
1

Fast Energy-Optimal Multi-Kernel DNN-like
Application Allocation on Multi-FPGA Platforms

Junnan Shan, Student Member, IEEE, Mihai T. Lazarescu, Senior Member, IEEE, Jordi Cortadella, Fellow, IEEE,
Luciano Lavagno, Senior Member, IEEE, and Mario R. Casu, Senior Member, IEEE

Abstract—Platforms with multiple Field Programmable Gate
Arrays (FPGAs), such as Amazon Web Services (AWS) F1 in-
stances, can efficiently accelerate multi-kernel pipelined applica-
tions, e.g., Convolutional Neural Networks for machine vision
tasks or transformer networks for Natural Language Processing
tasks. To reduce energy consumption when the FPGAs are un-
derutilized, we propose a model to (1) find off-line the minimum-
power solution for given throughput constraints, and (2) dynam-
ically reprogram the FPGA at runtime (which is complementary
to dynamic voltage and frequency scaling) to match best the
workloads when they change. The off-line optimization model
can be solved using a Mixed-Integer Non-Linear Programming
(MINLP) solver, but it can be very slow. Hence, we provide two
heuristic optimization methods that improve result quality within
a bounded time. We use several very large designs to demonstrate
that both heuristics obtain comparable results to MINLP, when
it can find the best solution, and they obtain much better results
than MINLP, when it cannot find the optimum within a bounded
amount of time. The heuristic methods can also be thousands of
times faster than the MINLP solver.

Index Terms—CNN, NLP, transformer, multi-FPGA, allocation,
optimization, heuristic, AWS.

I. INTRODUCTION

OUTSTANDING Deep Neural Networks (DNN) results
for, e.g., image recognition, object detection, and natural

language processing (NLP), dramatically increase their use and
energy consumption, weighing on the environment and increas-
ing data center costs. The main cloud providers, e.g. Amazon,
Alibaba, Microsoft, offer multi-FPGA platforms that use less
energy than CPUs or GPUs. ASICs consume even less energy,
but FPGAs are incomparably more configurable, supporting
rapid application evolution.

As data center workloads change over time, accelerators
sized for the highest application throughput are often underused,
wasting FPGA resources and energy. Frequency scaling can
reduce energy consumption, but not the resource occupation.

We propose using FPGA reconfiguration to optimize both
resource usage and energy for a given throughput, on Amazon
web service (AWS) F1 instances with the architecture shown
in Fig. 1. Eight Xilinx UltraScale+ FPGAs, each with an
independent clock and local DDR DRAM, are connected with a
PCI Express (PCIe) bus to an x86 host CPU, which orchestrates

J. Shan, M.T. Lazarescu, L. Lavagno and M.R. Casu are with the Department
of Electronics and Telecommunications, Politecnico di Torino, I-10129 Torino,
Italy, e-mail: mario.casu@polito.it.

J. Cortadella is with the Computer Science Department, Uni-
versitat Politècnica de Catalunya, 08034 Barcelona, Spain, e-mail:
jordi.cortadella@upc.edu

Manuscript received Month XX, 20ZZ; revised Month YY, 20ZZ.

Fig. 1. Architecture of the Amazon web service (AWS) F1 instance

application execution on FPGAs and PCIe communications.
We pipeline multi-kernel applications at the kernel level, with
all kernels running at the same time, hence the Initiation
Interval (II, the inverse of the throughput) is determined by
the slowest kernel. We ignore reconfiguration energy because
we are considering infrequent reconfiguration (e.g., once per
minute, or once per hour) to meet daily workload variations
depending on the time of the day, not on second- or millisecond-
scale variations [1] [2].

