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Abstract—We propose a network-on-chip (NoC)-based whole
system design, whose communication architecture is compatible
with the advanced microcontroller bus architecture advanced
extensible interface 4 (AXI4) protocol and supports high-
performance multiple quality-of-service (QoS) schemes. In our
system, the network interface (NI) between the NoC and the
master/slave node is proposed to make the NoC architecture
independent from the AXI4 protocol via message format con-
version between the AXI4 signal format and the packet format,
offering high flexibility to the NoC design. Besides, a QoS inher-
itance mechanism is applied in the slave-side NI to support QoS
during packets’ round-trip transfer in the NoC. The NoC system
contains time-division multiplexing (TDM) and virtual channel
(VC) subnetworks to apply multiple QoS schemes to AXI4 signals
with different QoS tags, and the NI is responsible for signals dis-
tribution between two subnetworks. Besides, a traffic converter
is proposed in each NI to balance the traffic between the two
subnetworks when necessary. The experimental results show that
our proposed architecture ensures a high-throughput and low-
latency NoC system. By applying the traffic converter, the packet
latency can be improved.

Index Terms—Advanced extensible interface 4 (AXI4), com-
puter architecture, network-on-chip (NoC), quality of service
(QoS), system-on-chip (SoC).

I. INTRODUCTION

ADVANCED extensible interface 4 (AXI4) is the fourth
generation of the advanced microcontroller bus architec-

ture (AMBA) interface specification from ARM, which sup-
ports high-performance, high-frequency system designs [1].
It uses five individual channels for communication between
master and slave interfaces and includes specific signals
for quality-of-service (QoS) schemes. It was initially a bus-
oriented protocol. But with the development of semiconductor
technology, the number of cores increases, requiring a more
efficient interconnect architecture for high-throughput com-
munication. In this context, network on chip (NoC) provides
a potential alternative, which can support multiple QoS and
enhance the communication among multiple cores [2]–[4].
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However, supporting the AXI4 protocol and its required
multiple QoS schemes in the NoC-based architecture is still
a challenge. There are some prior system architectures sup-
porting AXI4, such as [5]–[8]. But none of them show
the details in the network interface (NI) between the NoC
and the master/slave node, which should have included the
description of the NI architecture and the message format con-
version between the AXI4 signal format in the master/slave
node and the packet format in the NoC. Besides, their NoC
architectures do not consider the support of QoS scheme,
which could be required by the AXI4 signal. In terms of
QoS provisioning, related works, such as [9]–[12], only sup-
port one or two QoS schemes, which are not enough for
the multiple requirements of different processors or devices.
For example, CPU is latency critical, GPU requires guaran-
teed bandwidth, and the SATA device only needs best-effort
transfer.

In this article, we propose an AXI-based NoC architecture
to provide three different QoS schemes. In summary, our work
has the following contributions.

1) We design a message format conversion process between
the AXI4 signal format and the packet format in the
NI, making the NoC design independent from the AXI4
protocol.

2) We define three different QoS services and design a
NoC-based communication architecture with two sub-
networks to efficiently support them. The subnetwork
switch and QoS inheritance mechanism are applied for
the implementation.

3) We propose a traffic converter unit in each NI
to smartly distribute packets from one subnetwork
with heavy traffic congestion to the other subnet-
work with less traffic congestion, improving the NoC
performance.

4) We propose three different flow control mechanisms in
the VC subnetwork and we compare their performance
results in packet latency in the experimental part.

5) We build up a cycle-accurate simulator to simulate
the behavior of our proposed system. We show the
performance evaluation results in terms of system
throughput and packets’ transfer latency and queuing
delay.

6) In the simulator, we propose a two-level Markov mod-
ulated process (MMP)-based traffic generator for bet-
ter simulation of realistic process/thread in a node.
The traffic generation results are reported in our
experiments.
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II. RELATED WORK

A. AXI4-Based Communication Support

In order to support AXI4 in communication architectures,
in [5], Kwon et al. utilized an in-network reorder buffer to
satisfy the in-order packet delivery requirement and move
the reorder buffer resource and related functions from NI to
network routers to increase the utilization of reorder buffer
resource. Yang et al. [6] proposed an AXI-compliant on-chip
NI architecture to offer the transaction reordering process-
ing. Ebrahimi et al. [13] proposed a hybrid NI architecture
with reorder buffer sharing in both the memory side and the
processor side for NoCs. Neishaburi and Zilic [14] proposed
a debug-aware NI, which is compatible with the AXI stan-
dard. There are other works focusing on the NI design
between the interconnect and AXI-based master cores to sup-
port protocol conversion. Ramirez et al. [7], Tidala [15], and
Nguyen et al. [16] took the NoC interconnect into considera-
tion to design an AXI-based system in FPGA. In these related
works, they show the design results of the NoC-AXI interface
and the performance of the whole system. Radulescu et al. [8]
proposed an on-chip NI offering backward compatibility with
existing bus protocols, such as AXI, etc. Liao et al. [17] imple-
mented the AXI protocol on the 3-D system on chips (SoCs)
to allow high-performance communication and scalability of
design.

In this aspect, most works focus on satisfying the trans-
actions’ ordering requirements of AXI4, but they did not
consider the signal format conversion between the AXI4 pro-
tocol and the NoC protocol. This should be the most important
part to adapt the AXI4 protocol in a NoC-based communica-
tion architecture. Besides, they did not mention the support
of different QoS schemes in NoC, which could be required
in many application scenarios, for example, the baseband
processing in the 5G station [18], [19].

B. QoS Provisioning in NoCs

From the perspective of QoS in communication architec-
tures, most research works focus on the support of only one
or two QoS schemes in the interconnect architecture design.
Sharifi et al. [10] offered a higher priority to packets that will
access idle memory banks and at the same time, give higher
priority to response packets with high latency. Chen et al. [9]
focused on the DRAM access packets. It models the round-
trip latency prediction, based on which different priorities
are offered to packets in the DRAM access process. By
the priority scheme, service could be offered to the latency-
critical packets, which will influence the system performance
on a large scale. Liu et al. [11] proposed a highway-based
time-division multiplexing (TDM) NoC. It builds a highway
with special buffer queues to ideally enhance the through-
put and reduce data transfer delay. Goossens et al. [12],
Goossens and Hansson [20] added buffering function into the
TDM network. By combining guaranteed and best-effort
services together, the network can support two QoS schemes
at the same time. These works discuss QoS support in a
more general scenario. However, in this article, we design
QoS schemes in a more dedicated scenario, where the AXI4

protocol, including its ordering rules, various message chan-
nels, etc., is supported.

C. Flow Control in NoCs

The flow control in NoCs determines the resource allocation
principle, which influences the network performance. Such
flow control is usually executed in the router. Besides, the
admission control is a kind of end-point flow control, which
is executed in the NI before packets are injected into the NoC.

