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Abstract—The paper presents a new approach to automate
the set-up of the design equations of the manual analog design
process. Its main contribution is a comprehensive hierarchical
performance equation library (HPEL) for op-amps. The HPEL
makes the set-up of design equations independent of the topology.
Based on the library and the functional block recognition
method in [1], analytical performance models for various op-
amp topologies are automatically instantiated. The method is
currently designed for basic op-amps. In this paper, we use the
method to size different op-amp topologies. Experimental results
featuring four circuits are presented. The HPEL has also been
integrated into a structural synthesis method featuring several
thousand op-amp topologies [2].

Index Terms—analog circuit modeling, CMOS, operational
amplifiers, circuit design, sizing

I. INTRODUCTION

Behavioral equations are a major means in the design
process of analog circuits to analyze the DC-, AC-, and tran-
sient behavior of the circuit without requiring time-consuming
circuit simulation. They are used for instance for structural
synthesis and in the sizing process.

Structural synthesis aims at finding a suitable netlist of
transistors (topology) for a given set of specifications. Behav-
ioral equations are used to guide the topology selection and
development process, e.g. [3]–[8].

Sizing is the process of finding the device sizes in an
analog circuit, e.g., the widths and lengths of CMOS transis-
tors, such that the performance specifications, e.g., for gain,
power consumption, slew rate, are fulfilled. Many computer-
aided approaches for sizing are equation-based, e.g., [9]–
[20]. Simulation-based sizing approaches, e.g. [21]–[32], use
numerical SPICE-like simulation. They are considered an
alternative to or an afterburner of equation-based sizing. They
deal with any type circuit, but are computationally more
expensive. The optimizer and suitable constraints must be set
up manually, a performance evaluation by numerical simula-
tion is more expensive than by analytical equations and the
numerical optimization process during sizing is more difficult
to understand from the physical point of view.

Analog designers therefore often prefer equation-based siz-
ing approaches. Notwithstanding the increasing significance
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TABLE I
COMPARISON OF THE STATE-OF-THE-ART EQUATION-BASED SIZING

TOOLS WITH THE HERE PRESENTED METHOD

Tool/author Supported
circuits

Equation set-up Set-up time
new circuit

IDAC [9] amplifiers topology database months
BLADES [10]

op-amps,
subblocks subblock-based long

OASYS [6] op-amps topology database month
OPASYN [11] op-amps topology database few weeks
Maulik [12] op-amps topology database long
GPCAD [13] op-amps topology database long
Leyn [14] amplifiers symbolic analysis hours

AMGIE [15] op-amps topology database,
symbolic analysis 8 h

Shi [16] op-amps symbolic analysis seconds
Verhagen [17] op-amps symbolic analysis seconds
Liu [18] op-amps symbolic analysis seconds
COPRICSI [20] op-amps subblock-based few days
This paper: HPEL op-amps subblock-based seconds(*)
(*): new subblock 0.5-2 days

of simulation-based analog circuit design in deep submicron
process technologies, an initial sizing based on analytical
equations is the gold standard in analog design. It makes
numerical performance evaluation within the sizing process
unnecessary saving computational cost and being closer to the
designer wish for physical insights. However to automatize the
initial sizing process, the major obstacle is the automatic set-
up of the design equations. This is where this paper presents
a new approach.

Equation-based synthesis or sizing approaches (Table I)
have presented fixed design plans for supported process tech-
nologies [6], [9]–[13], or apply symbolic analysis to create
transfer functions automatically [14]–[18]. The methods sup-
port mainly op-amps [10]–[13], [15]–[20] and other types of
amplifiers [9], [14].

Early equation-based methods [6], [9], [11]–[13] stored
the equations topology-dependent. Topology libraries were
developed containing a fixed equation set for every supported
topology. To overcome the topology dependence, [10] splits
up part of the equation-based description into subcircuits
descriptions. However, only basic equations, as symmetry con-
straints and DC-performance constraints, are considered for
the subcircuits. AC- and transient performance constraints are
still restricted to a specific topology. Adding new topologies
to these methods takes quite long as for every topologies a
new equation-based description must be developed.

To reduce the set-up time of the equation-based descrip-
tion, symbolic analysis method were developed [14]–[18].
They automatically create the transfer function of a given
topology. The transfer function, however, only represents the
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AC-behavior of the circuit. To represent the transient and
DC-behavior of the circuit, other methods are still needed.
Designer knowledge is for instance used in [15] to include
performance features for the transient behavior and symmetry
constraints in the equation-based model.

To overcome the topology dependence, [20] presented a
building block analysis to set up part of the equation-based
description automatically. However, a method which allows
an automatic set-up of the whole equation-based description
of the circuit using the same equations as in the manual design
process has not been published yet.

Such a method, called hierarchical performance equation
library (HPEL), is presented in this paper. HPEL allows
the automatic set-up of an equation-based description of a
topology emulating the manual design process. AC-, DC- and
transient behavior of a circuit are modeled in the same way as
in the manual analog design process instantiating well-known
model equations [33]–[36] automatically. The method supports
many different op-amp topologies including several thousands
of topology variants [2].

The main contributions of this paper are:
• A functional block-based hierarchical generic equation

library (Sec. III - Sec. X), storing an equation set for
every functional block in [1] which describes its behavior
within the circuit. Compared to the state of the art, the
equations are presented comprehensively, not in excerpts.
The equations include hierarchically built performance
equations and symmetry constraints automatically gen-
erated based on the hierarchy of a given circuit. The
equation library provides a computer-oriented and hierar-
chical systematic of the behavior along the hierarchy the
functional block composition of a circuit.

• Algorithms to automatically instantiated a behavior cir-
cuit model for a given netlist (Sec. XI). The generic equa-
tions in the library are automatically specified for a given
topology. A nodal analysis model from Kirchhoff voltage
and current laws analogous to circuit simulation leads
to a topology-independent set-up of the comprehensive
behavioral model for a given circuit netlist. Setting up the
problem for a new circuit that is covered by the available
equation library takes a few seconds. The circuit model
can be fed into a constrained optimization solver for a
fast sizing that mimics the sizing approach preferred by
analog designers in practice.

The hierarchical character of the performance equation library
along the functional block composition of a circuit represents
a new level of generalization in equation-based design. The
functional blocks and their behavioral models are general
modules in analog design. They are used in advanced op-amps
and other circuit classes. If such advanced design concepts for
op-amps and other circuit classes are to be investigated, the
performance library is not set up from scratch, but re-used
and extended for new functional blocks only. Depending on
the amount of additional new functionality, this is estimated
to take between half a day and two days. Hence, the (manual)
inclusion of new topologies into the HPEL library is fast com-
pared to the state of the art as equation sets of functional blocks
from lower levels are re-used. In topology-based approaches

HL 1: Devices Normal transistors (nt), diode transistors (dt), capac-
itors (cap)

HL 2: Structures Voltage biases (vb), current biases (cb), current mirror
(cm), differential pairs (dp), analog inverter (inv)

HL 3: Amplification stage
subblocks Transconductor (tc), load (l), stage bias (bs)

HL 4: Op-amp subblocks Amplification stage (a), circuit bias (bO), compensa-
tion (cC ) and load capacitor (cL)

HL 5: Op-amps Miller op-amp, Folded-cascode op-amp

Fig. 1. Functional blocks in op-amps

as, e.g., [15], the set-up time refers to one specific topology.
Adding new functional blocks to the HPEL, however, means
the inclusion of whole sets of topologies.

An application of HPEL is a sizing process described in
Sec. XII. Circuits are sized in one minute without requiring
much manual set-up. The HPEL sets up all constraints required
for sizing fully automatically. This is different to numerical
sizing approaches, which require a manual set-up of simu-
lation, waveform postprocessing, parameters and constraints
which takes around half a day of time.