As in our previous work [3], we split the applications into
several pipelined kernels (e.g., one per macro-layer in a Deep
Neural Network) and profile each of them with Xilinx SDAccel
[4] for resource usage (LUTs, FFs, DSPs, BRAMs), execution
time, and DDR memory bandwidth. Then we input the profiled
kernels and available FPGA resources into our power and
performance model to obtain a power-optimal implementation
to program the FPGAs. The model uses integer variables and
non-linear functions, and we solve it with a Mixed-Integer
Non-Linear Programming (MINLP) solver, which is very slow,
from several hours for small problems to days or more for
larger problems. To speed up the optimization, we propose
two heuristic methods. One reduces the problem size before
applying the MINLP solver, while the other uses greedy kernel
allocation while minimizing power consumption.

Efficient resource allocation for high-performance data center
applications is a well-studied topic for GPUs, CPUs, and
FPGAs. Previously, we provided detailed resource allocation
models to maximize the application throughput, optimized with
both an MINLP solver and a heuristic method, but without
considering power consumption [5], [6] and we demonstrated
in [3] a multi-objective optimization that minimizes energy
consumption while meeting performance requirements using an
MINLP solver, which is very slow. Here, we propose two heuris-
tic solvers, which can be several orders of magnitude faster.

Li et al. [7] use a similar greedy resource allocation to the
most critical kernel, balancing resource usage until exhaus-
tion, but without minimizing power consumption or consider-
ing multi-FPGA allocation. Our model satisfies performance
constraints while minimizing the overall, multi-FPGA power
consumption. Cong et al. [8] proposed a task-parallel static
dataflow graph execution model with multiple compute unit

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/TCAD.2021.3076958

2

(a) (b)

Fig. 2. Scheduling of multi-kernel application (a) without and (b) with balanced
resource utilization: k1 with 2 CUs, k2 with 3 CUs, and k3 with 4 CUs.

(CU) instances, with efficient scheduling modeled as a set
of difference constraints, but for single-FPGA targets and
optimizing only for performance, not power.

For multi-FPGA targets, Zhang et al. [9] map pipelined
Convolutional Neural Network (CNN) layers to a multi-FPGA
platform exploring the design space for optimal performance
and energy consumption using dynamic programming. They
assume constant FPGA power consumption, thus reducing
the problem of energy minimization to execution time mini-
mization. We use a separate power model to minimize energy
consumption for a given II constraint.

Tarafdar et al. [10] and Caulfield et al. [11] propose per-
formance improvements using direct network communication
between FPGAs. However, they do not optimize the power
of FPGA clusters, and current PCIe-based multi-FPGA cloud
platforms do not support this communication model.

II. MULTI-FPGA POWER OPTIMIZATION

We model an application as K kernels organized in a linear
pipeline, as shown in Fig. 2a (e.g., the layers of a CNN).

In a pipelined execution, all kernels compute concurrently,
and simultaneous data transfers occur between the host CPU
and the FPGA DDRs. The slowest pipeline stage, K3 in this
example, determines the II of the pipeline and therefore deter-
mines the application throughput. To meet a target throughput,
we aim to keep II below a maximum value IImax by balancing
the resource allocation to kernels, as shown in Fig. 2b. We can
split the kernel workloads into one or more CUs running concur-
rently, similar to OpenCL workgroups or CUDA thread groups.
This execution model is well supported by commercial FPGA
design tools, such as Xilinx SDAccel [4]. Power consumption
depends on the number of CUs of each kernel and on their allo-
cation to FPGAs. We seek a solution that minimizes the power
for a given IImax. Since the target throughput can change at
runtime due to dynamic changes of the workload, we determine
the optimal solution for each IImax value in a discretized range.