From the perspective of the router-based flow control,
Ma et al. [21] proposed a flow control design based on
fully adaptive routing algorithms. A nonempty VC can be
reallocated if the VC has enough free buffers for an entire
packet in the whole packet forwarding mechanism. Since the
buffers in NoCs are more precious than in off-chip networks
due to the tight area and power budgets, this mechanism
ensures that a reserved but nonempty VC can be reallocated
to another packet. Pérez et al. [22] also proposed a mecha-
nism that allows to bypass flits even if the buffers to bypass
are not empty. It can be applied to wormhole and virtual
cut through to reduce packet latency and power consumption.
Evain and Diguet [23] proposed a prereservation mechanism.
It is realized by path coding in the NI and applied to mutual
exclusive communication processes.

From the perspective of admission control, in [24], Lu et al.
proposed (σ , ρ)-based flow regulation as a design instrument
for SoC architects to control QoS and achieve cost-effective
communication, which may exert significant positive impact
on communication performance and buffer requirements. It
also shows that the regulation spectrum can be exploited
to decrease latency and backlog bounds. Jafari et al. [25]
proposed a flow control regulation, which is performed per
flow for its peak rate and burstiness. In this article, the reg-
ulation problem is formulated with buffer optimization as
objectives and it comes to the conclusion that optimal flow
regulation can be a highly valuable instrument for buffer
optimization in NoC designs. Lu and Yao [26] used a fuzzy-
algorithm-based control method to regulate the injection rate
in each NI. By applying dynamic fuzzy control, the system
injection rate can be regulated to a smoother level, which
makes more efficient use of the system interconnect, achiev-
ing significant reduction in packet delay and improvement in
system throughput. Wang et al. [27] proposed an artificial
neural network (ANN)-based admission control for the on-
chip network. It utilizes centralized ANN admission controller,
which can improve system performance by predicting the
most appropriate injection rate of each node via the network
performance information.

D. TDM Routing Algorithm

For the TDM-based NoC, the routing algorithm is a very
important consideration during the network design. Lu and
Jantsch [28] utilized a two-step approach for routing in the
TDM-based virtual circuit network: 1) path selection and
2) slot allocation. During the path selection step, they use
a backtracking algorithm to explore the path diversity, and
during the slot allocation step, path-overlapped VCs must
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be configured such that no conflict occurs and their band-
width requirements are satisfied. Patil et al. [29] utilized a
multiiteration routing algorithm to combine path and time
slot selection in a single pass. Instead of the dimension-
ordered routing, their approach takes any available shortest
path from the source to the destination and uses multiple
rip-up and reroute passes to eliminate the effects of network
ordering. Kapre et al. [30] used two different routing algo-
rithms: 1) greedy and 2) Pathfinder [31]. The greedy router
simply allocates paths for messages on the shortest available
path in space and earliest possible slot in time, avoiding con-
gested resources, and the Pathfinder router allows routes to
be allocated on congested resources and attempts to negotiate
congestion through rerouting. Shpiner et al. [32] introduced
a latency-based scheduling algorithm, which runs offline to
build up the routing path. To minimize conflicts, the algo-
rithm first schedules the packets with the longest latencies.
Stefan et al. [33] used a distributed routing mechanism. Each
router contains a slot table to store the TDM schedule and
incoming packets are “blindly” routed based on this schedule.
Winter and Fettweis [34] presented and evaluated different
realizations of a central hardware unit, which allocates at
runtime guaranteed service VCs providing QoS in packet-
switched NoCs, which turns out to be very suitable for the
runtime task scheduling programming model. Liu et al. [35]
proposed a probe-based distributed solution for dynamic path
searching. It can allocate paths and time slots at runtime and
at the same time, be fast with predictable and bounded setup
latency by a parallel probing setup method.

E. Router Microarchitecture Design

The NoC microarchitecture plays a central role in the
performance of an on-chip network, especially for a buffered
router, which usually focuses on the pipeline design or
the buffer organization design in a router to reduce the
packet transfer latency or throughput. Ramanujam et al. [36]
proposed a new router design that aims to emulate an
output-buffer router (OBR) practically, based on a distributed
shared-buffer (DSB) router architecture. This technique has
been successfully used in high-performance Internet packet
routers [37], [38]. A DSB router uses two crossbar stages with
buffering sandwiched in between, which are referred to as mid-
dle memories. The incoming packets will be assigned to one
of the middle memory buffers with two constraints: 1) pack-
ets that are arriving at the same time must be assigned to
different middle memories and 2) an incoming packet can-
not be assigned to a middle memory that already holds a
packet with the same departure time, which is tagged into
each packet when they first arrive at the router. Lu et al. [39]
proposed a low-latency wormhole router for packet-switched
NoC designs. It achieves a low packet propagation latency
of only two cycles per hop, including both router pipeline
delay and link traversal delay, which is a significant enhance-
ment over existing FPGA designs. Xin and Choy [40] used
dynamic look-ahead bypass to reduce packet latency in NoC.
In the proposed router, special look-ahead controlling pipeline
is applied to speed up allocation computation so that the input

buffers’ bypassing rate increases. The look-ahead pipeline
and bypasses can not only reduce network latency but also
save the energy due to writing and reading buffers. Besides,
Wang et al. [41] proposed a high-performance and low-cost
router design based on a generic two-stage router. To real-
ize high reliability, five fault-tolerant strategies are employed
in the reliable router. Li et al. [42] found a way for both
low latency and power efficiency by relaxing the constraint
of lossless communication. In this context, they propose the
Runahead NoC, a lightweight network that provides single-
cycle hops.

The flow control, TDM router, and router microarchitecture
design are three aspects we have considered during our NoC
design. In this article, they are only related to the NoC-part
design, and based on this, we elaborate the discussion of the
NoC design in Section IV-D, where different QoS schemes are
also provided.

F. Industrial Designs for AXI4-Based QoS

From the perspective of industrial designs, in [43], Xilinx
provides QoS schemes in the AXI-based Zynq-7000 AP SoC
devices. The basic QoS mechanism is a per-transaction pri-
ority based on the AXI QoS signals, which can be used by
configuring the priorities. The advanced QoS mechanism can
additionally provide capability to control peak rate, burstiness,
and so forth. In [44], Synopsys improves QoS for AMBA-
interconnect-based DesignWare IP via the combination of the
QoS regulator and the QoS arbiter. The QoS regulator is
applied to limit the traffic if the incoming traffic is more
than the desired rate and the QoS arbiter can be configured
to ensure that high-priority requests are serviced first to meet
the latency requirements. It can finally provide QoS schemes
to bandwidth-sensitive master (GPU), latency-sensitive master
(CPU), and best-effort master (USB/SATA). Qsys interconnect
is a high-bandwidth structure proposed by Intel (Altera) for
connecting components. It allows to connect IP cores with
various interfaces such as AMBA AXI series [45]. It uti-
lizes different QoS components, such as the end-to-end flow
controller, arbiter, bandwidth regulator, etc., to realize QoS
schemes. In the 5G area, Kazaz et al. [18] proposed a 5G
wireless infrastructure architecture where the NoC is applied
to supported the communication among IP cores that follow
AXI4 standards. Liß et al. [19] introduced and discussed the
architecture of a novel networking device that provides low-
latency switching and routing, where the AXI4 IP cores are
integrated. It can be applied to 5G access networks, industrial
networks, etc.