Experimental results (Sec. XIII) present the circuit behavior
models established through HPEL for four different circuits.
Additionally, sizing results are presented obtained by the
performance models.

II. FUNCTIONAL BLOCKS IN OP-AMPS

Every op-amp consists of a set of transistor blocks which
can be characterized by their function and are called functional
blocks in the following. These functional blocks can be
hierarchically structured (Fig. 1). With every hierarchy level,
the structural composition of the functional block becomes less
definable however its overall function in the circuit becomes
more clear. The functional block types on every hierarchy level
are sketched in the following. A complete description with
structural examples is given in [1].

Hierarchy level 1 consists of devices, e.g., capacitors
(Fig. 2a cap), and transistors. Two types of transistors are
distinguished by their self-connections. Normal transistors
(nt) do not have any self-connection, e.g., Fig. 2a, nt1. Diode
transistors (dt) have a gate-drain connection, e.g., Fig. 2a dt1.

Hierarchy level 2 consists of transistor structures: voltage
bias vbk (Fig. 2a vb1, vb3), current bias cbk (Fig. 2a cb1, cb6),
analog inverter invk (Fig. 2a inv1), differential pair (Fig. 2c
N1, N2). A voltage bias and a current bias may form a current
mirror (cmk), e.g., Fig. 2a cm5. However, cases exist where
no current mirrors are formed [1], e.g., Fig. 2a, vb2, cb4.
Types of differential pairs are: simple (dpk), cascode (cdpk),
e.g., Fig. 2a P1 − P4, or folded-cascode (fcdp), e.g. Fig. 2b
N1, N2, P1, P2. A cascode or folded-cascode differential pair
consists of a simple differential pair connected to a gate-
connected couple (gcc, e.g., Fig. 2a P3, P4; Fig. 2b P1, P2).

Hierarchy level 3 consists of the amplification stage sub-
blocks, which are the transconductor tc, the load l and the
stage bias bs. For the transconductor, two main types exist:
non-inverting tcninv (Fig. 2c tc1) and inverting tcinv (Fig. 2c
tc2,1). The non-inverting transconductor is further divided into
three types: simple tcs (Fig. 2c tc1), complementary tcc,
(Fig. 2d tc1) and common-mode feedback (CMFB) tcCMFB
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TABLE II
HIERARCHICAL PERFORMANCE EQUATION LIBRARY

Symmetry constraints Functional block behavioral constraints Intermediate performance equations Op-amp performance equations
HL 1: Devices • Saturation drain-source voltage

• Net capacitance
• Area
• Quiescent power

HL 2: Structures • Voltage and current bias • Current mirror behavior
HL 3: Amplification
stage subblocks

• Load
• Non-inverting transconductor

• Complementary transconductor and
stage bias

• Transconductance
• Output conductance

HL 4:
Op-amp subblocks

• Inverting stages • Output voltage offset • Stage output resistance
• Stage open-loop gain
• Stage non-dominate poles
• Stage zeros

• Common-mode input voltage
• Output voltage
• Common-mode rejection ratio
• Unity-gain bandwidth

HL 5: Op-amps • Dominant pole
• Positive zero

• Open-loop gain
• Slew Rate
• Phase margin

(Fig. 2b tcCMFB). The load consists of one or two load parts
(lp) (Fig. 2b). The stage bias is either of type current bias
(Fig 2c, bs,1) or of type voltage bias (Fig 2c, bs,2,2).

Hierarchy level 4 consists of the op-amp subblocks which
are the amplification stages a, the circuit bias bO (Fig. 2d),
the compensation capacitor (cC) (Fig. 2c), and load capacitor
(cL). Two types of amplification stages exist: non-inverting
aninv (Fig. 2c a1), and inverting ainv (Fig. 2c a2,2). The non-
inverting amplification stage can be further divided into simple
as (Fig. 2c a1) and complementary first stage ac (Fig. 2d a1),
and common mode feedback stage aCMFB (Fig. 2b aCMFB).

Hierarchy level 5 consists of the op-amp itself. It is fully-
differential or has a single output.

The functional blocks in an op-amp are identified as detailed
in [1]. It uses a formalized structural definition of every
functional block for an automatic recognition. Starting on the
lowest hierarchy level, the functional blocks are hierarchically
identified by analyzing the pin connections in the circuit netlist
based on the structural definitions of the functional blocks.
The result are the specific functional blocks of a given netlist
according to the hierarchy levels in Fig. 1. Examples are
the decompositions in Fig. 2. It is worth noting that the
functional attribution of a group of transistors depends on
its context, i.e., its connection to other circuit parts. The
respective performance equations of each functional block type
and their automatic set-up are presented in the following.

III. OVERVIEW OF THE HIERARCHICAL PERFORMANCE
EQUATION LIBRARY

The hierarchical performance equation library uses the
functional block description of op-amps to store the equation
describing the op-amp behavior topology independent. It dis-
tinguishes between two main groups of equations: the basic
model and the op-amp performance model.

The basic model describes the current and voltage flow
in the circuit. It contains information gained based on the
circuit netlist and an analysis of its devices. It comprises the
variables of the circuit, Kirchoffs Current and Voltage Law and
models for the devices. The variables can be reduced by using
information from higher functional block levels, however the
major set-up is based on the first hierarchy level.

The op-amp performance model describes the AC-, DC-,
and transient behavior of the op-amp. It contains informa-
tion gained from the hierarchical composition of functional

blocks. It comprises symmetry constraints, functional block
constraints, intermediate performance equations and op-amp
performance equations. An overview of the op-amp perfor-
mance model part of the hierarchical equation library is given
in Table II. For each hierarchy level, the most important
equations or constraints are given. The ordering from left to
right represents an abstraction from constraints to performance
and it corresponds to the functional abstraction from top
to bottom through the hierarchy levels. Equations based on
functional blocks of low hierarchy levels highly depend on the
transistor structure, e.g., the equations to describe the output
conductance of a functional block. To set up the equations
of the open-loop gain, the transistor structure of op-amp is
ignored. This hierarchical structuring allows us to generalize
the op-amp equations such that we obtain an automatic set-up
of the design equations independent of the topology (Sec. XI).

In the following, variables and equations of both model
types are described in detail.

IV. VARIABLES

The variables of the equation-based topology description
can be divided into two groups: device specific variables and
op-amp performance variables.

Device specific variables: Depending on the device type, a
set of variables is automatically derived. For a transistor tk,
this set is:

tTk = {wk, lk, gmk, gdk, iDS,k, vGS,k, vDS,k} (1)

wk, lk are the width and length of the transistor, gmk, gdk
its transconductance and output conductance, iDS,k its drain-
source current and vGS,k, vDS,k its gate-source and drain-
source voltage.

Op-amp performance variables: The set of characteristic
performance features whose equations are automatically set
up based on the HPEL is:

zT = {zD, zQP , zvcm,min/max , zvout,min/max ,
zfGBW , zSR, zAD0

, zCMRR, zPM}
(2)

zD describes the gate area of the circuit, zQP its quies-
cent power, zvcm,min/max is the minimal, respective max-
imal common-mode input voltage, zvout,min/max the mini-
mal/maximal output voltage of the op-amp, zAD0

is its open-
loop gain. zfGBW is the unity-gain bandwidth, zSR the slew
rate, zCMRR the common-mode rejection ratio, zPM is the
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phase margin. The performance features describe the char-
acteristic op-amp behavior. Additional to them, intermediate
performance variables, e.g., output resistance Rout,aj of a
stage aj or poles and zeros of an op-amp zP exist.

