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Abstract—In modern computing platforms, power monitors
are employed to deliver online power estimates to support
different run-time power-performance optimization methodolo-
gies. However, the possibility of setting up a successful side-
channel attack by analyzing the power estimates imposes the
use of a suitable and systematic approach in the design of
such power monitors. This paper proposes a design methodology
to automatically identify and implement side-channel resistant
power monitors at the hardware level, for generic computing
platforms. The methodology works by designing a power monitor
for which the switching activity of the signals used to compute the
power estimates is not a function of both the secret key and the
plaintext/ciphertext values processed by the computing platform.
According to the most recent standardized methodologies to
assess the side-channel security, our experimental validation
leverages both CPA and t-test analysis considering a general
purpose System-on-Chip executing different cryptographic prim-
itives and an application-specific accelerator implementing the
AES-128 algorithm. Our results confirm the impossibility of
retrieving the secret key from the power estimates provided by
our side-channel resistant power monitor. Considering several
temporal resolutions, we highlight an accuracy error of the power
estimates limited to less than 2.7%, as well as an average area and
power overheads for the protected power monitors lower than
6% and 5%, respectively. To this end, the proposed methodology
is able to deliver a side-channel resistant power monitor within
state-of-the-art accuracy error and overheads.

Index Terms—Power monitoring, side-channel attacks, hard-
ware security, computer architecture.

I. INTRODUCTION

Over the last two decades, side-channel attacks demon-
strated a large variety of ways of exfiltrating sensible infor-
mation from a computing platform [1]. In general, the side-
channel attacks (SCAs), also known as passive, i.e., non-
invasive, attacks, can extract sensible information by exploiting
the correlation between the data being computed and one
or more environmental signals generated by the comput-
ing platform. Depending on the attack methodology, side-
channel attacks are split in two classes: i) emission-based, and
ii) microarchitectural. Emission-based SCAs require physical
proximity to the target device without the need of executing
any spy application on such target. These attacks measure the
execution time, or the power consumption, or the electromag-
netic field of the victim device without permanently altering
it, and therefore they leave no evidence of an attack behind.
In contrast, microarchitectural SCAs do not require physical
proximity to the target platform since they leverage malicious
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or cooperating spy applications that are co-located/executed on
the same platform with the victim application. In this work,
we address the security vulnerability due to the use of the
online power monitors, that offer a novel and effective way
to implement a microarchitectural side-channel attack. Online
power monitors are used to support run-time techniques to
optimize the energy efficiency of the computing platform.
They are the de-facto solution to deliver a periodic estimate of
the power consumption of the monitored computing platform.
More specifically, the power estimate is obtained by leveraging
the relationship between the power consumption and the
internal switching activity of the target device. However, the
switching activity has been demonstrated to be a rich source
of information that allow successful side-channel attacks [2].

The realization of a power monitor encompasses two main
steps. First, the power model identification step finds out a
mathematical relationship between the power consumption and
the switching activity of the computing platform. Second,
the power monitor design stage physically implements the
identified power model into the target platform. The possibility
of exploiting such relationship at different abstraction levels
spurred the evolution of both software- and hardware- imple-
mented power monitors, where each of them offers a different
trade-off between the accuracy of the power estimates and
the performance and area overheads. Software power monitors
leverage the values of the high-level platform statistics related
to the executed applications that are usually made available
by means of the architectural performance counters. Such
statistics measure the number of different architectural events,
e.g., number of cache misses, or idle CPU cycles within
the observed period of time. Software power monitors are
implemented as software applications and they are primarily
intended to support off-the-shelf computing platforms, for
which any change of the microarchitecture is impossible. To
the best of our knowledge, the state-of-the-art contains no
research related to the side-channel vulnerability of software
implemented power monitors. However, several state-of-the-art
proposals highlight the possibility of setting up a successful
side-channel attacks targeting the architectural performance
counters exploited to realize the software power monitors [3],
[4]. In contrast, hardware power monitors leverage the switch-
ing activity at circuit level to deliver accurate power estimates
at high temporal resolution, without affecting the performance
of the computing platform. The use of the signals’ switching
activity at microarchitectural level to calculate the power
estimate creates a strong link between the calculated power
sample and the program data values driven onto the monitored
signals. In this scenario, any side-channel resistant power
monitor must carefully consider the side-channel information
leakage of any signal and statistics before using it to compute
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the power estimates.
Contributions - To the best of our knowledge, this is
the first design methodology to deliver side-channel resistant
power monitors also ensuring an accuracy error as well area
and power overheads aligned to the ones of state-of-the-art
unprotected power monitors. In particular, the contribution to
the state-of-the-art is two-fold:

• Side-channel resistant power modeling - We present
a novel power modeling strategy that allows to deliver
a side-channel resistant power monitor against first-order
SCAs. To enforce the side-channel resistance property,
the power monitor makes use only of signals for which
the corresponding switching activity is not a function of
the secret key and of the plaintext values. The proposed
approach neither hides nor shadows the power estimate
by means of random architectures for which additional
hardware resources and security proof are required upon
the implementation. To demonstrate the generality and
feasibility of our solution, the reported results consider
power monitors targeting a general-purpose System-on-
Chip executing software cryptosystems and a hardware
accelerator implementing the AES-128 cryptosystem. The
experimental validation, exploiting state-of-the-art corre-
lation power analysis (CPA) techniques as well as the
non-specific statistical t-test, confirms that it is impossible
to retrieve any portion of the secret key from the power
estimates calculated by our protected power monitor.

• Accurate and effective power monitor - Our solution is
orthogonal to any power monitoring design methodology.
To this end, it can be added to any power monitoring
design strategy to deliver a side-channel resistant power
monitor. In particular, the proposed design methodology
delivers a side-channel resistant power monitor showing
area and power overheads as well as an accuracy loss
aligned with state-of-the-art power monitoring design
methodologies. Area, power and accuracy loss figures
are obtained considering the design of a side-channel
resistant power monitor for a general-purpose SoC and
a cryptographic hardware accelerator. In particular, the
metrics have been measured on each implemented power
monitor considering a set of temporal resolutions for
the computation of the power estimates, ranging from
100us to 500us. The overall area and power overheads
are always less than 6% and 5%, respectively, with a
maximum accuracy loss limited to 2.7%.

Threat model - The proposed methodology aims to deliver
a side-channel resistant power monitor for generic computing
platforms also ensuring an accuracy loss as well as area and
power overheads aligned to state-of-the-art unprotected power
monitors. Figure 1 depicts the addressed security scenario. The
power monitor (PwrMon) is a hardware module that contin-
uously collects the switching activity from a set of selected
signals of the computing platform (Computing platform)
and it periodically outputs the computed power estimate (p̂).
The attacker knows all the details of the implementation of
the computing platform and of the power monitor, but has
no access to the secret key. We note that in the case of a
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Fig. 1: Overview of the threats. The possible attacks can be
micro-architectural (M1, M2) or emission-based (E1, E2),
performed on the computing platform or the power monitor.

general-purpose computing platform, the attacker also knows
the implementation details of the executed software-based
cryptosystem. In the considered threat model, the attacker can
collect the power traces generated by the power monitor, i.e.,
a series of p̂ values over time, corresponding to the execution
of the cryptosystem, and she/he is also allowed to execute
properly chosen plaintext/chipertext attacks. The aim for the
attacker is to retrieve the secret key of the executed cryptosys-
tem by exploiting the output of the power monitor, i.e., the
power estimates. In particular, the power estimates represent
the unique side-channel signal accessible to the attacker. Such
threat model fits the scenarios of microarchitectural-based
side-channel attacks where, in contrast to traditional DPA
attacks, the attacker has no need of a physical access to the
target device. In fact, the run-time power consumption can be
read out via a software/hardware interface when the attacker is
logged-in, either locally or remotely, into the target computing
platform. We note that the side-channel vulnerability of the
power monitor lies in the actual statistics used to compute
the power estimates. In particular, the use of the statistics
coming from a single vulnerable signal to implement the
power monitor either in software or in hardware can make
it vulnerable to side-channel attacks. To this end, any power
monitor for which the statistics selection process does not
consider such security aspect is vulnerable to this type of side-
channel attacks.

