify the optimal
CNN model architecture with hardware design parameters.

A preliminary version of this article was reported in [27].
In [27], we propose an architecture design for accelerat-
ing sparse CNNs on FPGAs. In this article, we extend
previous work with software–hardware co-design to further
improvement the performance. In particular, we propose a
FPGA-aware NAS framework to search for the optimal hard-
ware design parameters and network architectures simulta-
neously. We perform architecture search on ImageNet and
draw comparisons with several state-of-the-art hand-crafted
and autodesigned models.

In conclusion, this work makes the following contributions.
1) We propose a dataflow with element–matrix multipli-

cation as the key operation, where the element and
the matrix refer to the sparse weight and input tile,
respectively.

2) We propose an architecture design for the dataflow with
a set of optimization techniques. We use a look-up table
to match the sparse weight with the corresponding input
pixels. We also design the weight layout and compres-
sion format, which can enable efficient on-chip memory
access.

3) We develop an analytical model to estimate the latency.
This model considers different types of operators in
modern CNNs, e.g., pointwise convolution and depth-
wise convolution.

4) We develop a NAS engine to automatically generate
CNN model that can match our hardware design. This
engine searches both hardware design parameters and
possible CNN models under resource constraints, and
outputs the CNN model with high accuracy and low
latency.

LIANG et al.: EFFICIENT HARDWARE DESIGN FOR ACCELERATING SPARSE CNNs WITH NAS-BASED MODELS 599

The experiments demonstrate that our accelerator can
achieve 309.0, 223.4, 291.4 and 257.4 GOP/s for VGG,
Alexnet, Resnet-152, and GoogLeNet on Xilinx ZCU102,
respectively. Our accelerator achieves a 2.4×–12.9× speedup
over the previous dense CNN FPGA accelerators. Compared
to the TitanX GPU platform, our accelerator shows 7.56×
energy efficiency. Our FPGA-aware NAS approach shows 2×
speedup over MobileNetV2 with 1.5% accuracy loss.

II. BACKGROUND

A. Sparse CNN Model

CNNs are a class of deep, feedforward artificial neural
networks, which are composed of a series of layers, including
convolutional layers, pooling layers, and fully connected lay-
ers (FC layer). The convolutional layer is the most important
layer in which the kernels extract features from the input fea-
ture map. Fig. 1 shows the typical convolution operation. The
convolution operation uses a small R×S kernel to slide through
the input feature map. The pixels inside the sliding window
conduct a multiply-and-add operation with the weights in the
kernel to compute a pixel value in the H × W output feature
map. There are usually many input feature maps (also known
as input channels) and output feature maps (output channels)
in a single convolutional layer, and the numbers of input fea-
ture maps and output feature maps are M and N as shown in
Fig. 1, respectively. Note that the convolution results in the
different input channels are accumulated to obtain the output
channel results.

CNNs usually have a large number of weights, which could
introduce the problem of overfitting. The weights pruning
techniques [9], [28] have been proven to be an effective
method to reduce the computation and memory size while
maintaining the overall model accuracy. For example, deep
compression [9], [28] can reduce the number of weights in
AlexNet [29] and VGG-16 [3] by 9× and 13×, respectively.
These are known as unstructured pruning techniques. There are
other pruning techniques that prune the weights with structured
patterns [15], [30], [31]. The advantage of structured pruning
techniques is that they are hardware friendly. However, they
often yield a low compression rate due to the strict mathemat-
ical formalization. The sparse CNN accelerators we propose
can be used for both structured and unstructured pruning
techniques.

B. Neural Architecture Search

NAS aims at automating NN architecture design, in analogy
to deep learning automating feature engineering. Generally, a
NAS program consists of search space, cost functions, and
search algorithm. First, the search space generates a concrete
NN architecture by combining different types of convolu-
tional layers. Then, the NN architecture is evaluated by the
cost functions, which consider the accuracy, network size, and
the execution latency on a target platform. As for the algo-
rithm, the earliest NAS algorithms train it from scratch on the
whole data set using a controller RNN [32], [33]. However,
these approaches mainly focused on the model accuracy with-
out the consideration of the execution latency. Besides, they

TABLE I
ANALYSIS OF RECENT SPARSE CNN DATAFLOW

are prohibitively computation intensive and are limited to
small data sets and cell-level search spaces. Recently, there
are NAS works introducing the hardware latency in the cost
function [34]–[36]. However, these approaches only target
a fixed hardware architecture, such as GPU platforms and
mobile phones. The search algorithm does not take the hard-
ware reconfigurability into account, which cannot be applied
to FPGA platform.

Different from previous NAS approaches, we take full
advantage of the flexibility of FPGA design where we incor-
porate hardware parameters into our NAS framework. More
concretely, we build a resource model to estimate the FPGA
resource utilization with architectural parameters and a latency
model with both convolution parameters and architectural
parameters. In this manner, FPGA architecture design can be
taken into account in the search space. Section VI will provide
the details of our hardware-aware NAS approach.

III. FPGA DATAFLOW DESIGN

A. Dataflows for Sparse CNNs on ASIC

There have been prior efforts on designing dataflows for
sparse CNNs on ASIC platforms. However, these dataflows
will be inefficient for FPGA platforms due to the distinct archi-
tectures. In Table I, we classify prior ASIC designs based on
the inner computation of the dataflow. SCNN architecture [37]
applies the pixel-oriented dataflow where the innermost com-
putation is a Cartesian product. Using the Cartesian product,
this dataflow multiplies input pixels with weights and returns
multiple partial sums. This method requires significant coor-
dinates computation to locate the sparse weights. Besides,
the partial sums are connected with different output pixels,
which bring great challenges for pipelining on FPGAs due to
complex data dependency. Cambricon-X [38] design applies
direct and step indexing technique to select the input pixels
by detecting the nonzeros. Cambricon-X performs the vector
dot product across channels by gathering the weights into a
vector, which needs to dynamically select the input vector.
This dataflow only performs parallel computation in channel
dimensions, which also leads to poor parallelism on FPGAs.
Cvnlutin design [39] leverages the sparsity in the input feature
maps by using zero-skip computation. However, this dataflow
requires runtime control to identify the nonzeros in the input
pixels. Besides, the vector multiplication results are dynami-
cally reduced to the output via an adder tree, resulting in high

600 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 3. Weight-oriented dataflow. (a) Pseudo code of the dataflow. (b) Inner computation of the dataflow.

decoding overhead. SparTen [40] shares the similar inner com-
putation to Cvnlutin. The difference is that SparTen applies an
inner join scheme to gather the partial sums where the nonze-
ros are represented using a bit-mask. Since the input sparsity
depends on the results of the previous layer, such bit-mask
requires to dynamically encode the nonzeros into bit-mask
representation. Bit-Pragmatic [41] focuses on the sparsity in
bit level. Based-on the bit-serial unit of Stripes [42], Bit-
Pragmatic performs parallelized bit-serial multiplications, and
gathers the partial sums via a reduction tree. However, the
zero bit of input pixels cannot be determined offline, which
increases the logical overhead to detect nonzero bits in the
input vector.

B. Dataflows for Dense CNNs on FPGAs

There have been dense CNNs dataflows on FPGAs
[6], [16], [21], [43], [44]. However, these dataflows will lead
to invalid multiplications caused by the redundant connections
between weights and input/ouput channels for sparse CNNs.
As shown in Fig. 2, the invalid multiplications can be from
spatial kernel, input channel, and output channel dimensions,
respectively. The input feature maps share the same index with
the weight in the spatial kernel dimension and in the input
channel dimension. In other words, the input pixel whose index
matches the weight is needed when convolving the input with
the kernel. Besides, different kernels are connected to different
output feature maps, and the zero weight will not contribute
to the corresponding output feature map.

