This is the peer reviewd version of the followng article:

A Taxonomy of Modern GPGPU Programming Methods: On the Benefits of a Unified Specification /

Capodieci, N.; Cavicchioli, R.; Marongiu, A.. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - 41:6(2021), pp. 1679-N/A.
[10.1109/TCAD.2021.3082863]

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

25/04/2024 07:24

(Article begins on next page)

This is the accepted manuscript of:

Capodieci, Nicola, Roberto Cavicchioli, and Andrea Marongiu. "A Taxonomy of Modern GPGPU
Programming Methods: On the Benefits of a Unified Specification.” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2021).

© IEEE 2021. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

The definitive Version of Record was published in https://doi.org/10.1109/TCAD.2021.3082863

https://doi.org/10.1109/TCAD.2021.3082863

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

A Taxonomy of Modern GPGPU Programming
Methods: On the Benefits of a Unified Specification

Nicola Capodieci, Member, IEEE, Roberto Cavicchioli, and Andrea Marongiu, Member, IEEE

Abstract—Several Application Programming Interfaces (APIs)
and frameworks have been proposed to simplify the development
of General-Purpose GPU (GPGPU) applications. GPGPU appli-
cation development typically involves specific customization for
the target operating systems and hardware devices. The effort
to port applications from one API to the other (or to develop
multi-target applications) is complicated by the availability of a
plethora of specifications, which in essence offers very similar
underlying functionality. In this work we provide an in-depth
study of six state-of-the-art GPGPU APIs. From these we derive
a taxonomy of the common semantics and propose a unified
specification. We describe a methodology to translate this unified
specification into different target APIs. This simplifies cross-
platform application development and provides a clean frame-
work for benchmarking. Our proposed unified specification is
called GUST (GPGPU Unified Specification and Translation) and
it captures common functionality found in compute-only APIs
(e.g., CUDA and OpenCL), in the compute pipeline of traditional
graphic-oriented APIs (e.g., OpenGL and Direct3D11) and in
last-generation bare-metal APIs (e.g., Vulkan and Direct3D12).
The proposed translation methodology solves differences between
specific APIs in a transparent manner, without hiding available
tuning knobs for compute kernel optimizations and fostering best
programming practices in a simple manner.

Index Terms—GPGPU, Parallel Programming Tools

I. INTRODUCTION

Architectural heterogeneity is becoming the reference hard-
ware design paradigm in all computing domains, as it ef-
fectively addresses the energy and thermal walls implied by
CMOS technology scaling. General Purpose Graphics Process-
ing Units (GPGPU) represent probably the most widespread
example of such design paradigm, and GPGPU programming
is nowadays a very common paradigm to efficiently execute
large data-parallel workloads. The massively parallel compute
hardware of modern GPUs is no longer designed for graphics-
related tasks only, as it was originally. By offloading the
execution of compute-intensive, data-parallel code kernels
from general-purpose Central Processing Units (CPU) on top
of such hardware resources it is possible to hit unprecedented
performance-per-watt targets. GPGPU computing has been
successfully applied to a variety of performance-demanding
computing tasks such as large scale simulations [1} 2], VLSI
placement and gate sizing [3| 4], signal processing [S[], Ma-
chine Learning (ML) [6] and everything else that requires
high throughput performance over consistently large sets of
input data [7]. Moreover, we are witnessing a trend towards
the integration of increasingly powerful GPGPU compute

Department of Physics, Informatics and Mathematics, University of Modena
and Reggio Emilia, Italy, e-mail: name.surname @unimore.it.

capabilities also at the System-on-Chip (SoC) scale, which
enables the execution of machine learning (ML) and Artificial
Intelligence (AI) workloads also on top of high-end embedded
systems [8].

In order to reach a large variety of users, during the course
of the years both the research community and the industry have
proposed many high-level languages for simplifying access to
such technologies: by providing explicit hooks to the compute
pipeline of traditional graphics-oriented APIs (e.g. Khronos
OpenGL and Microsoft Direct Compute over Direct3D), to the
release of compute-specific GPU-Accelerated programming
models such as NVIDIA CUDA and Khronos OpenCL. All
these APIs aim at hiding the complexity of dealing with
details specific to the hardware or OS-level drivers. However,
while their library-based interface indeed exposes hardware
functionality with some degree of abstraction, it is widely
agreed that this style of programming is still very involved
and, overall, low-level. This has motivated over the last decade
a lot of research efforts aimed at further raising the level of
abstraction of GPU programming methods.

An application developer chooses a target API based on
a number of factors: (i) dependencies from legacy code in a
project; (ii) time-to-market constraints and the expertise of the
developers; (iii) the need to develop a product meant for multi-
platform execution or to port an existing product from one
platform to another. Once a program is written with a given
API, the effort for porting it on a different API and/or to a
different platform is typically not at all trivial. Thus, over the
years the research problem of simplifying GPU programming
has also tackled the specific issue that porting applications
from one GPU system to another, or developing multi-target
applications, is complicated by the availability of a large
number of low-level APIs. Moving from the observation that
these APIs ultimately offer very similar underlying semantics,
a number of research and industrial efforts have addressed
the need to derive some sort of unified specification/language
capable of working across multiple APIs. These approaches
and associated tools have proven effective at easing application
porting to various GPU HW/SW platforms, but they have so
far been very limited and only targeted a few specific APIs.

In this paper we provide an in-depth study of the anatomy of
six state-of-the-art APIs for GPGPU programming: OpenGL
Compute Shaders, Direct Compute over Direct3D11, OpenCL,
CUDA and next-generation bare-metal APIs Vulkan and Di-
rect3D12. Out of this study we derive a taxonomy of the
semantics supported across the considered APIs, highlighting
how the low-level services underlying virtually every available
API for GPU development largely overlap in functionality.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

From there, we discuss and explore the feasibility and the
benefits of a unified specification that (i) captures common
semantics to any GPGPU-related API consisting of host pro-
cessor (CPU) and device (GPU) commands; (ii) defines a sim-
ple and comprehensive syntax for their deployment. To carry
out an early quantitative assessment of the feasibility of such
approach, we discuss a proof-of-concept implementation of a
unified language front-end, and a methodology to transparently
instantiate any of the targeted APIs as language back-ends.
The proposed process is literally as simple as recompiling a
program for a different target, as the methodology infers the
required information from the unified functions and handles
internally the differences among APIs. The code produced in
this way can then be translated into an executable program
using the (unmodified) native compilation flow for any target
APIL. Finally, we provide an evaluation of the core functionality
of the provided proof-of-concept implementation, discussing
benefits, limitations and how to address them.

II. RELATED WORK

Graphic Processing Units were born as hardware compo-
nents designed with the specific purpose to generate images
for visual display. However, since the beginning of the 21st
century programmable GPU pipelines — initially developed
for better graphics processing — were found to fit scientific
computing needs well, just like the matrix/array data used to
formulate such problems. Since then, efforts to use GPUs as
general-purpose processors have led to a radical transformation
of both their hardware (fully programmable compute units,
support for floating-point operations) and their programming
methods, which evolved from cumbersome, complete refor-
mulations of computational problems in terms of graphics
primitives in the infancy of GPGPU computing, (OpenGL,
DirectX) to the advent of truly general-purpose programming
languages and APIs (OpenCL, CUDA).

Today, efficiently implementing applications in which a
CPU host offloads data to a GPU capable of massively parallel
computations is not a trivial task. Programming paradigms
such as CUDA or OpenCL have a very involved coding
style, which require “being fluent” in low-level device-side
languages and related compilation procedures, for interacting
with the host. Over the course of the years a plethora of
approaches have been proposed to raise the level of abstraction
in GPGPU programming, which typically build on top of low-
level programming models and APIs.

Efforts towards simplifying heterogeneous systems pro-
gramming can be roughly grouped in two macro-categories,
namely (1) libraries of building blocks and (2) language
extensions.

A building block is typically referred to as an easy-to-
use abstraction of mathematical operations commonly adopted
across many application domains in parallel calculus. Such
operations are usually performed on large input data sets,
typically organized in non-trivial data structures such as sparse
matrices or graphs. Ease of programming is achieved by
exposing an interface in which such function calls are able
to hide one or more of the following aspects [9]: writing

and compiling compute kernels, organizing the relevant data
structures in a GPU friendly manner (i.e., data strides and ac-
cess pattern should trigger coalesced GPU memory accesses)
and memory management in heterogeneous address spaces.
Approaches that build on top of such libraries to further raise
the level of abstraction have also been explored [10], including
SkePU [lL1]], Raja [12]], HPX [13]] and Kokkos [14]].

Language extensions is another well-explored approach
to raising the level of abstraction in GPGPU programming.
The solutions available in research papers or in real-life
development tools pertain to two categories: (i) true language
extensions, where standard programming languages and as-
sociated compilers have been augmented with new datatypes
and keywords to specify parallel execution on a GPGPU;
(i1) compiler directives, where the information about where
and how to modify the program for parallelization is more
pragmatically provided via code annotations, without interfer-
ing with the original type system and semantics of the used
language. In this category OpenMP is probably the most sig-
nificant and well-known example. The OpenMP specifications
have evolved in the latest releases to simplify the orchestra-
tion of computation between host and GPU-like accelerators.
OpenACC (Open ACCelerator adopts the same philosophy
and coding style, and was explicitly designed to simplify
the porting of High Performance Compute applications to a
wide-variety of heterogeneous hardware. SYCIEL from the
Khronos group, is another notable attempt at raising the
level of abstraction for heterogeneous systems programming.
Attempts to quantify the benefits of the more abstract coding
style of such approaches have been made [15], reporting
on average about 6.7x less programming effort when using
OpenACC compared to OpenCL, or 3.6x less programming
effort when using OpenMP compared to OpenCL, and about
3.1x less programming effort when using OpenMP compared
to CUDA. However, the simplified coding style typically
comes at the cost of some performance loss, which is very
much implementation-dependent [15]].

