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An Efficient Analog Circuit Sizing Method Based
on Machine Learning Assisted Global Optimization
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Senior Member, IEEE

Abstract—Machine learning-assisted global optimization meth-
ods for speeding up analog integrated circuit sizing is attracting
much attention. However, often a few typical analog IC design
specifications are considered in most relevant research. When
considering the complete set of specifications, two main challenges
are yet to be addressed: (1) The prediction error for some per-
formances may be large and the prediction error is accumulated
by many performances. This may mislead the optimization and
fail the sizing, especially when the specifications are stringent. (2)
The machine learning cost could be high considering the number
of specifications, considerably canceling out the time saved. A
new method, called Efficient Surrogate Model-assisted Sizing
Method for High-performance Analog Building Blocks (ESSAB),
is proposed in this paper to address the above challenges.
The key innovations include a new candidate design ranking
method and a new artificial neural network model construction
method for analog circuit performances. Experiments using two
amplifiers and a comparator with a complete set of stringent
design specifications show the advantages of ESSAB.

Index Terms—Analog circuit sizing; Analog circuit design
automation; Optimization; Surrogate model; Expensive optimiza-
tion; Neural networks; Differential Evolution

I. INTRODUCTION

Analog integrated circuit (IC) sizing has been investigated
for three decades. Among available methods, a widely ac-
cepted one is simulation-based global optimization [1], [2]. A
global optimization algorithm is developed to find the optimal
design parameters which satisfy all the design specifications
and minimize / maximize (a) certain performance(s). In the
optimization process, the performance of each candidate de-
sign is evaluated by SPICE simulations. Advanced optimizers
for analog IC sizing [3], [4], [5], [6], [7] have been proposed to
handle design cases with stringent specifications and obtained
successful results. Hence, in recent years, the research focus
gradually transforms from “effective” sizing to “efficient”
sizing [8], [9].

One of the main reasons to motivate the efficiency im-
provement of analog IC sizing is the increasingly stringent
design specifications. For a common analog building block
with moderate specifications, manual design is also effective
and efficient. In contrast, building blocks with stringent design
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specifications often need many simulations to obtain a satis-
factory design in optimization [1], [8], and the accumulated
simulation time could be long. In particular, some analog
circuit simulations involve Monte-Carlo analysis (e.g., periodic
noise, transient noise) and are computationally expensive.

An effective way to improve optimization efficiency is by
introducing machine learning techniques into optimization [8],
[10], [11], [12], [13], [14], [15]. Surrogate models, which are
often constructed by machine learning techniques, are ideally
computationally cheap approximation models of simulations.
In the optimization, they are employed to replace simulations
to save simulation time. Another effective way is employing
parallel computing. [9] realizes the co-use of surrogate model-
based optimization and parallel computing in its local search
phase, and the global exploration phase is implemented by
a parallel evolutionary algorithm. Because parallel analog IC
sizing itself is a research area (e.g., parallel simulation of dif-
ferent candidate designs, parallel various kinds of simulations,
parallel samples in periodic noise simulation), which depends
on the computing capacity and the particular problem, it will
be studied separately and is out of the scope of this paper.

Although the above contributions are significant, often a
few key performance specifications are considered (e.g., gain,
bandwidth). The complete set of design specifications, in
particular, saturation margin and / or some transient and
noise analysis-based specifications, are often not considered,
although they are well considered in traditional analog IC
sizing methods without machine learning techniques [1]. When
considering the complete set of specifications, challenges will
appear, which will be described in the context of the working
principles of surrogate model-assisted analog IC sizing meth-
ods in the following.

A surrogate model-assisted optimization-based analog IC
sizing method often has three main elements, which are the op-
timization algorithm, the surrogate modeling method, and the
infill sampling criterion. For optimization algorithms, either
evolutionary algorithms [11] and multi-start local optimization
algorithms [6], [8] can be employed. Regarding surrogate
modeling methods, most existing research works use the Gaus-
sian process (GP) [16] because of its much stronger learning
ability compared to other alternatives (e.g., standard artificial
neural networks (ANN), radial basis functions) [8], [11], [17],
[18], [19]. Therefore, typical methods for microwave analog
circuit synthesis, such as GASPAD [11] and typical methods
for general analog circuit sizing, such as WEIBO [8] and its
improvement, employ GP.

However, the computational cost of GP modeling is not
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negligible. The computational complexity is O(NitK
3
d) [20],

where Nit is the number of iterations spent in hyper-parameter
optimization and K is the number of training data points,
which is most critical and is affected by d (number of design
variables) to construct a reliable surrogate model. [18], [19]
propose new methods to reduce the GP training cost, which
are important. However, when considering the complete set of
specifications, which could be more than 20, the GP modeling
may still be a burden compared to working with a few
specifications. This considerably cancels out the time saved
by the reduced number of simulations.

Infill sampling criterion [21] is also essential for the success
of a surrogate model-assisted analog IC sizing method. The
infill sampling criterion investigates how to make use of the
predicted value and prediction error to obtain a high-quality
ranking of candidate designs in order to guide the optimization
engine. For example, the efficient global optimization tech-
nique [22], where the expected improvement infill sampling
method plays a key role, is introduced into analog IC sizing
[23]. Also, the weighted expected improvement (wEI) [24] and
lower confidence bound [20] methods are used in WEIBO (in-
cluding its improvements) and GASPAD, respectively. How-
ever, when considering the complete set of specifications, we
found that both infill sampling criteria suffer. This is because
(1) some analog IC performances are not easy to learn due
to their nature and simulation failure, and (2) the accumulated
prediction error of the complete set of performances adds more
uncertainty, which can easily mislead the optimization engine,
even using GP. This may fail the sizing, which is particularly
clear when the specifications are stringent (Section IV).

To address the above challenges when considering the com-
plete set of specifications, a new method, called Efficient Sur-
rogate Model-assisted Sizing Method for High-performance
Analog Building Blocks (ESSAB), is proposed in this paper.
The key innovations include: (1) an infill sampling criterion
only using the predicted value, which is therefore robust to
the possibly large prediction error, (2) a new ANN model
construction method avoiding using GP but obtaining even
better prediction quality, using which, the machine learning
cost no longer becomes a problem. A surrogate model-assisted
evolutionary algorithm (SAEA) framework is then proposed
to make use of them. Experiments using the complete set of
stringent specifications verify the advantages of ESSAB.