A. Problem formulation

We aim to minimize the total power Ptotal while keeping
the kernel pipeline initiation interval II shorter than IImax to
satisfy the required throughput (1). As shown later, II depends
on the number nk,f of CUs of each kernel k allocated to
each FPGA f , and on the clock frequency Fckf of each
FPGA. Each CU of kernel k requires Rk,t resources of type
t ∈ {FF, LUT, DSP, BRAM, DDR bandwidth}, and must not
exceed the available amount on each FPGA board, Rt (2),
while the clock Fckf of any FPGA f must be slower than the

maximum supported by the board (3). Moreover, each kernel
k must run on at least one CU (4)

II ≤ IImax (1)∑
k nk,fRk,t ≤ Rt, ∀f, ∀t (2)

Fckf ≤ FCK, ∀f (3)

CUk =
∑F

f=1 nk,f ≥ 1, ∀k. (4)

The resulting problem is MINLP because it includes non-linear
constraints, as shown next, with both integer (e.g., nk,f) and
real (e.g., Fckf) variables.

B. Initiation interval (II) modeling

The top-level computation consists of pipelined data transfers
and kernel executions. We use double buffers in the FPGA
DDR so that execution can overlap data transfer with the host
CPU (using single-buffering requires just a simple change of
our model, and we will not discuss it here).

II is limited by the maximum among the data transfer time
from host CPU to FPGA DDR forward, Th2f, backward, Tf2h,
and the CU execution time, Texe

II ≥ max(Th2f + Tf2h, Texe). (5)

We analyze now separately the terms in (5).
1) Execution phase: we assume that kernel workloads are

arbitrarily parallelizable. It is an assumption which holds for
many machine learning, big data, and scientific applications,
and is well supported by the OpenCL and CUDA computation
models. If Twc,k is the single-CU, worst-case execution time of
kernel k at maximum FPGA frequency FCK, and the kernel
workload is split over nk,f CUs on one or several FPGAs, then
the actual kernel execution time in FPGA f , Tk,f , scales with
the number CUk of CUs and the actual frequency Fckf of
FPGA f (6). Texe is the maximum across all kernels and FPGAs

Tk,f = Twc,k
CUk
· FCK

Fckf
, ∀f, ∀k (6)

Texe = max
k,f

Tk,f . (7)

2) Data transfer phase: data transfer time, Th2f, is the ratio
between the total input data size transferred from host memory
to the DDR of FPGA f , DIh2f, and PCIe bandwidth, Bh2f

Th2f =
DIh2f

Bh2f
. (8)

Since the AWS F1 platform does not support FPGA-to-FPGA
direct data transfers, we assume that all data is transferred
from CPU to FPGAs. We also assume that all CUs need the
entire input data set, DIk, which is true for CNNs and can be a
worst-case assumption for other applications. Hence, we must
replicate the input data if the CUs of a kernel k are allocated
to multiple FPGAs, and the replication factor, αk, is equal to
the total number of FPGAs used for kernel k. The amount of
data transferred in the host-to-FPGA phase is

DIh2f =
∑K

k=1 αkDIk. (9)

Similar to Th2f, Tf2h is the ratio between the total size of
output data transferred from the DDR of FPGA f to host
memory, DOf2h, and PCIe bandwidth, Bf2h

Tf2h =
DOf2h

Bf2h
. (10)

3

We assume that the output data computed by a kernel, DOk,
are equally divided among its CUs, hence we transfer

DOf2h =
∑K

k=1 DOk. (11)

C. Power modeling

The average FPGA power consumption has a constant static
component, Ps, and a dynamic one, Pd, including both the
data transfer with the host and the FPGA processing. Total
power consumption is thus

Ptotal = Ps + Pd. (12)

The detailed power model is discussed in [3].
1) Static power: includes the DDR static power, PDDRs, and

the FPGA static power, Pfs. In addition, it is proportional to
the number of active FPGAs, F

Ps = F (PDDRs + Pfs) . (13)

2) Dynamic power: is proportional to the average dynamic
energy, Ed, spent during one II

Pd = Ed

II . (14)

Dynamic energy consists of DDR dynamic energy, Eddrd, due
to data transfer between host and DDR, and the processing
energy, Ec, due to the CUs allocated on FPGA f

Ed = Eddrd + Ec (15)
Ec =

∑F
f Pfd,f · Texe (16)

Pfd,f =
∑

k nk,f · Pk · Fckf
FCK . (17)

The dynamic power of FPGA f , Pfd,f, depends on the number
of CUs of each kernel allocated to it, nk,f , and scales with
the clock frequency. The detailed equation for the calculation
of the DDR dynamic power is discussed in [3].