Besides the need for raising the level of abstraction for
GPU programming, the research community has also ad-
dressed the problem that porting applications from one GPU
system to another, or developing multi-target applications, is
complicated by the availability of a large number of APIs.
Indeed, besides CUDA and OpenCL several other APIs have
evolved to become widely adopted standards for graphics ren-
dering (OpenGL, OpenGLES, Direct3D) and general-purpose
computing (Vulkan, Direct3D12). Despite its cross-platform
nature, OpenCL is not widely supported: a recent analysis tar-
geting Android devices currently available in the market shows
that OpenCL support is only available in 32% of these products
[L16]. This is, incidentally, the reason why a GPU backend for
TensorFlow Lite has been only available as an OpenGLES
implementation until very recentl A number of research
and industrial efforts have addressed the need to derive some
sort of unified specification/language, capable to work across

Uhttps://www.openacc.org/

Zhttps://www.khronos.org/sycl/

3An OpenCL implementation has been announced from TensorFlow Lite
developers: https://www.tensorflow.org/lite/performance/gpu_advanced

https://www.tensorflow.org/lite/performance/gpu_advanced

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

multiple GPU APIs. RenderScript [17], an Android-specific
graphics and compute API, features implementations targeting
OpenCL, OpenGL and standard CPU as a backend [18]].

Intel’s newly released oneAPI speciﬁcatiorﬂ offers an uni-
fied programming model aimed at delivering a common de-
veloper experience across accelerator architectures.

Other authors have proposed the idea of unified semantics
among different GPGPU APIs targeting OpenCL and CUDA
as compilation backends [19]], and proposing a framework
offering a unified specification with easy-to-use abstractions
for managing compute and data resources. Narrowing the
application target to tensor operations, other approaches have
investigated an abstraction layer for deep neural networks,
capable of generating CUDA, OpenCL and Vulkan code [20].

Other approaches have proposed simple languages for spec-
ifying device code and a compiler generating highly-optimized
CUDA and OpenCL kernels [21] [22]. Similarly, OpenMP and
OpenACC implementations for GPGPUs exist [23]], targeting
CUDA and OpenCL as backends [24]. C++ AMP also features
GPU implementations that rely on CUDA, DirectCompute or
OpenCL [25] for low-level execution.

All these approaches and tools have proven effective at eas-
ing the task of porting applications to various GPU hardware/-
software platforms; however, they have so far only targeted
a few specific APIs. In this paper, we aim at assessing the
benefits of extending this type of methodology to all of the
most widespread GPU APIs, analyzed in the following.

III. A TAXONOMY OF MODERN GPU API SEMANTICS

In the remainder of this paper we delve into studying
the anatomy of six selected low-level APIs. Our aim is to
understand which standard features are common to all these
APIs, with an interest in exploring whether some sort of
unified specification and semantics could be derived, and the
benefits this could bring to GPGPU developers.

A. API selection

Figure shows the main language abstraction of six
widespread APIs for handling graphics and compute pipelines
of modern GPGPUs. The figure highlights the fact that all the
APIs provide features to express general-purpose computation
for execution on the GPU (compute pipeline). The focus of
our study is on these latter features.

a) CUDA: — CUDA (Compute Unified Device Archi-
tecture) is a widely adopted API and programming model for
GPGPU computing. It is a NVIDIA proprietary standard firstly
released in 2007. Like all the other APIs for programmable
GPUs, writing a CUDA application implies describing the
interaction between host (CPU) and one or more device accel-
erators (GPUs). On the host side, the programmer can elect to
use the CUDA Driver API or the CUDA Runtime API, which
are mutually exclusive in their usage. The CUDA Runtime API
eases host code development by providing implicit context
initialization and a simplified syntax for launching compute
kernels compared to the CUDA Driver API. The CUDA Driver

“https://www.oneapi.com/

API offers a higher degree of control over these aspects,
at the cost of a more involved coding style. On the device
side, parallel computations are described as a grid of threads
grouped in blocks, adopting a C++ like syntax enriched with
specific keywords used for thread indexing, dynamic kernel
invocations, synchronizations etc.

b) OpenCL: — OpenCL (Open Computing Languagef]
is an industry standard for heterogeneous computing for
massively parallel architectures created by Apple in 2009
but nowadays maintained by the Khronos Group. OpenCL
presents two major differences compared to CUDA. First,
its open nature allows to target generic devices other than
NVIDIA GPUs. Second, unlike CUDA, OpenCL provides a
more generic API that creates an abstraction layer suitable
for a variety of compute accelerators (e.g: FPGA, DSPs,
multicore CPUs besides GPUs). This makes developing an
OpenCL application slightly harder compared to a CUDA
equivalent. Just like CUDA, an OpenCL program is divided
between host and device code. On the device-side, the OpenCL
specifications allow the developer to describe parallel compu-
tations in a high level language (the OpenCL Kernel language)
derived from C/C++ and a standard intermediate binary format
(SPIR/SPIR-V ﬂ Standard Portable Intermediate Representa-
tion). Performance-wise, it has been shown that OpenCL and
CUDA behave quite similarly [26], with small performance
gaps given by the different compilation heuristics employed by
the different drivers. Other authors investigated the portability
issues of specific kernels from CUDA to OpenCL in [27].

Although OpenCL and CUDA can share buffers to graphic
contexts in a seamless manner, they both were specifically
designed to be compute-only APIs (i.e., to describe general-
purpose computation).

c) OpenGL: — Among the APIs for real-time graph-
ics rendering, the most representative example is probably
OpenGL (Open Graphic Language), a cross-platform standard
released in 1992 by Silicon Graphics and currently maintained
by Khronos. OpenGL went through a significant evolution
over the course of the years. The biggest evolutionary step
coincides with the introduction of programmable shaders
(to match the hardware evolution from fixed-functionality
graphics co-processors to programmable GPUs). Since version
4.3, OpenGL includes the concept of compute shader, namely
a pipeline stage targeting the execution of general-purpose
compute code, which logically runs alongside rendering stages
(e.g., vertex and fragment processing). OpenGL features de-
vice vendor extensions, which allow for the development of
hardware vendor-specific functionalities not included in the
OpenGL standard, and that can be exposed to the application
developer. The language for device code development is called
GLSL (GL Shading Language). In mid 2003 the Khronos
group proposed OpenGLES, a subset of modern OpenGL
functionalities specifically designed to run on mobile and
embedded systems, hence becoming the most widespread GPU
API in history. Starting from version 3.1, OpenGLES fully
supports compute shaders.

Shttps://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
Shttps://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.pdf

https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.pdf

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

OpenGL\GLES i Direct3D 11

Traditional raster-based pipeline

| Direct3D 12

vertex shader vertex shader vertex shader

vertex shader

{ tessellation hull and !

{ tessellation ctrl and }
: domain shaders

i evaluation shaders :

{ tessellation ctrl and
: evaluation shaders ;

{ tessellation hull and
: domain shaders

i geometry shader i i _geometry shader !

i _geometry shader !

i geometry shader |

|
|
1
1
1
|
|
1
1
1
|
I
1
1
1
i
| {7 fragment shader pixel shader i fragment shader | pixel shader
1
: ¥ ¥ ¥

I ! - - -
i L 1 Ray tracing pipeline
1 1 1
! | ! | i raygen. shader ray gen. shader ray gen. program

| | J
|] |] | { intersection shader ! i intersection shader } i intersection program |
1 1 1 ", K o
| 1 | i ! i closest-hit, any-hit, { closest-hit, any-hit, [closest-hit, any-hit, ;
1 i i miss shaders ~ § miss shaders ! miss programs ~ ;
1 1 1 - -
| i | i || Through extension: | Through DXR { Through CUDA OptiX ;
[i ! | L VK NV ray_tracing interface f SDK i
1 1 1 | w
i U o n N
i Compute pipeline i
i L L H i
s w - ! s . 1 g L s o
' {compute shader; = [compute shader! = = [computeshader: = !compute shaderi = ! compute kernel : compute kernel
1 i | viaDirectCompute | i | | viaDirectCompute ; = | i i
H LR LA ok b
: ! ! i i
1 V! V! W !