We note that traditional masking-based side-channel coun-
termeasures are used to secure the computing platforms
against side-channel attacks by changing the way the data
are processed. However, a masked power monitor is useless
against the discussed side-channel attack since the exploited
vulnerability lies in the value of the power estimates of the
monitored computing platform. We also note that the use of
a masked computing platform avoids the need of designing
side-channel resistant power monitors, since any computed
power estimate will correlate with the masked version of the
processed data. However, the high complexity and cost of
designing masked computing platforms, especially for general
purpose computing systems, motivates the use of side-channel
resistant power monitors when the power estimates represent
the unique side-channel source of information available to the
attacker.

To this end, our methodology helps in delivering a power
monitor for generic computing platforms, i.e., general-purpose
SoCs and hardware accelerators, also ensuring that the power
estimates cannot be exploited to retrieve the secret key, namely
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to perform the M2 side-channel attack. Moreover, our pro-
tected power monitor makes no use of vulnerable signals, thus
its implementation is also theoretically resistant to possible
emission-based side-channels attacks (E2), but such evaluation
falls outside the scope of this work. Finally, the proposed
solution does not change the computing platform, thus it can-
not mitigate emission-based (E1) nor microarchitectural (M1)
side-channel vulnerabilities, if any.

Structure of the manuscript - The manuscript is organized
in four parts. Section II discusses the background on the state-
of-the-art on side-channel leakage detection methodologies
and online power monitors. The proposed methodology to
design a side-channel resistant power monitors is described in
Section III. Experimental results are discussed in Section IV,
while conclusions are drawn in Section V.

II. BACKGROUND AND RELATED WORKS

This section describes the link between the online power
monitoring solutions and the side-channel attacks targeting
the trace of power estimates as the side-channel signal. The
security threat due to side-channel attacks against online power
monitors is a well known problem. [5] presented a success-
ful side-channel attack against an FPGA-implemented power
monitor, without proposing any countermeasure. [6] discusses
the use of a zero-mean noise adder to obfuscate the power esti-
mates. However, the countermeasure is meant for smart meters
used in civil electricity supply scenarios. The actual dynamics
of the power consumption signal is several orders of magnitude
slower with respect to the one of a computing platform and
the electricity provider is interested in the actual energy con-
sumption over a period of time, and not to the instantaneous
value of the power consumption. Moreover, hiding techniques
leveraging noise signals are known to be ineffective against
side-channel attacks [7]. [3], [4] demonstrate the possibility
of setting up a successful side-channel attack by exploiting
the link between the statistics of the architectural performance
counters and the data being computed. The presence of a link
between the switching activity of selected hardware signals
and the data being computed is a common knowledge [2].

The rest of this section has a two-fold objective. Sec-
tion II-A focuses on the literature on power monitoring while a
review on the side-channel leakage detection and exploitation
methodologies is reported in Section II-B. We note that, to
the best of our knowledge and apart from the already and
partially on-topic discussed proposals, there are no state-of-
the-art solutions targeting the design of a side-channel resistant
power monitor for generic computing platforms.

A. On-line power monitoring

At run-time, the power consumption can be read out as
either a direct measurement or an indirect estimate. The direct
power measurement is achieved by means of analog sensors
providing highly accurate power values at high temporal
resolution. However, power meters suffer two limitations; i)
the limited scalability prevents the deployment of more than
few sensors even in complex computing platforms, and ii)

the use of complex mixed analog-digital design methodolo-
gies to implement the power meter, increases the overall
design complexity. In contrast, the indirect power estimate
is produced by a power monitor exploiting an identified
power model that is fed with the platform statistics at run-
time. Feasibility, flexibility, and scalability make the use of
power monitors a widely adopted best practice. The power
model at the core of the power monitor leverages the re-
lationship between the power consumption and the internal
switching activity of the computing platform. In particular, the
linear power model represents the de-facto standard family
of models employed in state-of-the-art solutions due to its
low overhead, high accuracy, and high achievable temporal
resolution. Equation (1) defines the power estimate at time
t (p̂t) as the weighted sum of the switching activity of selected
signals of the computing platform (si,t). The power model
identification process selects the signals and the corresponding
time independent coefficients (ci) to maximize the accuracy of
the power estimates.

p̂t =
∑
i

ci × si,t (1)

The possibility of using the relationship between the switch-
ing activity and the power consumption at different abstraction
levels motivates different power monitor implementations.
Software-level power monitors make use of selected architec-
tural performance counters to deliver a software implemen-
tation of the power model without changing the hardware
implementation of the computing platform [8]–[10]. However,
this flexibility comes at the cost of three drawbacks: i) a non-
negligible performance overhead due to the software execution
of the power model, ii) the need of architectural performance
counters non always available, and iii) a relatively low ac-
curacy due to the use of coarse grain and highly abstracted
statistics. In contrast, hardware-level power monitors use the
swithing activity of a selected subset of physical signals.
The additional resource utilization and the need to change
the hardware of the computing platform is balanced by a
higher accuracy and temporal resolution with no performance
overhead [11]–[14]. Moreover, the hardware-level statistics
carry more information then architectural performance coun-
ters, thus motivating a vast research aiming at delivering
compact hardware-level power monitors. To design a compact
power model, [11] proposes a power monitoring methodology
that only employs the control signal of the designs. [12],
[13] propose to virtually split all signals into their single-
bit representations and, then, to make use of the obtained
single-bit signals to design the power model. In contrast, [14]
highlights the importance of accounting for different types of
switching activity depending on the considered signal. All
these solutions target the design of highly accurate power
monitors disregarding any security implication. In contrast, we
note that the design of the power model must consider that
i) some signals are driven directly or indirectly with critical
program data, i.e., the secret key and the plaintext of the
encryption procedure, and ii) the strategy employed to measure
the switching activity can make the trace of power estimates
vulnerable to side-channel attacks.
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Fig. 2: The proposed design methodology toolchain to identify and to implement in hardware a side-channel resistant power
monitor for generic Register-Transfer-Level (RTL) descriptions performing cryptographic computations.

B. Side-channel information leakage analysis

The classification adopted in the rest of this part distin-
guishes between the methodologies to detect the presence
of information leakage and those capable to exploit it. In
particular, the former highlight the potential vulnerability of a
computing platform while the latter quantify the possibility of
actually retrieving the secret key.
Side-channel leakage detection - The Test Vector Leakage
Assessment (TVLA) methodology is a key element of the
Cryptographic Module Validation Program (CMVP) [15], also
highlighted in the FIPS-140-3 standard [16], to detect the
presence of a side-channel information leakage in the target
design. TVLA leverages the statistical Welch’s t-test test
targeting mean differences in carefully chosen partitions of
trace measurements. In particular, the TVLA methodology can
exploit the specific and non-specific statistical t-test test [17].
Non-specific TVLA partitions the collected measurements
depending on public inputs. For example, the fixed-versus-
random test is a non-specific t-test looking for a statistically
significant difference between a trace set associated with a
fixed plaintext input and another trace set associated with
randomly varying inputs. In contrast, specific TVLA partitions
the collected measurements depending on the value assumed
by an intermediate key-dependent value computed by the
analyzed cryptosystem implementation. [18] demonstrated
that non-specific TVLA outperforms specific TVLA as the
former highlights a lower number of false positives with
respect to the latter. We note that both specific and non-
specific statistical t-test tests are executed at any point in
time, i.e., time-wise, of the collected trace measurements
to draw conclusions about the overall vulnerability of the
target implementation. However, apart from the risk of false
positives, the interpretation of negative outcomes is difficult
for TVLA without resorting to other evaluation tools to assess
the side-channel resistance of the cryptographic primitive im-
plementation [19]. The best practices to successfully leverage
the use of leakage detection tests in security evaluation of
cryptographic devices is discussed in [20]. We note that the
statistical t-test test represent a primary tool to identify if
the target computing platform is vulnerable to side-channel
attacks.
Side-channel leakage exploitation - Once the TVLA de-
tected a source of side-channel information leakage in the