However, these solutions separately focus on a specific
architecture in an industrial area, not providing detailed
information of system architectures, the discussion and com-
parison among different optional solutions.

G. Compared With Our Previous Work

This article is an extension of our previous 6-page con-
ference publication [46]. In the conference publication, we
focus on the basic system design, which includes a novel
NI, the definition of different QoS services, and the system
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Fig. 1. Channel architecture of reads and writes.

simulator as listed in the contribution points 1), 3), and 5)
in Section I. Compared with the conference publication, this
article additionally includes a novel traffic conversion mech-
anism proposed for traffic balance, a detailed explanation for
the establishment of VC (multiple flow control schemes) and
TDM (static routing algorithm) subnetworks, and traffic gen-
erator controlled by a two-level MMP, which are listed in
contribution points 2), 4), and 6) in Section I. Besides, a
more comprehensive discussion of related work and many
new experimental results related to the new mechanisms are
involved. Based on the basic system design shown in the con-
ference publication, the new contributions in this article can
furthermore improve the NoC performance in terms of packet
latency and throughput under an improved synthetic traffic
generator, which behaves more closely to real-world traffic
generation scenarios from multithread applications.

III. BACKGROUND AND MOTIVATION

A. AXI4 Channels

AXI4 is a burst-based protocol, which supports high-
performance, high-frequency system design. As shown in
Fig. 1, the read transaction defines two independent transaction
channels, which are the read address channel and the read data
channel. For the write transaction, it defines three independent
transaction channels, which are separately the write address
channel, write data channel, and write response channel. All
AXI4 signals will be transferred through these five channels.
For signals in the read or write address channel, they include a
4-bit QoS tag to identify the corresponding transaction service
they require to utilize.

B. QoS Support in AXI4-Compatible NoC

From the perspective of message format, the AXI4 signals
format is quite different from the packet format in the NoC
system. For example, in the virtual-channel (VC)-based worm-
hole network, messages will be transferred as VC packets,
which will be further divided into flits, and in the TDM-based
virtual circuit network, messages will be transferred as the
TDM packet, which will be further divided into frames. The
mismatch between AXI4 signals and NoC packets requires
a message format conversion process in the NI between the
AXI4-based master/slave node and the packet-based VC/TDM
NoC system. When designing the NoC architecture, we should

consider a reasonable method to convert the AXI4 message
into packet format and allocate the NoC resources accordingly.

Besides, from the perspective of QoS, AXI4 signals may
have multiple QoS requirements, such as the guaranteed
bandwidth requirement, priority requirement, and best-effort
requirement. However, the existing NoC architectures can only
support up to two QoS schemes. So a new NoC architecture
is needed to support multiple QoS requirements as well as
high-performance computing.

C. AXI4 Ordering Requirements and QoS

The AXI4 protocol restricts messages’ delivery sequence
to master and slave nodes. Due to the possible out-of-order
delivery in NoC-based communication, master-side and slave-
side AXI4 ordering units are required. For the master-side
and slave-side AXI4 ordering units, we have already discussed
them in [47], detailing the problems of previous solutions and
architectures of our proposed ordering units. On the one hand,
compared with the previous solutions, our proposed mecha-
nism can avoid the deadlock, and at the same time, provide
higher performance. On the other hand, the ordering units in
NIs are responsible for maintaining the ordering restriction.
Thus, the designs of the router, the switch to subnetworks,
and the traffic converter do not need to consider the ordering
issue.

As we do not need to consider AXI4 ordering requirements
anymore when designing the whole system that supports QoS
schemes, we will mainly focus on the message format conver-
sion, the QoS services, and the traffic converter design in the
NI in Section IV.

IV. SYSTEM DESIGN

A. QoS Definition and Overall Architecture

We define three different QoS schemes as follows.
1) Latency Critical Service (LCS): It is a fast-forwarding

service for burst but nonstreaming message transmis-
sion. It provides low-latency delivery service but does
not guarantee delivery bandwidth for, e.g., CPU-like
masters.

2) Guaranteed Rate Service (GRS): It is a streaming service
that provides guaranteed bandwidth for large-volume
flows, which request bandwidth but can tolerate latency
(e.g., GPU-like masters).

3) Unspecified Rate Service (URS): It is a best-effort ser-
vice for the delivery of certain fairness (fair treatment)
to traffic. It delivers messages as soon as possible and
as much as possible based on the current available
resources but provides neither low-latency service nor
bandwidth guarantee (e.g., SATA and USB interfaces).

Since the three QoS schemes listed above can satisfy most
devices’ requirements in real application scenarios, we focus
on the implementation design of LCS, GRS, and URS. For the
master/slave that requires multiple QoS services, their injected
messages will be handled separately in the NoC with LCS,
GRS, or URS scheme.

The overall system architecture is shown in Fig. 2, which
can support three different QoS schemes in the AXI4-based
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Fig. 2. Layout of the whole system architecture.

communication architecture. The whole system can be divided
into three parts: 1) master/slave nodes; 2) NIs; and 3) the NoC.

The master/slave node utilizes the AXI4 protocol to com-
municate with the NI. For the NI, which will be detailed in
Section IV-B, it realizes the protocol conversion between the
AXI4 signal in the node and the packet in the master/slave
NoC. The specific target format of packet in the NoC depends
on the QoS identifier in the AXI4 signal. The AXI4 signal with
QoS identifier LCS or URS will be packed as VC packet,
transferring in the VC subnetwork. The AXI4 signals with
QoS identifier GRS will be packed as TDM packet, trans-
ferring in the TDM subnetwork. This scheme makes NoC
design independent from the AXI4 protocol, which, regard-
less of the five-channel AXI4 architecture, offers possibility
of high-performance NoC design. Besides, since the AXI4
response signal does not include the QoS identifier, to sup-
port QoS for packets’ round-trip transfer, we apply a QoS
inheritance mechanism in the slave-side NI. In this mecha-
nism, the response packet inherits the QoS identifier from its
corresponding request packet.

For the NoC, we utilize two subnetworks, VC subnetwork
and TDM subnetwork, to support three QoS schemes as listed
above. The design of the NoC system is a co-consideration
of hardware utilization efficiency and realistic QoS communi-
cation requirements. The detailed description and discussion
will be given in Section IV-D.

B. Supporting Message Format Conversion in the NI

There are two options for message format conversion. The
first option is an intuitive way, where we can convert the AXI4
signal in each AXI4 channel into a packet format and uti-
lize five individual channels to transfer them in the NoC. In
this solution, the TDM and VC subnetworks both have five
independent channels separately connected to the five AXI4
channels. This scheme makes the NoC architecture adapt to
the AXI4 protocol, but has less flexibility for the NoC design.
Besides, the individual usage of the channel resources without
share permission will decrease the resource utilization, leading
to inferior NoC performance.