Fig. 1: Summary of GPU APIs programmable functionality set.

d) Direct3D: — Direct3D is a GPU API from Microsoft
for graphics rendering on certified Windows platforms. It can
be seen as the Windows-only OpenGL counterpart and, com-
pared to the Khronos standard, it exposes a thinner abstraction
layer. Moreover, it does not feature the equivalent of OpenGL
extensions. The Direct3D equivalent for a GL compute shader
exploits the DirectCompute technology. Device code within a
Direct3D program is written using HLSL (High Level Shading
Language). In this work we examine two major Direct3D
releases: Direct3D11 and the recently released Direct3D12.
The differences between the Direct3D11 and Direct3D12 are
major, to the point that Direct3D 12 cannot be considered the
Windows counterpart of OpenGL anymore, but rather that of
another recently released Khronos Standard; Vulkan.

e) Vulkan: — Vulkan is a recent open and cross-platform
standard for GPU programming. It was proposed and now
maintained by the Khronos group. It is described as both
a graphics and a compute API as the Vulkan programming
model is agnostic to which of these two pipelines will be
mostly used in an application. Vulkan is getting widely sup-
ported across different hardware and operating systems. In a
recent announcement, Google stated that a working Vulkan
implementation will be required on all 64-bit devices running
Android Q. This suggests that Vulkan has been designed to
be the successor of both OpenGL and OpenGLES.

Vulkan and Direct3D12 differ from the rest of the APIs
covered here in the way they handle driver interactions. Rather
than relying on a constant driver interaction for error checking,
hidden optimizations and other operations (for which the
application developer has little to no control), Vulkan and
Direct3D12 are much more explicit in the way in which
commands are submitted to the GPU driver. In such model,
all the low-level details of computation offloading (including
synchronization, error checking, etc.) are exposed to the pro-
grammer, which has to take care of these aspects manually.

B. A note on the adopted terminology

In the remainder of this paper we refer to CUDA, OpenCL,
OpenGL and Direct3D11 as the Traditional APIs, whereas
Vulkan and Direct3D12 are referred to as the Command List-
based APIs. Different APIs have different names for the
same software artifacts, hence we establish here common
terminology to avoid ambiguities.

First, we define the concept of context. A context represents
the abstraction of an API-specific resource manager. A context
has to be created once at the beginning of the application
and released upon completion. A context also represents the
interface in which GPU-related software artifacts might be
read and modified.

Concerning the code to be executed on the GPU, the
terms compute shader, compute kernel or compute program
are indistinctly chosen, and sometimes abbreviated in shader,
kernel or program. When a shader, program or kernel is
launched on the GPU we refer to this operation as invocation

or dispatch indistinctly.

A kernel has input and output data in the form of arguments
and symbols. To understand the difference, let us consider the
following CUD kernel function signature:

__global___ void vector_add(const intx A,
const int* B, int* C, int N);

The device function vector_add takes four inputs: two
pointers A and B to the input vectors (also called data
buffers), a pointer C to the output vector, and the integer
N, that represents the vectors’ size. While OpenCL works in
a very similar manner to this CUDA example, other APIs
not only adopt different terminology to distinguish between
pointers to buffers and constant values, but they also need
special operations for binding inputs to one ore more specific
programs. In our chosen terminology, A, B and C are called
arguments or resources and N is called a symbol. Arguments

"The concepts illustrated are not specific to CUDA.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE I: API specific Host-side operations for the considered APIs

Operation - . OpenGL DirectCompute DirectCompute
API CUDA Driver API OpenCL Compute Shaders over Direct3D 11 Vulkan over Direct3D 12
culnit ..
Context cuDeviceGet clCreateContext Platform specific D3D11CreateDevice VkCreatelnstance D3D12CreateDevice
Creation FromType sys. calls vkCreateDevice
cuCtxCreate
nvrtcCreateProgram cICreateProgram glCreateShader
Kernel nvrtcCompileProgram WithSourceg glCompileShader D3DCompileFromFile D3DCompileFromFile
Comnilation nvrtcGetPTX cIBuildProgram glCreateProgram ID3D11Device:: vkCreateShaderModule | ID3D12Device::
P cuModuleLoadDataEx © glAttachShader CreateComputeShader CreateComputeShader
. clCreateKernel .
cuModuleGetFunction glLinkProgram
Arguments cuMemAllocHost clCreateBuffer gle:n Buffer ID3D11Device:: ID3D12Device::
allocations cuMemAlloc clEnqueueMapBuffer glBindBuffer createBuffer. vkCreateBuffer Create*Resource
) (SSBO) SRV or UAV)
Symbols const Vfilues n const \{alues n OpenGL uniforms Constant Buffers Push Constants Constant Buffers
kernel invocation kernel invocation
Buffer glBufferData ?Sg;%@%%lggg - ID3D12Graphics
cuMemCpy*Async clEnqueue*Buffer gIMap/Unmap vkCmdCopy* CommandList::
Synchr. map/unmap i .
& memcpy CopyBufferRegion
& memcpy
ID3D11DeviceContextl::
Arguments in kernel invocation X " . CSSetShaderResources Descriptor Sets and .
binding cuLaunchKernel clSetKernelArg glBindBufferBase CSSetUnorderedAccess Layouts Root Signature Descr.
Views
in kernel in kernel invocation m d.ltspatch call in dispatch call Specialization Consts. In dispatch Ca.ll‘
Launch . X glDispatchCompute - . ID3D12Graphics
N invocation clEnqueueNDRange . ID3D11DeviceContextl:: dispatch call H
Config. GroupSize (ARB ext.) . . CommandList::
cuLaunchKernel Kernel . Dispatch vkCmdDispatch X
glDispatchCompute Dispatch
Device clFlush glFlush blocking wait on blocking wait on a
X;glfor Idle | cuCtxSynchronize IFinish elFinish a ID3D11Query vkDeviceWaitldle ID3D12Fence

can be read-only, write-only or might allow both operations.
Symbols represent read-only data to the device (only written
by the host). Every API has to bind sets of arguments and
symbols to one or more kernels: we refer to this operation as
setting the kernel layout.

Also related to kernels, a program invocation needs a
launch configuration, which logically describes the degree of
parallelism in which the work must be computed over a grid
of parallel threads. According to the dimension of the compute
program data set, such grid might be designed to expand along
1, 2 or 3 dimensions. Every API therefore exposes a way to
dispatch a kernel using a specific configuration of threads and
groups of threads over each dimension. To this respect, we
adopt the CUDA terminology: a GPU computation is divided
into threads and threads are grouped into blocks or groups.

Buffers hosting data passed via function arguments might
be allocated both on the host side and on the device side.
When a host pointer has a corresponding device pointer,
communication might be more or less explicitly synchronized.
This implies a device-to-host or a host-to-device copy. Under
the Unified Memory Model, a paradigm aimed at simplifying
heterogeneous programming by hiding the existence of distinct
address spaces (CPU and GPU), a buffer pointer can be
flagged to allow unified access from both the host and device,
without requiring explicit copies/synchronization [28]. We
further discuss unified memory in Section

Specific to the Command List-Based APIs we define the
terms Pipeline State Object (PSO) and command buffer. A
PSO is a pre-compiled description of settings for specific ker-
nels, and this includes arguments and symbols bindings as well
as launch configurations. A command buffer is a pre-recorded
set of commands (PSO selection, kernel invocations and data
buffer movements). Command List-Based APIs require that
low-level offload operations are explicitly handled in advance
to minimize driver interactions during the runtime execution
of the applications (see Section [[I[-C2)).

C. API Constructs for Host Code

In this section we isolate and study the “lowest common
denominator” for host-side operations performed in all the
GPU APIs, from context initialization to kernel dispatch.

1) Traditional APIs: Besides context creation, in traditional
APIs the developer has to take care the following aspects:
kernel compilation, allocation of buffers for arguments, defi-
nition of symbols, buffer synchronization (i.e., data transfers),
arguments binding (kernel layout) and the actual dispatch
computations with their related launch configurations. The first
four columns of Table [summarize how all the considered
traditional APIs perform these operations.

Table | maps each host-side operation (from context creation
to dispatch call) and other relevant software constructs to
respective API-specific terminology and function calls. For
CUDA, we consider the Driver API rather than the Runtime
API, as — functionally speaking — the latter is merely a C++
wrapper around the C-based Driver API. For all these APIs,
a kernel source code can be extracted from a file or might be
hosted in a string variable.

Context creation exploits API-specific function calls,
OpenGL being the only exception. The OpenGL specification
states that context creation is not regulated by the Khronos
standard: this implies calling platform-specific system calls as
opposed to regular g1+ function calls. Allocation functions
regulate memory allocations for both host and device data,
according to configurable access flags. A device-side buffer is
stored as an API-specific data structure, like CUDeviceptr
for CUDA or cl_mem for OpenCL. In OpenGL, generic
device-visible data are Shader Storage Buffer Objectﬂ (SS-
BOs). In Direct Compute on Direct3D11, Shader Resource
Views (SRVs) are used for read-only device side buffers and
Unordered Access Views (UAVs) for those buffers that need
to be read back by the host.

8https://www.khronos.org/opengl/wiki/Shader_Storage_Buffer_Object

https://www.khronos.org/opengl/wiki/Shader_Storage_Buffer_Object

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Symbols are trivially implemented for both CUDA and
OpenCL; the OpenGL equivalent are called uniforms, whereas
on Direct Compute-based APIs the functional equivalent are
Constant Buffers (CBs).

Other functionality shown in Table [I] is straightforward
to address, with the exception of the launch configuration
part, which requires additional remarks. While none of
the APIs has any limitation in dynamically specifying
the number of blocks for each grid dimension, problems
arise if the user also wants to dynamically specify the
number of threads within a block. For CUDA and
OpenCL such functionality is trivially implemented; for
OpenGL, this is achieved by invoking a compute shader
with glDispatchComputeGroupSizeARB instead of
glDispatchCompute function. For Direct Compute over
Direct3D11, dynamically specifying variable block sizes is
not supported: a possible workaround for this is to create the
compute shader at runtime, specifying the block size with
the HLSL numthreads builtin macro and deferring the shader
compilation until just before its first dispatch call.