The remainder of the paper is organized as follows: Section
II presents the basic techniques. Section III elaborates on the
ESSAB method, including the new infill sampling criterion,
the new ANN model construction method, and the new
SAEA framework. Section IV presents the performance and
advantages of ESSAB using four analog building blocks with
different characteristics. The concluding remarks are provided
in Section V.

II. BASIC TECHNIQUES

A. The DE Algorithm
Differential evolution (DE) [25], [26] is a popular global

optimization algorithm. The mutation and crossover operators
in the DE algorithm is adopted in ESSAB, which works as
follows.

Let P be a population composed of a number of individual
solution x = (x1, . . . , xd) 2 R

d. To generate a child solution
u = (u1, . . . , ud) for x, a donor vector is first produced
by mutation (the DE/current-to-best/1 strategy is used in this
paper):

v
i
= x

i
+ F · (xbest � x

i
) + F · (xr1 � x

r2) (1)

where x
i is the i

th vector in the current population and x
best

is the best candidate in the current population P , x
r1 and

x
r2 are mutually exclusive solutions randomly selected from

P (the current population); vi is the i
th mutant vector in the

population after mutation; F 2 (0, 2] is a control parameter,
often called the scaling factor.

Then the following crossover operator is applied to produce
the child u:

1 Randomly select a variable index jrand 2 {1, . . . , d},
2 For each j = 1 to d, generate a uniformly distributed

random number rand from (0, 1) and set:

uj =

⇢
vj , if (rand  CR)|j = jrand

xj , otherwise (2)

where CR 2 [0, 1] is a constant called the crossover rate.

B. Artificial Neural Networks
ANN [27] is a widely used learning machine for surrogate

modeling and prediction. The structure of ANN mimics the
process of knowledge acquisition, information processing, and
organizational skills of a human brain. Hence, it is able to
learn complex nonlinear relationships from a training data set.
Among various kinds of ANNs, the feedforward ANN is used
in this research.

The structure of a typical feedforward ANN is shown in Fig.
1, which is composed of a number of highly interconnected
neurons. With n-dimensional input data points (i.e., input
layer) and l-dimensional output data points (i.e., output layer),
a hidden layer with m neurons is used.
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Fig. 1. A feedforward ANN with one hidden layer

Signals generated from the input layer propagate through
the network on a layer-by-layer basis in the forward direction.
Each neuron accepts output data from neurons in the previous
layer using different weights and adjusts the weighted sum
by its activation function, to generate the output. To achieve
the final desired outputs (i.e., minimize the error between the
predicted outputs and the desired outputs), the thresholds and
weights, which are controlled by the level of the activation
of each neuron, and the strength of the connections between
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the individual neurons, are trained. When the average error is
within a predefined tolerance, the training terminates and the
weights are locked in; the network is then ready to be used
for predicting new inputs. The performance of ANN is largely
related to its structure. In terms of training and prediction cost,
the ANN is computationally much cheaper compared to GP.

III. THE ESSAB METHOD

Analog IC sizing with the complete set of specifications
has the following characteristics: (1) The number of speci-
fications could be 10 to 20 or even more. Particularly, for
amplifiers, the saturation margin specifications could be many
and are necessary to be included in the optimization. (2) Some
specifications are not easy to learn. For example, some noise
performances are highly nonlinear, the settling time may not
be found for many candidate designs because they never settle
in the transient analysis time window. Because the above
characteristics are different from benchmark problems used
in the computational intelligence field, to the best of our
knowledge, there is no off-the-shelf surrogate model-assisted
optimization algorithm considering this.

As said in Section I, two challenges are brought by the
above characteristics, which are: (1) Inaccurate prediction
and the accumulation of the prediction error mislead the
optimization engine and fail the sizing, especially when the
specifications are stringent. (2) The machine learning time can
be another burden that cancels out the saved simulation time
to a large extent. Note that ESSAB does not aim at providing
a complete solution for analog IC sizing. Instead, it aims at
addressing the above two key challenges when introducing
machine learning techniques into optimization-based analog
IC sizing. Important research topics such as sizing problem
definition assessing the merit of designs, yield optimization
considering process, voltage and temperature variations [28]
are out of the scope but compatible with ESSAB.

A. The General Framework of ESSAB
The flow diagram of ESSAB is shown in Fig. 2. The

algorithm works as follows.
Step 1: Sample ↵ (often a small number) candidate designs

from the design space [a, b]
d (a and b are the lower

and upper bounds of the design variables, respec-
tively; d is the number of design variables) using
the Latin Hypercube sampling method [29]. Carry
out SPICE simulations and let them form the initial
database.

Step 2: If a preset stopping criterion is met, output the best
design from the database; otherwise go to Step 3.

Step 3: Rank all the designs in the database using the infill
sampling criterion in Section III (B). (Simulation
results are used in the ranking process.) Select � best
candidate designs to form a population P .

Step 4: Apply the DE mutation (1) and crossover operator
(2) on P to generate � child solutions.

Step 5: Select ⌧ best solutions in the database and their
performances as the training data. Construct an ANN
model using the method in Section III (C).
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Fig. 2. The flow diagram of the ESSAB method

Step 6: Rank the � child solutions using the infill sampling
criterion in Section III (B). (ANN predicted results
are used in the ranking process.)

Step 7: Simulate the estimated best child solution from Step
6. Add this solution and its performance values from
simulation to the database. Go back to Step 2.

It can be seen that ESSAB is an online surrogate model-
assisted global optimization method [1] and there is no pre-
liminary training data points or surrogate model. In Step 1, the
↵ initial sampling is often small (e.g., 5⇥ d by default) and a
very coarse surrogate model is constructed. In each iteration,
the surrogate model quality and optimal designs are gradually
improved. This is in contrast with off-line surrogate model-
assisted optimization, which first constructs a relatively accu-
rate surrogate model for the substitution of SPICE simulations;
A few or no simulations are carried out in the optimization pro-
cess. The main challenge for offline surrogate model-assisted
optimization is that considerable efficiency improvement is
difficult to be maintained when the number of design variables
is larger than a few [10], [30]. A linear increase in the
number of design variables leads to an exponential increase
in the design space. To maintain a reasonably good surrogate
model accuracy, much more samples are needed with a small
increase in the number of design variables, which soon become
tremendous. However, only a small region of the design space
is useful in optimization, and many of these simulations to
cover the whole design space (most are not near the optimal
region) are wasted.