In another option, we can make the AXI4 protocol adapt
to the traditional NoC architecture. The primary idea of this

Fig. 3. Layout of the master-side NI architecture.

option is to make the NoC independent from the AXI4 proto-
col, so that we can design the NoC architecture individually
without the restrictions from the AXI4 protocol. In this solu-
tion, the AXI4 signals will be converted into read request
and response packets, and write request and response packets,
transferred by the shared NoC resources. This option offers
us the possibility of establishing a high-performance NoC
architecture. Besides, it can also make all kinds of communi-
cation architectures, such as bus, NoC, etc., compatible with
the AXI4 protocol. Thus, the second solution is favorable to
build up a high-performance NoC system.

Based on the second option, our proposed NI has three
functionalities. First, it receives signals from AXI4 channels
and NoC subnetworks, which will be then dispatched to the
corresponding AXI4 channels according to the AXI4 signal
type (read or write) or to the corresponding NoC subnetwork
according to the QoS identifier (LCS, URS, or GRS). Second,
it is responsible for message format conversion between the
AXI4 signal and NoC packet. Finally, the slave-side NI applies
QoS inheritance mechanism to the response packet so that the
QoS scheme can be applied to the packet’s round-trip transfer
in the NoC system.

The detailed architecture of the master-side NI is shown
in Fig. 3. AXI4 signals in five AXI4 channels are forwarded
to/from four AXI4 payload buffers through the AXI4 slave
interface in the master-side NI. The address and control signal
from the write address channel and write data signal(s) from
the write data channel will be integrated together as a complete
AXI4 payload stored in the write request buffer. The AXI4
signal in the write response or read address channel will be
recognized as a complete AXI4 payload, which is stored in
the write response or read request buffer, respectively. The
read payload in the read response buffer will be divided into
one or several read data signals according to the data length,
and then transferred via the read data channel. The switch to
NoC unit determines the output subnetwork of the read/write
request payload according to the QoS identifier. Afterward, the
corresponding routing information will be added to the AXI4
payload to support its transfer in the NoC. The switch from
NoC unit receives packets from the two subnetworks. After
removing packet routing information, it forwards the AXI4
payload to the corresponding read or write response buffer
according to the read or write type.

The routing information for the packet is packed to the
AXI4 payload during message format conversion process, as
shown in Fig. 4. In the GRS traffic, the routing information of
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Fig. 4. Message format conversion process.

Fig. 5. Layout of the slave-side NI architecture.

the TDM packet includes fields of destination (dest), source,
read/write (r/w) fields, and the valid length of the TDM packet.
The destination field is utilized to record the routing target
node in the TDM subnetwork and the source field is utilized
to record the source node where the packet comes from. The
read/write field is utilized by the switch from NoC unit in the
NI to distribute the AXI4 payload to the corresponding AXI4
payload buffer list. As for the valid length field, it records the
length of packet in frames, as a TDM packet is divided into
one or multiple frames to transmit. In the LCS/URS traffic, in
addition to the four fields given above, the routing information
of VC packet also includes the virtual network (vnet) fields.
The virtual network field indicates the virtual network the VC
packet will get through in the VC subnetwork, which is deter-
mined by the packet type (request or response). Besides, the
ordering identifiers (IDs) in both the TDM packet and the VC
packet include the relevant IDs utilized for the AXI4 transac-
tions’ ordering target, which are determined by the ordering
unit in the NI and from the AXI4 signal.

As shown in Fig. 5, the architecture of the slave-side NI
is almost the same as the master-side NI architecture except
that the slave-side NI utilizes the AXI4 master interface to
communicate with the slave node. Therefore, the write request
buffer and the read request buffer are connected to the switch
from NoC unit, and the write response buffer and the read
response buffer are connected to the switch to NoC unit.

Since the AXI4 payload of write response or read response
does not include the QoS identifier, to support QoS in the
round-trip communication, we propose a QoS inheritance
mechanism in the slave-side NI. By this mechanism, the
response packet inherits the QoS identifier in its correspond-
ing AXI4 request payload. The QoS inheritance unit is located
between the AXI4 payload buffer list and the slave order-
ing unit. As shown in Fig. 6, taking the read process as an
example, the read request payloads from the NoC are sent to
the slave in sequence. Their QoS identifiers (QoS IDs) will
be put into the read QoS inheritance queue unit, which is a
FIFO structure. According to the AXI4 protocol restrictions,

Fig. 6. QoS inheritance mechanism in the slave-side NI.

Fig. 7. Location of the traffic conversion unit.

Fig. 8. Traffic conversion unit.

the read responses will be sent out to the AXI4 slave interface
in the same sequence as the arrivals of their corresponding
read requests in the AXI4 slave interface. So a FIFO queue can
assure the correctness of the QoS identifier inheritance mech-
anism. When the read response payload goes to the switch to
NoC unit, it will inherit the QoS identifier from the read QoS
inheritance queue unit.

C. Traffic Converter

As shown in Fig. 7, the traffic converter locates after the
switch to NoC unit and it will convert traffic between the
VC and TDM subnetworks once their loads are imbalanced
and necessary conditions are met before the AXI4 signals are
packed into packets (VC or TDM packets).

In detail, if the average latency of LCS packets in the VC
subnetwork is high and at the same time, the utilization of
TDM subnetwork is low, some of the LCS packets can be
switched to and transferred through the TDM subnetwork
instead of the VC subnetwork, as shown in the left part of
Fig. 8. The switched packet will be held in the GRS_LCS
FIFO and the GRS FIFO has a higher priority to ensure the
bandwidth requirement of the original GRS packets. Since the
utilization of the TDM subnetwork is low, the switched packet
can have a lower average latency in the TDM subnetwork com-
pared with the latency in the VC subnetwork. In this way, the
average latency and throughput of all the LCS packets can
be improved without having negative influence on the GRS
packets.
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As shown in the right part of Fig. 8, if the average latency
of LCS packets in the VC subnetwork is low and at the
same time, the utilization of the TDM subnetwork is high,
some of the GRS packets can be switched to and transferred
through the VC subnetwork instead of the TDM subnetwork.
The switched packets are usually picked up from the back
of the GRS FIFO and must satisfy the restriction that their
estimated queuing delay in the TDM NI plus the transfer
latency in the TDM subnetwork must be larger than the
maximal latency of the current LCS packets. A controller
is applied in the converter for estimation and calculation,
which will only choose the packets that satisfy the restric-
tion from the GRS FIFO. Under the restriction, the converted
packet will arrive at the slave through the VC subnetwork
earlier than utilizing the original TDM subnetwork and thus,
the guaranteed throughput of the TDM packet can satisfy
the requirement. The converted packet will be held in the
LCS_GRS FIFO, and the arbitration between the LCS_GRS
FIFO and the LCS FIFO can be determined by their arrival
times. In this way, the average latency and throughput of GRS
packets will be improved without having much influence on
the latency of the original LCS and URS packets in the VC
subnetwork.