2) Command List-Based APIs: Command list-based APIs
in addition allow (i) to mark specific code sections for
constructing PSOs and command buffers and; (ii) the actual
submission of the command buffer(s) to the GPU. The last two
columns of Table ([show the operations and primitives required
from context creation to command list submission for the
Direct3D 12 and the Vulkan API. Focusing on Direct3D-based
APIs, the biggest difference in version 12, compared to version
11 is the necessity of pre-compiling a PSO and populating a
command list before the actual dispatch call. Other then that,
device code is compiled and described in the same manner.
Copy and compute commands are therefore deferred, as all the
function calls from the ID3D12GraphicsCommandList
interface are only allowed during a command buffer recording
stage. The Vulkan equivalents of copy and dispatch oper-
ations use the vkCmdx prefix. These functions can also
only be invoked during the recording of a command buffer
(VkCommandBuffer data type). This significantly adds to the
complexity of writing a general-purpose program.

Vulkan device code is written using a low-level intermediate
representation (SPIR-V), which can be compiled via the
vkCreateShaderModule function. Third-party toolchains
can be used to allow the use of higher level languages (such as
HLSL or GLSL) augmented with specific Vulkan extensions.
In the following, we assume that an additional compilation
step is put in place to allow the description of device-side
computations in a Vulkan using GLSL. This allows to treat
Vulkan and OpenGL device code as conceptually equivalent
for our purposes. We will further elaborate on this assumption.

3) Unified memory: Unified memory models are present in
all the examined APIs. CUDA UVM (Unified Virtual Memory)
describes a model in which specific host-visible pointers are
managed by the CUDA driver through an on-demand page
migration mechanism between the CPU and the GPU address
spaces [29]. Recent CUDA versions allow the developer to
suggest to the GPU driver the actual residency aspects of each

allocations (cudaMemAdvise) and even to control memory
pages prefetching (cudaMemPrefetchx).

In recent OpenCL versions, different implementations of the
SVM (Shared Virtual Memory) abstraction allow the developer
to exploit different granularity for resources shared by the
CPU and the GPU. More specifically, starting from OpenCL
version 2.0 three types of SVM allocations are available: (i)
coarse-grained buffer SVM: entire buffers that reside in device-
local memory might be accessed by the CPU; (ii) fine-grained
buffer SVM: individual loads and stores within OpenCL buffers
residing in device-local memory are shared between CPU and
GPU; (iii) fine-grained system SVM: sharing between CPU
and GPU occurs at the granularity of individual loads/stores
within host memory allocations.

Both CUDA and OpenCL in their most recent versions
allow the developer to allocate buffers in CPU and GPU
space explicitly (cudaMallocManaged in CUDA and
clsVvMAlloc in OpenCL) or implicitly, i.e. using regular
host-side allocation functions (e.g. new and malloc). CUDA
and OpenCL offer very fine grained control over page mi-
grations, CPU-GPU cache coherency and over-subscription of
video memory: OpenGL and Direct3D11 present a limited
control over such aspects.

OpenGL and Direct3D 11 rely on glMapBufferx and
ID3D11DeviceContext: :Map, respectively, to enforce
CPU-only access to a given buffer. The dual unmapping
operation allows the sole GPU to (coherently) access that same
buffer. Unified memory models delegate to the GPU driver
the details of the CPU-GPU coherency among shared buffers.
This allows for supporting unified memory also in absence
of dedicated hardware. In this case, the GPU driver provides
a safe fallback strategy, where different address spaces are
transparently managed via implicit buffer copies.

Command list-based APIs introduce the concept of explicit
memory management. The programmer is responsible for
selecting the appropriate heap for allocating CPU or GPU
buffers, thus controlling specific memory fypes and alignment
rules. Different heaps are usually identified by numbers, and
have specific residency and coherency rules. Although naming
and numbering might slightly change between Vulkan and
Direct3D12, without loss of generality we can identify three
heaps: (i) Heap 0 — Standard device-only access: allocations
that require explicit synchronization and memory copying; (ii)
Heap 1 — Device memory accessible by the CPU': allocations
that reside on GPU local memory, but that can be made
visible to and coherently shared with the CPU; (iii) Heap 2 —
CPU memory accessible by the GPU: allocations that reside
on host memory and that are occasionally accessed by the
GPU. According to the selected memory type, different cache
coherency mechanisms are in place.

For heaps 0 and 1, Direct3D12 and Vulkan allow over-
subscription, but the success of these operations ultimately
depends on the actual GPU driver implementation. The GPU
hardware and driver might not support all the combinations of
heaps and memory types: attempting to allocate a specific type
on a specific heap within a system that does not support such
a combination will fail. API-specific unified memory features
are further detailed in Table

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE II: Unified Memory model implementations for the considered APIs

Unified Memory Description /
API
model supported features
CUDA Kepler and Maxwell GPU uArch | Very basic implementation. Moves dirty pages at kernel launch
Prefetching, residency hints, concurrent access, oversubscription
post Maxwell Lo . .
on-demand page migration and system-wide atomics
Coarse-Grained buffer SVM Entire buffers that resides in device memory are shared. Oversubscription
OpenCL Fine-Grained buffer SVM Individual loads and stores in device memory are shared. Oversubscription
Fine-Grained system SVM Individual loads and stores in buffers residing in host memory are shared
85:_(:;31]5 a]nld é)iﬁ;iﬂ:;icy gciiigngﬂagscnons Allows oversubscription and limited control over residency and coherency
Vulkan and Heap 1: Device memory Memory type 1: Oversubscription, CPU writes are write-combined and write directly into GPU memory,
Direct3D 12 whereas CPU reads are u'ncached)]
Memory type 2: CPU writes are write-combined, CPU reads are uncached.
Heap 2: Host memory Memory type 3: CPU reads and writes go through CPU cache hierarchy, whereas
GPU is able to snoop CPU cache
TABLE III: Device-side constructs for all the considered GPU APIs
?eyw‘.’rd - CUDA OpenCL GLSL (Vulkan and GL) HLSL (D3D11 & 12)
unctionality
local Thread indexing threadIdx.x,y,z get_local_id(0,1,2) gl_LocallnvocationID.x,y,z SV _DispatchThreadID.x
Group-Thread indexing | blockldx.x,y,z get_group_id(0,1,2) gl_WorkGrouplD.x,y,z SV_GroupID.x,y,z
Group-Thread size blockDim.x,y,z | get_work_dim(0,1,2) gl_LocalGroupSizeARB.x,y,z | statically specified
Local Memory __shared__ __local shared groupshared
barrier GroupMemoryBarrier
InterThread synchr. __synchthreads | (CLK_LOCAL_MEM_FENCE) memoryBarrierShared WithGroupSync
(CLK_GLOBAL_MEM_FENCE) P>y
Atomic Add atomicAdd atomic_add atomicAdd InterlockedAdd

D. API constructs for Device code

Any GPGPU application needs device code to describe par-
allel computation. Different APIs provide different approaches
to specifying such code and, similarly to what we highlighted
for the host code, it is possible to identify the underlying
common semantics to various APIs, concerning abstractions
such as thread indexing, local memory management and
synchronization (memory barriers, fences and other device-
only synchronization points). Table shows an overview
of the most preeminent language features that control such
semantics for the various APIs.

This table is of course far from being complete; however,
the listed constructs and keywords constitute the minimum
subset required for efficiently implementing all the parallel
primitives typically used to build a full-fledged heterogeneous
application [30].

IV. ON THE BENEFITS OF A UNIFIED SPECIFICATION: A
CASE STUDY

In this section, we aim at assessing the benefits of a unified
specification across all of the most widespread GPU APIs,
that we have already analyzed. This has the potential to
provide the most flexible support for heterogeneous cross-
platform development. To practically conduct this type of
assessment, we first propose a unified specification for device
and host code programming, and then provide a proof-of-
concept implementation.

We call this unified specification GUST (GPGPU Unified
Specification and Translation), which in addition to defining
the common API also mandates the translation rules that
allow to target each of the considered low-level APIs as a
compilation backend.