C. Our Weight-Oriented Dataflow

We propose to transform the convolution computation to
element–matrix multiplication by processing each weight as
a single element. We compress the sparse weights into
two arrays: 1) SPw array, where the nonzero weights in
the same input channel are compressed into a vector and
2) NZ array, which records the number of nonzero weights in
each input channel. One input channel is processed at a time.
Fig. 3(a) shows the pseudocode of our dataflow, which consists
of three steps. In step 1, we gather the necessary input pixels
into an input tile according the position (h, w, m). A TH × TW

tile in the output feature map is connected with TH × TW pix-
els in the input feature map through a specific weight. Given
a specific kernel size and the sliding stride, a TH × TW tile
corresponds to a TH′ × TW ′ tile in the input feature map as
follows:

TH′ = R + stride × (TH − 1), TW ′ = S + stride × (TW − 1)

(1)

where the kernel size is R × S. Then, the input tile slides
with a vertical stride TH and a horizontal stride TW as shown
in Fig. 3(a). Step 2 is the inner computation of our dataflow
where TN weights are multiplied with the input tile in parallel.

Fig. 3(b) presents the details of the inner computation in the
weight-oriented dataflow. Based on the position of the weight,
we select a tile of input pixels that are connected with the
weight. More clearly, given an output tile, each weight cor-
responds to a certain subinput tile determined by the position
of the weight in the kernel. For example, the value “1” in
the top-left corner of the sparse weight multiplies with all
the 4 × 4 top-left tiles of input feature maps. The weights
are from different output channels. Finally, the multiplication
results will be accumulated the output pixels according to the
index (n, h, w) in Step 3.

Our dataflow and its element–matrix multiplication inner
computation have the following advantages. First, our dataflow
processes the sparse weights one by one separately. By doing
this, we can effectively exploit the sparsity and meanwhile,
reduce the sparsity decoding overhead. Second, our dataflow
provides sufficient parallelism on FPGAs. More clearly, the
output pixels in the spatial kernel and output channel dimen-
sions are computed in parallel. Third, our dataflow has low
data dependency overhead. The results from step 2 in Fig. 3
are accumulated to different output pixels, which have no
read-and-write conflicts.

IV. ARCHITECTURE OPTIMIZATION

In Section III, we transform the convolution operation to
element–matrix multiplication. However, implementing this
dataflow on FPGA arises two challenges. The first challenge

LIANG et al.: EFFICIENT HARDWARE DESIGN FOR ACCELERATING SPARSE CNNs WITH NAS-BASED MODELS 601

Fig. 4. Architecture overview.

Fig. 5. TLUT to locate the subinput tile.

is to select the necessary pixels for a specific weight. A sin-
gle weight is connected to only part of the pixels in the input
feature maps, and the weight in the different positions of the
kernel is connected to different input pixels, as shown in step 1
of Fig. 3. Second, to ensure multiple results can be accumu-
lated to the output buffer in parallel in step 2, a dedicated data
layout is required under the hardware constraints of FPGA
memory structure (e.g., dual-port BRAM). Furthermore, the
PEs should be pipelined to increase the throughput.

A. Architecture Overview

As shown in Fig. 4, the input buffer contains four rows of
feature maps. The output buffer size is set to store all pixels in
one row of feature maps. Our FPGA accelerator consists of TN

PEs with each PE having TH ×TW multipliers. Each PE is con-
nected with a TLUT to match the weight and the required input
pixels (Section IV-B). In Section IV-C, we propose a novel
weight layout where the parallel weights are stored continu-
ously. Besides, the layout can ensure the results from the PE
array are accumulated to different output banks without data
access conflicts in the pipeline. To cooperate with the layout,
in Section IV-E, we propose a CMUX to locate the channel
address. The CMUX receives the weight index in the sparse
format and outputs which bank the results should be accumu-
lated to. Since the weight distribution across output channels
might be unbalanced, we analyze the load balancing problem
in Section IV-F.

B. TLUT Module

As aforementioned, the weights represent the connections
between the input feature map and the output feature map.
However, when the weight is sparse, the connection loses its

structured topology. To bridge the gap between irregular con-
nections to input pixels and the regular PE array, we insert
a TLUT between the input tile and PEs. Fig. 5 depicts how
the weight and the input pixels are paired. When the kernel is
sliding in the input tile, the weight in a R × S kernel is con-
nected to a set of input pixels in the input tile. These pixels
are batched together into a new tile. For example, in Fig. 2,
the position of the weight with value “1” is (0, 0), which cor-
responds the top-left tile, and we can directly fetch the pixels
from the TLUT module, which has been prefetched when the
start point (h, w, m) is determined.

There are R × S subtiles in total with R × S positions in the
kernel. These tiles are stored in local registers in the TLUT
module. As the PE array processes multiple weights in paral-
lel, each PE has its own TLUT module. As shown in Fig. 4,
the input tile is reused by duplicating the pixel into multiple
TLUT modules. The weight is reused by multiple pixels in the
input tile. The TLUT module replaces runtime index matching
with a simple array indexing operation by introducing addi-
tional local registers. This helps to save the logic resources
significantly since the runtime index matching requires a large
number of multiplexers.

C. PE Design and Weight Layout

The PE receives the decoded weight and the selected tile
from TLUT. We initiate a PE array with each PE conduct-
ing an element–matrix multiplication operation. In step 2
of our dataflow, we compute multiple output pixels from
different output channels in parallel. There are TN homoge-
neous PEs process multiple weights and input tiles in parallel.
Furthermore, we apply pipelining technique to our PE design.
Pipelining allows multiple operations in step 2 to process
concurrently to increase throughput, and the pipeling effi-
ciency is determined by the iteration interval (II). According
to Fig. 3, the iteration interval is bounded by the weight access
bandwidth and output access bandwidth.

To enable simultaneous update of multiple output channels,
the output buffer is partitioned to TN × TH × TW banks where
each bank i in the channel dimension stores the weights from
the n = (TN × x + i) output channel as shown in Fig. 8.
Traditionally, the weights are sorted in the ascending order of
channels. If more than one weight need to be read from the
same bank, this will lead to a long read latency. To address
this problem, we rearrange the weight layout according to
its remainder Re by dividing the output channel n with TN

(Re = n mod TN), as shown in Fig. 6, so that the results
from the PE array are accumulated to the output buffers. For
example, in Fig. 6, four weights are processed in parallel. In
our weight layout, the results from the PE array need to be
accumulated to the output channel (0, 5, 2, 7) in iteration i+1,
whose remainder is (0, 1, 2, 3). In this manner, multiple write
operations refer to different banks, resulting in an improved
iteration interval.

D. Sparse Format

To cooperate with the weight layout, we propose an inter-
leaved output channel coordinate list (IOCOO) format to

602 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 6. Weight layout in the output channel dimension. II is the loop iteration
interval of pipeline. (a) A straightforward data layout by sorting the weights
according to the channel number in ascending order. (b) Proposed data layout
by sorting the weights according to the channel number in cyclic order.

store the sparse weights. More clearly, weights in one input
channel are stored in a vector. Each element is 5-tuple
(n, r, s, value, valid), which represents the indices and the
value of the weight. These tuples are stored with different
bit width as follows. Using this format, the compressed weight
can be directly sent to PEs without decoding overhead, leading
to a high PE bandwidth utilization.

Fig. 7 shows the compression rate of a few well-known for-
mats, such as CSR, CSC, and COO, and recently proposed
formats, including C2SR of MatRaptor [45] and CISS of
Tensaurus [46]. For CSR, CSC, and C2SR formats, we flatten
the weight into a (1024×3×3)×1024 matrix. The compression
rate is given by

compression rate = the compressed data size

dense data size
.

In Fig. 7, CSR has a lower compression rate because of
the matrix shape. The COO format shows a higher memory
requirement as indices are stored individually. The compres-
sion rate of our approach is similar to CSC because of the same
number of pointers. In the CISS format, extra information is
required to store pointers of higher dimensions as the weight is
a 4-D-tensor. C2SR shares a similar idea to our design where
each row is assigned a fixed channel in a cyclic manner to
avoid memory conflict. Though our format requires a little
higher memory, less logic resource is needed for decoding.
For example, using CSR format, the spatial coordinate of the
weight needs to be calculated according to the row pointer.