Compared with the NI designed in [46], we have enhanced
the NI architecture with the switch units, QoS inheritance
mechanism, and traffic converter.

D. Supporting QoS in the NoC-Based Architecture

According to the various communication requirements of
different processors, such as CPU and GPU, and I/O devices,
such as SATA and USB, we define three QoS schemes and
offer the support in the NoC architecture. For the related
works. such as [11] and [12], they maximally support two
QoS schemes. While, in our system design, orienting multiple
QoS requirements, we propose a NoC architecture to support
three different QoS schemes at the same time. The design of
NoC architecture should also consider both performance and
hardware utilization.

Goossens and Hansson [20] discussed the scenario where
the architectures for two QoS schemes are integrated into one
network. It will indeed increase the link utilization. While, the
buffer for the best effort service will influence the frequency
and hardware area consumption of TDM NoC and the virtual
circuit switch in the TDM NoC will in turn block packets in
the buffer, which results in the throughput decrease of both
guaranteed and best-effort services due to frequency decrease
and the latency increase of best-effort service due to the traffic
interference. In this context, the integration of all three differ-
ent QoS schemes into one network architecture is less likely
a reasonable solution.

Therefore, we adopt an eclectic architecture of two subnet-
works, a VC-based wormhole subnetwork and a TDM-based
virtual-circuit subnetwork, to separately support the LCS, URS
in the VC subnetwork, and GRS in the TDM subnetwork.

In Fig. 9, as an example, we show a VC subnetwork that uti-
lizes two virtual networks (VN) to separately support request
and response packets to avoid protocol-level deadlock. Each

Fig. 9. Architecture of VC router with four different flow control schemes.

Fig. 10. Architecture of TDM router.

VN consists of two VCs. In our design, we propose three dif-
ferent flow control mechanisms to better serve the LCS and
URS packets compared with the traditional flow control mech-
anism, which are described below. The test results will be
shown in Section V.

1) Individual: In each VN, the LCS and URS packets can
only utilize their individual VCs and the LCS VC has
higher priority than the URS VC during VC alloca-
tion and switch arbitration, which means that the LCS
packets have higher priority over the URS packets.

2) Individual_Shared: In each VN, all VCs are shared (can
be utilized) by the LCS packets, while the URS packets
can only utilize one fixed VC. The LCS packets have
higher priority over the URS packets.

3) Total_Shared: In each VN, all VCs are shared by the
LCS and URS packets, but the LCS packets still have
higher priority over the URS packets.

4) Standard: In each VN, all VCs are shared by the LCS
and URS packets and the LCS packets have the same
priority as the URS packets during VC allocation and
switch arbitration. This is the best-effort service.

In the TDM subnetwork, we utilize the virtual-circuit TDM
router for message transfer. As shown in Fig. 10, each router
has it own input port (in), output port (on), and a global sense
of synchronized time slot (s). The routing table in each router
is based on the time slot, showing the match relationship
between corresponding inport and outport under certain slot s.
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Algorithm 1 Pseudocode for TDM Routing Table
Establishment

1: Function routingAlgorithm:
2: for each node
3: for each destination
4: do Function findPath;
5:
6: Function findPath:
7: for each available slot {
8: if findAPath from source to destination{
9: for each available slot {

10: if findAPath from destination to source
11: record the round-trip path and return;
12: }
13: }
14: }
15: do not record and return;
16:
17: Function findAPath:
18: if slot to be checked is available {
19: if current node equals to the destination of this path
20: return true;
21: else{
22: if next hop in the x-axis exists
23: if findAPath from next hop in the x-axis to the

destination of this path
24: return true;
25: if next hop in the y-axis exists
26: if findAPath from next hop in the y-axis to the

destination of this path
27: return true;
28: return false;
29: }
30: }
31: return false;

Taking the frame a as an example, in time slot 0 (s = 0), a is
in the input port 0 (i0) of R0 and according to its routing table
(T0), it will be transferred to o1. If the link transfer latency is 1
slot, then at the next time slot 1, according to the routing table
T1 in R1, frame a will be transferred to o2. The routing table in
each TDM router for round-trip communication is preset stat-
ically by a X-first and depth-first search algorithm, which is
based on the shortest path, offering guaranteed bandwidth for
large-volume flows. The routing algorithm for round-trip com-
munication between the source and destination pair is shown
in Algorithm 1.

The router in the TDM NoC only has one buffer per port
to store the incoming message, which will be transferred to
the downstream router in the next time slot. Adding additional
buffers will impact the frequency and area of TDM NoC. From
the perspective of area, the buffers will consume more than
90% area in VC router. The result will be much worse in the
TDM router for its simpler control logic. From the perspective
of area, additional buffers require more complex selector and
buffer management unit. It will either influence the critical
path, decreasing the frequency, or prolong the pipeline stage,
increasing the transfer latency in the TDM router [11].

V. EXPERIMENTS

A. Methodology

There are various simulators for NoCs such as
BookSim2 [48] and NoC-based many-core systems such as

Fig. 11. Architecture of the simulated system.

Gem5 [49]. But none of them supports AXI4, two-subnetwork
NoC architecture, and three QoS schemes at the same time.
So the best choice was to build up a simulator based on
the principles of these known simulators and add additional
functions.

Thus, we build up a cycle-accurate simulator in C++,
which consists of 168 nodes, 2 subnetworks, and 8 off-chip
memory controllers. The architecture of the simulated system
is shown in Fig. 11. The system has four identical subareas,
each of which is in a 7 × 6 mesh structure, with a node con-
nected to a router. Each node (N) is composed of a processor
(C), a private L1 cache, a shared L2 cache, and both the
master-side NI and the slave-side NI so that each node can
act as the master node and the slave node at the same time.
Besides, each subarea has two off-chip memory controllers,
which are connected to the central routers in the subarea.

The VC subnetwork in our simulator is based on the NoC
architecture in Garnet of Gem5 [50]. For ease of implemen-
tation, we apply a cycle-triggered model, such as Booksim2,
instead of the event-triggered method in Gem5. The TDM
subnetwork (router) has a simple architecture, which makes
it easy for comparison. Then, a customized NI is designed to
be compatible with the AXI4 protocol. Therefore, the results
produced by our proposed simulator can be directly compared
with the results generated by the Gem5 and Booksim2 sim-
ulators as long as their NoCs are instantiated with the same
configuration.

In realistic scenarios, the process/thread will be occasion-
ally suspended due to the limited hardware resources in the
computer system. Besides, the event of the request message
injection to the NoC system of each processor is distributed
during the process running phase, which will happen once data
miss occurs in the L1 cache. To simulate the realistic message
injection of each node in a better way, in our simulator, we
apply a two-level MMP model in each traffic generator to con-
trol its overall injection rate, including LCR, unspecific rate
service (URS), and GRS requests. As shown in Fig. 12, the
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Fig. 12. Two-level MMP model in each traffic generator.