V. KIRCHOFFS CURRENT AND VOLTAGE LAW

By automatically analyzing the graph description of the
netlist, Kirchoffs Current Law (KCL) is set up for every node
l ∈ N in the circuit:

∀l∈N
∑
k

iDSk = 0, (3)

Kirchoffs Voltage Law is expressed efficiently by the volt-
age potentials of the circuit nodes as in circuit simulation. The
voltage variables are therefore all nN node voltages vN :

vTN = [vN,1, vN,2, ..., vN,nN ], vN,k ∈ R, k = 1, 2, ..., nN

[vTGSv
T
DS ]T = A · vN , with A as nodal incidence matrix.

(4)

VI. TRANSISTOR BEHAVIOR MODEL

For every device in the circuit, a model is needed which
describes its behavior depending on its variables. Therefore,
for every device type on level 1, a behavioral model is stored
in the equation library. For transistors, this is the Shichman-
Hodges model [37]. It is the simplest transistor model and
defines three operating regions for a transistor, off, linear, and
saturation. Analytical equations exist for all operating regions.
The drain-source current of an nmos transistor tk in saturation
is for instance described by:

iDS,k =
µkCox,k

2

Wk

Lk
(vGS,k − vth,k)2(1 + λkvDS,k) (5)

Process parameters, e.g., threshold voltage vth, are specified
by the underlying process technology. Equations for other
operation regions are implemented analogously.

Constraints for the transistor voltages guarantee that the
transistor operates in the specified region. For saturation, these
are:

vGS,k − vth,k ≥ 0

vGS,k − vth,k < vDS,k
(6)

The transconductance and output conductances gmk, gdk of
a transistor are calculated by the differentiation of the drain-
source current with respect to the transistor voltages. For the
saturation region, following equations are obtained:

gmk =
∂iDS,k
∂vGS,k

=

√
2µkCox,k

Wk

Lk
iDS,k (7)

gdk =
∂iDS,k
∂vDS,k

= λk · iDS,k (8)

The saturation region can be further divided into weak,
moderate and strong inversion. An overview how the three
inversions region are integrated into equation-based modeling
is given in [38].

VII. SYMMETRY CONSTRAINTS

Symmetry constraints are crucial in analog circuits to mini-
mize mismatch, e.g., due to channel length modulation or local
manufacturing variations. Symmetry constraints are derived
for structures (HL 2), subblocks of amplification stages (HL 3)
and op-amp subblocks (HL 4). They reduce the number of
variables of the performance model.

A. Hierarchy Level 2: Structures

For transistors in a voltage or current bias, we define that
two transistors ti, tj connected at their gates ti.g, tj .g must
have equal lengths lti , ltj

∀ti,tj∈(Tvb,Φ∪Tcb,Φ)ti.g ↔ tj .g ⇒ lti = ltj (9)

Tvb,Φ is the set of transistors of doping Φ being part of the
voltage biases in the circuit. Tcb,Φ is the set of transistors of
the same doping Φ being part of current biases.

B. Hierarchy Level 3: Amplification Stage Subblocks

The DC current flow must be symmetric in the subblocks of
a non-inverting stage. We therefore define that the transcon-
ductor of the non-inverting stage tcninv,k and its load lk must
have symmetrical geometries:

∀tcninv,k∈Mtcninv
{tk,i,Φ, tk,j,Φ} = tcninv,k

∧ ltk,i = ltk,j ∧ wtk,i = wtk,j
(10)

∀ti,tj∈(Tl)ti.g ↔ tj .g ⇒ (lti = ltj ∧ wti = wtj ) (11)

Mtcninv is the set of non-inverting transconductor in the op-
amp and Tl the set of transistors forming the load.

C. Hierarchy Level 4: Op Amp Subblocks

Symmetrical op-amps and fully differential two-stage op-
amps have two second stages. They must be symmetrical:

∀tm∈a2,1,tn∈a2,2
[(tm.pos = tn.pos)

→ (wtm = wtn ∧ ltm = ltn)]
(12)

tk.pos gives the position of a transistor, e.g., n-type transistor
and connected to the ground net. The transistors on equal
positions should have equal geometries. In the symmetrical
op-amp in Fig. 2c, the transistors N4, N5 have equal positions
and therefore should have the same sizes. The other transistor
pairs are P5, P6 and P3, P4.

VIII. FUNCTIONAL BLOCK BEHAVIORAL CONSTRAINTS

Behavioral constraints on a functional block are constraints
on its transistor variables required to ensure the proper func-
tionality of the block. Behavioral constraints are derived for
structures (HL 2), amplification stage subblocks (HL 3) and
op-amp subblocks (HL 4).
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Fig. 2. Different op-amp topologies

A. Hierarchy Level 2: Structures

Behavioral constraints for specific types of current mirrors
are instantiated on this level. An example is the cascode
current mirror (e.g. Fig 2a, N1 −N4). In this type of current
mirror, the voltage potentials of the inner nets, e.g., Fig. 2a,
n6, n7, must be equal to suppress the effect of the channel
length modulation. To obtain equal voltages, the ratio of
the widths of the transistors in the current mirror must be
restricted:

wccm,vb,d
wccm,cb,d

=
wcm,vb,s
wcm,cb,s

(13)

wccm,vb,d, wccm,vb,s are the drain and the source transis-
tor of the voltage bias in the cascode current mirror.
wccm,cb,d, wccm,cb,s are the drain and the source transistor of
the current bias in the cascode current mirror. Please note that
the transistor length is already restricted by (9).

B. Hierarchy Level 3: Amplification Stage Subblocks

A behavioral constraint on the amplification stage sub-
block level exists for the complementary transconductor tcc.
The transconductance of the transistors in the n-doped dif-
ferential pair gmdp,n,i|i=1,2 and p-doped differential pair
gmdp,p,j |j=1,2 of tcc must be equal.

gmdp,n,i|i=1,2 = gmdp,p,j |j=1,2 (14)

Also the currents of the differential pairs generated with the
n- and p-doped transistors in the stage bias bs,c must be equal:

|iDS,bs,c,n | = |iDS,bs,c,p, | (15)

C. Hierarchy Level 4: Op-Amp Subblocks

A constraint on the op-amp subblock level is the output
voltage offset constraint for two stage op-amps. To sup-
press an offset voltage on the output voltage by equal input
voltage, the voltage potentials at the first stage output nets
na1.out1 , na1.out2 , e.g., Fig. 2a, na1.out1 = n5, na1.out2 = n8

must be equal.

a2 ∈M⇒ vna1.out1
= vna1.out2

(16)

M is the set of functional blocks of an op-amp topology.

IX. INTERMEDIATE PERFORMANCE EQUATIONS

Hierarchy levels 1, 3-5 are considered to establish all
intermediate performance equations. They are only instantiated
for a functional block if an op-amp performance equation
requires them.

A. Hierarchy Level 1: Devices

The saturation drain-source voltage of a transistor and the
net capacitance of a net in the circuit are equations generated
based on the device information.
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1) Saturation Drain-Source Voltage: The saturation drain-
source voltage is the voltage at least needed to keep a transistor
in saturation. According to (6), this is:

vDS,sat,i =

{
vGS,i − vth,i, ti.type = nt

vGS,i, ti.type = dt
(17)

considering that for a diode transistor dtk, vGS,k = vDS,k.
2) Net Capacitance: The capacitance Cni of a net ni

depends on the pins Pni connected to ni:

Cni =
∑

pj∈Pni

Cpj (18)

Cpj is the capacitance arising by the pin pj . The corresponding
equations to calculate Cpj are given in [36].

B. Hierarchy Level 3: Amplification Stage Subblocks

Transconductance and output conductances of the functional
blocks are important properties to be described on this level.