We also analyze the available bandwidth of different for-
mats, as shown in Fig. 7. The bandwidth is calculated with
the assumption that the PE number is 8, and the frequency
is 1 GHz. Traditional formats, such as CSR, CSC, and COO,
only have a single entry for compressed weights resulting low
bandwidth. The bandwidth of CISS and IOCOO is similar
since both of these two formats partition the weight according
to PE numbers. C2SR has higher bandwidth. This is because
each PE in MatRaptor [45] is responsible for multiple weights

Fig. 7. Compression rate of different format. We assume the filter size is
1024 × 1024 × 3 × 3.

Fig. 8. CMUX to locate the output channel address.

in one iteration. To enable enough bandwidth, C2SR parti-
tions the weight matrix into more pieces leading to higher
bandwidth.

E. CMUX Module

In the PE array, each PE generates a tile of results that
belong to a distinct output channel. The address that the results
need to be accumulated to is determined by the index in the
format. A CMUX is inserted between the PE array and the
output buffer to locate the address as shown in Fig. 8. The
CMUX consists of TN input wires, which represent the num-
ber of banks in the output channel dimension. The CMUX
module will first compute the output address according to the
remainder, e.g., the first input wire means its remainder is 1.
Then, CMUX will output which bank the results need to be
accumulated.

F. Load Balancing Analysis

In our architecture, PEs strictly process TN weights with
different remainders together. However, the weights with dif-
ferent remainders cannot be evenly distributed. So we align
the weights with unnecessary data among all the remainders
so that the number of weights across different remainders is
equal. There is a valid signal in IOCOO format to indicate
whether the weight is valid. As a result, the latency is always
bounded by the remainder with the maximum nonzeros. The
computation efficiency can be computed as follows:

Computeeff = # of valid

of valid + # of unnecessary
. (2)

In the example of Fig. 9, the parallelism factor TN is set to 4, 6,
and 8 with a fixed number of nonzeros 28. For example, when
TN = 8, the computation efficiency is [28/(28 + 12)] = 70%.
In the experimental section, we will analyze the computation
efficiency using real networks.

LIANG et al.: EFFICIENT HARDWARE DESIGN FOR ACCELERATING SPARSE CNNs WITH NAS-BASED MODELS 603

Fig. 9. Unnecessary computation under proposed weight layout.

V. IMPLEMENTATION DETAILS

A. Memory System

The on-chip memory of FPGAs is not large enough
to hold all the channels of feature maps. Besides, there
exist data reuse opportunities both horizontally and verti-
cally since there is overlapping when the kernel slides across
the input feature maps. Line buffer design is widely used
in previous accelerators and can effectively reuse the input
data [6], [21], [24], [47]. Hence, we apply line buffer design
to load and calculate feature maps. We implement line buffer
design using loop tiling techniques where the required data in
tiled loops are stored in the on-chip BRAM. Different tiling
strategies can lead to different data reuse opportunities. In
our design, we choose to tile the loop in the channel dimen-
sion with factor KM and KN , as shown in Fig. 3(a). Because
when the kernel sliding across feature maps, the relationship
between the data of different channels is irrelevant or inde-
pendent. Assuming the sliding stride of convolution kernel is
one, each input line buffer contains KM × W elements, and
each output line buffer contains KN × W elements. To sustain
sufficient on-chip bandwidth for PE computation, we parti-
tion each buffer according to the parallelization degrees. For
example, each output line buffer is partitioned with factor TW

in width dimension and factor TN in channel dimension.
The modules in the PE are also pipelined to increase

throughput. Clearly, there are two input tiles working in a
ping-pong manner to overlap the latency of TLUT and the
latency of the PE array. The latency of generating TLUT can
be regarded as a constant. The latency of the PE array depends
on the loop count of LK and the pipeline depth, as shown in
Fig. 3. In general, the latency of loop LK is much larger than
the latency of TLUT; therefore, our PE design can achieve
high efficiency.

B. Implementation of Other Layers

In general, the modern CNN networks contain different
kernel sizes. For example, Resnet has 1 × 1 and 3 × 3 kernels
in the residual block, and GoogLeNet has 1 × 1, 3 × 3, and
5 × 5 kernels in the inception module. Since each weight is
processed independently in our dataflow, our architecture can
flexibly handle different kernel sizes. To unify the structure of
TLUT, we transform all the kernels to the 3×3 kernel. Fig. 10
shows an example that transforms the 5×5 kernel to the 3×3
kernel. The 5 × 5 kernel is padded to 6 × 6 kernel with zeros
then split into four 3×3 kernels. Apart from the convolutional
layers, there are other layers in CNN models. In our architec-
ture, we implement two widely used layers: 1) pooling layer

Fig. 10. Uniform design different kernel sizes.

TABLE II
HARDWARE DESIGN PARAMETERS

and 2) rectified linear unit (ReLU) layer. The pooling layer
outputs the maximum values in subregions of input feature
maps. ReLU layer sets any input value less than zero to zero.
These two layers are implemented by introducing comparison
operators when writing the results to off-chip memory.

To accelerate an end-to-end CNN model, our design also
supports ReLU layer, pooling layer, and FC layer. FC layers
connect all the neurons in the previous layer to every single
neuron in the weight matrix. We treat FC layer as a convolution
layer with 1 × 1 kernel. Max pooling layers are widely used
in CNNs, which output the maximum values in subregions of
input feature maps. ReLU layers set any input value less than
zero to zero. As shown in Fig. 4, pooling and ReLU logic
are set before storing the output line buffer to the off-chip
memory. ReLU is a pixelwise operation, which is implemented
by introducing comparison operators for each pixel. Pooling
layer is implemented by gating the nonmaximum value in the
pooling region when storing the output pixels.

VI. FPGA-AWARE NAS

In previous sections, we provide an efficient architecture
design for sparse CNN acceleration. Our hardware implemen-
tation involves several design parameters as shown in Table II.
These parameters will affect both FPGA resource utilization
and performance. More importantly, the execution latency of
a CNN model is determined by both hardware parameters
and convolution parameters, which makes it hard to find the
optimal hardware design and an FPGA-friendly CNN model.
Here, we propose a NAS framework that searches both archi-
tecture parameters and CNN model parameters. Specifically,
we first formulate a resource model as the search constraint,
and a latency model that is incorporated into the loss function.
Then, we perform architecture search on a sparse supernet,
which minimizes the total latency meanwhile maintains the
accuracy.

604 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

A. Resource Model

We use the number of memory banks to estimate the BRAM
usage, which is mainly used for input buffer, output buffer, and
encoded weight buffer. In our design, the PE array generates
multiple TH ×TW output tiles in TN different output channels.
Considering double buffer design, the number of output buffer
banks is 2TH × TW × TN . In the line buffer design, the input
line buffers are rotated to reuse the overlapped area during the
kernel sliding. According to (1), the number of input buffer
banks is (TH + TH′) × TW ′ . As for the compressed weight
in IOCOO format, five tuples are represented with different
bitwidth. The value and output channel number are stored
individually. While the rest tuples are packed together and
stored as a 9-bit element. Each part is partitioned with factor
TN . Therefore, the bank number of sparse weight is 3×TN . In
summary, the total number of banks can be written as follows:

Banks1 = 2TH × TW × TN + (TH + TH′) × TW ′ + 3 × TN .

(3)

Most DSP resource is consumed to perform multiplications
between the input element and the sparse weight. Here, we
assume a single DSP can be implemented as one multiplier.2

In the CMUX module, each output tile needs to locate the
output channel number, which takes three DSPs to calculate
the address (3 comes from Vivado HLS). In this manner, the
DSP utilization can be estimated as follows:

DSPs = TH × TW × TN + 3 × TN . (4)

Modeling the LUT consumption on FPGA is more complex.
For simplicity, we only model the LUT consumption for TLUT
modules and CMUX modules. In our dataflow, there are TN

TLUTs working in parallel. The LUT consumption depends
on the input tile size TH × TW . Besides, there are TN CMUX
modules, which is a crossbar with TN input wires. In summary,
the LUT consumption is formulated as

LUTs = TN × (αlog(TH × TW) + βlog(TN)) (5)

where αlog(TH × TW) is the LUT consumption to store a sin-
gle input tile, and βlog(TN) is the LUT consumption for one
CMUX module. α and β can be obtained on different plat-
forms in advance. We first get the LUT consumption for a set
of (TH, TW) based on Vivado High level Synthesis Tool. Then,
we get α and β based on linear regression.