TABLE I
NOC SYSTEM CONFIGURATION IN THE SIMULATOR

external level MMP (α1 and β1) simulates the state of the pro-
cess/thread, whose execution interval varies from nanosecond
(ns) to millisecond (ms). The internal level MMP (α2 and β2)
simulates the injection state of request message during the pro-
cess/thread execution period. The injection rates in the external
“off” state, the internal “off” state, and the internal “on” state
are separately 0, 0, and r1. The overall injection rate r of a
processor can be calculated by (1). In the simulator, a central-
ized traffic controller is applied to limit the average injection
rate of the whole system by controlling (α and β) values

r = α1 × α2 × r1

(α1 + β1) × (α2 + β2)
. (1)

The parameters of the MMP model will be set according
to real-world thread behavior, which reflects the processing
interval and message injection rate during thread processing.
Compared with a real-world system, the difference is that the
MMP is a behavior-level function, which is less complex for
ease of implementation and results collection. The QoS tag
is determined randomly according to predefined rates. So a
processor will restrict to one or two types of QoS schemes,
which is similar to the processor in a real-world system. The
address of each request is also generated randomly in each
processor among the processor’s communication pairs, which
records the possible communication between a master and a
slave. Since we did not discuss the influence by the AXI4
ordering requirement, the ID of each request is also randomly
decided, and thus, ordering requirements could exist among
some requests. But this will not influence the performance in
the NoC interconnect, which excludes the ordering units.

From the perspective of the NoC system, its related parame-
ters are shown in Table I. In our simulator, we apply a 14×12
mesh NoC topology. The preset average hop in the NoC of all
requests is 4. The TDM period consists of 64 slots (64 simu-
lation cycles, one cycle per slot). The VC subnetwork has two
virtual networks (vnet). By default, we utilize the Individual
flow control mechanism and each of which consists of one
virtual channel (VC) for the LCS packets and one VC for the
URS packets. The buffer depth of each VC is four flits. The
VC router is a two-stage pipeline and each stage as well as
the link transfer cost one cycle. As with [51], we assume our
simulator runs at 2 GHz.

Currently, the NI implementation can only run up to 600
MHz based on the synthesis result for 40-nm technology [47].
For ease of behavior simulation, in our simulator, we assume
that it runs at 500 MHz, and we adapt the 500-MHz NI to a
2-GHz global clock by proportionally prolonging the packet’s
one-stage pipeline transfer latency in the NI from one NoC
cycle to four NoC cycles. Since this adaptation is only for
the transfer latency in NI, it will not influence the results of
packet transfer latency in each subnetwork. Besides, we also
need to double the channel width of the 500 MHz NI from
128 to 256 bits in the simulator as well as would be done
in a real-world implementation. Only in this way can the NI
support up to 128 Gb/s (= 500 MHz‘× 256 bits) throughput
to satisfy the maximum overall throughput requirement of the
2-GHz subnetworks, which is 117 Gb/s.

Since our proposed simulator utilizes a synthetic traffic
generator to conduct a behavior-level execution, the cache
coherence is not considered, and thus, no coherence traffic
is generated. The cache is simulated by a FIFO buffer with
predefined latency, which is the same as the cache latency in
a real-world system. The distributed memories controlled by
different memory controllers are also simulated in the same
way. The bandwidth of memory is set as one flit per cycle.
Since all requests have been reordered in the NI, there is no
need for the memory to do the reordering job.

B. Experimental Results

1) Throughput: The upper bound on ideal throughput of
the VC subnetwork is determined by the critical link. Under
uniform random traffic and X-Y routing, the maximal per-node
throughput (�max,node) of the mesh network can be calculated
by (2), where x is the number of routers on the x axis. This
formula is derived according to [52, pp. 51–55]. For a critical
link, there are maximally half of the nodes sending messages
through it. For these nodes, only half of their messages will
utilize the critical link in a synthetic traffic pattern where the
destinations are generated randomly. The result of �max,node is
(128×2×2÷14) 36.57 bits/cycle, which is 73.14 Gigabits per
second (Gb/s). Hence, the overall VC subnetwork throughput
�max is up to 12 288 Gb/s for 168 nodes

�max,node × x

2
× 1

2
= link_bandwidth. (2)

The upper bound on ideal throughput of the TDM sub-
network is determined by the overall available preestablished
communication paths. By our proposed shortest path rout-
ing search algorithm, we totally establish 1841 virtual circuit
paths, and the maximal overall throughput of the TDM sub-
network system can be calculated by (3). TDM_period stands
for the number of slots in a TDM period, which is a unitless
number. The maximal throughput of the TDM subnetwork is
3682 bits/cycle (7364 Gb/s)

�max = paths_num × link_bandwidth

TDM_period
. (3)

Thus, the overall system throughput can be up to
19652 (12288 + 7364) Gb/s, which is around 117 Gb/s per
node.
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TABLE II
PARAMETERS IN TRAFFIC GENERATOR

Fig. 13. Packet injection results under test interval of 2000 cycles.

2) Traffic Injection: We show the traffic injection pattern
with two-level MMP-based traffic generator. We take four
nodes as an example to show different traffic injection scenar-
ios. These four nodes have different process/thread execution
interval controlled by the external level MMP of the traffic
generator, which are separately 10, 100, 200, and 1000 ns
(20, 200, 400, and 2000 simulation cycles). At the beginning
of each interval, the process/thread will be decided to exe-
cute or hang up during this interval. The execution interval of
internal level MMP is 0.5 ns (1 simulation cycle). The packet
injection will be decided in each cycle once the process/thread
is under “on” state.

The rest of the parameters in the traffic generator is listed
in Table II. The read packet is 128 bits (1 flit) and the write
packet is 128 × 5 bits (5 flits), which consists of 4-flit data
part and 1-flit control part. They will trigger a corresponding
response packet, which is five flits for the read response packet
and one flit for the write response packet. So a read and write
request will both contribute to six-flit throughput. In this case,
r1 in (1) will be six flits/cycle (768 bits/cycle) and each traffic
generator (node) will averagely contribute 30 bits/cycle to the
NoC throughput, which is 60 Gb/s.

We first show the traffic injection results under a test interval
of 2000 cycles in Fig. 13, which means the number of injected
requests is collected during each 2000 cycles. In this figure,
2000 on the x axis represents the collection result between
cycle 0 and cycle 2000 and 4000 represents the results col-
lected between cycle 2000 and cycle 4000. For the nodes
with external interval of 10 and 100 ns, they inject packets in
each test interval and the values are relatively uniform com-
pared with the results from the other two nodes. For the node
with external interval of 200 ns, the process has been hung
up between cycle 10 000 and cycle 14 000 and between cycle
18 000 and cycle 20 000. For the node with external interval
of 1000 ns, the distribution of results is much more uneven.
It only has packet injection in four test intervals out of all the
ten test intervals and the values in these four test intervals are
higher than the results from any other nodes.