III. HEURISTIC SOLUTIONS

The optimization problem in Sec. II can be solved using
a Mixed-Integer Non-Linear Programming (MINLP) solver.
However, this may need a very long time to solve [3], being of-
ten impractical, especially for explorations that invoke multiple
times the MINLP solver. Hence, we propose two heuristic meth-
ods to improve the exploration efficiency. The first still uses a
MINLP solver, but over a much smaller exploration space. The
second avoids completely the MINLP solver and is much faster.

A. First heuristic solver, using MINLP

To speed up the MINLP solver, we fix the number of active
FPGAs, limit the number of possible CUs for each kernel,
and simplify the power model. In our previous work [3], we
empirically noticed that the best solutions save static power
by always using the minimum number of FPGAs, Fmin, most
likely because of the static power consumption. Hence, our
first heuristics uses Fmin as a hard bound on resources instead
of exploring allocations on more FPGAs. To obtain Fmin, we
first determine the minimum number of CUs for each kernel
that satisfies the IImax constraint

CUmink =
⌈
Twc,k/IImax

⌉
(18)

and then we find Fmin by using the resource utilization

Fmin = max
t

⌈∑K
k=1Rk,t · CUmink

Rt

⌉
. (19)

In our experiments with CNNs and NLP, the maximum in
(19) is always determined by the total number of required and
available DSP units (i.e., Rk,t and Rt, with t = DSP) on a
single FPGA.

We introduce an additional binary variable in the problem,
extraCUk = {0, 1}, to limit the number of CUs per kernel,
CUk, to be at most one higher than CUmink from (18)

CUk = CUmink + extraCUk. (20)

We do this because additional CUs may reduce the execution
time of a kernel, which may become closer in speed to other
kernels, hence allowing us to reduce the frequency when these
kernels are all allocated to the same FPGA. With CUk limited
to only two values in (20), the possible values of the allocation
variables nk,f—the sum of which over the active FPGAs is
CUk per (4)—is also largely reduced, which has a substantial
effect on the execution time of the MINLP solver.

We do not include the data-transfer power in the model
because it is typically much lower than the computation power.
In this way, the model is further simplified. Notice, however,
that this power contribution will be implicitly minimized by our
method, since the CUs of the same kernel are likely allocated
in the same FPGA because they have the same execution time.
As a result, the input data of that kernel will not be duplicated,
and data transfer and its associated power consumption will
also be reduced.

B. Second heuristic solver, without MINLP

For larger problems, even the simplified model introduced
in Sec. III-A can be too slow. To further speed up the solution,
we propose another heuristic method that does not rely on
external solvers.

For the same reasons explained in Sec. III-A, we determine
the number of active FPGAs F = Fmin as in (19), and we
determine before the allocation with (18) the minimum number
of CUs for each kernel, and use the auxiliary binary variable
as in (20). This leads to 2K possible combinations for the
number of CUs, which we test exhaustively as shown in Alg. 1
(line 4). Notice that although this is exponential, the number
of kernels K is usually small and the run time is short, as we
report in the experiments. Moreover, the combinations that do
not fit in the FPGAs are pruned early by the filter on line 10
to further reduce the run time.
Rtotal in the pseudo-code refers to the DSP resources needed

by each kernel, which limit the allocation of computation-
intensive applications, such as CNNs and transformer networks,
before other resources are exhausted (LUT, FF, BRAM).