A. Introducing GUST

GUST exposes an interface that defines a function call
for each of the basic operations we identified in section
Due to the substantially different development philosophy
characterizing the two API categories introduced in section
(Traditional APIs and Command List-Based APIs), the basic
interface exposed by GUST does not define a common layer
between the two, as we believe the expert user should not be
prevented from explicitly leveraging the low-level constructs
and optimization knobs exposed by Command List-Based
APIs. We will briefly discuss in Section [V| how a unification
layer between Traditional APIs and Command List-Based APIs
could be achieved practically. Starting from Tables [I] and
it is in many cases straightforward to remap keywords and
function calls across APIs for each entry of the tables. On the
host-side, the GUST API derived from the taxonomy in Table[l]
is shown in Table The operations described in Table
can be easily mapped to the previous table entries. Note that
the last three columns of table [[V] refer to the command list-
based APIs. More specifically, the functionality extracted from
Vulkan and Direct3D 12 allows the developer to specify code
sections that mandate where specific GUST wrapper functions
can be called: setting launch configurations, arguments and
symbol bindings to specific shaders can only occur within a
code block that starts with startCreatePSO and ends with
finalizePSO function calls, whereas kernel launches, PSO
selection and data transfer operations can only be called in
a startCreateCmdList - finalizeCmdList code
block. We refer to these code blocks as pipeline creation
and command list recording blocks. The pipeline creation
code block outputs a PSO handle in which a description of
a kernel launch is prepared in advance. The command list
recording block stores in advance the actual commands to be
later executed by the GPU, as this latter command buffer will

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 1V: Host-side GUST unified semantics from translation rules

. . Context Compile Resourcle Argument | Symbol Launch Conf. | Launch PSO rec. Cmd Buf. Submit
Host side operation A Allocation and .S) R g X R N
Creation Compute Prog. L binding copy definition Program block rec. block cmd buf.
synchronization
e N o . allocate . copySymbol | setLaunch L startCreatePSO | startCreateCmdList | .
GUST API func. call | createCtx | compileProg synchBuffer setArg <T> Configuration launchKernel finalizePSO finalizeCmdList submitWork

TABLE V: API specific functions and terminology for GUST unified semantics for device code:

preamble definition

Preamble Definition CUDA OpenCL GLSL (GL) GLSL (Vulkan) HLSL (D3D11 & 12)
__global__ __kernel void void kernelname
Entry Point void kernelname kernelname void main() void main() (launch
(args...) (args...) configuration)
Logal memory Inside kernel func. | Inside kernel func Outside kernel Outside kernel Outside kernel
static allocation func. func. func.

Symbols and buffers In kernel args In kernel args

in layout definition

in layout definition

in layout definition

Single values as Single values as

Elements of a

Symbols are defined as | kernel input kernel input uniforms Push constant -
contant buffer
arguments arguments
Buffers are defined as Device buffers Device buffers SSBOs Storage buffers Structured Buffers

Symbols/Buffers
Location

Index of an array
of args

Index of an array of
args

Uniform Location
and SSBO bindings

Descriptor sets and
layout bindings

Root signature/
shader resource slot

be offloaded with the submitWork member function. All the
other functions (resource allocation, kernel compilation, etc.)
might be called anywhere outside these blocks. Violating these
constraints should return explanatory errors to the user.
Clearly, Table alone cannot capture all the different
mechanics for the observed APIs. Different device-side lan-
guages define different entry points, have distinct ways to
define data structures and respective links to the host side
data. CUDA and OpenCL, for instance, define entry points
to device functions that can be called from the host using
specific keywords (__global__ for CUDA, kernel for
OpenCL); the kernel layout and related data structures are
simply the arguments of such functions. The same aspect is
treated differently in all the other APIs: GLSL for instance
typically imposes a main function as the entry point for a
particular compute shader, forcing the developer to define the
layout (data structure description of input and output resources
and symbols) outside the shader function. A practical imple-
mentation of GUST’s device-side abstractions must deal with
the handling of symbols’ and resources’ locations. Regard-
ing layout locations, CUDA and OpenCL kernel invocation
functions take an array of arguments as input, hence in these
cases an argument location is simply their index within the
array. In device languages derived from graphic APIs, on the
contrary, the concept of input and output argument of a shader
is decoupled for the concept of compute program, forcing
the programmer to reason about the idea to utilize similar
data layouts for different compute programs. Such information
constitutes the preamble of compute shaders in GLSL and
HLSL, with minor variations among OpenGL/Vulkan and
D3D11/D3D12. This is shown in Table [V| which summarizes
the translation rules for correctly generating a preamble in a
cross-platform translation layer for device-side code.

B. A GUST Reference Implementation

We present a proof-of-concept implementation of GUST.
This implementation serves to conduct our case study, and is
thus far from being complete. We cover all the key host- and
device-side operations previously described. Implementing

the GUST interface for the host-side interactions can be
conveniently achieved in the form of a runtime library or the
methods of a C++ class. We choose the latter. Listings [T] and 2]
show an example 2D histogram computation coded in GUST.

1) Host-Side Operations:

a) Context Creation: Context creation is straightfor-
wardly implemented for each GPU API as indicated in Table I}
There are some additional implementation details to cover for
OpenGL and the command list-based APls. For the OpenGL
wrapper, a context is established with the g1 fw library’} while
for core profile library function loading, g13w is used'®] We
do this as the OpenGL standard does not regulate the creation
of a GL context, leaving this issue to be solved by the individ-
ual operating systems. Context creation for both D3D12 and
Vulkan requires to specify in advance the memory footprint
of the application (in terms of resource usage). This allows
to pre-allocate Persistent Staging Buffers (PSBs). A PSB is a
buffer whose dimension is set at context creation time and is
persistently mapped (until context destruction) within the GPU
driver: it represents a staging area in which data to and from
the device can be read or written by the application, exploiting
the maximum available memory bandwidth without wasting
time in mapping and unmapping different buffers when data
needs to be moved. When a device-side allocation is requested,
a pointer within the range of possible addresses from the
PSBs is returned. Compared to traditional APIs, this implies
managing a local allocation table with its segmentation logic.
GUST can take care of this transparently. For all the APIs,
the GUST initializes the context with the createCtx function
call, that initializes with default values any API-specific setting
(e.g: PSB size for command list based APIs or preferred device
type for OpenCL). Context creation is where GUST selects the
corresponding API wrapper; no other GUST function calls are
permitted before the successful creation of a context.

b) Compute program compilation: The compileProg
function call takes care of compiling GUST device code.

http://www.glfw.org/
Whttps://github.com/skaslev/gl3w

http://www.glfw.org/
https://github.com/skaslev/gl3w

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Listing 1: Host-side GUST code for 2D Histogram.

//HOST CODE
ComputeInterface xctx = //API specific constructor.
ctx->createContext (); //context creation

//Compilation

//substitute "CUDA"™ with your target API

MLTL mltl (MLTL_TO_CUDA) ;
mltl.translateFromFile ("path to mltl src file");
std::string devStr = mltl.generateSourceString();
ctx->loadAndCompileShader (devStr, "histo");

/+Application params settingsx/
uint32_t bins, W, H ...

//Host + device allocation
intx img_ch=ctx->deviceSideAllocation (WxHxsizeof (int));
int* histo=ctx->deviceSideAllocation (bins*sizeof (int));

//Host-side init for the buffers
[...]

//host to device memcpys
ctx->synchBuffer ((voidx«)&img_ch, HOST_TO_DEVICE) ;
ctx->synchBuffer ((voidx«)&histo, HOST_TO_DEVICE) ;

//Symbols and arguments setting

ctx->setArg ((void*x)&img_ch, "histo", 0);
ctx->setArg((voidx*)&histo, "histo", 1);
ctx->copySymbolInt (W, "histo", 2);

//launch compute kernel
ctx->setLaunchConfiguration (
ComputeWorkDistribution_t (W / 32, H / 32),
ComputeWorkDistribution_t (32, 32));
ctx—->launchComputation ("histo");
ctx->synchLaunch () ;

//data copy-back
ctx->synchBuffer ((voidx«*) &histo,
ctx—>deviceSynch () ;

DEVICE_TO_HOST) ;

[...] //use data

//freeing host and device resources
ctx—->freeResources () ;

Device code can be stored in a string or in a file and might
be specified using a tag-based language implementation of
an APIl-aspecific device code. We call our instance of such
a language the MLTL (Metal Layer Translation Language).
Internally, GUST translates MLTL code into API-specific
code, as API selection already occurred during context cre-
ation. Once device-specific code is available, GUST wraps
compiling functions as described in table [I} Instead, using the
recently released NVRTC |E| (NVIDIA Runtime Compilation
Library) we are able to create and compile kernels at runtime,
hence uniforming the CUDA behavior to all the others APIs.
For command list-based APIs, compiling a kernel in D3D12
is done in a very similar manner as seen in D3DI11, but
for Vulkan an additional step is needed. Using the Valve’s
LunarG Vulkan SDKE| and by exploiting its glslangValidator
executable the user is able to feed GUST with a string
or a file containing a GLSL compute shader with Vulkan-
specific extension and obtain a SPIR-V source. From that, a
vkShaderModule can be created.

c) Resource Management: GUST offers an allocate
function to wrap backend API-specific allocation functions.

http://docs.nvidia.com/cuda/nvrtc/index.html
12https://www.lunarg.com/vulkan-sdk/

Listing 2: Device-side GUST code (MLTL) for 2D histogram.