target design, the correlation power analysis (CPA) techniques
can be used to retrieve the actual secret key. A typical CPA
workflow is an instance of either a known plaintext or cipher-
text attack against a symmetric cryptographic primitive and
it is organized in four steps. First, we choose an intermediate
value of the cipher computation which depends on a small por-
tion of the key, usually either 1 or 8 bits, and a known attacker-
controllable quantity, i.e., the plaintext. Second, the power con-
sumption (the side-channel) is continuously measured during
the execution of the cipher computation considering a large
set of different, randomly distributed known plaintexts. Third,
the attacker tries to predict the actual power consumption of
the device employing the chosen leakage model which defines
a mathematical formulation of the power consumption as a
function of the secret key and the plaintext (or ciphertext).
According to [21] even a reasonably coarse model of the
power consumption of the target operation producing the
intermediate value is sufficient to successfully attack the target.
The Hamming Distance (HD) and the Hamming Weight (HW)
are the two most popular leakage models to estimate data
dependent power consumption. Considering the side-channel
security domain, data dependent signals are those for which
the switching activity is a function of both the secret key,
i.e., the target information of the attack, and the plaintex-
t/ciphertext, i.e., the quantity controllable by the attacker.
The HD leakage model measures the number of single-bit
switches of a signal between two consecutive clock cycles.
Differently, HW measures the number of ones of a signal
in a specific clock cycle as the power to load its fan out.
The HW leakage model is simpler than the HD one since
it only requires the knowledge of a single value driven on
the signal. By leveraging the leakage model, the attacker can
construct a hypothesized power consumption for each of the
values of the attacked portion of the secret key. In the last step,
each prediction is compared with the measured side-channel
at each considered time instant by means of a statistical test.
The correct value of the secret key portion is revealed as the
prediction depending on it that will fit best the measurements.
Starting from the work in [21], employing the Difference-
of-Means (DoM) test to exfiltrate the secret key of a DES
cipher, a large variety of other statistical distinguisher have
been proposed. [22] investigates ways to enhance the accuracy
of the differential power analysis taking also advantage of
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more precise leakage models in the statistics. [2] employs
the Pearson correlation coefficient to provide a comprehensive
side-channel information leakage analysis of an in-order RISC
CPU.

III. METHODOLOGY

This section discusses the design methodology to deliver a
side-channel resistant power monitor for generic computing
platforms (see Figure 2).

Key idea - the switching activity is the key for the accuracy
and the security of the power monitor. From the accuracy
viewpoint, the power monitor must employ the subset of
signals of the circuit for which the switching activity ensures
the best fit with the actual power consumption. From the
security viewpoint, the switching activity is function of the
data being processed and, thus, by inspecting the trace of
the power estimates it is possible to retrieve the data driven
on the signals used in the power monitor. The proposed
methodology defines the concept of vulnerable signals as
those signals for which the switching activity is a function of
both the secret key, i.e., the target, unknown quantity to the
attacker, and the plaintext/ciphertext, the controllable quantity
by the attacker. From the attacker standpoint, the secret key is
the sought information, while the plaintext is the controllable
input to setup the side-channel attack. By avoiding the use
of vulnerable signals to realize the power monitor, the power
estimates cannot allow the retrieval of the secret key since
the switching activity, that is at the core of the implied
power model, does not depend on such information. Given
the possible existence of a complex relationship between
the switching activity, the secret key and the plaintext, our
solution leverages the statistical t-test tests to highlight
vulnerable signals. The experimental results demonstrate that
such vulnerable signals are too few to determine a degradation
of the accuracy if not considered in the realization of the
power monitor. In contrast, such vulnerable signals are too
many to guarantee that the implemented power monitor is
secure against the presented side-channel attack if a security
analysis is not part of the power monitor design methodology.

Toolchain overview - Figure 2 overviews the proposed
flow as made of three stages, i.e., i) the StatGen,
ii) the SigSecCheck, and iii) the PwrMonDesign. Start-
ing from the Register Transfer Level (RTL) description of
the target computing platform, the StatGen stage pro-
duces the power traces and the corresponding statistics for
each signal in the design. We perform a post Place-and-
Route (post-P&R) simulation of the target design to col-
lect the Value Change Dump (VCD) file (see RTL-sim
in Figure 2). The VCD file reports the variations, i.e., the
switching activity over the time, for each signal in the sim-
ulated design. In particular, we leverage the VCD file to
obtain the power traces (PowerTrace) and the switching
activity (SigStats) statistics (see ElabStats in Figure 2).
Starting from the whole set of collected statistics, i.e., the
switching activity and the power traces, the signal vulnerability

Algorithm 1 Top-down hierarchical visiting algorithm.
1: function [model, e] EXPLOREHIERARCHY(M0, eTh)
2: secureStats = [ ];

3: for sig ∈ [M0.~I M0. ~O] do
4: if SigSecCheck(sig) == 0 then
5: secureStats.add(sig);

6: [mId, eM0
] = ComputePwrModel(M0, secureStats);

7: if eM0
< eTh then

8: model = mId; e = eM0
;

9: else
10: container = sortByPower(M0.m0 ... M0.mN );

11: mIdList = [ ];

12: for i = 1 : container.size do
13: mTmp = container.pop(i);

14: [mId, e] = exploreHierarchy(mTmp, eTh);

15: [mCont, eCont] = exploreHierarchy(container, eTh);

16: mIdList.add(mId);

17: if compErr([mIdList mCont]) < eTh then
18: model = [mIdList mCont];

19: e = compErr(model);

20: break;

analysis stage (SigSecCheck) identifies the set of the phys-
ical signals of the platform that are vulnerable to side-channel
attacks (see Section III-B for a detailed description). In partic-
ular, the FilterVulnerableSignals block removes the
vulnerable signals and the corresponding statistics from the
whole set of collected data. It is sufficient that a single bit of a
signal is leaking information to discard such signal. The power
monitor design stage (PwrMonDesign) delivers the netlist
of the computing platform augmented with the netlist of the
power monitor (PwrImpl) starting from the three received
inputs: i) the set of switching activities of the signals for
which no side-channel vulnerability has been observed in the
SigSecCheck stage, ii) the power traces, and iii) the post
Place-and-Route (postP&R) description of the target platform
where the power monitor must be implemented. The rest of
this section is organized in three parts. Section III-A describes
the entire process of identifying the power model for generic
computing platforms. Section III-B addresses the side-channel
vulnerability analysis stage to filter out vulnerable signals.
Section III-C details the implementation of the SCA-resistant
power monitor starting from the identified power model.

A. Power model identification

To obtain a compact yet effective power monitor, our power
model identification strategy leverages the primary inputs and
outputs to derive the power model. Such design strategy is
meant to avoid modeling the complex non-linear relationships
between the power consumption and the internal implementa-
tion of each module.

According to [14], [23], we implemented the StatGen
block to deliver the switching activity in the form of
both Single-Variation-Count (SVC) and Hamming-Weight-
Count (HWC) for each signal in the design. The SVC mea-
sures a change in the signal, while the HWC measures the
actual number of changed bits. For example, the transition of
the 4-bit signal foo from 00012 to 00102 is registered as
SV Cfoo = 1 and HWCfoo = 2. We note that even if the
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cross-correlation of the two statistics, i.e., SVC and HWC,
measured from the same signal can be so strong to prevent
their concurrent use in the same power model, they provide
two alternative explanations of the power consumption for the
same signal, thus enabling a potential improvement of the
power model accuracy.