Among various online surrogate model-assisted optimiza-
tion frameworks, ESSAB follows the surrogate model-
AWARE evolutionary search (SMAS) framework [10], [31].
In this framework, the selection operators are unique. The �

current best candidate designs are selected to form the parent
population (it is reasonable to assume that the search focuses
on the promising region) and the best predicted candidate de-
sign in the child population is selected to replace the worst one
in the parent population. Hence, only at most one candidate
solution is changed in the parent population in each iteration;
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The best candidate designs in the child solutions in several
consecutive iterations are likely near to each other, which will
be simulated and are used as training data points. Hence, the
training data points describing the current promising region
can be much denser compared to those generated by a standard
EA population updating mechanism, which may spread in
different regions of the design space. This largely improves
the surrogate model quality [31], [32].

However, borrowing the SMAS framework is insufficient
to address the above two targeted challenges for analog IC
sizing. (Section IV shows more details.) In ESSAB, the two
innovations are ranking and surrogate modeling. The ranking
operator (or infill sampling criterion) is one of the keys for any
SAEA, which guides the optimizer to find the feasible region
in the design space and then the optimal design. In ESSAB,
it is used in Step 3 to determine the parent population for
the current iteration and in Step 6 to determine the single
candidate design for simulation considering the predicted
values of the child population. ANN modeling is another key
operator because the prediction accuracy highly determines the
quality of ranking in Step 6, which is also essential to guide
the optimization engine. Moreover, machine learning cost is
mainly determined by the ANN training. The details of the
above two key operators are described in the following.

B. The New Infill Sampling Criterion

Before introducing the proposed method, it is worth ana-
lyzing the drawbacks of existing infill sampling criteria when
considering the complete set of specifications. Traditional infill
sampling criteria, such as expected improvement [22], lower
confidence bound [20], do not consider constraints. Rather,
they aim to estimate the quality of a solution based on both
the predicted value and the prediction error, in contrast to only
considering the predicted value. When handling constraints,
they often need to be combined with the penalty function
method [33]. A typical example is the GASPAD algorithm
for mm-wave IC synthesis [11]. Such methods often work
well when there are a few specifications, as mm-wave IC
synthesis problems have. However, it is known that for analog
IC sizing problems, the penalty coefficients are often sensitive,
especially when the design specifications are stringent [7].
Moreover, the number of specifications can be many (e.g.,
more than 20), instead of a few.

Some new infill sampling criteria consider constraints.
For example, in the weighted expected improvement (wEI)
criterion, the expected improvement value for the objective
function is multiplied by the probability of feasibility of all
constraints [24]. This method does not need penalty coeffi-
cients. However, the basic assumption is that the prediction
error is reasonable, which can provide useful information for
determining the overall quality of a candidate design. As said
above, for some analog IC performances, the predicted value
may still be reasonable using GP, but the prediction uncertainty
(i.e., error) can be large. Also considering the prediction error
is accumulated by many performances, wEI becomes less
effective since the estimated probability of feasibility may be
affected.

Therefore, two principles of the new infill sampling crite-
rion are: (1) It considers all the constraints and no penalty
coefficient is used. (2) It avoids using prediction error and
will therefore not be affected by some large prediction errors
and the accumulation of them. With these basic ideas, the
new method is developed. We call it the probability of further
improvement (PFI) criterion, which works as follows.

Considering that there are n designs to be ranked, for
each of them, there are m performances yj , j = 1, 2, . . . ,m

(either simulated values or predicted values). Among the m

performances, one of them serves as the objective function,
and others are only constraints. They can be described as
c(x)  Sj , j = 1, 2, . . . ,m, where Sj is the jth specification.
An n⇥m performance matrix can be formed. The PFI infill
sampling criterion ranks the n designs as follows (Algorithm
1).

Algorithm 1 The PFI infill sampling criterion
1: for each performance j do:
2: Normalize the jth column of the performance matrix

and fit it into a � distribution, Beta(↵j ,�j), to obtain the
hyperparameters ↵j and �j ;

3: For Sj , obtain cumulative distribution function CDFSj

with fitted hyperparameters;
4: For each design i (i = 1, 2, . . . , n), calculate the

probability of obtaining a better performance than the
current yij while still violating Sj :

5: if yij > Sj then
6: B

i
j = CDF

�
y
i
j |Beta(↵j ,�j)

�
� CDF (Sj |Beta(↵j ,�j))

7: else
8: B

i
j = 0

9: For each candidate design i (i = 1, 2, . . . , n), calculate
the potential value by

Po (i) =

mX

j=1

B
i
j (3)

10: Rank the n candidate designs based on their Po value in
ascending order (i.e., the smaller the better).

Some clarifications are as follows:
• The proposed PFI infill sampling criterion is directed

by the probability of further improvement based on the
current visited designs and performances. Besides consid-
ering performance improvement, satisfying the constraint
is considered in this process, which is reflected in the
calculation of Bi

j .
• It can be seen that PFI avoids using the prediction error

and it also does not need penalty coefficients, which is
in line with the principles mentioned before.

• The reason why � distribution is used is that the PFI
requires a probabilistic interpretation of the members
in the performance matrix. � distribution provides the
flexibility to capture the irregular distributions of the fitted
performance values.

C. The New ANN Model Construction Method
Since PFI does not use prediction error to evaluate the

potential of a candidate design, it requires the prediction value
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to be sufficiently accurate. In our initial experiments, we found
that the GP model can satisfy the accuracy requirement, but
the GP modeling time is long in analog building block sizing.
On the other hand, ANN training is efficient, which inspires
us to improve the prediction ability of ANN.