B. Latency Model

The overall latency is either bounded by the PE computation
time or the data transfer time in the line buffer design. First,
we model the latency of loading/storing TH rows of feature
maps to/from the line buffer. Assuming each data are stored
in 16 bits fixed point and the kernel sliding stride is 1, the
data transfer time can be formulated as follows:

Ttra = TH × W × max(KM, KN) × 16bits

Bandwidth
(6)

2In Xilinx FPGA, one BRAM can store 1024 words of 18bits. The required
BRAMs is determined by the data size in one bank.

where KM, KN are tiling factors in the channel dimension in
Table II.

To simplify the estimation of the computation time, we use
effave to represent the average computation efficiency as dis-
cussed in Section IV-F. We define the computation time as the
time to generate TH × KN output elements

Tcom =
(

sparsity

effave
×

⌈
KN

TN

⌉
× KM ×

⌈
Wout

TW

⌉
× II + Pdepth

)

× 1

Freq
(7)

where Freq is the operating frequency of FPGAs. II denotes
the iteration interval of the pipeline. In our implementation,
the loop LK in Fig. 3(a) is perfectly pipelined, so II = 1. Pdepth
is the pipeline depth, which can be ignored when the loop trip
count is large enough.

Involving sparsity can result in low computation latency.
Therefore, we also consider the initial time to load the first
TH′ rows of input feature map and the sparse weight

Tinit = KM × KN × TH′ + 3 × R × S × KM × KN × sparsity

Bandwidth/16bits
.

(8)

Putting it all together, the total latency is determined by
the initial time and maximum between data transfer time and
computation time.

Ttotal =
⌈

M

KM

⌉
×

⌈
N

KN

⌉
×

(⌈
H

TH

⌉
× max(Ttra, Tcom) + Tinit

)
.

(9)

C. Search Algorithm

Our NAS algorithm models the FPGA architecture. As
aforementioned, our architecture is parameterized with par-
allelization factor TH, TW , TN and buffering factor KM, KN ,
which affect the resource utilization and execution latency.
Therefore, our problem setting specifies each layer o with three
groups of parameters, including model weights w, and archi-
tecture parameters p and hardware design parameters h. More
specifically, when deriving child networks from the supernet,
each layer is sampled from a multinomial distribution parame-
terized by p over a predefined candidate set {oj}. The hardware
design parameters are also taken into account in twofolds.
First, the resource model ensures that the resource require-
ment of the search result can be met for a given FPGA device.
Second, the latency model is integrated into the loss function
for software–hardware co-design.

We use the same search space and supernet architecture as
shown in Tables III and IV. We adopt the mobilenet inverted
residual block as the basic building block of the supernet,
whose kernel size can be chosen from {3, 5, 7} and expansion
ratio from {3, 6}. Furthermore, to permit flexibility in network
depth, a special skip layer is added to the candidate set if the
input and output of a layer are of the same size.

Fig. 11 shows our search algorithm, which comprises three
stages, i.e., warm up, searching, and retraining. In the warm-up
stage, we adopt ADMM pruning to obtain a sparse super-
net [10]. The supernet is trained normally for several epochs

LIANG et al.: EFFICIENT HARDWARE DESIGN FOR ACCELERATING SPARSE CNNs WITH NAS-BASED MODELS 605

TABLE III
CONFIGURATIONS OF CANDIDATE OPERATIONS

TABLE IV
SUPERNET SPECIFICATION. HERE MIXOP DENOTES THE MIXED

OPERATION, WHICH CAN BE CHOSEN FROM SEVEN CANDIDATE

OPERATIONS, 3 × 3_CONV DENOTES A NORMAL 3 × 3 CONVOLUTION,
AND 3 × 3_MBCONV1 REPRESENTS A 3 × 3 MOBILENET INVERTED

RESIDUAL BLOCK OF EXPANSION RATIO 1

Fig. 11. FPGA-aware NAS flow.

before we introduce the ADMM regularizer to promote spar-
sity. After convergence, we zero out the least significant
connections according to the magnitude. A binary mask is then
applied over each pruned parameter to prevent backpropaga-
tion from tampering with the weights of removed connections.
In the second stage, we perform NAS over the sparse super-
net. Our loss function integrates the above-mentioned resource
constraints and latency model, which is given by

minimize{wi},{pi},{hi}
LossCE +λE

[
latency

]
subject to LUTs(hi) ≤ LUTmax

DSPs(hi) ≤ DSPmax

hi ∈ H, i = 1, . . . , N (10)

where λ is a scaling factor, LossCE is the accuracy loss, and
LUTmax and DSPmax denote, respectively, the limitation of
LUT and DSP resources. The weight decay term is omitted
here for simplicity. The second term of the loss function stands

Fig. 12. Automatic hardware generation for ASIC and FPGA.

for the expected latency of the whole network, which can be
calculated as follows:

E
[
latency

] =
∑

i

∑
j

pj
i × Ttotal

(
oj

i, hi

)
. (11)

Here, oj
i and pj

i are the jth candidate in the ith layer and its
assigned possibility. The estimated latency Ttotal is derived by
assigning a specific candidate and hardware configuration as
shown in (9).

To simplify the problem, we optimize hardware parameter
h in a separate subproblem:

minimize
h

Ttotal(o, h)

subject to LUTs(h) ≤ LUTmax

DSPs(h) ≤ DSPmax

h ∈ H. (12)

Since the search space H is a finite discrete in our case, a
simple parameter sweep will find the globally optimal solu-
tion h∗. In our case, the latency overhead of exhaustive search
is negligible compared to neural network training. Then, the
original loss function can be rewritten as

minimize{wi},{pi}
LossCE +λ

∑
i

∑
j

pj
i × T∗

total

(
oj

i

)
(13)

where T∗
total(o

j
i) is a shorthand for Ttotal(o

j
i, h∗

i).
In this manner, the simplified objective resembles a regular

hardware-aware NAS problem that does not involve hardware
parameters, and we can solve the remaining part according
to the technique in [35]. After the search algorithm has suffi-
ciently converged, we obtain the optimal subnetwork by only
keeping the most promising candidate at each layer. Since we
have pruned the supernet in the warm-up stage, the compact
network retains its sparsity. Finally, the best architecture is
retrained from scratch for the final evaluation.

Note that our framework is able to support more complex
cases where H can be a large discrete space or even a contin-
uous one, and where a more sophisticated performance model
is adopted. For example, given a learned performance model
Ttotal parameterized by θ , we could backpropagate gradients
through it and optimize hardware parameters h with gradient
descent by fixing θ .

D. Automatic Hardware Generation

In this section, we integrated our architecture design with
our NAS engine into an automatic flow for hardware gen-
eration. The intermediate passes are summarized in Fig. 12.
The inputs consist of a specific task and budget constraints.

606 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

TABLE V
PERFORMANCE COMPARISON WITH PREVIOUS IMPLEMENTATION

TABLE VI
TRAINING CONFIGURATIONS

For ASIC design, the budget involves energy and area con-
straints under certain technology. For FPGAs, the budget is
the on-chip resources. Then, our flow explores the space of
the hardware–software co-design using the proposed NAS
engine. The co-design information includes the target execu-
tion latency and the accuracy of a specific task. The co-design
tuner helps to find the optimal architecture parameters and
model parameters in the search space. Finally, our automatic
flow generates a CNN model and hardware implementation
written in high-level template. The template can be synthe-
sized using Xilinx Vivado HLS to get the FPGA bitstream, or
using Mentor Catapult HLS tool [50] to generate Verilog RTL.