1) Transconductance: The transconductance of a transcon-
ductor is defined by one of the transistors ttc,i,in whose gate
is connected to the input signal of the stage.

gintc,i = gmttc,i,in (19)

In a non-inverting stage, ttc,i,in is one of the transistors of
the differential pair. Due to symmetry, the transconductance
of both transistors is equal. In an inverting stage, ttc,i,in
is the transistor whose gate is connected to the output of
the previous stage. In op-amps with two second stages, the
transconductance of only one of the two stages must be
calculated due to symmetry.

For the calculation of the transconductance of the com-
plementary transconductor (Fig. 2d), the transconductances
of the transistors in the pmos differential pair and the nmos
differential pair must be considered:

gintcc = gmttc,in,n + gmttc,in,p (20)

2) Output conductance: The computation of gouti for a
functional block mi depends on its inner structure. It is
distinguished between functional blocks consisting of one-
and two-transistor stacks. A transistor stack is defined as a
sequence of transistors having a drain-source connection [1].
N1, N3 in Fig. 2a is an example of a two-transistor stack.

gouti =

{
gdti,out , {ti,out} = tsi ⊆ mi
gdti,outgdti,supply

gmti,out
, {ti,out, ti,supply} = tsi ⊆ mi

(21)
If the functional block mi consists of one-transistor stacks,
only the output conductance of the transistor in mi connected
to the stage output is relevant for the calculation. If mi

consists of two-transistor stacks, the transistor connected to
the stage output and the transistor connected to the supply
voltage rail are relevant. The type of functional block as load,
transconductor and stage bias is irrelevant. All three types
consist of one or two transistor stacks. If the functional block
consists of two transistor stacks, the stacks are symmetrical. In
non-symmetrical load parts [1], the output-connected transistor

stack is only relevant for calculations. Hence, in Fig. 2c,
gouttc1 = gdN1 = gdN2 and gouttc2,2 =

gdP5
gdP3

gmP5
.

Further differentiation must be made for load parts including
a gate-connected couple being part of a cascode or folded-
cascode differential pair (Sec. II):

gouti =



gdti,outgdttc1,1
gmti,out

, {ti,out} = tsi ⊆ mi

∧ {ttc1,1, ti,out} ⊂ cdpk
gdti,out (gdti,supply+gdttc1,1

)

gmti,out
,

{ti,out, ti,supply} = tsi ⊆ mi

∧ {ttc1,1, ti,out} ⊂ fcdpk
(22)

The output conductance of one of the transistors of the differ-
ential pair must be included in these calculations. Thus for the
load part formed by P3, P4 in Fig. 2a goutlp,1,1 =

gdP4
gdP2

gmP4

and in Fig. 2b goutlp,1,1 =
gdP2

(gdP4
+gdN2

)

gmP2
.

In symmetrical op-amp and CMFB stages, the output con-
ductance gouti of the load part is the transconductance of one
of the transistors connected with its gate to the output of the
stage. The load part consists only of voltage biases [1]:

gouti = gmtg.out , mi.type = lp ∧mi = {vbi,1, vbi,2} (23)

Hence, in Fig. 2c, goutlp,1,1 = gmP1
= gmP2

C. Hierarchy Level 4: Op-Amp Subblocks

The output resistance, the open-loop gain and the non-
dominant poles and zeros of an amplification stage are cal-
culated on this level.

1) Stage Output Resistance: The output resistance of an
amplification stage is described by the output conductances of
the k functional blocks of the stage, e.g. stage biases, load
parts and transconductors, connected to the stage output net.

Rout,i =
1∑k

j=1 gouti
(24)

For the symmetrical op-amp (Fig. 2c), the output resistance
of the first stage Rout,a1

is for example calculated by gouttc1
and goutlp,1,1 . For the folded-cascode first stage in Fig. 2b,
the output resistance is Rout,a1 = 1

goutlp,1,1+goutlp,1,2
.

2) Stage Open-Loop Gain: The open-loop gain of a stage
AD0,i is calculated by the transconductance gintc,i of its
transconductors (Sec. IX-B1) and its output resistance Rout,i:

AD0,i = gintc,i ·Rout,i (25)

3) Stage Non-Dominant Poles: Non-dominant poles arise
for every stage in the op-amp. They must be calculated for
every transistor tk on the signal path from input to output.
The pole of the transistor tk is calculated by:

fndp,tk =
gmtk

2πCnj
(26)

Cnj is the net capacitance of the net the signal passes by
before encountering tk. It is calculated by (18) and contains
the parasitics emerging from the transistor pins as well as the
capacitance of the capacitors connected to the net.
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If a compensation capacitor is connected between the input
and the output of a stage, the equation of non-dominant pole
at the input transistor of the stages changes to:

fndp,inv,Cc =
gintcinv

2π(Cnout +
Cntc,inv,in,g ·Cnout

CC
+ Cntc,inv,in,g )

(27)
gintcinv is the transconductance of the stage. Cntc,inv,in,g is
the capacitance of the gate net carrying the input signal of the
stage. Cnout is the capacitance of the output net of the stage
and CC the capacitance value of the compensation capacitor.

4) Stage zeros: Zeros are evoked by non-dominant poles if
they are a mirror pole, i.e., only half of the signal is influenced
by it. They are set to occur at twice of the frequency of the
mirror pole fndp,mir:

fz,mir = 2 · fndp,mir (28)

D. Hierarchy Level 5: Op-Amp

The complete composition of the op-amp must be consid-
ered to calculate the dominant pole and the positive zero.

1) Dominant Pole: The dominant pole is the pole at the
smallest frequency in an op-amp. It occurs mostly at the output
net of the first stage and is calculated by:

fdp =
1

2πCnoutgintc2Π2
i=1Rout,i

(29)

Cnout is the capacitance at the output net of the first stage,
gintc2 the transconductance of the second stage transconductor
and Rout,j the output resistance of the amplification stages.
For single-stage op-amps, gintc2 and Rout,2 are set to one.

In symmetrical op-amps, the dominant pole occurs at the
output net of the second stage. The equation changes to:

fdp =
1

2πCnoutgmtc3Π3
i=2Rout,i

(30)

where Cnout is the capacitance at the output net of the second
stage. If no third stage is part of the symmetrical op-amp,
gmtc3 and Rout,3 are set to one.

2) Positive Zero: In op-amps with compensation capacitor
cC , a positive zero exists. It is calculated by:

fpz =
1

2πCC( 1
gintcinv,k

− 1
gdRC

)
(31)

gintcinv,k is the transconductance of the inverting transcon-
ductor connected by cC to a previous stage. If a compensation
resistor RC is part of the circuit, gdRC is the output conduc-
tance of the transistor emulating the compensation resistor,
otherwise gdRC = 1.

X. OP-AMP PERFORMANCE EQUATIONS

Analogous to the equations and constraints before, the
performance features of an op-amp are ordered hierarchically.
Some performance equations only need the device level infor-
mation as input (HL 1). Others are based on op-amp subblocks
(HL 4) or on the whole op-amp (HL 5).

A. Hierarchy Level 1: Devices

The area and quiescent power of the op-amp is calculated
based on device level information.

1) Area: An estimation of the area of the circuit is calcu-
lated through the gate areas of all k transistors:

zD =

k∑
i=1

Wi · Li (32)

2) Quiescent Power: The quiescent power zQP is the
product of the positive supply voltage vV DD subtracted by
negative voltage vV SS with the sum of the n currents flowing
into the positive supply voltage net nV DD. If the bias current
of the circuit iBias is applied to an nmos transistor, it must
be added to the currents flowing into nV DD.

zQP = (vV DD − vV SS) ·

{∑n
j=1 |ij |, tBias.Φ = p∑n
j=1 |ij |+ ibias, tBias.Φ = n

(33)

B. Hierarchy Level 4: Op-Amp Subblocks

Performance features determined by one amplification stage
are formulated on this level. These are common-mode in-
put voltage, output voltage, common-mode rejection ratio
(CMRR) and unity-gain bandwidth.