For regression tasks, a feedforward ANN model with a
single hidden layer is widely used. Experiments show that
the accuracy using that model is insufficient for the targeted
analog IC performances. To improve the prediction accuracy,
an effective way is to use more training data points and hidden
layers, such as in deep learning. However, in machine learning-
assisted analog IC sizing, the goal is to reduce the number of
simulations. The number of training data points is, therefore,
not many. In addition, candidate designs that are near to the
current search region (i.e., the current best ⌧ designs according
to Section III (A)) provide essential information to predict the
subsequent population, while most other candidate designs do
not contribute much. This increasingly decreases the number
of available training data points.

In ESSAB, the key idea to increase the number of training
data points is as follows. Given the original training data set
(X), which are the ⌧ current best designs obtained so far,
two samples (x

i
, y

i
) 2 R

d and (x
j
, y

j
) 2 R

d are randomly
selected. The corresponding point in the new training data set
is

x
ij
= (x

i
, �x

ij
) and y

ij
= y

j (4)

where �x
ij
= x

j�x
i. Following this way, a new training data

point can be generated for each ordered-pair in the original
training data set. Formed by the cartesian product of X of
size ⌧ with itself which is given as

X ⇥ X = {(xi
, x

j
) | xi 2 X and x

j 2 X}

the number of new training data points is ⌧
2.

!!

∆!!"
#$$(!! , ∆!!")

design	i params:	 -!

design	j	params:	 -"

Fig. 3. The ANN model in ESSAB

Using the new training data set with 2d dimensions, the
ANN model is constructed as shown in Fig. 3.

Using this ANN model with two hidden layers, the weights
are trained using the loss function calculating the distance
between the ANN predicted values and the simulation values.

L(w) = E

⇣
(ANN(x,�x)� y (x+�x))

2
⌘

(5)

where ANN(x,�x) are the ANN predicted values, and y(x+

�x) are the performances obtained by simulations. The ANN
is trained using the ADAM optimizer [34]. The learning rate is
0.001 and the batch size is 64. For hidden layers, the rectifier
activation function is used, and there is no activation function
for the output layer. Often, 10 training epochs are sufficient.

After the ANN model is trained, in Step 6 of the ESSAB
framework (Section III (A)), the constructed ANN model with
2d inputs is used to predict the child population generated by
DE operators with d inputs. The � child solutions generated
in Step 4 is used as xj and the � solution obtained in Step 3 is
used as xi. Following (4), the input values for the ANN model
can be generated. Their performance can then be predicted.

D. Parameter Settings
ESSAB has SAEA parameters and ANN parameters. In

terms of the former, the settings are as follows: ↵ = 5 ⇥ d,
� = 5 ⇥ d, ⌧ = 5 ⇥ d, where d is the number of design
variables. These settings follow the general SAEA parameter
setting principles (e.g., [1]). F and CR are DE parameters.
They are set as F = 0.8, CR = 0.5, following [25]. In terms
of ANN parameters, 2 hidden layers are used and each of them
has 100 neurons. These are empirical settings by studying data
characteristics of analog IC design performances and once set,
they do not change.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, the performance of ESSAB is verified by
four test cases, including a two-stage folded-cascode opera-
tional transconductance amplifier, an inverter stacking ampli-
fier [35], a strong-arm latch comparator [36] and a distributed-
input voltage controlled oscillator (VCO) [37]. 180 nm CMOS
technologies are used for the first three test cases and a 40
nm CMOS technology is used for the last test case. Note
that the complete set of stringent specifications used in real-
world design practice are used for test cases 1, 3 and 4.
The specifications come from DC, AC, and transient analyses,
having relations with each other. According to applications,
some performance may be considered as more important than
others. For generality consideration, all the specifications are
considered as important. For test case 2, the specifications
in [35] are followed for comparison purpose, where transient
analysis-based specifications are not used. The number of
specifications used in the case studies is up to 29. Besides
the large number, some performances are not easy to learn as
said in Section III, which appear in test cases 1, 3 and 4. All
the experiments are run on a workstation with Intel Xeon CPU
and 128GB RAM. Cadence Spectre is the simulation tool. No
parallel computing is considered as said in Section I.

Because the two major innovations of ESSAB are the
new infill sampling criterion PFI and the new ANN model
construction method, the following two reference methods are
proposed. The first one is ESSAB-GP, which replaces the
ANN prediction with GP prediction. The aim is to observe
the prediction ability and training cost of the two machine
learning methods. The second one is Bayesian optimization
using wEI (BO-wEI). Bayesian optimization is a kind of
surrogate model-assisted optimization method, for which, infill
sampling plays a key role and many of them are based on
GP modeling. The framework follows [8], where GP and wEI
are used. The difference compared to [8] is that multi-start
local optimization is replaced by DE considering the time
consumption of GP predictions when using sufficient starting
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points. This reference method aims to observe the ranking
ability of wEI when the complete set of specifications (some of
them are difficult to learn) are used. As a benchmark reference
method for analog IC sizing, DE is compared with ESSAB
in terms of both solution quality and efficiency. Besides,
in the second, third and fourth test cases, the results are
also compared with published designs [35], [36], [37]. Both
the results from [35], [36], [37] and ESSAB are based on
simulation.

Integer values are involved in all three test cases. For all the
algorithms, the same quantization method is used as in [26],
[17]. Random numbers are involved in stochastic algorithms.
Hence, 10 runs are carried out for each algorithm and the
results are analyzed statistically. To make the algorithms
converge, the simulation budget for test cases 1, 2 and 3 is
10,000 for DE and 500 for ESSAB and BO-wEI. For test
case 4, because each simulation costs more than 10 minutes,
DE is expected to cost prohibitive time and is not used. The
simulation budget for ESSAB and BO-wEI is 200 simulations
making them converge. For ESSAB-GP, because the goal is to
verify the efficiency and quality of the novel ANN model, the
same number of simulations are used for a fair comparison
with ESSAB, although the algorithm does not fully converge.
Using more simulations making the algorithm converge is
carried out separately.

Some of the reference methods cannot satisfy the specifi-
cations. Hence, there is no feasible solution, and comparing
objective function values for feasible solutions is impossible.
To show the performance of different algorithms, a metric
is defined for a candidate design before satisfying all the
specifications. We call it performance improvement indicator
(PII), which is as follows.