VII. EXPERIMENT

In this section, we first introduce the experiments setting.
In Section VII-B, we show the performance of our accel-
erator for the state-of-the-art CNNs and compare it with
previous dense CNN FPGA accelerators. Then, we measure
the resource utilization and analyze the utilization breakdown.
In Section VII-D, we examine the hardware efficiency of
different configurations using four state-of-the-art networks.
Finally, we evaluate our NAS approach on FPGAs and com-
pare to other NAS work.

A. Experimental Setup

We evaluate our design on Xilinx ZCU102 platform.
ZCU102 consists of an UltraScale FPGA, quad ARM Cortex-
A53 processors, 500-MB DDR3. Our FPGA implementation
is operated at 200-MHz frequency on this platform. To mea-
sure the runtime power, we plugged in a power meter in the
FPGA platform. In this work, we first use Xilinx Vivado HLS

(v2017.4) tool chain to transform C code into RTL implemen-
tation. Then, we employ Xilinx SDSoC (v2017.4) to compile
the source code into bitstream. We apply [9] and [28] meth-
ods to train the CNN model with sparsity using the Caffe
framework [51]. Specifically, we set the expected sparsity of
the network by setting the value that is less than a threshold
to zero, followed by retraining the network to regain any lost
accuracy. In our experiment, we use the state-of-the-art CNNs,
including Alexnet, VGG-16, Resnet-152, and GoogLeNet. We
achieve 10.8%, 11.7%, 23.5%, and 34.2% sparsity3 of Alexnet,
VGG-16, Resnet-152, and GoogLeNet without accuracy loss,
respectively.

We perform NAS on the full ImageNet. The validation set
contains 50 000 images randomly sampled from the original
training set. As for ADMM pruning, we set rho4 to 1e-3,
1e-2, and 1e-1, respectively in multirho training. Both the
ADMM pruning and the NAS framework are implemented in
PyTorch [52]. We use λ = 0.1 in our experiments, and sum-
marize other training configurations in Table VI. Note that we
spend more GPU hours (130 epochs versus 40) in the warm-
up stage because of pruning. All training stages are run on 4
NVIDIA V100 GPUs.

B. Performance Analysis

In this section, we show the performance of our accelerator
using modern CNNs. We set the accelerator configuration as
<TH, TW , TN>=<8, 8, 16>, which involves 1024 multipliers.
In this configuration, the peak available performance can be
computed as

peak performance = # of multipliers × frequency × 2.

Here, 2 means multiplication and addition operations. The
peak performance of our design is 409.6 GOP/s.

We also compare our design with previous FPGA acceler-
ators in Table V. References [16] and [21] are dense CNN
accelerators, and [43], [48], and [49] are sparse CNN accel-
erators. The performance in Table V represents the effective
performance. For the dense CNN accelerators, the effective
performance is computed by multiplying the performance

3Sparsity is defined as the percentage of nonzeros.
4Rho is the scale factor of the penalty term in ADMM pruning.

LIANG et al.: EFFICIENT HARDWARE DESIGN FOR ACCELERATING SPARSE CNNs WITH NAS-BASED MODELS 607

Fig. 13. Computation efficiency. (a) Alexnet. (b) VGG-16. (c) GoogLeNet. (d) Resnet.

of dense CNNs with sparsity. According to Table V, our
implementation achieves 223.4 GOP/s effective performance
on sparse Alexnet, which shows 2.4× speedup compared
with [43].5 You and Wu [49] showed similar performance to
our design, but it applies low bit precision, which requires
less resources. The performance on VGG network is 309.0
GOP/s, which is 3.6×–4.8× higher than [16] and [21].
Niu et al. [48] showed higher performance because they
pruned the network in the frequency domain, which results in
elementwise multiplication pattern. This computation pattern
shows less complexity compared with the convolution opera-
tor. For Resnet-152 and GoogLeNet, our design achieves 291.4
and 257.4 GOP/s, respectively.

To make a fair comparison across different platforms, we
also present the DSP-efficiency and logic-efficiency on each
platform. On average, our design exhibits 0.24 GOP/s/DSP
DSP-efficiency, which shows 2.5×–5.7× improvement com-
pared with prior works [16], [21], [48]. On the other hand, our
design shows lower logic efficiency. This mainly comes from
the TLUT module and CMUX module for the data decoding.
Most previous designs target dense CNNs that exhibit regular
data access. Therefore, they have higher logic efficiency.

The speedup of our design is because the weight-oriented
dataflow can effectively eliminate the useless multiplications.
In addition, the dataflow maintains a high utilization of on-
chip resources. Previous implementations cannot efficiently
exploit the zeros in the computation, which results in a waste
of on-chip resources. On the other hand, previous dense CNN
accelerators are highly optimized and DSPs are fully utilized
to conduct multiplications. In our implementation, only half
of DSPs is utilized, and the performance is bounded by the
logic resource.

The inefficiency of our implementation mainly comes from
three aspects. First, there exist some invalid weights in our
weight layout, which leads to imbalanced workload among
PEs. Section VII-D presents the details of the load imbalance
problem. Second, the feature map size in the CNN layers can-
not divide TH and TW evenly. We choose 8 × 8 as the output
tile size. Taking the last convolutional layer of VGG as an
example, the feature map size is 14 × 14 leading to a 12.5%
waste of computation. Third, as mentioned in Section IV-C, we
apply pipeline technique in PEs. When the workload is small

5This article [43] only reported the performance and the platform.

TABLE VII
RESOURCE UTILIZATION AND LATENCY

after pruning, the latency of PE can be bounded by the depth
of pipeline. In our implementation, the pipeline depth is eight
cycles. Compared with the VGG network, Resnet-152s and
GoogLeNet consist of many convolutional layers with 1 × 1
kernels, leading to low performance. The speedup of VGG-16
is higher than that of Alexnet, because VGG-16 is a structured
and regular network. The kernel size of all layers is 3 × 3;
however, Alexnet contains many layers in different types.

C. Resource Utilization Characteristics

Table VII shows the resource utilization breakdown with
the configuration (TH = TW = 6, TN = 8). In Table VII, we
also present the prediction accuracy of our resource model
and latency model. The cycle number of latency is tested on
the convolutional layer with 112 × 112 feature map size and
64×64×3×3 kernel size. The inaccuracy sources of DSP uti-
lization mainly come from the padding operation and FIFOs
in the line buffer design. A few extra BRAMs are used for
FIFOs and pipeline buffers. The actual latency is obtained
using Xilinx HLS simulation tools. The prediction error of
latency model results from the padding operation, which only
occupied a few cycles.

Fig. 14 shows the resource utilization of different configura-
tions obtained from Xilinx Vivado tool (v2017.4). In Fig. 14,
the LUT utilization increases as the parallelism factor TN

increases because of CMUX. When TN is large, the utilization
of BRAMs is mainly determined by the parallelization degree
of feature maps (TH, TW). When TN is small, BRAM utiliza-
tion is similar. This indicates that the consumption of BRAM
is determined by the input and output data size, instead of the
partition factors. For example, when TN = 4 in (3), each bank

608 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

Fig. 14. Resource utilization (HaWbNc means TH = a, TW = b, TN = c).

is constructed using two BRAMs. While each bank only needs
one BRAM when TN = 8.

D. Computation Efficiency

In our implementation, the PE array processes PN weights
with different remainders at the same time. However, the
remainder distribution is irregular, which can result in load
imbalance problem as discussed in Section IV-F. Fig. 13 shows
the efficiency across different layers with different parallelism
factors. We find that the format efficiency increases when
the modular factor TN becomes larger. Because a large TN

will bridge the gap between the maximum number of valid
values and the average number of valid values among differ-
ent remainders. We find that the efficiency increases as the
network goes deeper. This because the number of channels
increases as the network goes deeper, which makes the total
number of nonzeros larger. A large number of nonzeros can
compensate for the gap between the maximal and minimal
number of remainders. Also, we observe that the computa-
tion efficiency of GoogLeNet and Resnet-152 is much higher.
This is because the sparsity of these two networks is relatively
large, which leads to a large number of nonzeros. Besides, the
computation efficiency of some layers in GoogLeNet is low.
Because the channel number cannot be divided evenly by TN .
For example, the output channel number of inception_4b layer
in GoogLeNet is 24, which is not a multiple of TN = 16.
In conclusion, our dataflow can maintain high computation
efficiency for different configurations and networks.