1) Common-mode Input Voltage: The common-mode input
voltage describes the range in which the input voltage can vary
without changing the behavior of the op-amp. We can specify
a maximum zvcm,max and a minimum zvcm,min common-
mode input voltage. The two voltage loops which describe
zvcm,max , zvcm,min are either over the load of the first stage l1
or over its stage bias bs,1. Therefore, we can define the two
limiting values by vcm,l1 , vcm,bs,1 .
zvcm,max , zvcm,min are defined depending which of

vsupply,bs,1 , vsupply,l1 equals vV DD, vV SS .

vsupply,bs,1 = vV DD ∧ vsupply,l1 = vV SS

⇒ zvcm,max = vcm,bs,1 ∧ zvcm,min = vcm,l1

vsupply,bs,1 = vV SS ∧ vsupply,l1 = vV DD

⇒ zvcm,max = vcm,l1 ∧ zvcm,min = vcm,bs,1

(34)

For loads connected to both supply voltage rails, e.g. Fig. 2b,
the supply voltage rail opposite to vsupply,bs,1 is considered.

If the transistors in the paths are in saturation and in
strong inversion, vcm,bs,1 and vcm,lp,1,1 are defined by the
minimum/maximum voltage which is allowed when keeping
all transistor in saturation. For a single transistor, this voltage
is defined by the minimum saturation voltage (17). Hence,
vcm,bs,1 is defined as:

vcm,bs,1 := vsupply,bs,1 + vGS,tc1 +

|b1|∑
i=1

vDS,sat,i (35)

Determining vcm,l1 is more complex, as the structure of
the load highly varies [1]. Two relevant voltage paths e1, e2

exist having the smallest possible number of voltage drops.
Each path starts from one of the outputs of the first stage
transconductor tc1 going to the supply-voltage rail of the
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load nsupply,l1 . In the folded-cascode op-amp (Fig. 2b),
e1 = {P3}, e2 = {P4}. In the telescopic op-amp, (Fig. 2a)
e1 = {P3, N1, N3}, e2 = {P4, N2, N4}. For the calculation of
vcm,l1 the path ek is chosen with the most diode transistors.
For diode transistors, vDS,sat = vGS , such that they have
a much higher impact on the input voltage range as normal
transistors. If the transistors in the paths are in saturation and
in strong inversion, vcm,l1 is defined by:

vcm,l1 := vsupply,l1 + vth,tc1

+

|e|∑
m=1

{
−(vDS,sat,m), tm ⊂ gccm
vDS,sat,m, else

(36)

vth,tc1 is the threshold voltage of a transistor of the transcon-
ductor of the first stage tc1. If a transistor of a gate-connected
couple gcck is in the path e, e.g. P3, P4 in Fig. 2a, it introduces
a negative value for vDS,sat,k. It has a different substrate
doping than the other transistors in the load relevant for e.

2) Output Voltage: The output voltage swing is described
by the last stage of an op-amp. A maximum value zvout,max
and a minimum value zvout,min are defined by the shortest
paths from the output of the op-amp to the supply-rails
eV DD, eV SS . The paths contain the transistors being part of
transistor stacks connecting the supply-voltage rails to the
output. If the transistors are supposed to be in saturation and
in strong inversion, the corresponding equations are:

zvout,max = vV DD +

|eVDD|∑
i=1

vDS,sat,i (37)

zvout,min = vV SS +

|eV SS |∑
i=1

vDS,sat,i (38)

with vDS,sat,i described by (17).
3) Common-mode Rejection Ratio: For non-fully differen-

tial op-amp topologies, an analytical equation can be derived
that gives a good approximation of the static systematic
common-mode rejection ratio (CMRRs). For all op-amps
but symmetrical op-amps, the CMRRs only depends on the
structure of the first stage.

zCMRR = 2AD0,1 ·
gml1,g.out

goutbs,1
(39)

ADO,1 is the open-loop gain of the first stage of the op-
amp (25). goutbs,1 the output conductance of the first stage
bias calculated according to Sec. IX-B2. gml1,g.out is the
transconductance of the load transistor connected with its gate
to one of the output nets of the first stage. If the gates of two
load transistors are connected to the output of the first stage,
any of these two can be chosen. They have equal gm-values,
as the load of an op-amp is symmetric. If no load transistor’s
gate is connected to the output of the first stage the equation
to calculate the CMRRs changes:

zCMRR = 2 · gintc1
goutbs,1

(40)

gintc1 is the transconductance of the transconductor of the
first stage calculated according to Sec. IX-B1.

The CMRR of the symmetrical op-amp is also defined by
the open-loop gain of the second stage AD0,2:

zCMRRsym = 2AD0,1 ·AD0,2 ·
gml1,g.out

goutbs,1
(41)

For fully-differential op-amps, the CMRRs also depends on
the common-mode feedback circuit and is not discussed in this
paper. In complementary op-amps, the two stage bias types of
the first stage, pmos and nmos, must be considered.

4) Unity-gain bandwidth: The unity-gain bandwidth zfGBW
is calculated by the first stage transconductor tc1 and the
capacitance of the first stage output net Cna1,out

:

zfGBW =
gintc1

2πCna1,out

(42)

The equation for zfGBW differs slightly for symmetrical op-
amps, as the second stage impacts the unity-gain bandwidth:

zfGBW =
AD0,1 · gintc2

2πCna2,out

(43)

AD0,1 is the first stage open-loop gain, gintc2, the transcon-
ductance of the second stage transconductor, and Cna2,out

the
capacitance of the second stage output net connected to a
capacitor.

C. Hierarchy Level 5: Op-Amp

The overall op-amp structure is considered for the calcula-
tion of open-loop gain, the slew rate and the phase margin.

1) Open-loop Gain: The open-loop gain of an op-amp is
the product of the open-loop gains of its n stages:

zAD0
=

n∏
k=0

AD0,i (44)

2) Slew Rate: The slew rate zSR of a circuit is calculated
from the bias currents of the n stages and the capacitances of
the output nets of the stages,

zSR = min{
|iDS,bs,1 |
Cnout,1

, ..,
|iDS,bs,n |
Cnout,n

} (45)

where iDS,bs,k is the drain-source current of a transistor part
of the stage bias bs,k of the stage k. Cnout,k is the capacitance
of the stage output net calculated by (18). For symmetrical op-
amps, the first stage output net does not have to be considered.
However, if one of the input transistors of the first stage is
shut down, the bias current of the first stage is amplified
and mirrored by the current mirror forming the first stage
load and the second stage transconductor, e.g., Fig. 2c P2, P4.
Therefore, twice the bias current of the second stage must be
considered during slew rate calculations.