PII =

mX

j=1

min

 
1,max

 
0,

yj � Sj

yrefj � Sj

!!
(6)

where yj(j = 1, . . . ,m) is the jth performance of the
candidate design, Sj is the jth specification (Section III) and
y
ref
j is a reference point, which is defined by the designer for

normalization. yrefj refers to least workable value in general
cases. For example, when Sj for DC gain is set to 70 dB,
y
ref
j can be set to 40 dB. (Note that all the specifications use
c(x)  Sj in PII. Sj is -70 dB and y

ref
j is -40 dB considering

-DC gain  -70 dB). The value of y
ref
j does not need to be

accurate and is case dependent. Although using different yref
may lead to slight change in the PII-based convergence curve,
the same y

ref is used for all the reference methods for a
fair comparison. In PII, max() is used considering constraint
satisfaction, instead of objective function optimization; min()

is used to prevent a single specification dominates the PII
value. Hence, the worst value of PII for a candidate design
is m, indicating that the candidate design is worse than or
equal to the design meeting the least common workable values
but far below satisfactory, while the best value of PII is 0,
indicating all the specifications are satisfied.
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Fig. 4. Schematic of the folded-cascode OTA

A. Case Study 1
The first test case is a folded-cascode operational transcon-

ductance amplifier (OTA) (Fig. 4). It has 20 design variables
and the search ranges provided by the designer are in Table I.

TABLE I
DESIGN PARAMETERS AND THEIR RANGES FOR THE FOLDED-CASCODE

OTA (TEST CASE 1)

Parameter LB UB Parameter LB UB
L1(µm) 0.18 2 W4(µm) 0.24 150
L2(µm) 0.18 2 W5(µm) 0.24 150
L3(µm) 0.18 2 W6(µm) 0.24 150
L4(µm) 0.18 2 W7(µm) 0.24 150
L5(µm) 0.18 2 MCAP(fF ) 100 2000
L6(µm) 0.18 2 Cf(fF ) 100 10000
L7(µm) 0.18 2 N1 (integer) 1 20
W1(µm) 0.24 150 N2 (integer) 1 20
W2(µm) 0.24 150 N8 (integer) 1 20
W3(µm) 0.24 150 N9 (integer) 1 20

W: transistor width; L: transistor length; UB: upper bound; LB: lower
bound

The sizing problem is defined as follows:

minimize Power

s.t. DC Gain � 60 dB

CMRR � 80 dB

PSRR � 80 dB

Output Swing � 2.4 V

Output Noise  3⇥ 10
�4

Vrms

Phase Margin � 60 deg

Unity Gain Frequency � 30 MHz

Settling Time  3⇥ 10
�8

s

Static Error  0.1%

Saturation Margins � 50 mV

(7)

In our experiment, the following transistors are required to
operate in the saturation region: M1, M3, M4, M7, M9, M10,
M12, M13, M15, M16, M17, M18, M19, M20, M21, M22,
M23, M24, M25 and M26. The total number of specifications
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becomes 29. Note that the saturation margin specifications are
essential. Without considering them, solutions satisfying all
the performance specifications can be found much easier, but
some transistors among M3, M4, M10 and M22 (Fig. 4) are
in the triode region. A similar phenomenon also applies to the
next test case, which will not be repeated. Note that different
objective functions and constraints other than (7) can be used.
For example, [28] defines a new kind of Figure of Merit.
ESSAB applies to any objective functions and constraints.

Ten runs are carried out for ESSAB and all of them success-
fully satisfy all the specifications. ESSAB converges within
400 simulations, which is fewer than the simulation budget
(500 simulations). The total sizing time is about 2.5 hours
(system time). A typical design obtained by ESSAB is shown
in Table II (including current biases) with the corresponding
performance in Table III.

TABLE II
A TYPICAL DESIGN OBTAINED BY ESSAB (TEST CASE 1)

Parameter Value Parameter Value Parameter Value
L1(µm) 1.28 L2(µm) 0.36 L3(µm) 0.18
L4(µm) 1.9 L5(µm) 0.4 L6(µm) 1.7
L7(µm) 0.48 W1(µm) 6 W2(µm) 9.6
W3(µm) 6 W4(µm) 126 W5(µm) 142
W6(µm) 40.4 W7(µm) 132 MCAP(pF ) 1.8
Cf(pF ) 1.3 N1 4 N2 5

N8 1 N9 6 Id22 (nA) 240
Id10 (nA) 80 Id13/Id14 (nA) 200 Id3/Id4 (nA) 60

TABLE III
PERFORMANCE VALUES OF A TYPICAL DESIGN OBTAINED BY ESSAB

(TEST CASE 1)
Power DC Gain CMRR
0.63 mW 96.5 dB 96.5 dB

PSRR Output Swing Output Noise
138.1 dB 2.69 V 2.72⇥ 10�4

Vrms

Phase Margin Unity Gain Freq. Settling Time
77 deg 34 MHz 2.5⇥ 10�8

s

Static Error Saturation Margins
0.004% all satisfied

The statistical results for all the reference algorithms are
shown in Table IV. In Table IV, the success rate is the number
of runs that obtain feasible designs (i.e., satisfying all the
specifications) in the given simulation budget divided by the
total 10 runs. Nfeasible is the number of simulations used to

TABLE IV
STATISTICAL RESULTS FOR DIFFERENT ALGORITHMS (TEST CASE 1)

Algorithm DE BO-wEI ESSAB-GP ESSAB
Success rate 10/10 2/10 10/10 10/10
Nfeasible 3600 N.A. 252 160
Min. power (mW ) 0.82 0.91 0.79 0.53
Max. power (mW ) 1.55 1.62 1.12 0.86
Mean power (mW ) 1.18 1.25 0.96 0.68
Std. power (mW ) 0.33 0.5 0.12 0.09
Modeling time (h) N.A. 29 6.5 0.4
Simulation time (h) 52 2.6 2.6 2.6

Fig. 5. The PII values (best so far) of all the algorithms within 500 simulations
(average over 10 runs)

obtain the first feasible design (average over 10 runs). The
statistics of the objective function value (i.e., power) only
considers the feasible runs. The modeling time is the total
system time of GP or ANN modeling and prediction in a single
run (average over 10 runs). The simulation time for BO-wEI,
ESSAB-GP and ESSAB are very similar although with a slight
difference. Because the same kind of simulation is carried out
for the same number of times, the average simulation time,
2.6 hours, is used for all of them. This also applies to other
test cases.