The power model identification algorithm employs a re-
cursive approach to implement a top-down hierarchical visit
of the target design (see the ExploreHierarchy function
in Algorithm 1). The algorithm takes two inputs: i) the top
module of the design (M0), and ii) an upper bound that
specifies the maximum accuracy error for the identified power
model (eTh). The mathematical formulation of the identified
power model (model) and the accuracy error (e) represent the
output of the algorithm. We note that the power model is a list
of triples, where each triple is defined as the name of a signal
of the design, the associated coefficient of the power model
and the employed Switching Activity Counting Mode (SACM)
that is selected as either the Single Variation Count (SVC)
or the Hamming Weight Count (HWC). Equation (2) depicts
the linear power model behind the proposed identification
algorithm, where signals are accounted by measuring the
switching activity either using the HWC mode or the SVC
mode. We note that the time-dependent behavior of the power
model in Equation (2) is due to the time-dependent switching
activity collected from the i-th signal that contributes to the
computation of the power estimates (p̂t) over time.

p̂t =
∑
i

ci × sSV Ci,t +
∑
j

cj × sHWC
j,t (2)

Starting from the top module, Algorithm 1 initially performs
a top-down visit of the target design hierarchy to find the
best side-channel resistant power model within the accuracy
upper bound eTh. As a first step, the ExploreHierarchy
function filters out the signals for which a dependency between
the switching activity and the program data being processed in
the computing platform is detected, i.e., the vulnerable signals.
We note that the violation of a single bit of a large signal
is sufficient to filter out such signal (see lines 2 − 7 in Al-
gorithm 1). The remaining signal statistics (secureStats)
are employed to identify the power model (mId) of M0 (see
line 8 of Algorithm 1). We note that the computed power
model is accepted if its accuracy error is within the allowed
error eTh (see lines 9-11 of Algorithm 1). Otherwise, the
children modules of M0 are sorted in a descending order,
according to their power consumption, and an iterative power
model identification exploration starts (see lines 11-25 of
Algorithm 1). At each iteration of the for-loop at line
14, the first sub-module in the sorted container list is
popped out and its power model is identified (see mId at line
16 of Algorithm 1). Moreover, the remaining modules in the
container list are identified within a single power model.
To this extent, a bi-partition of the modules is created. The
module identified in isolation is added to the mIdList list, i.e.,
the list containing the power models identified on the modules
consuming the majority of the power in the target design.
At line 19, Algorithm 1 checks if the aggregate error of the
power models in the mIdList plus the power model identified

Algorithm 2 Power model computation for module m.
1: function [model, e] COMPUTEPWR(m, secureStats)
2: e = MAXERR; model = [ ];

3: for i = 1 : secureStats.size do
4: C =

(secureStats
i

)
;

5: for j ∈ C do
6: [modelnew, enew] = linReg(j,m.pwr);

7: if enew < e then
8: e = enew; model = modelnew;

for the container modules is lower than the eTh threshold.
This approach allows to optimize the size of the final power
model, since the iterative algorithm tries to identify a dedicated
power model for the modules than contribute the most to the
power consumption, while a single aggregate power model
is identified for the remaining ones. The recursive visit of
the target design terminates either with a set of identified
power models or when the container list is empty and the
error is bigger than the imposed eTh threshold. We note that
for each recursive call of the ExploreHierarchy function,
the SigSecCheck task, for which a detailed description is
provided in Section III-B, ensures that any identified power
model makes only use of the switching activity from non-
vulnerable signals.

The actual power model identification procedure for a
module is described in Algorithm 2, i.e., the computePwr
function. Algorithm 2 takes as input a module of the design (m)
and the list of statistics pertaining to the primary inputs and
outputs of such module. It is important to underline that the
algorithm is fed with non-vulnerable statistics. The output of
the algorithm is the identified power model (model) and the
associated accuracy error (e).

The two nested for-loops (lines 3 and 5) drive the explo-
ration to favor the power models that require a small number
of probed signals. For each iteration of the outer for-loop,
the statement at line 4 determines the set of all the possible
combinations of i signals. For each combination j, the inner
for-loop (line 5) computes the power model (modelnew) and
the accuracy error (enew) by means of a linear regression
procedure (see line 8 in Algorithm 2).

The identified power model (modelnew) becomes the new
candidate if its accuracy error is smaller than the one of the
current power model (see lines 7-9 in Algorithm 2). We note
that, regardless the employed power model identification strat-
egy, the side-channel vulnerability analysis allows to derive
power models for which the corresponding power estimates
are not function of the secret key and the plaintext values
processed by the computing platform.

B. Side-channel vulnerability analysis

For each signal in the computing platform, the signal
vulnerability analysis stage (SigSecCheck in Figure 3)
tests the correlation between its switching activity and the
processed data. The analysis makes use of the Test Vector
Leakage Assessment (TVLA) methodology employing both
specific and non-specific t-test statistical tests to assess the
side-channel vulnerability of each signal. Such analysis is
meant to seek evidence of sensitive data dependencies in the
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Fig. 3: Analysis flow used to assess the side-channel vulnera-
bility of the physical signals of the target computing platform.

measured traces rather than actually retrieving sensitive infor-
mation from the highlighted side-channel information leakage.
Starting from the RTL description of the computing platform,
we collect the switching activities (SigStats) from a set
of post-implementation simulations of the target cryptosystem
where each of them employs a different plaintext (see ptx in
Figure 3).

We note that our side-channel vulnerability analysis only
leverages the collected switching activity without requiring
the use of power traces either estimated through the use
of Electronic Design Automation (EDA) tools or directly
measured from the prototyping platform. In fact, the power
monitor makes use of the sole switching activity of selected
signals to compute the power trace, i.e., the signal we want
to protect. This is a crucial simplification that allows to
greatly speed up the analysis. In fact, the use of estimated
power traces can severely slow down the processing, i.e., by a
factor of 100x, at least. Moreover, the use of measured power
traces imposes the execution of the computing platform on
a prototype board, thus severally delaying the design of the
power monitor until when the computing platform reaches the
prototype stage.

The specific t-test is employed to assess the relationship
between a specific intermediate value computed by the cryp-
tosystem and the measured switching activity of the signal
under test. To this end, the selection of the intermediate value
to consider is crucial to maximize the information of the
statistical test. Algorithm 3 describes the implemented specific
t-test to assess the correlation between the switching activity
of a signal and the data being processed in the computing
platform. Algorithm 3 takes six inputs: i) the round (rnd),
ii) the operation within the round (rndOp) of the cryptosystem
from which the intermediate value has to be extracted, iii) the
switching activity of the signals (SigStat), i.e., nTr traces
of nSampl samples each, iv) the plaintext (ptx) correspond-
ing to the switching activity traces, v) the secret key (key),
and vi) the α value used in the t-test. The rnd and the rndOp
inputs are used to generate the intermediate value of the
computation that is used to partition the statistics in two sets.
For each bit of the intermediate value, a partition of the traces
is created and the t-test analysis is executed for each collected
temporal sample (see lines 12-15 in Algorithm 3). The results
of the t-test are used to highlight the dependency between each
bit of the intermediate value and the switching activity of the
signal (see lines 14 in Algorithm 3). The algorithm returns an
object that highlights, for each bit of the intermediate, if there

Algorithm 3 Specific t-test algorithm to check the vulnerabil-
ity of a signal. For each bit of the intermediate, the specific
t-test is executed on each time sample of the traces.
1: function SPECTTEST(rnd,rndOp,SigStat[nTr, nSamp], ptx, key, α)
2: isSigV uln = zeros(size(SigStat.nTr), 1)