When increasing the test interval to 10 000 cycles, as shown
in Fig. 14, the number of the injected packets by the nodes
with external intervals of 10 and 100 ns has a very small fluc-
tuation and the node with external intervals of 200-ns injected
packet in each test interval. Under this test interval, the node

Fig. 14. Packet injection results under test interval of 10 000 cycles.

Fig. 15. Packet injection results under test interval of 50 000 cycles.

Fig. 16. Average and maximal VC router port utilization.

with external intervals of 1000 ns contributes no packet injec-
tion only in the first test interval, although there is still large
fluctuation.

We show another results in Fig. 15 with test interval of
50 000 cycles, where the results from each node are almost
the same in each test interval. We can predict that for a long-
term execution period, each node will have an even packet
injection number.

The results in these three figures show that the external level
in the two-level MMP traffic generator model can simulate the
execution state (executed or suspended) of the process/thread
with different execution intervals. We can simulate the char-
acteristic of a process/thread by adjusting the internal level
MMP (low injection rate for the computing intensive pro-
cess/thread and high injection rate for the communication
intensive process/thread).

As shown in Fig. 13, our proposed method will have such
a characteristic that in some test intervals, the injection rate
will be as low as 0, and in some other test intervals, the injec-
tion rate can be higher than the average level, especially for
a longer internal time, 1000 ns for example. However, by
the traditional MMP, there will always be packets injected
in each interval. But in reality, some threads will be hung
up, resulting in no packet injection, or be executed, resulting
in large packet injection. Therefore, compared with the tradi-
tional MMP, our proposed two-level MMP can simulate real
scenarios in a better and more flexible way.

3) Resource Utilization: We report the average utilization
of VC router ports in Fig. 16 with different VC subnetwork
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traffic injection rate (per node) from 12 Gb/s, which is 0.047
flit/cycle (= 12 Gb/s ÷ 2 GHz ÷ 128 bits/flit), to 108 Gb/s,
which is 0.422 flit/cycle (= 108 Gb/s÷2 GHz÷128 bits/flit).
The average port utilization of VC routers is calculated by (4),
where utilized_port stands for the number of utilized ports
by network flits, which is obtained from the simulation result
and port_num stands for the total number of ports/links of
all routers in the VC subnetwork, which equals 788 (= 5 ×
12 × 10 + 4 × (12 × 2 + 10 × 2) + 3 × 4) in our architecture.
The average port utilization increases from 4.4% to 16.5%
and reaches its maximal value at the injection rate of 60 Gb/s,
which is 0.235 flit/cycle (= 60 Gb/s÷2 GHz÷128 bits/flit) in
each node. After the VC subnetwork is saturated, its utilization
fluctuates around 16%. The test results show that the maximal
port utilization for a single router can reach up to 49.2% under
our experimental setups

port_utilization = utilized_port

port_num × simulated_cycle
. (4)

The ideal average port utilization of VC routers under the
saturation throughput and without any traffic contention can
be calculated by (5), where �max stands for the saturated
throughput in Gb/s and hopave stands for the average hop of
all packets. The link_bandwidth in Gb/s equals to link width
multiplied by frequency. We can calculate the result, which
equals to 24.36% ((12288 · 4)/(788 · 2 · 128)). But in real-
ity, there will always be traffic contention in the NoC under
saturated throughput. The utilization results with contention
are difficult to be calculated, which also depends on the traf-
fic characteristic. However, we can test it in the full system
simulator, such as Gem5, to get the baseline in a real-world
scenario. Even for a memory-intensive benchmark, the average
utilization among all routers can be very low. In comparison,
the average port utilization of 16.5% is an excellent result for
the VC subnetwork

port_utilizationideal = �max × hopave

port_num × link_bandwidth
. (5)

The slot utilization of the TDM NoC can be reflected
by that of TDM NIs using (6), which is equal to 17.12%
(1841/(168 · 64)). Here NI_num equals to number of nodes
(168), and one TDM path occupies one time slot in NI. The
establishment of TDM paths for request–response messages
always requires adjacent slots among all routers in the round-
trip path, making it difficult to find an available path. The
dimension-order routing algorithm can decrease the packet’s
average hop and transfer latency in NoC. However, compared
with adaptive and oblivious routing algorithms, the determin-
istic routing will make it more difficult to find a path between
the source and destination, especially in a large-scale NoC
architecture. Therefore, in this case, 17.12% is an acceptable
result

slot_utilization = paths_num

NI_num × TDM_period
. (6)

4) Latency: In Fig. 17, we first show the transfer latency
of the LCS packets in NoC under different injection rates
with four different flow control mechanisms: 1) Individual;
2) Total_shared; 3) Individual_shared; and 4) Standard. The

Fig. 17. Transfer latency of the LCS packets in NoC under four different
flow control mechanisms.

Fig. 18. Transfer latency of the URS packets in NoC under four different
flow control mechanisms.

Fig. 19. Transfer latency of the LCS and URS packets in NoC under different
VC numbers.

results represent the average transfer latencies of all packets
in the NoC. The measurement begins when the packet enters
the NoC and ends when the packet leaves the NoC.

It is clearly shown that the Individual_shared can always
contribute to the best LCS packets performance under dif-
ferent injection rates, especially when the injection rate gets
larger. The transfer latency of LCS packets only slightly
increases from 21.2 cycles to 25.3 cycles when the injection
rate greatly increases from 12 to 108 Gb/s. This is because
that the LCS packets will have less contention delay and more
resources under this condition. Comparatively, the results by
the Individual mechanism is a little worse than the results by
the Individual_shared but is much better than the other two
cases. Besides, all the results by the three mechanisms (exclud-
ing the Standard mechanism) fluctuate a little after saturation
(73.14 Gb/s).

As for the results of URS packets, we show them in Fig. 18.
Obviously, the optimization mechanisms for the LCS packets
will influence the URS packets’ performance. Especially in the
Individual_shared mechanism, the results are the worst before
saturation and only better than the Total_shared mechanism
after saturation. For a system that can tolerate big latency for
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Fig. 20. Distribution of transfer delay for LCS and URS packets.

the URS packets, the Individual_shared mechanism is cer-
tainly the best choice where the LCS packets can have the
lowest transfer latency in NoC.

In Fig. 19, under the Individual mechanism, we show the
LCS and URS packets’ latency results under different VC
numbers. For example, VC 2:2 (LCS) in the figure means the
LCS packets’ average latency results with the architecture of
two VCs for the LCS packets and two VCs for the URS pack-
ets per VN. The results show that the LCS packets’ latency can
be slightly improved by the 2-VC-for-LCS and 1-VC-for-URS
architecture, compared with the 1-VC architecture for both
URS and LCS packets. The biggest improvement can reach
up to 23.5% when the injection rate is 108 Gb/s. It provides
a way to decrease LCS packets’ latency at the cost of one
additional VC per input port in a router. However, the addi-
tional hardware resource cannot always provide performance
improvement. For the results by the VC 2:2 architecture, both
the LCS and the URS packets’ average latency results are
worse than the counterparts in the VC 2:1 architecture. This
is because too many VCs per inport will increase packets
queueing delay caused by the switch arbitration.