E. Comparison With ASIC Dataflows

In this section, we build several cycle-accurate models
for the comparison with ASIC sparse tensor accelerators.
Cambricon-X [38] and SCNN [37] are CNN-specific ASIC
accelerators. We only model the behavior of the PE array of
these designs. To make a fair comparison, we scale the num-
ber of multipliers to 1024. Tensaurus [46] and ExTensor [53]
are general sparse tensor accelerators. MatRaptor [45] focuses
on the sparse matrix–matrix multiplication (GEMM). When
comparing with them, we transform the convolutional layer to
GEMM using the image-to-column (im2col) operation. The
input image is regarded as a dense matrix.

Fig. 15. Comparison with other ASIC dataflows.

Fig. 15 gives the comparison results. We also draw the line
of theoretical speed up calculated by (1/sparsity). When the
sparsity is higher than 70%, Cambricon-X and our design show
near-ideal speedup. However, SCNN shows a lower speedup
because of a large amount of fanout of the PE array when
most weights are nonzero. On the other hand, our design out-
performs Cambricon-X when the sparsity decreases. This is
because Cambricon-X requires index comparison to conduct
sparse vector dot product, which is inefficient for low sparsity.
Our weight-oriented dataflow minimizes the indexing overhead
by introducing a static TLUT module.

The speedup of general sparse tensor accelerators is always
lower than the CNN-specific accelerators. Such limitation
mainly comes from the im2col operation where the input
images are duplicated multiple times and flattened into a
matrix. On the other hand, CNN accelerators naturally leverage
the convolution properties to avoid data rearrange overhead.
To be specific, Tensaurus unifies the sparse computation as an
operation between a scalar and a fiber, where each PE per-
forms the multiplication between one weight and one input
vector. MatRaptor applies the rowwise matrix multiplication
dataflow where one weight is multiplied with the correspond-
ing row of the input matrix. Though these two dataflows share
a similar idea to our design that each PE is responsible for
the multiplication between one weight and multiple inputs,
their speedup is limited by the sparsity. PEs in Tensaurus and
MatRaptor are parallelized with inputs from different rows,
which require a synchronization operation between different
PEs when accumulating partial sums. Such synchronization
overhead is small when the sparsity is extremely low. However,
in sparse CNN models, the sparsity is usually around 0.1–0.2,
which can lead to high synchronization overhead. ExTensor
is parallelized using multiple dot product, which requires to
compare the index between two vectors. When the sparsity is
high, most indices can be matched. Therefore, ExTensor out-
performs Tensaurus and MatRaptor when the sparsity is higher
than 0.4.

F. Scalability and Comparison With GPU

We also test our design on the ZC706 platform to demon-
strate the scalability. Our implementation is operated at
166-MHz frequency on this platform. ZC706 has 900 DSPs,
1090 BRAMs, and 305K logic cells. We set the configura-
tion parameter as (TH = TW = 8, TN = 8) and achieve
134.2 GOP/s on Resnet-152, which means our design can

LIANG et al.: EFFICIENT HARDWARE DESIGN FOR ACCELERATING SPARSE CNNs WITH NAS-BASED MODELS 609

TABLE VIII
COMPARISON WITH GPU PLATFORM USING RESNET-152

TABLE IX
LAYER TYPES FOR LATENCY PROFILING. S-CONV: SPATIAL

CONVOLUTION. DW-CONV: DEPTHWISE CONVOLUTION

be scaled to different platforms. Besides, we conduct a com-
parison between GPU and FPGA platforms, as shown in
Table VIII. We measure the performance of dense Resnet-152
using the latest CuDNN on NVIDIA TitanX platform. To make
a fair comparison, we also apply CuSparse library to accel-
erate sparse Resnet-152. The sparse version shows a lower
performance because of the memory uncoalesing problem.
In conclusion, our design shows 1.37× speedup and 7.56×
energy efficiency compared with the TitanX platform.

G. Latency Profiling

We first profile the latency of different layer types, which
help to find the FPGA-friendly neural network architecture.
In Table IX, we list eight representative layer types, including
spatial convolution and depthwise convolution. Fig. 16 shows
the detailed profiling results involving initial time, compute
time, and data transfer time. According to Fig. 16, the compute
time is the bottleneck for most layers (C4–C8). However, the
transfer time of the layer that shows less data reuse is higher
than the compute time (C1 and C2). These layers are often
spatial convolution with 1×1 filter and depthwise convolution.
Besides, we also observe that the initial time can also affect the
performance when the feature map size is small (C3 and C4).
For example, for the C3 layer, the feature map only contains
three input channels, which is less computation intensive. This
phenomenon can also be found in C4 layer whose channel
number is 32.

H. NAS Results

As shown in Table X, compared to other compact mod-
els that are with similar accuracy, our method consistently
improves upon inference latency. Specifically, when con-
fronted with MobileNetV2-1.0 [54], a manually designed

Fig. 16. Latency profiling with different layer parameters.

Fig. 17. Accuracy versus latency of sampled subnetworks. (a) Subnetworks
sampled from the pruned supernet. (b) Subnetworks sampled from the
unpruned supernet.

architecture that targets no specific platform, our model
achieves 1.49× speedup. Note that ProxylessNAS and FBNet
are NAS networks, but target a fixed hardware, e.g., CPU,
GPU, and mobile phones, which did not search architec-
ture parameters. While maintaining accuracy on par with
FBNet-B [34] and ProxylessNAS-mobile [35], our architec-
ture is 2.36× and 3.65× faster, respectively. Nevertheless,
our method takes longer time than [35] in the warmup stage,
because we conduct ADMM pruning on the supernet addition-
ally. Yet, since we can perform architecture search multiple
times on the same supernet, the pruning cost will only occur
once.

In our experiments, we choose a conservative sparsity
of 30% to avoid significant accuracy loss. Mobilenet-like
compact networks on ImageNet have been observed to be
less tolerant to network pruning, which can be attributed to
less redundancy in parameters and a more challenging task.
Fig. 17 shows the accuracy versus latency of 300 subnet-
works randomly sampled from the dense and sparse supernet,
respectively, with the highlighted point denoting the resultant
architecture. This graph indicates: 1) the ranking of the child
networks still correlates with their actual performance since
the distribution characteristics are basically retained after prun-
ing and 2) the search algorithm succeeds in finding out an
architecture near the Pareto-front with acceptable latency. We
also provide the resultant network architecture and hardware
parameters for ZCU102 in Table XI.

To evaluate the scalability of our NAS method, we conduct
the search algorithm on ZC706 FPGA and ZCU102 FPGA,
which show different hardware resources. Table XII reports
the results on two devices with different resource constraints
and hardware search space. Based on the size of the available

610 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

TABLE X
PERFORMANCE COMPARISON WITH OTHER HANDCRAFTED MODELS (MOBILENETV2 AND SHUFFLENETV2) AND NAS TECHNIQUES

(PROXYLESSNAS AND FBNET). MOBILENETV2-1.0 AND SHUFFLENETV2-1.0 ARE THE ORIGINAL NETWORK

TABLE XI
SEARCHED NETWORK ARCHITECTURE

resource, we set the hardware parameter search range, which
differs in the output channel number that computed in parallel.
The search algorithm returns models with almost the same
top-1 accuracy under these two settings. As we can see, our
method can adapt to various hardware platforms and reflect
hardware constraints in the search process.

VIII. RELATED WORK

Architecture for Dense CNNs on FPGAs: Prior efforts to
accelerate CNNs have shown substantial successes on FPGAs.
Ma et al. [21] made an in-depth analysis of loop optimization
techniques in spatial convolution, which includes loop tiling,
loop unrolling, and loop interchange. Zhang and Li [16]
focused on reducing the on-chip memory bandwidth require-
ment. Wei et al. [23] implemented CNN on an FPGA using
a systolic array architecture, which can achieve high clock
frequency under high resource utilization. Zhang et al. [55]
proposed AccDNN tool, which included high-quality RTL

network layer IPs, a fine-grained layer-based pipeline architec-
ture, and an automatic design space exploration tool. Besides,
there are some works that implement fast algorithms to further
accelerate CNNs [47], [56]–[59].