3: [tmpV al] = CalcIntermediate(rnd, rndOp, ptx, key)

4: for iterBit = 1 : size(tmpV al) do
5: for iterTrace = 1 : size(tmpV al) do
6: if tmpV al[iterBit] == 0 then
7: Set0.add(SigStats(iterTrace))

8: else
9: Set1.add(SigStats(iterTrace))

10: for iterSample = 1 : size(SigStats.nSamp) do
11: isV uln = ttest(Set0, Set1, α)

12: isSigV uln[iterBit] = isSigV uln[iterBit] ∨ isV uln
13: return isSigV uln

Algorithm 4 Non-specific t-test algorithm to check the vul-
nerability of a signal. The non-specific t-test is executed on
each time sample of the traces.
1: function NONSPECTTEST(SigStat[nTr, nSamp], α)
2: isSigV uln = False

3: rndTraceId = randRange(1, size(SigStats.nTr))

4: for iterTrace = 1 : size(SigStats.nTr − 1) do
5: Set0.add(SigStats(rndTraceId))

6: for iterTrace = 1 : size(SigStats.nTr) do
7: if iterTrace 6= rndTraceId then
8: Set1.add(SigStats(iterTrace))

9: for iterSample = 1 : size(SigStats.nSamp) do
10: isV uln = ttest(Set0, Set1, α)

11: isSigV uln = isSigV uln|isV uln
12: return isSigV uln

is statistical evidence that its value can be correlated with the
switching activity of the signal under test.

The non-specific t-test is employed to assess the data depen-
dency between the switching activity of the signal under test
and the program data value being computed (see Algorithm 4).
In contrast to the specific t-test that splits the collected
statistics in two classes according to an intermediate value of
the computation, the non-specific t-test partitions the statistics
to obtain a set of traces collected using the same input values
from one side, and a set of traces collected using random
input values from the other side. It assesses the possibility
of distinguish the variation in the mean between a dataset
collected using fixed input values for the computation and
a dataset collected by varying the processed data (see lines
12-15 in Algorithm 4). The t-test analysis is executed time-
wise, i.e., for each collected temporal sample (see lines 12-15
in Algorithm 3) and its results highlight if there is statistical
evidence that the switching activity of the signal under test
depends on the processed data. We note that the presence of
a correlation reported by at least one of the two employed
t-test tests, even if involving only a single bit, prevents the
use of the entire signal to build the power model described in
Section III-A.

C. Power monitor implementation

Starting from the mathematical formulation of the identified
power model, the PwrImpl stage (see Figure 2) delivers
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Fig. 4: Example of the power monitor architecture considering
a 3-signal power model. The HWC mode is used for the signals
s0 and s1 while the SVC mode is selected for s2.

the final netlist of the target design augmented with the
power monitor. In particular, the PwrImpl stage receives the
identified power model and the post-P&R netlist of the target
computing platform as inputs, and it produces a netlist of the
computing platform augmented with the hardware description
of the power monitor.

According to Equation (2), the generic i-th term of the
power model is completely specified by a triplet of values:
i) the name of the probed signal (si), ii) the corresponding co-
efficient (ci), and iii) the employed Switching Activity Count-
ing Mode (SACM), i.e., either SVC or HWC. Moreover, the
temporal resolution parameter (T ) specifies the time-interval
between two consecutive power estimates. The realization of
the identified power model encompasses two steps: local and
global power monitor implementation. For each triple of values
in the mathematical formulation of the identified power model,
the local power monitor stage implements a customized local
power counter. In particular the power counter is customized
in terms of the width of the monitored signal, the coefficient
associated to the signal, the Switching Activity Counting
Mode (SACM) selected for the signal, and the temporal
resolution (T ). In contrast, the global power monitor stage
implements a single power adder in the top module of the
target design to deliver the power estimates. The power adder
implements the mathematical structure of Equation (2). In
particular, the inputs of the power adder module are connected
to the outputs of each implemented power counter. For the sake
of clarity, Figure 4 depicts the power monitor architecture for a
3-signal power model. The target computing platform consists
of a top module (top) that implements three sub-modules, i.e.,
m1, m2 and m3. The power monitor must consider 3 signals
of the computing platform, i.e., s0 and s1 probed using the
HWC counter type, and s2 probed using the SVC counter
type. For all the power counters, the associated coefficients
(c0, c1, and c2) and the SACM are specified in the identified
power model. Finally, the power adder is used to deliver the
periodic power estimate p̂t (see outpwr in Figure 4).

We note that the power monitor implementation sits on a
configurable power counter architecture (see Figure 5). The
power counter periodically outputs the power contribution
originated by the monitored signal as the product between
the switching activity stored in the FFsa memory element
and the corresponding coefficient ci assigned by the power
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coe�
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Fig. 5: Power counter architecture.

model identification algorithm (see coeff in Figure 5). At
the end of each power sample of period T , the signal rst
resets the accumulated switching activity stored into the FFsa
memory element to start collecting the switching activity of the
new time period. The size of the power counter depends on:
i) the width of the monitored signal in the design, and ii) the
maximum number of clock cycles between two consecutive
power samples, i.e., the temporal resolution T. In particular,
our power counter samples the monitored signal once per
clock cycle to measure the switching activity in terms of
the signal variations in two consecutive sampled values (see
Sampling block in Figure 5). To provide a strong upper
bound to the number of switches for each single-bit signal
within a single clock cycle, our monitoring strategy avoids
the direct measure of the switching activity due to glitches.
However, the power consumption due to the glitches is still
captured, since a higher power consumption will be associated
to each toggle of the signal, i.e., the one of the actual signal
toggle plus the power due to the related glitching activity, if
any. We note that each power counter instance allows a design-
time customization to select the way it measures the switching
activity of the probed signal. At design-time, the specific
Switching Activity Counting Mode (SACM) control input is
used to configure the power counter to measure the switching
activity of a signal in the form of either the Hamming Weight
Count (HWC) or the Single Variation Count (SVC). For each
clock cycle, the HWC counting mode measures the switching
activity as the number of bits of the signals that flipped with
respect to the previous sampled value. In contrast, the SVC
counting mode measures the switching activity, as 0 or 1,
depending if the current signal value is changed or not with
respect to the previously sampled value. We note that the
design-time selection of the SACM control signal automatically
prevents the implementation of the digital logic corresponding
to the unused switching activity counting mode during the
implementation of the power monitor.

IV. EXPERIMENTAL EVALUATION

This section discusses the experimental results related to the
proposed power monitor design methodology in terms of accu-
racy loss, security against side-channel attacks as well as area
and power overheads. All the considered quality metrics are
measured considering the unprotected and the protected power
monitors implemented into a general-purpose System-on-Chip.
It has been considered the execution of different software-
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implemented cryptosystems and the use of a hardware accel-
erator implementing the AES-128 cryptosystem. The final goal
is to demonstrate the possibility of successfully performing a
side-channel attack against the unprotected power monitors
as well as the side-channel resistance of the protected ones,
regardless the complexity of the target computing platform.

The rest of this section is organized in three parts. Sec-
tion IV-A introduces the experimental setup accounting for
the employed security testbed along with the formal definition
of the quality metrics. Section IV-B discusses the accuracy of
the power estimates and the area and the power overheads of
the implemented power monitors. As our representative use
cases, Section IV-C presents the security assessment results
obtained by means of the two computing platforms executing
different cryptosystems.