Prior to allocation, we set the FPGA resource slack R
according to resource constraints (line 11). Then we sort the
kernels (line 13) in descending order of the execution time
obtained with CUmink CUs. In this way, we favor the allocation
of kernels with similar execution time to the same FPGA,
helping to reduce the operating frequency, power, and input

4

Algorithm 1: Second heuristic allocation method
1 procedure AllocateCUs(CUmin, Rtotal, IImax)

// Vector of min required CUs per kernel
2 CUmin = (CU1min ,CU2min , . . . ,CUKmin)
3 boolean extraCU = (CU1e ,CU2e , . . . ,CUKe)
4 for c = 1 to 2K do // 2K combinations in total,

cause each kernel has two possible CUs
5 assign extraCU according to c
6 alloc = False; Rtotal = 0
7 for k = 1 to K do
8 CUk = CUkmin + extraCUk

9 Rtotal += CUk ·Rk

10 if Rtotal < F ·R then
// Vector of FPGA resource slack
initialized to constraint value

11 S = (S1, S2, . . . , SF); ∀f : Sf = R
// Allocated CUs initialized to zero

12 ∀k, f : nk,f = 0
// Sort by descending exec. time

13 sortCU(CU)
14 k = 0
15 for f = 1 to F do
16 Racc = 0
17 while k < K do
18 Racc += CUk ·Rk

19 if Racc ≤ R then
20 δCUk = CUk

21 Sf = Sf − CUk ·Rk

22 CUk = 0
23 nk,f = δCUk

24 else
25 δCUk = bSf/CUkc
26 CUk = CUk − δCUk

27 Sf = Sf − δCUk ·Rk

28 nk,f = nk,f + δCUk

29 break;

30 k = k + 1

31 if
∑

k CUk > 0 then
32 k = K − 1
33 for f = F to 1 do
34 Racc = 0
35 while k > 0 and CUk > 0 do
36 Racc += CUk ·Rk

37 if Racc ≤ Sf then
38 δCUk = CUk

39 Sf = Sf − CUk ·Rk

40 CUk = 0
41 nk,f = δCUk

42 else
43 δCUk = bSf/CUkc
44 CUk = CUk − δCUk

45 Sf = Sf − δCUk ·Rk

46 nk,f = nk,f + δCUk

47 break;

48 k = k − 1

49 if
∑

k CUk = 0 then
50 alloc = True

51 Calculate Tf2h + Th2f
52 if alloc and Tf2h + Th2f < IImax then
53 Update Fckf
54 Calculate Power

55 nk,f = arg(min(Power))

data duplication (lines 15 to 30). At the end of this loop, some
kernels might have residual CUs that could not be allocated.
Therefore, we go through the kernels in the opposite order, al-
locating the kernels with the smallest execution time to FPGAs

TABLE I
TRANSFORMER KERNEL CHARACTERIZATION ON THE AWS F1 PLATFORM

BRAM DSP Twc Bw / Br tw / tr bw / br Pk

Kernels (%) (%) (ms) (%) (ms) (%) (W)

Attention1 20.9 31.5 9.5 1.23 / 0.39 8.9 / 0.3 1.03 / 0.004 4.12
Attention2 9 16.5 6.3 9.52 / 0.89 0.59 / 0.12 1.03 / 0.004 3.04
feed forward1 0.9 3.7 16.7 77.4 / 3.63 0.28 / 0.11 0.275 / 0.01 0.85
feed forward2 0.9 3.7 16.8 11.5 / 0.95 1.94 / 0.11 0.28 / 0.011 0.85
norm 0.5 0.5 0.3 20.5 / 10.24 0.1 / 0.1 0.315 / 0.16 0.92

TABLE II
OPTIMIZATION TIME BY THREE DIFFERENT METHODS.

DNNs MINLP H1 H2
ALEX-16 1h 20min 0.4 s
ALEX-32 *24h *15h 2 s

TRANSFORMER-16 *24h *10h 3 s
VGG-16 *30h *15h 5 s

* stopped at the solver time limit.

in increasing operating frequency order (lines 33 to 50). Note
that the kernels are ordered in descending order of execution
time on FPGAs, and they are allocated on FPGA in the same
order, so the first FPGA will have the highest frequency, and the
last one the slowest frequency. We accept only the allocations
with total data transfer times below IImax (lines 51 to 54), and
we select the allocation with minimum power consumption.