[LAYOUT_DEF]
ARG: binput, R, int
ARG: histogram, RW, int
SYM: W, int
SHM: shmem, int, 256
[END]
[PROGRAM] [histo]
int local_index = _GRSX_*_LITY_ + _LITX_;

if (local_index < 256) SHM(shmem, local_index)=0;

LOCMEMBAR

int index =
ARG (binput, SYM(W) » (_LITY_+_GIDY_*_GRSY_) +
(_GIDX_*_GRSX_+_LITX_));
ATADD (SHM (shmem, index), 1) ;

LOCMEMBAR

if (local_index < 256)
ATADD (ARG (histogram, local_index),
SHM (shmem, local_index)) ;
[END]

In our example implementation, an allocation call always
returns a pointer able to be read and written by the host.
Internally, GUST maintains an allocation table in which for
each host pointer a corresponding device pointer is present: in
this way, the complexity of dealing with two address spaces
(GPU and CPU) is partially hidden. However, resources must
be explicitly synchronized (synchBuffer) and releasecﬂj Once
a resource is created, it can be used as input argument to
setArg, to be accessed by the GPU during kernel execution.

d) Kernel invocation: Before any kernel invocations,
all the arguments must be set. In addition to that, sym-
bols and launch configuration must also be specified (resp.
copySymbol<T> and setLaunchConfiguration) Actual kernel
invocation occurs through the launchKernel call. Internally,
our implementation of GUST uses tables to keep track of all
the previously compiled kernels, related launch configuration
and layout. We recall that command list-based APIs must defer
actual copy and kernel invocation as described in Sections
and [Vl

e) Bookkeeping: As we highlighted in the previous para-
graphs, allocations, PSOs and compiled kernels are stored
within internal data structures related to a compute context.
Such structures are implemented as std::maps and software
cache for frequently utilized resources/kernels. More specifi-
cally, the context cache remembers recently launched kernels
and respective arguments to avoid table look-ups.

f) Error checking: GUST APl calls are internally
checked for errors. This might occur by delegating error
checking to the target GPGPU API or by exploiting the
bookkeeping structures. For instance, context creation failure
is handled via API-specific error checking. Conversely, since
compiled kernels are stored in a std::map, attempting to
call a kernel that was not previously compiled will be easily
detected by simply looking up that map in our implementation.

3Due to space constraints these operations are not discussed

http://docs.nvidia.com/cuda/nvrtc/index.html

JOURNAL OF KTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10
TABLE VI: SLOC for basic compute operations. GUST compared to seven GPU APIs

Host Operation/ CUDA-Runtime CUDA
API SLOC API Driver API OpenCL OpenGL D3D11 D3D12 Vulkan GUST
Context Creation (implicit) 5 60 47 5 60 242 1
Memory Allocations 2 2 3 4 10 60 30 1
Memory Transfer 1 1 1 4 10 il([)l cmd buf recording) (21;1 cmd buf recording) 1
Set Kernel Argument | (in kernel call) (in kernel call) 1 2 2 (218 pipeline creation) (118 pipeline creation) 1
Copy Symbol (in kernel call) (in kernel call) | 1 2 3 (2‘“ cmd buf recording) (2‘;‘ cmd buf recording) |4
Set Launch . . K (in compute (in compute (in pipeline creation) (in pipeline creation)
configuration (in kernel call) (in kernel call) (in kernel call) dispatch) dispatch) 5 20 1
Launch Kernel 1 1 1 1 1 (Zm cmd buf recording) (2m cmd buf recording) 1
Wait for completion 1 1 1 2 7 10 2 1
Kernel . . (uses
compilation uses nvec 90 (with nvrtc) | 43 90 50 44 elslangValidator) 75 1
Submit Work 1 1 1
Pipeline creation 90 146 2
Cmd Buf recording 4 4 2

2) Device-side Operations: In our reference implementa-
tion, we opted to manage device-side translation rules and
preamble definition by relying on a tag-based language that is
processed by means of a source-to-source compiler as part of
the compute program compilation process described in the pre-
vious section?] From the translation rules defined in tables
and our reference implementation of GUST provides a
Meta Language in which the programmer specifies arguments,
symbols and local scratchpad memory allocations in a tag-
based language. Then, a standard C program enriched with
specific keywords is used to describe the parallel algorithms
executed by the kernel. A source file constructed with such
rules is named a MLTL (Meta Language Translation Layer)
source file. The user can choose two ways of writing a compute
kernel: (1) using API-specific device code; or (2) exploiting the
above mentioned MLTL language. Choosing the latter requires
an additional step for the compilation process, where the
MLTL code is parsed and translated into the functional equiv-
alent for the target API. Listing [2| shows a MLTL implemen-
tation of a histogram calculated over a 2D matrix of integer
values. The tag based structure is evident. We can identify two
tags: a first tag detailing the layout definition (LAYOUT _DEF)
and a tag in which the behavior of the kernel is expressed as
a standard C program (PROGRAM). Tags are delimited by
the keywords between square brackets. The LAYOUT DEF
tag is composed of a forward declaration of arguments (one
argument per line, starts with ARG: with the syntax <name>,
<usage> € {R,W, RW}, <type>), symbols (one per line,
starts with SYM: with the syntax <name>, <type>) and
static local memory allocation (called shared, starts with
SHM: with the syntax <name>, <type>, <elements>).
Layout definition is part of what is known in GUST as
preamble definition. The PROGRAM tag contains standard C
code defined by an entry point (a kernel identifier able to be
referred from host code, in the example in Listing [2| “histo”
is used). Keywords delimited by underscores refer to MLTL-
specific syntax: _GTSX_ stands for block size over the X
dimension, _LITY_ refers to the local thread index ID over

4For an integrated compilation process, custom keywords could also be
implemented in the form of language extensions (e.g., C, C++) or compiler
annotations (OpenMP-style #pragmas).

the Y dimension and so on. Fetching data from the inputs
defined in the (LAYOUT_DEF) tag is done with the syntax
ARG|SHM (name, index); for symbols, SY M (name) is
used. SHM refers to local memory. Atomic operations and
local memory barriers can be instantiated with the _ATADD_
and _LOCMEMBAR _ tags, respectively. For space constraints
we do not list all the possible combinations of thread indexing
and synchronization currently implemented for the MLTL.
The MLTL layer in GUST is able to substitute the MLTL
specific keywords in order to recreate the kernel in every API-
specific language: in doing so, our reference implementation
can issue a warning or error if a violation of the MLTL-specific
syntax was detected during source translation. Non-MLTL-
related errors will be flagged by the chosen API library during
native compilation.

C. An Early Assessment of GUST

We assess the benefits of the proposed unified specification
in terms of ease of development and performance penalty
(overhead characterization). Performance hit is also
qualitatively discussed for the unification of traditional
and command list-based APIs.

1) Ease of development: The abstraction provided by
GUST translates in a simplified coding style, which we
quantify by means of source lines of code (SLOC). SLOC
for each API compared to GUST is visible in Table Here,
we highlighted how many lines of code are needed for each
operation abstracted by our reference GUST implementation:
for each API, the line count includes basic error checking and
bookkeeping operations. D3D12 and Vulkan are intuitively
expected to require a similar line code count, but this is
not observed in table This is due to the fact that most
of D3D12 structure initialization occurs through a helper
library function (D3DX12) which moderates coding verbosity
in Direct Compute applications.

From Table is evident that GUST is very effective
at reducing the amount of code to be written for GPU
application development (in the compute pipeline), as most
of the functionalities are wrapped within a single function
call. We also include numbers from a seventh API, the CUDA

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

runtime API, which is not wrapped by our implementation
of GUST, but provides an interesting term of comparison
since it is in practice the most used GPGPU API, due to
its ease of use. Compared to command list-based APIs the
reduction in SLOC for GUST is major. On the device side, for
MLTL there is basically a 1:1 translation for every construct
to any back-end API, which implies no increase in SLOC.
Only what we call the MLTL preamble slightly increases
the instruction count compared to CUDA and OpenCL. This
is because while CUDA and OpenCL describe kernel inputs
and output buffers in the device function signature, in GLSL
and HLSL (used for the other APIs) inputs and outputs are
specified in a separate code block: for simplicity our MLTL
prototype translator matches the GLSL/HLSL specification.

In GUST, porting one application from an API to another
is simple, provided that both the starting API and the
destination API belong to the same category (traditional and
command list-based). The only part that would require a light
programming effort is instantiating the compute context: some
API-specific settings might be necessary to be specified as
context constructor parameters. Howeyver, default constructors
passing default settings can be easily put in place. Moreover,
it is trivial to automate the selection of the most appropriate
API backend in GUST during context creation as information
such as device vendor and installed drivers can be easily
queried at runtime. Device code written in MLTL does not
require any modification. The possibility to port the host code
of an API belonging to a category to a target API belonging
to a different category is discussed in section

2) Overhead characterization: The overhead characteri-
zation w.r.t. the APIs wrapped by GUST depends of the
design choices of the GUST implementer; our reference
implementation heavily relies on red-black tree-based maps
to perform state tracking and bookkeeping of host-side con-
structs like compiled shaders and allocation tables. Every time
the GUST user attempts to use a kernel with specific resources,
look-up operations on all these maps are triggered. Overhead
given by the look-up operations is therefore related to how
many kernels and allocations are distinctively used within the
same application. Since we used regular std::maps, look-up
complexity is logarithmic in size; moreover, recently used
kernels and layouts are cached to local variables to amortize
look-up costs for complex applications. On the device side,
our reference implementation adds no overhead other than the
compilation time from MLTL to API-specific device code.

However, it is still interesting to measure how GUST per-
forms in terms of overhead compared to the only API that
is not directly targeted: the CUDA Runtime API. For this
experiment, GUST is set to wrap the CUDA driver APL
Results on a small set of benchmarks are reported in Figure
The benchmarks include a Vector Addition (VADD), Single-
Precision A x X 4+ Y (SAXPY), 2D histogram computation
(HISTO) and a parallel reduction on an array of integers
(MINREDUX). Dataset size is 512K elements for each buffer
in SAXPY, VADD and MINREDUX. Histogram is computed
on a 256-colors image (1024 x768). Although all the bench-
marks call all the GUST functions listed in Tables[[V]and [Vl we

also provide an experiment with MINREDUX where we study
the effect of varying the input dataset size, and we provide a
fifth benchmark, a 2D Finite Difference Time Domain solveli]E]
(FDTD2D). FDTD2D represents a more complex application
composed of different kernels that are iterated multiple (500)
times. The dataset consists of 2048x2048 floating point
values. All The tests are executed on a Intel i7 x86_64 platform
featuring a GTX860M NVIDIA discrete GPU.