A. Experimental setup

To demonstrate the effectiveness and the generality of our
solution, we implemented a power monitor targeting a general-
purpose and an application-specific computing platform. As
the reference general-purpose computing platform, we employ
an embedded RISC-V System-on-Chip (SoC) [24]. The SoC
features a 32-bit bus-based architecture and an in-order, five-
stage RISC-V CPU employing the Harvard memory architec-
ture. The CPU offers the hardware support to single-precision
floating point as well as to integer divisions and multiplica-
tions. A UART peripheral and a SoC debugger complete the
SoC architecture. Concerning the security assessment of the
protected power monitor for the general-purpose computing
platform, we employed 5 standard cryptosystems [25], [26],
i.e., the 128-bit software version of the Advanced Encryption
Standard (AES) [27], Clefia [28], Seed [29], Cast [30], and
Camellia [31], operating in Electronic Code Block (ECB)
mode. For each cryptosystem, the C source code has been
compiled with the LLVM compiler framework targeting the
RISC-V ISA and by using the -O3 option. In contrast, the
hardware accelerator implementing the AES-128 cryptosystem
is employed as the reference application-specific computing
platform [32]. The accelerator takes five clock cycles to
perform each round of the AES. For each clock cycle, the
implemented SUBBYTES primitive operates on four bytes
of the AES state, thus completing the SUBBYTES compu-
tation in four clock cyles. The remaining round primitives,
i.e., SHIFTROWS, MIXCOLUMNS, and ADDROUNDKEY, are
computed in a single clock cycle.

Computing platforms and power monitor design -
Vivado 2018.2 has been adopted to generate the post-
implementation netlist of the reference computing platform
operating at 50MHz. The switching activity and the power
traces to identify the power model have been collected from
the post-P&R simulations with a time resolution of 200ns,
i.e., one sample every 10 clock cycles. To identify the power
model for the general-purpose SoC, we used the WCET
benchmarks (25 applications) to generate a representative set
of statistics, i.e., switching activity and corresponding power
traces. We randomly selected 20 applications to identify the
power model and the remaining 5 benchmarks have been used

to assess the accuracy of the power estimates. Statistics have
been collected by executing each application 30 times and
by using a different input set at each iteration. In addition,
we performed 10-thousand encryptions making use of the
software version of the considered cryptosystems where each
of them was fed them with a random set of plaintext and
secret key values. The generated switching activity has been
used to filter out the vulnerable signals during the vulnerability
analysis stage. Concerning the application-specific computing
platform, i.e., the hardware accelerator implementing the AES-
128 algorithm, we executed a set of 10-thousand AES encryp-
tions by using a random set of plaintext and secret key values
to extract a representative set of statistics, useful to identify
the power model and the vulnerable signals of such hardware
accelerator.

Starting from the collected switching activity, the netlist,
and the generated power traces, we employed Matlab-2019a
to implement the power model identification stage and the
side-channel vulnerability analysis stage. For each one of the
considered computing platforms, we identified the protected
and the unprotected power models. The protected power model
is resistant to side-channel attacks, while the unprotected
one has been identified using the same methodology with-
out activating the side-channel vulnerability analysis stage.
The latter model represents the state-of-the-art solutions, for
which no vulnerability analysis is performed to filter out
the signals employed in the power model. We note that the
protected power models for the SoC (protected-SoC)
and the hardware accelerator (protected-AccHW) are used
to assess the validity of the proposed design methodology,
while the unprotected ones, i.e., unprotected-SoC and
unprotected-AccHW, are used to highlight the security
vulnerability that affects the state-of-the-art power modeling
design solutions.

To identify the vulnerable signals in the considered com-
puting platforms, the vulnerability analysis employed both
the non-specific and the specific statistical t-test tests at the
granularity of the single bit, with α = 0.005. In particular,
we targeted the first exclusive-OR between the plaintext and
the secret key (ark) and the first access to the SBOX (sbox)
operations as the two intermediate values for the specific t-test.

The hardware description implementing the four identified
power models has been finally added to the computing plat-
forms. In particular, Vivado 2018.2 has been employed to
implement the final SoC and hardware accelerator augmented
with the corresponding power monitors targeting an oper-
ating frequency fixed at 50MHz. The functional validation
has been carried out by prototyping the four designs on
the Digilent Nexys4-DDR board featuring a Xilinx Artix7
XC7A100TCSG324-1 FPGA. It is worth noticing that the
operating frequency of the power monitor exceeds 100MHz,
but we constrained the operating frequency to the one used
for the System-on-Chip that shows the longest critical path.

Quality metrics: accuracy, area and power overheads -
To assess the accuracy of the proposed power monitors, we
employed the Root Mean Square Error (RMSE) quality metric.
The RMSE considers the square of the distance (ei2) between
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(a) SoC accuracy loss (%) (b) SoC area overhead (%) (c) SoC power overhead (%)

Fig. 6: System-on-Chip executing software cryptosystems - Accuracy loss, area and power overheads for the unprotected and
the protected power monitors implemented in the reference System-on-Chip. Area and power overheads are reported with
respect to the reference SoC, while the accuracy loss measures the percentage error between the power estimates and the
measured power consumption. The X axis is the temporal resolution T .

(a) AES hardware accuracy loss (%) (b) AES hardware area overhead (%) (c) AES hardware power overhead (%)

Fig. 7: AES hardware accelerator - Accuracy loss, area and power overheads for the unprotected and the protected power
monitors implemented in the AES hardware accelerator. Area and power overheads are reported with respect to the reference
hardware accelerator, while the accuracy loss measures the percentage error between the power estimates and the measured
power consumption. The X axis is the temporal resolution T .

the estimated power sample (p̂i) and the corresponding sample
of the power consumption trace (pi), for all the n samples (see
Eq. (3)).

RMSE =

√√√√Σni=1

(
pi − p̂i

)2
n

=

√√√√Σni=1

(
ei

)2
n

(3)

We note that the i-th power consumption sample (pi) can be
defined as the corresponding power estimate (p̂i) plus the error
(ei) (see Equation (4)). Assuming a Gaussian distribution with
zero mean for the error (ei), the RMSE represents the standard
deviation (σ) over the power estimates, i.e., the prediction error
of our power monitor.

pi = p̂i + ei (4)

To this end, we measure the final accuracy error of our power
monitor by means of the normalized RMSE (RMSEnorm)
which relates the RMSE value to the average E of the actual
power consumption (see Equation (5)).

RMSEnorm =
RMSE

E(p)
× 100 (5)

Similarly to state-of-the-art power monitoring solutions [12],
[13], we assessed the accuracy of the proposed power monitors
considering a set of temporal resolutions ranging from 100 us
to 500 us for the two considered computing platforms. The
temporal resolution measures the time distance between two

consecutive power estimates. In general, a higher temporal
resolution, e.g., 100us, allows to better track small and rapid
variations in the power consumption, while a lower one shows
a lower accuracy error due to the intrinsic averaging of the
power consumption that becomes easier to be tracked. To
assess the power and area overheads, we report the additional
resources and power consumption due to the protected and
unprotected power monitors with respect to the baseline com-
puting platform.

Side-channel vulnerability assessment metrics - To char-
acterize the security of the proposed solution on each com-
puting platform, we leveraged both the correlation power
analysis (CPA) and the non-specific statistical t-test performed
on the power samples collected from both the unprotected
and the protected power monitor implementations. The CPA
analysis allows to verify the possibility of exploiting the side-
channel information leakage in the collected trace measure-
ments, while the statistical t-test detects the presence of side-
channel information leakage, if any. Considering the CPA
methodology, we targeted the first exclusive-OR between the
plaintext and the secret key (CPA-ark) and the first access
to the SBOX (CPA-sbox) operations as the two intermediate
values. We note that the use of both the CPA and the t-test
tool-kits are at the core of the most recently standardized pro-
cedures to assess the side-channel vulnerability of a computing
platform [16].
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(a) System-on-Chip (b) AES hardware accelerator

Fig. 8: Cumulative percentage of unique and secure
signals of the considered computing platforms, i.e., SoC and
AES-HW, available to identify the power model. Results are
normalized to the total number of signals and are clustered in
classes of correlation with the power consumption considering
a ρ coefficient ranging from 0.35 to 0.05.