In a folded-cascode op-amp, the current iDS,lB,GCC of the
two transistors biasing the gate-connected couple, e.g., Fig. 2b
P3, P4, must be considered during slew rate calculation. The
smallest current of iDS,lB,GCC , iDS,bs,1 restricts the slew rate.
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for all d ϵ D
createDeviceVariables() (1)

createDeviceModelEquations() (5) - (8)

for all n ϵ N
createKCLEquation() (3)

createVoltageVariables() (4)

for all fb ϵ FB
createSymmetryConstraints() (9) - (12)

createFunctionalBlocksBehaviorConstraints() (13) - (16)

for all z ϵ z
createPerformanceEquations() (17) - (47)

z = createPerformanceVariables() (2)

Required Circuit netlist with devices D and nodes N, Functional
block decomposition results with functional blocks FB [1] 

Return Analytical equation-based circuit model

Fig. 3. Automatic instantiation of an equation-based circuit model for a given
topology

3) Phase Margin: The phase margin zPM is calculated by
the non-dominant poles and zeros of the circuit:

zPM =
π

2
−

m∑
i=1

atan(
fGBW
fndpi

) +

n∑
j=1

atan(
fGBW
fzj

) (46)

fGBW is the unity-gain bandwidth of the circuit. A positive
zero has a negative influence on the phase margin, like non-
dominant poles.

The non-dominant poles and zeros must be at least an order
of magnitude larger than the dominant pole.

∀fi∈(Fndp∪Fz)
fi
fdp

> 10 (47)

XI. AUTOMATIC INSTANTIATION OF THE
EQUATION-BASED CIRCUIT MODEL BASED ON HPEL

Fig. 3 shows the automatic synthesis of the equation-based
circuit model for a given op-amp topology. The input of the
algorithm are the circuit netlist and the results of the func-
tional block decomposition method in [1], which automatically
identifies all functional blocks described in Sec. II in a circuit
netlist. The basic circuit model and the circuit performance
model are automatically instantiated based on this input.

The algorithm iterates over the devices and nodes in the
circuit to create the basic model. The corresponding variables
and equation are automatically instantiated. This is similar to
a circuit simulation tool.

Symmetry constraints, functional block behavior constraints
and performance equations are automatically created to form
the op-amp performance model. The symmetry and functional
block behavior constraints are created by iterating over all
recognized functional blocks, instantiating the corresponding
constraints by selecting the corresponding variables of the
basic circuit model. This is similar to the method in [39],
which creates constraints for basic transistor pairs.

The performance equations are set up for every performance
variable in (2). Every equation stated on a high level of
abstraction in Sec. X is broken down into the circuit variables
using the intermediate performance equations. Fig. 4 illustrates

for all amplificationStages

createRoutEquation() (24)

createInputConductanceEquation() (19), (20)
createStageOpenLoopGainEquation() (25)

createOpenLoopPerformanceEquation() (44)

for all fb  ϵ FBnout

createOutputConductance() (21) - (23)

Required Functional block decomposition results with
functional blocks FB [1], Transistor variables 

Return Open-loop performance equation

Fig. 4. Performance equation creation on the example of the open loop gain

this procedure with the open-loop gain. To instantiate the
open-loop gain performance equation (44), the open-loop
gain equations of the individual amplification stages must be
created. These equations take the output resistances and the
transconductances of the stages as input (25). The transcon-
ductance of a stage in turn takes the circuit variables as input
(Sec. IX-B1). For the equation of the output resistance, the
equations of the output conductances of all functional blocks
on HL 3 FBnout connected to the output net nout must be
created. The equations of the output conductances has the
circuit variables as input (Sec. IX-B2). Thus, an overall open-
loop gain equation is automatically instantiated with the circuit
variables as input.

Analogously to Fig. 4, the performance equations for every
supported performance feature in (2) are automatically instan-
tiated for a given topology linking the abstract performance
equations in Sec. X to the circuit variables using the inter-
mediate performance equations (Sec. IX). Many intermediate
performance equations are part of several different op-amp
performance equations. The transconductance of the first stage
is for example part of the open-loop gain equation as well
as part of the equation for the unity-gain bandwidth. The
equations are stored topology-independent but customized by
the algorithms. In contrast to the presented approach, the state
of the art is limited to individual topologies and their specific
equation sets.

XII. APPLICATION OF THE HIERARCHICAL PERFORMANCE
EQUATIONS LIBRARY IN AUTOMATIC SIZING

The circuit model automatically created for a topology with
the method in Sec. XI can be applied to size the circuit for
performance requirements given as lower and upper bounds
and for a given process technology. Intermediate performance
requirements, e.g., on poles, are automatically derived from
the given op-amp specification.

The automatically created circuit model is fed into a suitable
solver. We use constraint programming [40] in this work.
Constraint programming is suitable for the combinatorial char-
acter of analog circuit sizing due to the manufacturing-induced
discrete value range of transistor geometries. It allows all
function types, as e.g., trigonometrical, polynomial. No further
approximations must be made to the performance equations.
A detailed description and the adaptations we made to the
constraint programming solver are given in [20]. During the
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sizing process, the basic model of the circuit emulates the
circuit simulation, while the performance model (Secs. VII -
X) describes the overall behavior of the functional blocks of
the given op-amp topology providing the information needed
for transistor sizing.

The tool needs a few seconds to find the first initial
sizing for a circuit. The results are further improved towards
higher performance safety margins by letting the optimizer
run for one more minute. After one minute, the improvement
slowed down significantly in the experiments, therefore the
optimization loop has been set to run for one minute overall.

The runtime equals the runtime of numerical sizing meth-
ods, e.g., [27], which also have small runtimes on modern
hardware due to parallelized processes. However, the lower
computational cost of this method can be demonstrated by in-
tegrating the method into a synthesis tool featuring thousands
of different circuits [41]. In this context, the method is twice
as fast as state-of-the-art numerical approaches, e.g., [32].

Note that for the numerical optimization techniques, the
constraints, parameters, performance features, simulation con-
figuration, and waveform postprocessing, must be set up for
every circuit before starting the optimization.

XIII. EXPERIMENTAL RESULTS

This section presents experimental results for the four
circuits in Fig. 2. We present the performance models au-
tomatically generated with the algorithm in Sec. XI as well
as transistor dimensions (Table IV) and performance values
obtained with the circuit models (Tables V and VI).

A. Performance model

In the following, the important parts of the performance
models of the four circuits in Fig. 2 are described. All
equations were generated individually and automatically using
the algorithms in Sec. XI. The generated circuit models
correspond well to the models presented in analog design
books [33]–[36].

1) Symmetry Constraints: Table III shows the symmetry
constraints derived for the four circuits in Fig. 2. Eight
symmetry constraints for basic structures were derived for
the telescopic op-amp. This is identical to the number of
current biases in the circuit. The large number of symmetry
constraints for the amplification stage subblock level in the
folded-cascode op-amp with CMFB results from the common-
mode feedback (CMFB) stage in which both differential pairs
must be identical. As the two second stages a2,1, a2,2 in the
symmetrical op-amp with high PSRR must be symmetric, four
symmetry constraint were derived for HL 4 for this circuit.

2) Functional Block Constraints: As a cascode current
mirror forms one load part of the telescopic op-amp (Fig. 2a),
its widths are restricted by the corresponding behavioral
constraint (13). Furthermore, as the telescopic op-amp has a
second stage, the output voltages of the first stage, i. e., the
voltage potentials of the nets n5,n8, must be equal (16).

To make the combination of folded-cascode op-amp and
CMFB circuit work, a functional block constraint on the fifth
hierarchy level not mentioned before must be generated for the

TABLE III
SYMMETRY CONSTRAINTS

Telescopic
op-amp

Symmetrical
op-amp

Folded-cascode
op-amp

Complementary
op-amp

HL 2: Structures 8 5 7 7
HL 3: Ampli-
fication stage
subblocks

5 3 12 8

HL 4: Op-amp
subblocks - 4 - -

folded-cascode op-amp with CMFB (Fig. 2b). The unity-gain
bandwidth of the CMFB circuit must be greater than the one
of the op-amp, such that the CMFB circuit is faster.

fGBW,CMFB > fGBW,op−amp (48)

The unity-gain bandwidth is calculated according to (42)
treating the CMFB stage as a first stage.