Architecture for Sparse CNNs on ASICs: Recently, some
works explore the dataflow and architecture to accelerate
sparse CNNs on ASICs. Han et al. [60] proposed EIE CNN
accelerator, which exploits sparsity both in input feature
maps and filters but only focused on the FC layer. The
FC layer is computed using matrix multiplication, in EIE
design, the matrix is stored in CSC format and multiple
columns are computed in parallel. Parashar et al. [37]proposed
SCNN accelerator with a dataflow named PT-IS-CP (planar-
tiled input-stationary Cartesian-product). Zhang et al. [38]
presented Cambricon-X accelerator which applies step index-
ing techniques. In Cambricon-X design, the nonzeros in the
same row are divided into multiple segments with the same
size in subsequent addresses. The row that contains nonzeros
less than the size will be aligned to the size. In recent years,
some ASIC accelerators apply hardware–software design that
prunes the weight with structured pattern [15], [31].

NAS: Early NAS algorithms [33] are inefficient in terms
of search time and hardware-friendliness during inference.
There are two trends related to our work in the subse-
quent works that tackle these issues. One-shot NAS [35]
constructs a supernet and defines candidate architectures as
its subgraphs. Rather than training from scratch each time,
the weights of a sampled architectures are generated by the
pretrained supernet. DARTS [61] relaxes the discrete search
space into a concrete distribution by assigning a real-valued
weight to each candidate path. Instead of optimizing all paths
jointly, ProxylessNAS [35] samples a few paths in each train-
ing step to reduce GPU memory consumption. Device-aware
multiobjective NAS [34], [35] explicitly incorporates resource
efficiency into the objective function, either device related
(such as latency and energy consumption) or device agnos-
tic (such as FLOPs and model size). These works often
adopt a compact search space that is inspired by hand-crafted
networks. Depending on the nature of the target hardware, the
efficiency is either measured through runtime measuring [36],

LIANG et al.: EFFICIENT HARDWARE DESIGN FOR ACCELERATING SPARSE CNNs WITH NAS-BASED MODELS 611

TABLE XII
NAS ON DIFFERENT DEVICE

a premeasured lookup table [34], [35]. In parallel to our work,
there is a recent trend of incorporating NAS into SW-HW co-
design frameworks. This line of works fuses NN architecture
parameters and hardware implementation parameters into a
single search space, thereby optimizing them simultaneously
via stochastic coordinate descent [62] or gradient-based meth-
ods [63]. Our method is to some extent similar to the one
mentioned in [63], in that both adopt a mobilenet-like search
space and a gradient-based approach to NAS. Nevertheless, to
the best of our knowledge, this is the first work in this area
targeting sparsity in both NN and accelerator design.

IX. CONCLUSION

In this work, we proposed an FPGA accelerator for sparse
CNNs. We first propose a weight-oriented dataflow that
exploits element–matrix multiplication. Based on this dataflow,
we design an FPGA architecture mainly composed of a TLUT
and a CMUX. Besides, we propose a weight layout where
the weights calculated in parallel are stored continuously.
To cooperate with the weight layout, CMUX is inserted to
locate the address which can ensure no data access conflict.
Finally, we develop an FPGA-aware NAS approach to find the
hardware-friendly network structure. The experiments demon-
strate that our accelerator can achieve 223.4-309.0 GOP/s
for the modern CNNs on Xilinx ZCU102, which provides a
2.4×–12.9× speedup over previous dense CNN FPGA accel-
erators. Our FPGA-aware NAS approach shows 2× speedup
over MobileNetV2 with 1.5% accuracy loss.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. ICCV, 2015, pp. 1026–1034.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
CVPR, 2014, pp. 580–587.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available:
arXiv:1409.1556.

[4] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proc. CVPR, 2016,
pp. 779–788.

[5] N. Suda et al., “Throughput-optimized OpenCL-based FPGA accelerator
for large-scale convolutional neural networks,” in Proc. FPGA, 2016,
pp. 16–25.

[6] J. Qiu et al., “Going deeper with embedded FPGA platform for
convolutional neural network,” in Proc. FPGA, 2016, pp. 26–35.

[7] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun, “Efficient and accurate
approximations of nonlinear convolutional networks,” 2014. [Online].
Available: http://arxiv.org/abs/1411.4229.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 367–379, 2016.

[9] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural network,” in Proc. NIPS, 2015,
pp. 1135–1143.

[10] T. Zhang et al., “A systematic DNN weight pruning framework using
alternating direction method of multipliers,” 2018. [Online]. Available:
http://arxiv.org/abs/1804.03294

[11] J. Yu, A. Lukefahr, D. J. Palframan, G. S. Dasika, R. Das, and
S. A. Mahlke, “Scalpel: Customizing DNN pruning to the underlying
hardware parallelism,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 2, pp. 548–560, 2017.

[12] J. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method
for deep neural network compression,” 2017. [Online]. Available:
arXiv:1707.06342.

[13] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accelerating
convolutional networks via global & dynamic filter pruning,” in Proc.
IJCAI, 2018, pp. 2425–2432.

[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 2074–2082.

[15] C. Ding et al., “CirCNN: Accelerating and compressing deep neural
networks using block-circulant weight matrices,” in Proc. MICRO, 2017,
pp. 395–408.

[16] J. Zhang and J. Li, “Improving the performance of OpenCL-based FPGA
accelerator for convolutional neural network,” in Proc. FPGA, 2017,
pp. 25–34.

[17] Q. Xiao, L. Lu, J. Xie, and Y. Liang, “FCNNLib: An efficient and flexi-
ble convolution algorithm library on FPGAs,” in Proc. 57th ACM/IEEE
Design Autom. Conf. (DAC). 2020, pp. 1–6.

[18] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “TGPA: Tile-
grained pipeline architecture for low latency CNN inference,” in Proc.
Int. Conf. Comput.-Aided Design (ICCAD), 2018, pp. 1–8.

[19] L. Jia, L. Lu, X. Wei, and Y. Liang, “Generating systolic array accel-
erators with reusable blocks,” IEEE Micro, vol. 40, no. 4, pp. 85–92,
Jul./Aug. 2020.

[20] Q. Xiao and Y. Liang, “Zac: Towards automatic optimization and deploy-
ment of quantized deep neural networks on embedded devices,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD). 2019, pp. 1–6.

[21] Y. Ma, Y. Cao, S. B. K. Vrudhula, and J.-S. Seo, “Optimizing loop oper-
ation and dataflow in FPGA acceleration of deep convolutional neural
networks,” in Proc. FPGA, 2017, pp. 45–54.

[22] Y. Guan et al., “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in Proc.
FCCM, 2017, pp. 152–159.

[23] X. Wei et al., “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,” in Proc. DAC, 2017, pp. 1–6.

[24] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring hetero-
geneous algorithms for accelerating deep convolutional neural networks
on FPGAs,” in Proc. DAC, 2017, pp. 1–6.

[25] Y. Liang, L. Lu, and J. Xie, “OMNI: A framework for integrating
hardware and software optimizations for sparse CNNs,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., early access, Sep. 14, 2020,
doi: 10.1109/TCAD.2020.3023903.

[26] S. Han et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proc. FPGA, 2017, pp. 75–84.

[27] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An effi-
cient hardware accelerator for sparse convolutional neural networks on
FPGAs,” in Proc. IEEE 27th Annu. Int. Symp. Field-Programmable
Custom Comput. Mach. (FCCM). 2019, pp. 17–25.

[28] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015. [Online]. Available: arXiv:1510.00149

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1106–1114.