B. Accuracy loss, area and power overheads

Figure 6 and Figure 7 reports the accuracy
loss (RMSEnorm) as well as the area and power overheads
for the general-purpose and the application-specific computing
platforms, respectively. For each computing platform, results
are reported for the unprotected and for the protected power
monitors, across the full range of the considered temporal
resolutions.
Accuracy - To ensure an accuracy aligned to the state-of-
the-art proposals [12], [13], we constrained the identification
of the power models, i.e., unprotected and protected, of each
computing platform to an RMSEnorm lower than 2.7%.
For each combination of computing platform and protected
or unprotected power model, we implemented five power
monitors, i.e., one for each temporal resolution between 100us
and 500us. The accuracy loss for the protected (unprotected)
power monitor of the general-purpose computing platform
ranges from 2.3% (2.4%) at 100us, down to 0.87% (1.2%) at
500us (see Figure 6a). Similarity, the accuracy loss of the pro-
tected (unprotected) power monitor of the application-specific
accelerator ranges from 1.5% (2.7%) at 100us, down to 0.51%
(0.89%) at 500us (see Figure 7a). As expected, the accuracy
error for both the computing platforms decreases with the
temporal resolution since the measured power consumption
signal becomes more and more regular, thus allowing the
power monitor to better track it. We note that the accuracy
errors of the two power monitors of the general-purpose com-
puting platform are almost identical across different temporal
resolutions and they are also aligned with the accuracy of
the state-of-the-art proposals [12], [13] (see Figure 6a). In
particular, the limited accuracy loss across a set of different
power monitors obtained by means of different identification
techniques, i.e., ours and the unprotected ones, highlights
the existence of multiple accuracy-equivalent power models,
where each of them makes use of a different sub-set of signals
to deliver the power estimate.

As a further investigation on this insight, Figure 8a and
Figure 8b report the cumulative percentage of non-vulnerable
signals for the general-purpose and the application-specific
computing platforms, respectively. Such signals represent the
ones that can be used to identify and implement the side-

channel resistant power monitors, over the entire set of avail-
able signals of the targeted computing platform. Signals are
organized in classes of correlation with the power consumption
considering a ρ ranging from 0.35 (maximum correlation) to
0.05 (minimum correlation). For each class of correlation,
we reported the cumulative percentage of unique signals
and secure signals. The unique signals class con-
tains the signals for which no other signal in the design
shows a cross-correlation higher than 95%, i.e., signals with
different names that show “identical” switching activities. An
effective power monitor will use only unique signals
for model identification and implementation. The secure
signals are unique non-vulnerable signals, i.e., those signals
that allows to identify a side-channel resistant power model.

Considering the general purpose computing platforms, the
cumulative percentage of unique signals is 60%, thus
demonstrating that 40% of the signals in the computing
platform are not unique signals but, in contrast, their switching
activity is identical to the one of other signals with a different
name (see Figure 8a). Moreover, the side-channel vulnerability
analysis highlights a 10% of vulnerable signals, thus lowering
the cumulative percentage of secure signals to 50%. We
note that the vulnerable signals, i.e., the ones leading to a side-
channel information leakage, have been uniformly identified
across the classes of correlation. Thus, the side-channel re-
sistant power monitor can still be implemented by means of
non-vulnerable signals with high correlation with the power
consumption to deliver low accuracy errors. However, the non-
negligible percentage of non-secure signals motivates the use
of a systematic side-channel resistant identification approach
to avoid the implementation of vulnerable power monitors.
Similarly, the cumulative percentage of unique signals
for the application-specific computing platform is 62%, while
the cumulative percentage of secure signals is 48% (see
Figure 8b). As for the general purpose computing platform,
the leaking signals of the application-specific accelerator are
uniformly distributed across all the correlation classes.

To summarize, our strategy can be described as a way to
design a power monitor that employs a subset of signals for
which the corresponding switching activity is non a function of
the secret key and the plaintext, still allowing to achieve state-
of-the-art accuracy errors in the power estimates. Such claim
is supported by two facts. First, our unprotected and protected
power monitors achieve almost the same accuracy for the
two considered computing platforms. Second, the accuracy
reported by our results for the protected power monitors
is aligned with the one of the state-of-the-art proposals for
which different identification techniques have been employed
to derive the power model of the computing platforms [12],
[13].

We note that our solution allows to avoid using certain
signals without the need to know their actual meaning in the
design, since the procedure is automatically executed. This
feature is a crucial advantage since, in general, the name of a
signal in a post-P&R netlist does not allow to guess its usage.
Area and power overheads - Considering different temporal
resolutions ranging from 100us to 500us, Figure 6 and Fig-
ure 7 report the area and the power overheads for the power
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Fig. 9: AES-128 (software) - Pearson’s correlation coefficient results considering the execution of the software implementation
of the AES-128 cryptosystem executing on the target System-on-Chip (aesSW). Results are reported for the CPA-ark and
CPA-sbox attacks executed on the unprotected and the protected power monitor implementations. Each line depicts the
evolution of the sample correlation coefficient for a key hypothesis (the correct one is highlighted in black).
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(c) clfSW-CPA-ark protect
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Fig. 10: Clefia-128 (software) - Pearson’s correlation coefficient results considering the execution of the software implementation
of the CLEFIA-128 cryptosystem executing on the target System-on-Chip (clfSW). Results are reported for the CPA-ark
and CPA-sbox attacks executed on the unprotected and the protected power monitor implementations. Each line depicts the
evolution of the sample correlation coefficient for a key hypothesis (the correct one is highlighted in black).
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Fig. 11: AES-128 (hardware) - Pearson’s correlation coefficient results considering the execution of the hardware implementation
of the AES-128 cryptosystem (aesHW). Results are reported for the CPA-ark and CPA-sbox attacks executed on the
unprotected and the protected power monitor implementations. Each line depicts the evolution of the sample correlation
coefficient for a key hypothesis (the correct one is highlighted in black).
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Fig. 12: Seed-128 (software) - Pearson’s correlation coefficient results considering the execution of the software implementation
of the Seed cryptosystem executing on the target System-on-Chip (seedSW). Results are reported for the CPA-ark and
CPA-sbox attacks executed on the unprotected and the protected power monitor implementations. Each line depicts the
evolution of the sample correlation coefficient for a key hypothesis (the correct one is highlighted in black).

monitors of the general-purpose and of the application-specific
computing platforms, respectively. For each combination of
power monitor, i.e., protected and unprotected, and
computing platform, the area overhead is showed in terms
of flip-flops (FFs) and Look-Up-Tables (LUTs). Considering
the general-purpose SoC, the power overhead is lower than
5% (4% at the minimum) regardless the temporal resolution

and the selected power monitor, i.e., unprotected or pro-
tected (see Figure 6c). At lower temporal resolutions, i.e.,
500us, the power increase is due to the additional logic
required to store and to compute the switching activity for
a longer time period. We note that the difference in the power
consumption between the protected and the unprotected power
monitors falls into an acceptable deviation range due to the
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Fig. 13: Camellia-128 (software) - Pearson’s correlation coefficient results considering the execution of the software
implementation of the Camellia cryptosystem executing on the target System-on-Chip (cmllSW). Results are reported for
the CPA-ark attack executed on the unprotected and the protected power monitor implementations. Each line depicts the
evolution of the sample correlation coefficient for a key hypothesis (the correct one is highlighted in black).
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Fig. 14: Cast-128 (software) - Pearson’s correlation coefficient results considering the execution of the software implementation
of the Cast cryptosystem executing on the target System-on-Chip (castSW). Results are reported for the CPA-ark attack
executed on the unprotected and the protected power monitor implementations. Each line depicts the evolution of the sample
correlation coefficient for a key hypothesis (the correct one is highlighted in black).

heuristic nature of the identification algorithms. The area over-
heads are limited to 6% (7%) for the protected (unprotected)
power monitors (see Figure 6c). As for the power overhead,
the increase in the area overhead at lower temporal resolutions
is due to the additional logic required to store and to compute
the switching activity for a longer time period. We note
that the protected (unprotected) power monitors implemented
for the application-specific computing platform show an area
overhead limited to 6% (7%) (see Figure 7b) and a power
overhead limited to 5% (5.5%) (see Figure 7c). The overhead
results for the application-specific power monitors share a
similar trend with the ones used in the general-purpose SoC.