As the complementary op-amp (Fig. 2d) has a comple-
mentary first stage, the functional block constraints for HL 3
are generated restricting the first stage transconductor to have
equal transconductances, and the stages biases to produce
equal currents.

3) Performance Equations: In the following, the perfor-
mance equations of the four circuit in Fig. 2 are presented.
We focus on the differences between the four circuits.

Quiescent power: For the telescopic op-amp, the currents
following into the positive supply voltage rail are considered
to calculate the power consumption, while for the other three
circuits also the bias currents of the circuit must be considered
as it is applied to nmos transistors. The equation for the
quiescent power of the telescopic op-amp is:

zQP =(vV DD − vV SS)

· (|iDS,P7
|+ |iDS,P9

|+ |iDS,P5
|+ |iDS,P8

|)
(49)

and for the quiescent power of the symmetrical op-amp with
high PSRR:

zQP =(vV DD − vV SS) · (|iDS,P3
|+ |iDS,P1

|
+ |iDS,P2

|+ |iDS,P4
|+ |iDS,P7

|+ |iDS,N7
|)

(50)

Common-mode input voltage: For the telescopic op-amp,
the maximum input voltage is set by the path over the first
stage stage bias:

zvcm,max = vcm,bs,1 = vV DD +vGS,P1
+vGS,P5

−vth,p (51)

For the symmetrical op-amp with PSRR and the folded-
cascode op-amp, zvcm,max is set by the path over the load.
For the folded-cascode op-amp with CMFB, this is:

zvcm,max = vcm,l1 = vV DD + vth,n + vGS,P3
− vth,p (52)

In the telescopic op-amp, the load defines the minimum
input voltage. As higher minimum saturation voltages must be
respected, the load path with the two diode transistors N1, N2

is selected:

zvcm,min = vss + vth,p − (vGS,P3 − vth,n) + vGS,N1 + vGS,N2

(53)

In the other circuits, the minimum input voltage is restricted
by the stage bias of the first stage, which leads to similar
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equations as in (51) with the negative supply voltage as input.
No equations are generated for the complementary op-amp, as
it is assumed to allow all values as input voltage.

Output voltage: In the telescopic op-amp and the symmet-
rical op-amp with high PSRR, the output voltage is restricted
by one transistor on each path of the output stage. The output
voltage equations for the telescopic op-amp are:

zvout,max = vV DD + vGS,P6
− vth,p

zvout,min = vV SS + vGS,N5
− vth,n

(54)

For the folded-casode op-amp with CMFB and the comple-
mentary op-amp, the output voltage is restricted by the load
parts of the first stage, as the first stage is also the output
stage. For each path, two transistors must be considered. For
the folded-cacode op-amp, the output voltage is restricted by:

zvout,max = vV DD + vGS,P4
− vth,p + vGS,P2

− vth,p
zvout,min = vV SS + vGS,N8

− vth,n + vGS,N6
− vth,n

(55)

Common-mode rejection ratio: The common-mode rejection
ratio is calculated for the telescopic op-amp and the symmet-
rical op-amp with high PSRR. To calculate CMRR of the
telescopic op-amp, the open-loop gain of the first stage is
needed. Using (25), we obtain: (21), (19):

AD0,1 =
gmP1

gdP1
·gdP3

gmP3
+

gdN1
·gdN3

gmN1

(56)

N1 is the load transistor chosen for the CMRR calculation as
its gate is connected to an output of the first stage, which leads
to following CMRR equation of the telescopic op-amp:

zCMRR = 2AD0,1 ·
gmN1

gdP5

(57)

As stated in Sec. X-B3, the first and second stage gain must
be considered to calculate CMRR for symmetrical op-amps.
For the symmetrical op-amp with high PSRR, these are:

AD0,1 =
gmN1

gdN1 + gmP1

, AD0,2 =
gmP4

gdP6
+gdP4

gmP6
+ gdN5

(58)

The equation of CMRR then is:

zCMRR = 2AD0,1 ·AD0,2
gmP2

gdN3

(59)

Unity-gain bandwidth: The unity-gain bandwidth is cal-
culated similarly for the telescopic op-amp, for the folded-
cascode op-amp with CMFB and for the complementary op-
amp. For the telescopic op-amp, it is:

zfGBW =
gmP1

2πCn8

(60)

In the complementary op-amp, both nmos and pmos differen-
tial pairs must be considered to calculate the transconductance
of the first stage transconductor (Sec. IX-B1).

In the symmetrical op-amp, also the second stage must be
considered to calculate the unity-gain bandwidth (43):

zfGBW =
AD0,1 · gmP4

2πCn5

(61)

Open-loop gain: The open-loop gain is calculated by the
multiplication of the gain of the stages. Two stages must be

considered in the telescopic op-amp (Fig 2a), three stages in
the symmetrical op-amp (Fig 2c). As the folded-cascode op-
amp with CMFB consists of one stage only, its open-loop gain
is the gain of the first stage.

In the complementary op-amp, two gate-connected couples
exist. The open-loop gain is therefore calculated by:

zAD0
=

gmN4
+ gmP4

gdP8
·(gdP6

+gdN4
)

gmP8
+

gdN8
·(gdN6

+gdP4
)

gmN8

(62)

Slew rate: In the telescopic op-amp, the first stage and the
second stage bias current must be considered for the slew rate:

zSR = min{ |iDS,P5
|

Cn8

,
|iDS,P6

|
Cnout

} (63)

Please note that the capacitance of net n8 is mainly influenced
by the compensation capacitor cC , the capacitance of net nout
by the load capacitor cL.

In the symmetrical op-amp, the second stage and the third
stage are considered for slew rate calculation as stated in
Sec. X-C2. Twice the current of the second stage is considered.

zSR = min{2 · |iDS,N5
|

Cn5

,
|iDS,N6

|
Cnout

} (64)

In the folded-cascode op-amp with CMFB, the bias currents
of the first stage differential pair as well as the gate connected
couple must be considered. This leads to:

zSR =
min{|iDS,N4 |, |iDS,P4 |}

Cnout
(65)

The same considerations must be made for the complementary
op-amp. In addition, the pmos and nmos stage biases are of
interest:

zSR =
min{(|iDS,N2

|+ |iDS,P2
|), (|iDS,N6

|+ |iDS,P6
|)}

Cnout
(66)

Phase margin: Two non-dominant poles are identified for
the telescopic op-amp: one pole for the first stage and one for
the second stage. The compensation capacitor brings a positive
zero along. Hence, the automatically generated equation for
the phase margin is:

zPM =
π

2
− atan(

fGBW
fndp,a1

)− atan(
fGBW
fndp,a2

)− atan(
fGBW
fpz

)

(67)
In the symmetrical op-amp, three non-dominant poles arise:

the first stage non-dominant pole, the non-dominant pole
evoked by the compensation capacitor in the third stage and
the non-dominant pole of the cascode transconductors in the
second stages. The compensation capacitor also leads to a
positive zero. The equation for the phase margin is:

zPM =
π

2
−atan(

fGBW
fndp,a1

)− atan(
fGBW
fndp,a3

)

− atan(
fGBW
fndp,ac,2

)− atan(
fGBW
fpz

)
(68)

For the folded-cascode op-amp with CMFB, the phase
margins of the first stage and the CMFB circuit must be
calculated. As the phase margin of the CMFB circuit is
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TABLE IV
DIMENSIONS FOR THE CIRCUITS IN FIG. 2