[30] C. Deng, S. Liao, Y. Xie, K. K. Parhi, X. Qian, and B. Yuan,
“PERMDNN: Efficient compressed DNN architecture with permuted
diagonal matrices,” in Proc. MICRO, 2018, pp. 89–202.

[31] Z. Xuda et al., “Cambricon-S: Addressing irregularity in sparse neural
networks through a cooperative software-hardware approach,” in Proc.
MICRO, 2018, pp. 15–28.

http://dx.doi.org/10.1109/TCAD.2020.3023903

612 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 3, MARCH 2022

[32] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016. [Online]. Available: arXiv:1611.01578.

[33] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 8697–8710.

[34] B. Wu et al., “FBNet: Hardware-aware efficient ConvNet design
via differentiable neural architecture search,” in Proc. CVPR, 2018,
pp. 10734–10742.

[35] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architec-
ture search on target task and hardware,” 2018. [Online]. Available:
arXiv:1812.00332.

[36] M. Tan et al., “MnasNet: Platform-aware neural architecture search for
mobile,” in Proc. CVPR, 2018, pp. 2820–2828.

[37] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. ISCA, 2017, pp. 27–40.

[38] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. MICRO, 2016, pp. 1–12.

[39] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. 43rd Int. Symp. Comput. Archit., 2016, pp. 1–13.

[40] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“SparTen: A sparse tensor accelerator for convolutional neural
networks,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchit.,
2019, pp. 151–165.

[41] J. Albericio et al., “Bit-pragmatic deep neural network comput-
ing,” in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchit., 2017,
pp. 382–394.

[42] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchit. (MICRO). 2016, pp. 1–12.

[43] S. Li, W. Wen, Y. Wang, S. Han, Y. Chen, and H. Li, “An FPGA design
framework for CNN sparsification and acceleration,” in Proc. FCCM,
2017, p. 28.

[44] J. H. Ko, B. A. Mudassar, T. Na, and S. Mukhopadhyay, “Design of an
energy-efficient accelerator for training of convolutional neural networks
using frequency-domain computation,” in Proc. DAC, 2017, p. 59.

[45] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “MatRaptor: A
sparse-sparse matrix multiplication accelerator based on row-wise prod-
uct,” in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchit.(MICRO).
2020, pp. 766–780.

[46] N. K. Srivastava, H. Jin, S. Smith, H. Rong, D. H. Albonesi, and
Z. Zhang, “Tensaurus: A versatile accelerator for mixed sparse-dense
tensor computations,” in Proc. HPCA, 2020, pp. 689–702.

[47] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating fast algorithms
for convolutional neural networks on FPGAs,” in Proc. FCCM, 2017,
pp. 101–108.

[48] Y. Niuet al., “SPEC2: Spectral sparse cnn accelerator on FPGAs,” in
Proc. IEEE 26th Int. Conf. High Perform. Comput. Data Anal. (HiPC),
2019, pp. 195–204.

[49] W. You and C. Wu, “A reconfigurable accelerator for sparse con-
volutional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays (FPGA), 2019, p. 119.

[50] Mentor. (2018). Catapult High-Level Synthesis. [Online]. Available:
https://www.mentor.com/hls-lp/

[51] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” 2014. [Online]. Available: arXiv:1408.5093.

[52] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” 2019. [Online]. Available: arXiv:1912.01703.

[53] K. Hegde et al., “ExTensor: An accelerator for sparse tensor algebra,”
in Proc. Int. Symp. Microarchit., 2019, pp. 319–333.

[54] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetv2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[55] X. Zhang et al., “AccDNN: An IP-based DNN generator for FPGAs,”
in Proc. FCCM, 2018, p. 210.

[56] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An OpenCLTM deep learning accelerator on arria 10,” in Proc. FPGA,
2017, pp. 55–64.

[57] C. Zhang and V. K. Prasanna, “Frequency domain acceleration of con-
volutional neural networks on CPU-FPGA shared memory system,” in
Proc. FPGA, 2017, pp. 35–44.

[58] L. Lu and Y. Liang, “SpWA: An efficient sparse winograd convolutional
neural networks accelerator on FPGAs,” in Proc. DAC, 2018, pp. 1–6.

[59] Y. Liang, L. Lu, Q. Xiao, and S. Yan, “Evaluating fast algorithms for
convolutional neural networks on FPGAs,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 4, pp. 857–870, Apr. 2020.

[60] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ISCA, 2016, pp. 243–254.

[61] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” 2018. [Online]. Available: arXiv:1806.09055.

[62] C. Hao et al., “FPGA/DNN co-design: An efficient design methodology
for IoT intelligence on the edge,” Proc. 56th ACM/IEEE Design Autom.
Conf. (DAC), 2019, p. 206.

[63] Y. Li et al., “EDD: Efficient differentiable DNN architecture and
implementation co-search for embedded AI solutions,” in Proc. 57th
ACM/IEEE Design Autom. Conf. (DAC), 2020, pp. 1–6.

Yun (Eric) Liang (Senior Member, IEEE) received
the Ph.D. degree in computer science from the
National University of Singapore, Singapore, in
2010.

He is an Associate Professor (with tenure) with
the Center for Energy-efficient Computing and
Applications, School of EECS, Peking University,
China. He has authored over 90 scientific publi-
cations in premier international journals and con-
ferences in related domains. His research interests
include computer architecture, compiler, electronic

design automation, and embedded system.
Dr. Liang’s research has been recognized by best paper awards at FCCM

2011 and ICCAD 2017 and best paper nominations at PPoPP 2019, DAC
2017, ASPDAC 2016, DAC 2012, FPT 2011, and CODES+ISSS 2008. He
serves as an Associate Editor for ACM Transactions in Embedded Computing
Systems , ACM Transactions on Reconfigurable Technology and Systems, and
Embedded System Letters. He also serves in the program committees in the
premier conferences in the related domain, including MICRO, DAC, HPCA,
FPGA, ICCAD, FCCM, and ICS.

Liqiang Lu received the B.S. degree from the
Institute of Microelectronics, Peking University,
Beijing, China, in 2017, where he is currently pur-
suing the Ph.D. degree with the School of EECS.

His research focuses on algorithm-level and
architecture-level optimizations of FPGA for
machine learning applications.

Yicheng Jin received the B.S. degree in computer
science from Yuanpei College, Peking University,
Beijing, China, in 2020, where he is currently pur-
suing the undergraduate degree.

He holds interest in machine learning systems and
software–hardware co-design for machine learning
applications.

Jiaming Xie, photograph and biography not available at the time of publica-
tion.

LIANG et al.: EFFICIENT HARDWARE DESIGN FOR ACCELERATING SPARSE CNNs WITH NAS-BASED MODELS 613

Ruirui (Raymond) Huang (Member, IEEE)
received the Ph.D. degree in computer architecture
research with a focus on highly reliable, secure, and
available computing design from Cornell University,
Ithaca, NY, USA, in 2013.

He is the Director of Cloud Architecture and is
responsible for the overall cloud architecture design
of the cloud platform and products in Alibaba Cloud,
Hangzhou, China. Before joining Alibaba Cloud, he
was an Architect for the Xeon server SoC in Intel,
Mountain View, CA, USA. He has published papers

in ASPLOS, ISCA, HPCA, DAC, FSE, and FPGA.

Jiansong Zhang (Member, IEEE) received the
bachelor’s and master’s degrees from Tsinghua
University, Beijing, China, in 2004 and 2006, respec-
tively, and the Ph.D. degree from the Hong Kong
University of Science and Technology, Hong Kong,
in 2014.

He is a Research Scientist with Alibaba Damo
Academy who works on heterogeneous computing
for machine learning and big data processing. Before
joining Alibaba Group, Hangzhou, China, he was
a Researcher working on heterogeneous computing

for wireless communication and networking, IoT systems, and datacenter
acceleration with Microsoft Research Asia. He has published 10 papers in
Sigcomm, NSDI, Mobicom, Ubicomp, Mobisys, HotNets, HotChips, FCCM,
Infocom, and MLSys. His research interests are building innovative software
and hardware systems for various applications.

Wei Lin, photograph and biography not available at the time of publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