IV. EXPERIMENTS

We use the same MINLP solver from [3] to implement the
first heuristic method (see Sec. III-A), and we implemented the
second one in C++ (see Sec. III-B). We validate the methods
using two widely used CNNs, 8-layer AlexNet [12] (32-bit
floating-point, ALEX-32, and 16-bit floating-point, ALEX-
16) and 17-layer VGG [13] (16-bit floating-point, VGG-16),
and a transformer network for NLP [14] (16-bit fixed-point,
one decoder, one encoder, four heads in the attention layer,
11 layers total, TRANSFORMER-16). TABLE I shows the
transformer kernel characterizations on the AWS F1 platform.
Kernel characterizations for the other three implementations
are reported in [3]. The execution time is measured on the
AWS platform. Since the power measurement is not available
on AWS F1, we rely on an estimation made using datasheets
(e.g. for the DDR) and the Xilinx power analysis tools.

Fig. 3 shows the experimental results obtained on a CentOS
Linux v6.9 machine with an Intel Core i7-6900K processor
with 128GB RAM. MINLP denotes the optimization with
the method described in [3], H1 denotes the first heuristic
method, and H2 denotes the second heuristic method. Figs. 3a–
3d show the minimum power consumption obtained for a range
of II using each optimization method. TABLE. II shows the
optimization time for each application and for different meth-
ods. Figs. 3e–3h show the corresponding number of FPGAs.
For small-size problems, e.g., ALEX-16 and ALEX-32, all
optimization methods yield the same result, proving the effec-
tiveness of the proposed heuristics. However, these are much
faster than MINLP.

For larger problems, e.g., TRANSFORMER-16 in Fig. 3c,
H1 and H2 find better results, especially for II = 2ms. H2
returns a suboptimal solution for II = 4ms, but it finishes

5

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0.8 1.2 1.6 2 2.4 2.8

P
o

w
e
r

(W
)

Initiation Interval (ms)

(a)

ALEX-16

MINLP H1 H2

 40

 60

 80

 100

 120

 140

 160

 180

 2.5 3.5 4.5 5.5 6.5 7.5

Initiation Interval (ms)

(b)

ALEX-32

MINLP H1 H2

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12

Initiation Interval (ms)

(c)

TRANSFORMER-16

MINLP H1 H2

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 16 18 20 22 24 26

Initiation Interval (ms)

(d)

VGG-16

MINLP H1 H2

 1

 2

 3

 0.8 1.2 1.6 2 2.4 2.8

#
F

P
G

A

Initiation Interval (ms)

(e)

ALEX-16

 3
 4
 5
 6
 7
 8

 2.5 3.5 4.5 5.5 6.5 7.5

Initiation Interval (ms)

(f)

ALEX-32

 2
 3
 4
 5
 6
 7

 2 4 6 8 10 12

Initiation Interval (ms)

(g)

TRANSFORMER-16

 4

 5

 6

 7

 16 18 20 22 24 26

Initiation Interval (ms)

(h)

VGG-16

Fig. 3. Minimum power and number of FPGAs function of the initiation interval obtained with optimization method in [3] (MINLP), first (H1) and second (H2)
heuristic methods for (a) 16-bit floating-point AlexNet, (b) 32-bit floating-point AlexNet, (c) 16-bit fixed-point Transformer, and (d) 16-bit floating-point VGG.

comparatively much faster, in a few seconds. For even larger
problems, e.g., VGG-16 in Fig. 3d, H1 often misses the best
solution by roughly 12% compared to MINLP. H2 solutions
are the best with run times around 5 s.

Summarizing, for small problems both our heuristic methods,
H1 and H2, find good solutions. H1 may even obtain better
solutions, such as for II = 4ms for TRANSFORMER-16. For
larger problems, H2 is better and much faster.