The leftmost plot in Figure [2] shows execution times for
GUST and the CUDA runtime API (normalized to the lat-
ter). Execution times include allocations, data initializations,
memory transfers (any direction), kernel launches and host-
device synchronization operations. In all the tested bench-
marks GUST performs on par with the CUDA runtime API
(within +0.04%). This is not unexpected, as both GUST and
the CUDA runtime eventually make the same calls to the un-
derlying CUDA Driver API functions, as it’s easily confirmed
running the CUDA profiler, nvprof.

Overhead impact is also independent of the dataset size,
as shown by our experiment with MINREDUX in the center
plot in Figure 2)). Varying the dataset size from 512K to 10M
integer elements does not significantly affect execution time.
This is also intuitively explained by the fact that bookkeeping
operations are only sensitive to the number of buffers used in
a program, not their size. The larger the dataset, the longer the
kernel processing time and thus the less relevant the already
negligible host-side overheads.

The rightmost plot in Figure [2] shows the overhead
implied by the MLTL compilation step occurring before
native, API-specific back-end compilation. Specifically, this
overhead is calculated as TGUST“T"Z]”V"ZI::CTN VRTCcompile yhere

compile

TGUsTcompile 18 the time to translate MLTL to CUDA and
TNV RTCcompile 15 the native CUDA compilation time using
NVRTC. Again, this overhead is largely implementation-
specific, but even with our proof-of-concept translator it
is easy to see that this overhead is negligible, as MLTL
only supports a small subset of device-side constructs
and only operates simple line-by-line translation, leaving
more sophisticated optimizations via full-blown compiler
intermediate representation (IR) to the following API-specific
compilation steps.

3) Unifying API categories: In the methodology we have
presented we kept a distinction between traditional APIs and
command list-based APIls, due to the different application
development philosophy underlying the two. However, non-
expert developers dealing with an application port that targets
a command list-based APl might still find it very useful to
stick to a simple, unified specification layer. To support this,
it is possible to define mechanisms for just-in-time creation of
PSOs and command lists starting from a program that exploits
the traditional API coding style. We discuss two strategies:
(1) lazy PSO and command buffer creation and (ii) command
batching from static analysis.

5From the Polybench benchmark suite: http:/web.cs.ucla.edu/~pouchet/
software/polybench/,

http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

GUST and cudaruntime: normalized execution time
B GUST W cudaruntime

1.00 1.00

VADD SAXPY MINREDUX HISTO

GUST and cudaruntime: Varying MINREDUX input size
W GUST [cudaruntime

.00
FDTD2D 512K ™

MLTL percentage overhead over NVRTC
0.0020

0.0015

0.0010

%MLTL

0.0005

0.0000

2M 4M 10M VADD

SAXPY MINREDUX HISTO

Fig. 2: GUST prototype implementation vs. CUDA Runtime API. Average execution time (left). Effect of varying dataset size
in the MINREDUX benchmark (center). MLTL compilation overhead over total compilation time (right).

a) Lazy PSO and command buffer creation: — Starting
from a GUST application written using the traditional API
coding style, each kernel call is intercepted at runtime: a
corresponding PSO is created on the fly according to the
kernel invoked, its layout and its launch configuration. Such
PSO is hashed and stored in a cache, so to avoid recreating
the same PSO in case of reuse. vudaEI, a coding effort
that enables the user to write CUDA code over a Vulkan
implementation, follows this blueprint. Memory transfers and
actual kernel launches will have to be recorded in a command
buffer: this introduces the problem of when to start the
recording phase and when to stop it, to then submit the
command buffer to the GPU. This is because the workload
might be composed of a sequence of an unknown number
of copy and compute commands. This can be solved by
recording a command buffer for each operation within the
sequence, and offloading the work as soon as the recording
phase terminates. Another strategy for managing the command
buffer is to start the recording upon the first kernel launch
or copy invocation and terminate the recording phase when
the application calls a GPU-CPU synchronization point (e.g:
wait for idle) or when a read-back of a resource used by
the GPU is requested by the host. While the first strategy is
very easy to implement, the resulting performance hit can be
dramatic for long GPU command sequences, especially if the
GPU commands submitted present small execution times. The
second strategy allows GUST to batch many commands within
a single command buffer recording phase so to minimize
submission operations. This is optimal, but implementation-
wise a variety of problems arise: in GPGPU computing calls
to CPU-GPU synchronization points are not mandatory, and
the read back resources by the host can occur via multiple
device-to-host copy commands. These are the uncertainties
to face when deciding to close the recording phase of a
command buffer. Heuristics based on time windows might
be used to mitigate these issues: the first copy or dispatch
command signals the beginning of a recording phase and all
the commands invoked within a pre-determined time window
will end up in the same command submission. A third possible
strategy exploits CUDA graphs: a feature introduced in CUDA
8. CUDA graphs enqueue GPU commands with pre-defined
precedence constraints. Building a CUDA graph is semanti-
cally very similar to recording a command buffer, as intended

16https://github.com/jgbit/vuda

in next-generation APIs. Although this feature is designed for
reducing submission overheads, offloading commands in such
a way might still result in higher overheads than submitting a
command buffer using next-generation APIs [31].

b) Command batching from static analysis: — Static code
analysis can theoretically improve upon the cost for just-in-
time creation of PSOs and help in the selection of the right
heuristics for command buffer recording. Creating a PSO for
each kernel (including layout definition and launch configura-
tion) takes 20 ms in an NVIDIA Jetson AGX embedded board
using Vulkan. In the same board, recording a command buffer
takes a constant time of 2.5 ms for sequences of less then 100
copy and compute commands; after that, the time needed for
recording a command list scales linearly [31]]. Trivially, for
the examined board, recording and submitting a command list
for each copy or compute command is convenient for GPU
execution times larger than the time needed to finalize the
command list for each command. In this way, CPU execution
times for the recording phase can proceed in parallel with
GPU execution. If using an approach based on time windows
it is instead convenient that the length of the time window
is sized as a negligible value compared to the sum of the
execution times of the commands batched within the time
window. Command lists can be hashed and cached just like
PSOs for optimizing submission operations in case of periodic
workloads.

V. FINAL DISCUSSION AND CONCLUSION

In this paper we presented an exhaustive overview on
the most commonly used GPU APIs for general purpose
computing. From there we derived a taxonomy with two macro
categories: traditional APIs (CUDA, OpenCL, OpenGL com-
pute shaders, DirectCompute over Direct3D11) and command
list-based APIs (Vulkan and DirectCompute over Direct3D12
APIs). Among APIs belonging in the same category we
identified the subset of programming constructs that describe
the same functionality, both for host- and device-side code.
This allowed us to define a unified specification across the
various APIs, which is sufficiently expressive to capture the
basic blocks of any heterogeneous programming application
targeting a GPGPU as an accelerator. We provide a reference
implementation of such specification, called GUST, which we
use to validate the benefits of the approach. Our unified specifi-
cation and the GUST tool proved to be very effective at porting

https://github.com/jgbit/vuda

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

applications onto different platforms, simplifying both appli-
cation development and extensive cross-benchmarking [31].
Performance-wise, we have observed minimal overheads for
the abstraction layer.

GUST is meant as a cross-platform API specification, yet
some of the APIs remain hardware- or operating system-
specific (e.g., D3D wrappers only work on Windows; CUDA
is specific to NVIDIA hardware). Trivially, there is no
workaround for this: the only APIs known to be completely
cross-platform are the ones defined by the Khronos specifica-
tions. However, the proposed methodology supports all such
standards, and identifies at least two alternatives for all the
common operating system and hardware configurations found
in the market, for both desktop and embedded systems.

As of now, GUST is far from being feature-complete. In
particular, some relevant differences between the APIs com-
plicate the unification of the specification. Today, our reference
implementation manages this functionality gap by allowing the
experienced developer to write algorithms in MLTL syntax, so
to have a translation to all the other APIs specific device-code.
Then, through manual tuning, the developer is still able to use
API-specific features for optimization.

As future work, we plan to incrementally add to our
reference implementation additional features, such as support
for unified memory models, parallel submission of command
buffers (in the form of multiple queue of commands), multi-
GPU support and the implementation of a unifying layer be-
tween traditional and command list-based APIs (as discussed
in section[[V-C3). Our reference implementation of GUST will
soon be released as an open source contribution. The interested
reader can find GUST interface sources together with a
Vulkan implementation at this link https://git.hipert.unimore.
it/rcavicchioli/cpu_gpu_submission/-/tree/master/vkcompl

ACKNOWLEDGEMENT

This work has received funding from EU projects H2020
CLASS (780622) and ECSEL JU NEWCONTROL (826653)
and COMP4DRONES (826610).

REFERENCES

[1] A. Sridhar, A. Vincenzi, M. Ruggiero, and D. Atienza,
“Neural Network-Based Thermal Simulation of In-
tegrated Circuits on GPUs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 31, no. 1, pp. 23-36, 2012.