The following conclusions can be drawn from Table IV. The
designs obtained by ESSAB are of high-performance, even for
the worst case. The average power value is the best among all
reference methods and a clear advantage in terms of solution
quality can be observed. The modeling time (0.4 hours) is
very short, which successfully addresses the key challenge of
machine learning cost (Section I).

Compared to DE, which is a benchmark reference method
for analog IC sizing, ESSAB obtains clearly better solution
quality. In terms of efficiency, ESSAB can obtain the first
feasible design using almost 22 times fewer simulations than
DE. Even considering that DE does not have modeling time,
ESSAB is much more efficient than DE due to the largely
reduced number of simulations and the short modeling time.

ESSAB-GP shows the performance of the ANN model com-
pared with the GP model in the same algorithm framework.
Within 500 simulations, although both ESSAB and ESSAB-
GP obtain 100% success to satisfy all the specifications,
ESSAB outperforms ESSAB-GP. To obtain the first feasible
design, ESSAB-GP needs 252 simulations on average, while
ESSAB only needs 160 simulations. ESSAB also shows ad-
vantages on the objective function values compared to ESSAB-
GP. This shows that the new ANN model construction method
is better than GP both in terms of prediction quality and
clearly, efficiency. Particularly, in GP-based methods, the GP
modeling and prediction time is often much more than the
simulation time (even though, they are more efficient than DE),
while the new ANN model training and prediction cost about
15% of the simulation time.

BO-wEI runs show that most of the specifications are satis-
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fied, but in 8 cases, the output swing, settling time and a few
saturation margin specifications are often violated. Note that
BO-wEI is often trapped in local optima and the performance
will not be improved when using more simulations. This
can also be found from the PII value (Fig. 5). The worst
case of ESSAB to obtain the first feasible design uses 260
simulations, which is set as a threshold. Comparing ESSAB-
GP and BO-wEI, the advantage of the new PFI infill sampling
criterion compared with wEI can be observed when handling
the complete set of specifications.

B. Case Study 2

The second test case is the inverter-stacking amplifier (ISA)
(Fig. 6) [35], which is a state-of-the-art structure. Although
specifications based on AC analysis are extensive and promis-
ing, some transient analysis-based specifications, which are
often not easy to learn, are not used in this example as in
[35]. The purpose of selecting this example is to observe
the behavior of different algorithms for such test cases in
comparison with other more challenging test cases. This test
case has 22 design variables and the search ranges provided
by the designer are in Table V.

MB1MB0MBrep

Fig. 6. Schematic of the ISA

The sizing problem is defined as follows, which has 21
specifications in total.

TABLE V
DESIGN PARAMETERS AND THEIR RANGES FOR ISA (TEST CASE 2)

Parameter LB UB Parameter LB UB
L1(µm) 0.3 10 W3(µm) 0.22 40
L2(µm) 0.3 10 W4(µm) 0.22 40
L3(µm) 0.3 10 W5(µm) 0.22 40
L4(µm) 0.3 10 W6(µm) 0.22 40
L5(µm) 0.3 10 W7(µm) 0.22 40
L6(µm) 0.3 10 W8(µm) 0.28 40
L7(µm) 0.3 10 WR(µm) 0.4 40
L8(µm) 0.3 20 C_CMFB(fF ) 10 30000
LR(µm) 0.3 10 Cf(fF ) 10 30000
W1(µm) 0.22 40 C_in(fF ) 10 30000
W2(µm) 0.22 40 Nmain (integer) 1 100

W: transistor width; L: transistor length; UB: upper bound; LB: lower
bound

minimize Noise-Power Product
s.t. Open-loop Gain � 70 dB

DC-loop Gain � 40 dB

Closed-loop BW � 30 kHz

PMOS-input Degeneration Gain � 30 dB

NMOS-input Degeneration Gain � 30 dB

Output Offset 1-sigma  1⇥ 10
�3

V

Replica CMFB Loop Gain � 13 dB

Main CMFB Loop Gain � 35 dB

Differential Loop Phase Margin � 65 deg

Replica CMFB Loop Phase Margin � 65 deg

Main CMFB Loop Phase Margin � 65 deg

Closed-loop DC Gain � 0 dB

Vds Mismatch main/rep c.s.  0.1

Output CM Voltage (max)  0.5 V

Output CM Voltage (min) � 0.4 V

Saturation Margins � 150 mV

(8)

Ten runs are carried out for ESSAB and all of them
successfully satisfy all the specifications. ESSAB converges
within 200 simulations, which is fewer than the simulation
budget (500 simulations). The total sizing time is about 1.8
hours (system time). In particular, all of them outperform the
design in [35] (both based on simulation results). A typical
design obtained by ESSAB is shown in Table VI (including
current biases) with the corresponding performance in Table
VII.

TABLE VI
A TYPICAL DESIGN OBTAINED BY ESSAB (TEST CASE 2)

Parameter Value Parameter Value Parameter Value
L1(µm) 1.7 W1(µm) 30.3 C_CMFB(fF ) 160
L2(µm) 9.6 W2(µm) 0.8 Cf(fF ) 860
L3(µm) 2.3 W3(µm) 0.9 C_in(fF ) 13600
L4(µm) 8.2 W4(µm) 37.3 Nmain (integer) 18
L5(µm) 4.2 W5(µm) 4.2 Id_MB0 (nA) 288
L6(µm) 8.8 W6(µm) 2.4 Id_MB1 (nA) 360
L7(µm) 9.5 W7(µm) 13.2 Id_MBrep (nA) 20
L8(µm) 19 W8(µm) 1
LR(µm) 6.1 WR(µm) 24.7
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TABLE VII
PERFORMANCE VALUES OF A TYPICAL DESIGN OBTAINED BY ESSAB

(TEST CASE 2)
Noise-Power
Product

Open-loop
Gain

DC-loop
Gain

1.81 pWHz 70.0 dB 46.5 dB

Closed-loop
BW

P-input Deg.
Gain

N-input Deg.
Gain

33 kHz 41.9 dB 54.8 dB

Out. Offset
1-sigma

Rep. CMFB
loop gain

Main CMFB
loop gain

5.9⇥ 10�4
V 14.1 dB 60.0 dB

Diff. Loop
PM

Rep. CMFB
Loop PM

Main CMFB
Loop PM

89 deg. 146 deg. 88 deg.