Note that for larger problems we had to stop MINLP early.
Hence, the results in Fig. 3d are the best after 24 h to 30 h,
but still sub-optimal. This explains why the proposed heuristic
methods H1 and H2 may reach better results (e.g., for VGG-16).

The number of FPGAs used for the best solution achieved
using the three different methods are shown in Figs. 3(e)-(h).
In all cases, the optimal number of FPGAs is the same.

V. CONCLUSION

We propose two heuristic methods to efficiently obtain
energy-optimal or near-optimal solutions to configure a multi-
FPGA platform for a given II. The first heuristics constrains
the exploration space to significantly reduce the runtime, while
achieving the same or even better results than the exact algo-
rithm. Similarly, the second heuristics first reduces the explo-
ration space, then groups the kernels with similar execution
time on a single FPGA to minimize the FPGA frequency, thus
minimizing the power consumption. In addition, it is thousands
of times faster than the exact algorithm.

REFERENCES

[1] X. Tang, X. Liao, J. Zheng, and X. Yang, “Energy efficient job scheduling
with workload prediction on cloud data center,” Cluster Computing, no. 3,
pp. 1581–1593, 2018.

[2] H. Wang, J. Pannereselvam, L. Liu, Y. Lu, X. Zhai, and H. Ali, “Cloud
workload analytics for real-time prediction of user request patterns,”
in 2018 IEEE 20th International Conference on High Performance
Computing and Communications; IEEE 16th International Conference
on Smart City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), 2018, pp. 1677–1684.

[3] J. Shan, M. T. Lazarescu, J. Cortadella, L. Lavagno, and M. R. Casu,
“Power-optimal mapping of cnn applications to cloud-based multi-fpga
platforms,” IEEE Trans. Circuits Syst. II, vol. 67, no. 12, pp. 3073–3077,
2020.

[4] “SDAccel Development Environment.” [Online]. Available: https:
//www.xilinx.com/products/design-tools/software-zone/sdaccel.html

[5] J. Shan, M. T. Lazarescu, J. Cortadella, L. Lavagno, and M. R. Casu,
“Cnn-on-aws: Efficient allocation of multi-kernel applications on multi-
fpga platforms,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
pp. 1–1, 2020.

[6] J. Shan, M. R. Casu, J. Cortadella, L. Lavagno, and M. T. Lazarescu,
“Exact and heuristic allocation of multi-kernel applications to multi-fpga
platforms,” in Proc. 56th Annual Design Automation Conference 2019,
ser. DAC ’19. New York, NY, USA: ACM, 2019.

[7] B. Li, S. Pandey, H. Fang, Y. Lyv, J. Li, J. Chen, M. Xie, L. Wan, H. Liu,
and C. Ding, “Ftrans: Energy-efficient acceleration of transformers using
fpga,” in Proc. 2020 Int. Symp. on Low Power Electronics and Design,
ser. ISLPED ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 175–180.

[8] J. Cong, M. Huang, and P. Zhang, “Combining computation and com-
munication optimizations in system synthesis for streaming applications,”
in Proc. 2014 ACM/SIGDA Int. Symp. on FPGAs, 2014, pp. 213–222.

[9] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-efficient
cnn implementation on a deeply pipelined fpga cluster,” in Proc. 2016 Int.
Symp. on Low Power Electronics and Design, ser. ISLPED ’16. New
York, NY, USA: ACM, 2016, pp. 326–331.

[10] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, “Enabling flexible network fpga clusters in a heterogeneous
cloud data center,” in Proc. 2017 ACM/SIGDA Int. Symp. on FPGAs.
New York, NY, USA: ACM, 2017, pp. 237–246.

[11] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massen-
gill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in 49th IEEE/ACM
Int. Symp. on Microarchitecture (MICRO), Oct 2016, pp. 1–13.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