Fig. 20 shows the transfer delay distribution of LCS and
URS packets. The transfer delay represents the time when
packets are blocked in the NoC during VC and switch arbitra-
tion. The results are under the injection rate of 65 Gb/s (0.254
flit per cycle), where LCS and URS are both 32.5 Gb/s. The
LCS packets in the individual and Total_shared mechanisms
show better results, enjoying lower transfer delay. The worst
case of individual is 546 cycles and of Total_shared is 3867
cycles (not shown in this figure), which is much worse than
results of the individual. So the individual mechanism can
deliver the best performance.

In Fig. 21, we separately show the average transfer laten-
cies of LCS and URS packets in the NoC and the average
queuing delay of the GRS packets in the NI under individual
mechanism and different injection rates. For example, 10 Gb/s
indicates that the injection rate of LCS, URS, and GRS packets
is all 10 Gb/s. The average transfer latency of URS pack-
ets increases from 22.2 to 91.5 cycles. But comparatively, the
average transfer latency of LCS packets only increases slightly
from 21.6 to 31.8 cycles. Besides, the queuing delay of the
GRS packets in the NI before being divided into frames is also
sensitive to the injection rate. Its average value rises from 32.0
cycles to 143.5 cycles with the increment of the GRS packets’
injection rate from 10 to 50 Gb/s.

Fig. 21. Transfer latencies of LCS and URS packets and the queuing delay
in the NI of the GRS packets.

Fig. 22. Scenario 1: Converting LCS packets to GRS packets.

5) Performance of Traffic Conversion: We show the
performance improvement by the traffic conversion mecha-
nism in terms of transfer latency, which includes the transfer
time of packets in the NI and router. In the first scenario, the
injection rate of each node is 70 Gb/s (0.273 flit/frame per
cycle) and the URS, LCS, and GRS signals separately take
32.5%, 32.5%, and 35% of traffic. The injection rate of a test
node located at (0, 2) in the 14×12 mesh topology is 100 Gb/s
(0.391 flit/frame per cycle) and the URS, LCS, and GRS sig-
nals separately take 20%, 70%, and 10%. Under this condition,
packets to the VC subnetwork suffer heavy contention while
packets to the TDM subnetwork do not. We can decrease the
transferring latency of LCS signals and increase the utilization
of the TDM subnetwork by switching part of LCS traffic in
the VC subnetwork to the GRS traffic in the TDM subnet-
work. In Fig. 22, we show the packet transfer latency from
the test node in the scenario where a portion of LCS pack-
ets is switched to the TDM subnetwork. The average transfer
latency of LCS packets in the VC subnetwork decreases from
1054.5 to 64.8 cycles when the percentage of switched LCS
packets varies from 0% to 60%. The URS packets can also
enjoy the benefit, resulting in average latency decreased from
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Fig. 23. Scenario 2: Converting GRS packets to LCS packets.

405.1 to 89.2 cycles. For the LCS packets in the TDM sub-
network, the average transfer latency, under each percentage
of traffic conversion, is better than the results without traffic
conversion mechanism. Since the GRS packets have higher
priority than the converted LCS packets in the TDM subnet-
work, the throughput of GRS packets in the TDM subnetwork
will not be influenced.

As we have explained before, since the GRS packets have
higher priority than the converted LCS packets in the TDM
subnetwork, the throughput of GRS packets in the TDM sub-
network will not be influenced by the converted LCS packets.
So the total throughput of GRS packets will be larger than the
original results, which will satisfy the requirements. Therefore,
we did not discuss the throughput results here, and instead, the
latency for GRS traffic is discussed as a comparison with the
transfer latency of LCS and URS packets.

In the second scenario, the injection rate of each node is
20 Gb/s (0.078 flit/frame per cycle) and the URS, LCS, and
GRS signals separately take 32.5%, 32.5%, and 35% of traf-
fic. The injection rate of the test node is 120 Gb/s (0.469
flit/frame per cycle) and the URS, LCS, and GRS signals
separately take 20%, 10%, and 70% of traffic. Under this
condition, packets to the TDM subnetwork suffer heavy con-
tention while packets to the VC subnetwork do not. In Fig. 23,
we show the packet transfer latency from the test node in
the scenario where a portion of GRS packets is switched to
the VC subnetwork using the LCS-oriented VC. The aver-
age transfer latency of GRS packets in the TDM subnetwork
greatly decreases from 180.0 to 35.3 cycles when the percent-
age of the switched GRS packets varies from 0% to 60%. For
the GRS packets in the VC subnetwork, the average transfer
latency is around 20 cycles under each percentage of traf-
fic conversion. The performance of GRS packets increases
a lot by the traffic conversion without obvious influence on
the average transferring latency of the original LCS and URS
packets.

We can compare our proposed conversion method with the
TDM highway scheme in [11]. Both methods focus on improv-
ing the resource usage. The best improvement result in [11] is
52% for the Ericsson radio system (ERS) benchmark, while
our approach can increase 93.85% maximally. However, we
note that our tests utilized synthetic traffic while [11] used
application-oriented benchmarks. Furthermore, [11] tries to
improve the TDM NoC performance only, but our proposed
method can improve the performance of both TDM and
VC networks at the same time, and improve the load
balance.

VI. CONCLUSION

In this article, we build up a NoC-based communication
system to support both the AMBA AXI4 protocol and three
different QoS schemes. In the NI design, it supports the
message format conversion between the AXI4 signal in the
master/slave node and the packet in the NoC. The NI is set
in both the slave side and master side to make the NoC
design independent from the AXI4 protocol. It also provides
an inheritance mechanism to support QoS in the round-trip
NoC transfer. After defining three different QoS schemes, we
design a NoC architecture with two subnetworks to support
them efficiently. In the experimental part, we compared the
average transfer latencies of LCS and URS packets and the
average queuing delay of the GRS packets under different
injection rates, and our proposed Individual_shared architec-
ture can achieve the best results for the LCS packets compared
with the Individual, Total_shared, and Standard flow control
mechanisms. Besides, we show traffic generation results by the
two-level MMP-based traffic generator. Finally, the decrease of
packet latency by the traffic conversion mechanism indicates
that our proposed traffic converter can contribute to improved
NoC performance.

There remains a valuable problem to be discussed in future
research: how will the conversion percentage be determined at
runtime to minimize the latency of LCS packets on both VC
and TDM subnetworks based on runtime utilization measure-
ments? This problem can be addressed by presenting an initial
value and updating it by a learning method to be adaptive to
the runtime characteristics of the system.
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