Closed-loop
DC Gain

Vds Mismatch
main/rep

Output CM V.
(max.)

23.7 dB 0.05 0.41 V

Output CM V.
(min.) Saturation Margins

0.41 V all satisfied

The statistical results for all the reference methods and the
PII curve are shown in Table VIII and Fig. 7, respectively. It
can be seen from Table VIII that all the reference methods
successfully satisfy the specifications. All surrogate model-
based methods are much more efficient than DE. In Fig. 7, the
worst case of ESSAB to obtain the first feasible design uses
79 simulations, which is set as a threshold. It can be seen that
the PII convergence trends are comparable for ESSAB and
ESSAB-GP, despite that ESSAB is more efficient. BO-wEI is
slightly slower, showing the advantage of the proposed PFI
compared to wEI even without considering transient analysis-
based specifications.

TABLE VIII
STATISTICAL RESULTS FOR DIFFERENT ALGORITHMS (TEST CASE 2)

Algorithm DE BO-wEI ESSAB-GP ESSAB
Success rate 10/10 10/10 10/10 10/10
Nfeasible 1300 100 73 50
Min. noise-power
product (pWHz) 2.12 1.68 1.96 1.72

Max. noise-power
product (pWHz) 2.55 2.6 2.48 1.96
Mean noise-power
product (pWHz) 2.37 2.27 2.22 1.81
Std. noise-power
product (pWHz) 0.17 0.25 0.22 0.13

Modeling time (h) N.A. 28 6.5 0.5
Simulation time (h) 72 3.6 3.6 3.6

Besides, two more observations can be made: (1) Consid-
ering the complete set of specifications, although the total
number is important, difficult to learn performances play a
critical role. The reason is that providing an accurate predic-
tion for them is more difficult due to their highly nonlinear
characteristics and the unavoidable many simulation failures
(Section III). When removing them such as in this test case, all
surrogate model-based methods succeed. (2) Even under this
condition, ESSAB is better than all other reference methods. In
Table VIII, the average objective function value of ESSAB is
about 20% better than DE, BO-wEI and ESSAB-GP. ESSAB
also has the best efficiency reflected by the small number of
simulations as well as the short modeling time.

Fig. 7. The PII values (best so far) of all the algorithms within 500 simulations
(average over 10 runs)

C. Case Study 3

The third test case is a strong-arm latch comparator (SLC)
which is shown in Fig. 8. It has 13 design variables and
the search ranges provided by the designer are in Table IX.
Following [36], the specifications are stringent.

 

Fig. 8. Schematic of the SLC

TABLE IX
DESIGN PARAMETERS AND THEIR RANGES FOR SLC (TEST CASE 3)

Parameter LB UB Parameter LB UB
L1(µm) 0.18 10 W1(µm) 0.22 50
L2(µm) 0.18 10 W2(µm) 0.22 50
L3(µm) 0.18 10 W3(µm) 0.22 50
L4(µm) 0.18 10 W4(µm) 0.22 50
L5(µm) 0.18 10 W5(µm) 0.22 50
L6(µm) 0.18 10 W6(µm) 0.28 50

Cl_finger (integer) 10 300

W: transistor width; L: transistor length; UB: upper bound; LB: lower
bound

The sizing problem is defined as follows, which has 10
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specifications in total.

minimize Power
s.t. Set Delay Time  10 ns

Reset Delay Time  6.5 ns

Area  26 µm
2

Input-ref Noise  5⇥ 10
�5

Vrms

Differential Reset Voltage  1 µV

Differential Set Voltage � 1.195 V

Positive Integration Node Reset Voltage  60 µV

Negative Integration Node Reset Voltage  60 µV

Positive Output Node Reset Voltage  0.35 µV

Negative Output Node Reset Voltage  0.35 µV

(9)
Ten runs are carried out for ESSAB and all of them

successfully satisfy all the specifications. ESSAB converges
within the simulation budget (500 simulations). The total
sizing time is about 3.8 hours (system time). In particular,
all of them outperform the design in [36] (both based on
simulation results). A typical design obtained by ESSAB is
shown in Table X with the corresponding performance in Table
XI.

TABLE X
A TYPICAL DESIGN OBTAINED BY ESSAB (TEST CASE 3)

Parameter Value Parameter Value Parameter Value
L1(µm) 0.18 L6(µm) 0.18 W5(µm) 3.5
L2(µm) 0.18 W1(µm) 50.0 W6(µm) 4.3
L3(µm) 0.18 W2(µm) 5.0 Cl_finger (integer) 44
L4(µm) 0.18 W3(µm) 5.2
L5(µm) 0.18 W4(µm) 4.7

TABLE XI
PERFORMANCE VALUES OF A TYPICAL DESIGN OBTAINED BY ESSAB

(TEST CASE 3)
Power Set Delay Time Reset Delay Time
2.7µW 9.7 ns 4.2 ns

Area Input-Ref Noise Diff. Reset Voltage
25.8µm2 4.9⇥ 10�5

Vrms 2.8⇥ 10�7
µV

Diff. Set Voltage Pos-Integ. Res. V. Neg-Integ. Res. V.
1.2V 56µV 57µV
Pos-Output Res. V. Neg-Output Res. V.
3⇥ 10�4

µV 3⇥ 10�2
µV

The statistical results for all the reference methods and the
PII curve are shown in Table XII and Fig. 9, respectively.