C. Security assessment

This section discusses the side-channel vulnerability of the
power monitors implemented according to the proposed side-
channel aware design methodology considering the general-
purpose and the application-specific computing platforms.
Compared to the measured power traces probed using a
generic setup for emission-based side-channel attacks, the
power estimate traces are almost noise-free. In fact, they are
analytically computed in the power monitor starting from the
values of the collected statistics and, thus, their values are
not affected by the measurements and physical uncertainty.
In other words, the security assessment is very conservative,
since the attackers can gain access to high quality and noise-
free power measurements.
Correlation power analysis (CPA) evaluation - Con-
sidering the unprotected and the protected power monitor
implementations, this part discusses the experimental results
of the correlation power attack against the general-purpose
SoC executing AES-128 (Figure 9), CLEFIA-128 (Figure 10),

Seed-128 (Figure 12), Camellia-128 (Figure 13), and Cast-
128 (Figure 14). Moreover, the experimental results of the
correlation power attack against the application-specific com-
puting platform implementing the AES-128 cryptographic
primitive are shown in Figure 11.

We employed the Pearson’s linear correlation coefficient as
the statistical tool of choice to extract the correct cryptographic
key hypothesis: each line in the figures depicts the evolution
of the sampled correlation coefficient for a key hypothesis (the
correct one is highlighted in black), over the number of power
traces considered.

For each power monitor, the CPA attack has been performed
by considering the two power consumption models described
in Section IV-A, i.e., CPA-ark and CPA-sbox. To provide a
fair and conservative security assessment, for the unprotected
power monitors the reported results correspond to the byte for
which the Pearson’s correlation coefficient with the correct
key is smaller, i.e., the key retrieval is more challenging (see
Figure 9a - 9b, Figure 10a - 10b, Figure 12a - 12b, Figure 13a -
13b, Figure 14a - 14b, and Figure 11a - 11b ). In contrast, for
the protected power monitors, the reported results correspond
to the byte for which the Pearson’s correlation coefficient with
the correct key is higher (see Figure 9c - 9d, Figure 10c - 10d,
Figure 12c - 12d, Figure 13c - 13d, Figure 14c - 14d, and
Figure 11c - 11d ).

Regardless the attack power model, the target computing
platform and the executed cryptosystem, the attack against
the unprotected power monitor demonstrates the possibility of
retrieving the secret key with less than few hundred of power
traces. In particular and according to the open literature, the
CPA-sbox attack provides an higher Pearson’s correlation
coefficient value with the correct key hypothesis than the
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Fig. 15: Results of the non-specific statistical t-test test using the fixed-vs-random configuration for the unprotected and the
protected power monitor implementations. Results are collected for the power monitors integrated into the general-purpose SoC
executing AES-128 (Figure 15a and Figure 15b) and the power monitor implementation integrated into the AES-128 hardware
accelerator (Figure 15c and Figure 15d). Note that the t-test results for Clefia executing on the general purpose SoC are not
reported since their are almost identical to the ones collected for the software version of the AES.

CPA-ark one, thus allowing to retrieve the correct key with
less than hundred power estimate traces. For example, the
CPA-ark attack can successfully breach into the software
version of the AES algorithm using 500 hundred power traces,
at least (see Figure 9a), while the CPA-sbox requires less
than 200 traces to successfully attack the same target (see
Figure 9b).

In contrast, both CPA-ark and CPA-sbox attacks fail to
retrieve the correct key from the protected power monitors
employing up to 10 million of traces regardless the target
platform and executed cryptographic primitive. For both the
attacks, the Pearson’s correlation coefficient values for almost
all the key hypothesis falls below 0.005 after a few thousands
of traces. We recall one more time that the design of the secure
power monitor exploits only the switching activity of signals
for which the switching activity is not a function of the secret
key and the plaintext as ensured by both the specific and non-
specific statistical t-test tests.

Non-specific t-test evaluation - As a further and stronger
validation of the effectiveness of our secure power modeling
and design methodology, we employ the non-specific statistical
t-test test using the fixed-versus-random configuration (see
Section II). The test employs a Student’s t-test test considering
two sets of power estimate traces extracted from two random
variables with possibly different variances (also known as
Welch’s t-test). The test looks for a statistically significant
in the difference between a set of power estimate traces
collected from the execution of our testbed with a fixed
plaintext in input and another set of power estimate traces
collected from the execution of our testbed using a randomly
varying set of plaintexts. Considering the positive security
results highlighted with the CPA assessment, if the statistical
test leads to accept the hypothesis that the mean values are
the same (null hypothesis), we assume that the device is side-
channel resistant against any non-profiled first-order attack, as
changing the input does not induce differences in the behavior.
According to [17], a t-statistic within the −4.5 < t < 4.5
interval allows to claim that the implementation is protected
with a confidence > 99.95%.

Figure 15 reports the results of the t-statistics from the
non-specific statistical t-test executed for each collected power
estimate sample -in these plots for example every 2us- pro-
duced by the unprotected (Figure 15a, Figure 15c) and the

protected (Figure 15b, Figure 15d) power monitors. In partic-
ular, the t-test on the unprotected (protected) power monitors
makes use of two populations of 5 × 104 (106) traces each.
We note that the t-statistic, severely overflows the band range
for the unprotected power monitors targeting the general-
purpose SoC (see Figure 15a) and the application-specific
accelerator (see Figure 15c). In contrast, the obtained values of
the t-statistic for the protected power monitor of the general-
purpose SoC (see Figure 15b) and the application-specific
accelerator (see Figure 15d) lies in the security value range
for the entire duration of the cryptosystem execution, thus
carrying to the acceptance of the null hypothesis. We note that
the t-test analysis allows to certify the absence of vulnerability
for our protected power monitors, since it highlights that the
power estimates of such monitors do not correlate with any
computed data (including the secret key). In other words, it is
impossible to setup a successful CPA regardless the employed
side-channel power model.

V. CONCLUSIONS

Power monitors are widely employed to deliver online
power estimates to support run-time power-performance op-
timization policies. However, the possibility of setting up
a successful side-channel attack by analyzing such power
estimates imposes the use of a secure methodology to design
the power monitor. The manuscript presented a design method-
ology to implement accurate side-channel resistant power
monitors, at hardware level, for generic computing platforms.
The methodology works by designing a power monitor for
which the switching activity of the signals used to compute
the power estimate is not a function of the secret key and
the plaintext, i.e., only non-vulnerable signals are used. By
following the most recent standardized side-channel vulnera-
bility assessment procedures [16], our experimental validation
leveraged both CPA and t-test analysis. In particular, we dis-
cussed the side-channel vulnerability of different protected and
unprotected power monitors tailored to both a general purpose
SoC executing different standard cryptographic primitives and
an application-specific accelerator implementing the AES-128
cryptosystem. The obtained results confirm the impossibility of
retrieving the secret key from the power estimates of our side-
channel resistant power monitor, as well as the vulnerability of
the unprotected one. In addition, considering several temporal
resolutions, we observed an accuracy error limited to less than
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2.7%, as well as an average area and power overheads for the
protected power monitors lower than 6% and 5%, respectively.
In summary, the proposed methodology is able to deliver a
side-channel resistant power monitor within state-of-the-art
accuracy and overheads.
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