[2] E. Schneider and H. Wunderlich, “SWIFT: Switch-
Level Fault Simulation on GPUSs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 1, pp. 122-135, 2019.

[3] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren,
B. Khailany, and D. Z. Pan, “DREAMPlace: Deep Learn-
ing Toolkit-Enabled GPU Acceleration for Modern VLSI
Placement,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, pp. 1-1, 2020.

[4] B. Shi, Y. Zhang, and A. Srivastava, “Accelerating Gate
Sizing Using Graphics Processing Units,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 1, pp. 160-164, 2012.

[5] M. Ujaldon and U. V. Catalyurek, “High-performance
signal processing on emerging many-core architectures
using CUDA,” in 2009 IEEE International Conference
on Multimedia and Expo. 1EEE, 2009, pp. 1825-1828.

[6] S.R. Upadhyaya, “Parallel approaches to machine learn-
ing—A comprehensive survey,” Journal of Parallel and
Distributed Computing, vol. 73, no. 3, pp. 284-292,
2013.

[7]1 S. Mittal and J. S. Vetter, “A survey of CPU-GPU
heterogeneous computing techniques,” ACM Computing
Surveys (CSUR), vol. 47, no. 4, p. 69, 2015.

[8] N. Rajovic, A. Rico, J. Vipond, I. Gelado, N. Puzovic,
and A. Ramirez, “Experiences with mobile processors
for energy efficient HPC,” in 2013 Design, Automation &
Test in Europe Conference & Exhibition (DATE). 1EEE,
2013, pp. 464-468.

[9] P. Faber and A. GroBlinger, “A comparison of GPGPU

computing frameworks on embedded systems,” IFAC-

PapersOnLine, vol. 48, no. 4, pp. 240-245, 2015.

S. Schaetz and M. Uecker, “A multi-GPU program-

ming library for real-time applications,” in International

Conference on Algorithms and Architectures for Parallel

Processing. Springer, 2012, pp. 114—128.

J. Enmyren and C. W. Kessler, “Skepu: a multi-backend

skeleton programming library for multi-gpu systems,”

in Proceedings of the fourth international workshop on

High-level parallel programming and applications, 2010,

pp- 5-14.

D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones,

W. Killian, A. J. Kunen, O. Pearce, P. Robinson, B. S.

Ryujin, and T. R. Scogland, “Raja: Portable performance

for large-scale scientific applications,” in 2019 ieee/acm

international workshop on performance, portability and

productivity in hpc (p3hpc). 1EEE, 2019, pp. 71-81.

T. Heller, P. Diehl, Z. Byerly, J. Biddiscombe, and

H. Kaiser, “Hpx—an open source c++ standard library for

parallelism and concurrency,” Proceedings of OpenSuCo,

vol. 5, 2017.

H. C. Edwards and C. R. Trott, “Kokkos: Enabling

performance portability across manycore architectures,”

in 2013 Extreme Scaling Workshop (xsw 2013). 1EEE,

2013, pp. 18-24.

S. Memeti, L. Li, S. Pllana, J. Kotodziej, and C. Kessler,

“Benchmarking OpenCL, OpenACC, OpenMP, and

CUDA: programming productivity, performance, and en-

ergy consumption,” in Proceedings of the 2017 Workshop

on Adaptive Resource Management and Scheduling for

Cloud Computing. ACM, 2017, pp. 1-6.

A. Acosta, C. Merino, and J. Totz, “Analysis of OpenCL

Support for Mobile GPUs on Android,” in Proceedings

of the International Workshop on OpenCL. ACM, 2018,

p- 27.

S. Kim and S.-K. Kim, “Comparison of OpenCL and

RenderScript for mobile devices,” Multimedia Tools and

Applications, vol. 75, no. 22, pp. 14161-14 179, 2016.

R. Membarth, O. Reiche, F. Hannig, and J. Teich, “Code

generation for embedded heterogeneous architectures on

Android,” in 2014 Design, Automation & Test in Europe

https://git.hipert.unimore.it/rcavicchioli/cpu_gpu_submission/-/tree/master/vkcomp
https://git.hipert.unimore.it/rcavicchioli/cpu_gpu_submission/-/tree/master/vkcomp

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Conference & Exhibition (DATE). 1EEE, 2014, pp. 1-6.
M. Bourgoin, E. Chailloux, and J.-L. Lamotte, “Efficient
abstractions for GPGPU programming,” Infernational
Journal of Parallel Programming, vol. 42, no. 4, pp. 583—
600, 2014.

A. Mazaheri, J. Schulte, M. W. Moskewicz, F. Wolf,
and A. Jannesari, “Enhancing the Programmability and
Performance Portability of GPU Tensor Operations,” in
European Conference on Parallel Processing. Springer,
2019, pp. 213-226.

Y. Yang, P. Xiang, J. Kong, M. Mantor, and H. Zhou,
“A unified optimizing compiler framework for different
GPGPU architectures,” ACM Transactions on Architec-
ture and Code Optimization (TACO), vol. 9, no. 2, p. 9,
2012.

E. Holk, M. Pathirage, A. Chauhan, A. Lumsdaine,
and N. D. Matsakis, “GPU programming in rust: Im-
plementing high-level abstractions in a systems-level
language,” in 2013 IEEE International Symposium on
Farallel & Distributed Processing, Workshops and Phd
Forum. 1EEE, 2013, pp. 315-324.

X. Tian, R. Xu, Y. Yan, Z. Yun, S. Chandrasekaran,
and B. Chapman, “Compiling a high-level directive-
based programming model for gpgpus,” in International
Workshop on Languages and Compilers for Parallel
Computing. Springer, 2013, pp. 105-120.

R. Reyes, I. Lépez-Rodriguez, J. J. Fumero, and
F. De Sande, “accULL: an OpenACC implementation
with CUDA and OpenCL support,” in European Confer-
ence on Parallel Processing. Springer, 2012, pp. 871-
882.

D. Sharlet, A. Kunze, S. Junkins, and D. Joshi, “Shevlin
park: Implementing c++ amp with clang/llvm and
opencl,” in General Meeting of LLVM developers and
users, 2012.

J. Fang, A. L. Varbanescu, and H. Sips, “A comprehen-
sive performance comparison of CUDA and OpenCL,”
in 2011 International Conference on Parallel Processing.
IEEE, 2011, pp. 216-225.

P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson,
and J. Dongarra, “From CUDA to OpenCL: Towards
a performance-portable solution for multi-platform GPU
programming,” Parallel Computing, vol. 38, no. 8, pp.
391407, 2012.

A. Rao, A. Srivastava, K. Yogesh, A. Douillet, G. Gerfin,
M. Kaushik, N. Shulga, V. Venkataraman, D. Fontaine,
M. Hairgrove et al., “Unified memory systems and meth-
ods,” Jul. 23 2015, uS Patent App. 14/601,223.

M. Knap and P. Czarnul, ‘“Performance evaluation of
Unified Memory with prefetching and oversubscription
for selected parallel CUDA applications on NVIDIA
Pascal and Volta GPUS,” The Journal of Supercomputing,
pp. 1-21, 2019.

J. Nickolls, I. Buck, and M. Garland, “Scalable parallel
programming,” in 2008 IEEE Hot Chips 20 Symposium
(HCS). IEEE, 2008, pp. 40-53.

R. Cavicchioli, N. Capodieci, M. Solieri, and
M. Bertogna, “Novel Methodologies for Predictable

CPU-To-GPU Command Offloading,” in 31st Euromicro
Conference on Real-Time Systems (ECRTS 2019).
Schloss
2019.

Dagstuhl-Leibniz-Zentrum fuer Informatik,

Nicola Capodieci is an associate researcher at the
HiPeRT-Lab of the University of Modena and Reg-
gio Emilia. His main research interests range from
distributed systems to languages, architectures and
programming models for GPUs.

Roberto Cavicchioli Roberto Cavicchioli is a Post-
Doctoral Researcher at the HiPeRT-Lab (University
of Modena and Reggio Emilia) whose research is
focused on parallel computing for heterogeneous
systems, optimization algorithms, machine learning
and real time scheduling. He received his Ph.D. in
2014.

Andrea Marongiu received the PhD degree in elec-
tronic engineering from the University of Bologna,
Italy, in 2010. He has been a postdoctoral reserch fel-
low at ETH Zurich, Switzerland. He currently is an
(associate professor at the University of Modena and
Reggio Emilia. His research interests focus on pro-
gramming models and architectures in the domain
of heterogeneous multi- and many-core systems-on-
chip. In this field, he has published more than 100
papers in peer-reviewed conferences and journals.

	Introduction
	Related Work
	A Taxonomy of Modern GPU API Semantics
	API selection
	A note on the adopted terminology
	API Constructs for Host Code
	Traditional APIs
	Command List-Based APIs
	Unified memory

	API constructs for Device code

	On the Benefits of a Unified Specification: A Case Study
	Introducing GUST
	A GUST Reference Implementation
	Host-Side Operations
	Device-side Operations

	An Early Assessment of GUST
	Ease of development
	Overhead characterization
	Unifying API categories

	Final Discussion and Conclusion
	Biographies
	Nicola Capodieci
	Roberto Cavicchioli
	Andrea Marongiu

	Blank Page