TABLE XII
STATISTICAL RESULTS FOR DIFFERENT ALGORITHMS (TEST CASE 3)

Algorithm DE BO-wEI ESSAB-GP ESSAB
Success rate 5/10 0/10 6/10 10/10
Nfeasible >10000 N.A. >500 390
Min. power (µW ) 2.98 N.A. 3.05 2.52
Max. power (µW ) 4.22 N.A. 3.75 2.73
Mean power (µW ) 3.57 N.A. 3.45 2.66
Std. power (µW ) 0.5 N.A. 0.36 0.098
Modeling time (h) N.A. 17 3 0.2
Simulation time (h) 70 3.5 3.5 3.5

Fig. 9. The PII values (best so far) of all the algorithms within 500 simulations
(average over 10 runs)

With the complete set of specifications, ESSAB clearly
outperforms other reference methods considering both solution
quality and efficiency. Similar conclusions as test case 1 can
be drawn, which will not be repeated. Additional observations
include: (1) Within 500 simulations, ESSAB-GP only obtains
feasible designs for 6 times. Although separate runs using
1000 simulations show that ESSAB-GP can also obtain 100%
success, it is much slower than ESSAB. (2) With such stringent
specifications, which mainly come from transient and noise
analysis-based performances, even DE does not obtain 100%
success, while ESSAB does. (3) BO-wEI does not succeed
in all the runs since it fails to satisfy the input-referred noise
specification for all the runs and delay time for some runs.
The above again verify the advantages of the proposed PFI
infill sampling method and the new ANN model construction
method, as well as the optimization ability of the ESSAB
framework.

D. Case Study 4
Another kind of typical analog building block is the VCO.

Recently, some novel structures are proposed [37], [38].
Hence, the fourth test case is a distributed-input VCO [37]
implemented in a 40 nm technology (Fig. 10). It has 10 design
variables and the search ranges provided by the designer are
in Table XIII. Besides studying ESSAB’s effectiveness for
various kinds of building blocks, this test case is selected
because: (1) Each simulation costs more than 10 minutes and
traditional global optimization methods may cost prohibitive
time. (2) Although only with 5 specifications, the specifica-
tions are stringent and the frequency/voltage gain (KVCO) is
difficult to learn due to the high simulation failure rate.

The sizing problem is defined as follows, which has 5
specifications.

minimize Noise-Power Product
s.t. Center Frequency � 75 MHz

KVCO min � 1.28 GHz/V

KVCO max  1.42 GHz/V

Area  300 µm
2

Power  150⇥ 10
�6

W

(10)
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 Fig. 10. Schematic of VCO

TABLE XIII
DESIGN PARAMETERS AND THEIR RANGES FOR VCO (TEST CASE 4)

Parameters LB UB Parameters LB UB
Idc(µA) 10 75 Ltail(µm) 0.04 20

Lctrl(µm) 0.04 1 Ln(µm) 0.04 0.4
Lp(µm) 0.04 0.4 Wtail(µm) 0.12 100

Wctrl(µm) 0.12 100 Wn(µm) 0.12 100
Wp(µm) 0.12 100 Current ratio (integer) 1 20

W: transistor width; L: transistor length; UB: upper bound; LB: lower
bound

Ten runs are carried out for ESSAB and all of them
successfully satisfy all the specifications. ESSAB converges
within the simulation budget (200 simulations). The total
sizing time is about 25 hours (system time). In particular, all of
them outperform the design in [37] (both based on simulation
results). A typical design obtained by ESSAB is shown in
Table XIV with the corresponding performance in Table XV.

TABLE XIV
A TYPICAL DESIGN OBTAINED BY ESSAB (TEST CASE 4)

Parameter Value Parameter Value Parameter Value
Idc(µA) 23.7 Ltail(µm) 2.45 Lctrl(µm) 0.11
Ln(µm) 0.08 Lp(µm) 0.07 Wtail(µm) 0.64

Wctrl(µm) 6.60 Wn(µm) 0.42 Wp(µm) 1.82
Current ratio 1

TABLE XV
PERFORMANCE VALUES OF A TYPICAL DESIGN OBTAINED BY ESSAB

(TEST CASE 4)
Noise-Power
Product

Center
Frequency Area

0.75fWHz 90.9MHz 260µm2

Power KVCO
65µW 1.32GHz/V

The statistical results for all the reference methods and the
PII curve are shown in Table XVI and Fig. 11, respectively.
As above mentioned, DE is expected to cost prohibitive time
and is not used for this test case.

It can be seen that ESSAB clearly outperforms other refer-
ence methods considering both solution quality and efficiency.

Fig. 11. The PII values (best so far) of all the algorithms within 200
simulations (average over 10 runs)

TABLE XVI
STATISTICAL RESULTS FOR DIFFERENT ALGORITHMS (TEST CASE 4)

Algorithm BO-wEI ESSAB-GP ESSAB
Success rate 3/10 10/10 10/10
Nfeasible N.A. 141 54
Min. noise-power
product (10�16 ⇥
WHz)

10.3 6.3 5.5

Max. noise-power
product (10�16 ⇥
WHz)

57.2 100 10.6

Mean. noise-power
product (10�16 ⇥
WHz)

33.2 28.8 8.2

Std. noise-power
product (10�16 ⇥
WHz)

23.4 35.4 1.9

Modeling time (h) 1.1 0.2 0.05
Simulation time (h) 25 25 25

The same conclusions as test case 1 can be drawn, which
will not be repeated. A new observation is that after 200
simulations, the noise-power product of ESSAB (on average)
is about 3 times better than that of ESSAB-GP, although
ESSAB-GP can obtain a similar value after 400 simulations.
This shows ESSAB’s advantage on efficiency even clearer.

V. CONCLUSIONS

In this paper, the Efficient Surrogate Model-assisted Siz-
ing Method for High-performance Analog Building Blocks
(ESSAB) has been proposed. The strong ability to handle
stringent specifications, small surrogate modeling cost, and
strong optimization ability to obtain high performance are
demonstrated by four test cases. The major challenges for
machine learning-assisted global optimization-based analog
IC sizing methods when considering the complete set of
specifications (especially those not easy to learn specifications)
are therefore addressed. ESSAB can finish the sizing using a
few hundred simulations and is almost 20 times faster than
DE while obtaining even better performance. The effective-
ness and efficiency of ESSAB come from the proposed new
infill sampling criterion, the new ANN construction method,
and the algorithm framework to make use of them. Future
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works include investigating systematic methods for integrating
parallel computing into ESSAB and yield optimization using
ESSAB as the fundamentals.
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