Variable Value

WP1
= WP2

172µm
WP3

= WP4
27µm

WP5
247µm

WP6
515µm

WP7
7µm

WP8
7µm

WP9
43µm

WN1
= WN2

90µm
WN3

= WN4
90µm

WN5
130µm

WN6
269µm

WN7
166

LP1
= LP2

9µm
LP3

= LP4
= LP8

4µm
lP5

= LP6
=

LP7
= LP9

3µm

LN1
= LN2

1µm
LN3

= LN4
1µm

LN5
1µm

LN6
= LN7

9µm
Cc 6.4pF

(a) Telescopic op-amp

Variable Value

WN1
= WN2

548µm
WN3

5µm
WN4

290µm
WN5

= WN6
218µm

WN7
= WN8

30µm
WN9

= WN10
141µm

WN11
= WN12

=
WN13

= WN14

84µm

WP1
= WP2

175µm
WP3

= WP4
143µm

WP5
= WP6

55µm
LN1

= LN2
8µm

LN3
= LN4

=
LN5

= LN6
=

LN9
= LN10

3µm

LN7
= LN8

2µm
LN11

= LN12
=

LN13
= LN14

1µm

LP1
= LP2

2µm
LP3

= LP4
=

LP5
= LP6

1µm

(b) Folded-cascode op-amp with
CMFB

Variable Value

WN1
= WN2

8µm
WN3

56µm
WN4

= WN5
205µm

WN6
460µm

WN7
23µm

WP1
= WP2

5µm
WP3

= WP4
15µm

WP5
= WP6

35µm
WP7

287µm
LN1

= LN2
3µm

LN3
= LN7

6µm
LN4

= LN5
9µm

LN6
1µm

LP1
= LP2

=
LP3

= LP4
= LP7

2µm

LP5
= LP6

2µm
Cc 4.5pF

(c) Symmetrical op-amp with high
PSRR

Variable Value

WN1
13µm

WN2
306µm

WN3
= WN4

79µm
WN5

= WN6
39µm

WN7
= WN8

32µm
WN9

13µm
WP1

7µm
WP2

168µm
WP3

= WP4
378µm

WP5
= WP6

66µm
WP7

= WP8
104µm

LN1
= LN2

= LN9
4µm

LN3
= LN4

1µm
LN5

= LN6
5µm

LN7
= LN8

5µm
LP1

= LP2
3µm

LP3
= LP4

1µm
LP5

= LP6
3µm

LP7
= LP8

3µm

(d) Complementary op-amp

restricted by the non-dominant poles of the first stage and the
CMFB stage, this phase margin is the most restrictive one.

In the complementary op-amp, two non-dominant poles
of the first stage must be calculated, respecting the two
differential pairs.

B. Sizing Results

The instantiated equations and constraints are automatically
given to the embedded constraint programming solver GeCode
[42]. Several sizings are calculated for a topology with a
backtracking-search algorithm, which is based on branch-
and-bound (BAB) methods. The transistor dimensions were
generated using a 0.25µm PDK. The supply voltage was 5V
and the bias current 10µA.

Sizing values (Table IV) were generated for the circuits in
Fig. 2, using the specifications in Table V, VI. The perfor-
mance values calculated with the performance models and

TABLE V
PERFORMANCE VALUES OF THE (A) TELESCOPIC OP-AMP (B)

SYMMETRICAL OP-AMP WITH HIGH PSRR

Constraints Spec. Sizing tool BSIM3v3 Average
deviation(a) (b) (a) (b) (a) (b)

Gate-area (103 µm2) ≤ 15 ≤ 10 5.8 5.5 - - -
Quiescent power (mW) ≤ 10 ≤ 15 5.8 4 6.1 4.5 13%
Max. common-mode
input voltage (V) ≥ 3 ≥ 3 3.3 4.3 4.4 4.3 -

Min. common-mode
input voltage (V) ≤ 2 ≤ 2 0 0.8 0.1 0.7 -

Max. output voltage (V) ≥ 4 ≥ 4 4.5 4.5 4.5 4.4 -
Min. output voltage (V) ≤ 1 ≤ 1 0.3 0.1 0.2 0.2 -
CMRR (dB) ≥ 90 ≥ 90 130 95 146 142 11% / 33%
Unity-gain bandwidth
(MHz) ≥ 7 ≥ 7 10 10.3 6.5 6.8 53% / 51%

Open-loop gain (dB) ≥ 80 ≥ 80 120 100 93 97 29% / 3%
Slew rate ( V

µs ) ≥ 15 ≥ 10 28 15 22 11 27% / 36%
Phase Margin (◦) ≥ 60 ≥ 60 60 61 67 59 10% / 3%
Average deviation of all
perf. values - - - - - - 23% / 23%

TABLE VI
PERFORMANCE VALUES OF THE (A) FOLDED-CASCODE OP-AMP WITH

CMFB (B) COMPLEMENTARY OP-AMP

Constraints Spec. Sizing tool BSIM3v3 Average
deviation(a) (b) (a) (b) (a) (b)

Gate-area (103 µm2) ≤ 15 ≤ 5 13.4 4.5 - - -
Quiescent power (mW) ≤ 15 ≤ 5 10 5 11 4.4 10% / 14%
Max. common-mode
input voltage (V) ≥ 3 - 4.5 - 4.4 - -

Min. common-mode
input voltage (V) ≤ 2 - 0.9 - 1 - -

Max. output voltage (V) ≥ 3.5 ≥ 3.5 4 3.5 4.1 3.8 -
Min. output voltage (V) ≤ 1 ≤ 1.5 0.9 1.4 1 0.5 -
CMRR (dB) ≥ 80 ≥ 70 122 133 118 136 3% / 2%
Unity-gain bandwidth
(MHz) ≥ 10 ≥ 10 10 28 10.5 19 5% / 47%

Open-loop gain (dB) ≥ 70 ≥ 80 75 84 71 86 6% / 2%
Slew rate ( V

µs ) ≥ 15 ≥ 15 24.5 23 19 20 29% / 15%
Phase Margin (◦) ≥ 60 ≥ 60 82 62 83 57 1% / 9%
Average deviation of all
perf. values. - - - - - - 9% / 15%

results from circuit simulation are included in these tables.
The average deviations for all performance specifications are
9% - 23%. This meets the requirement of analog designers
who expect a 20% - 30% deviation between the Shichman-
Hodges model and full circuit simulation. The largest deviation
is obtained for the unity-gain bandwidth of the telescopic
op-amp and of the symmetrical op-amp. It is overestimated
and is one of few performance features that do not meet the
specification. The unity-gain bandwidth depends linearly on
the transconductance of the input transistor of the first stage
(42). This transconductance is often overestimated using the
Shichman-Hodge model.

For the symmetrical and complementary op-amps, the phase
margin requirement is not fulfilled. However, the deviation
between the simulation and calculated value is very small,
3% respectively 9%. The equation-based model of the phase
margin is quite accurate.

All other specifications are fulfilled by the calculated and
simulated performance values. [2] shows additional sizing
results obtained with the HPEL. The paper presents a synthesis
tool featuring thousands of different op-amp topology using
the HPEL to evaluate op-amp topologies. Sizing results for
100 different topologies are compared. The average deviation
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Fig. 5. Transistor parameter for different vGS -values

is again between 20% - 30% and thus meets the expectation
of designers. Further simulation-based optimization may be
performed on the circuit to improve the performance.

Fig. 5 compares the Shichman-Hodges model used in HPEL
and the BSIM3v3 model used in simulation. It shows the
transconductance gm, the output conductance gd and the
drain-source current iDS of a transistor for different vGS-
values obtained with the two models. The transistor width
and length are set to 10µm, 1µm respectively. The drain-
source voltage was set to be 1.5 V, such that the transistor
operates in saturation with strong inversion, a common work-
ing region in analog circuits. For small vGS values, the two
transistor models correspond well. Higher vGS-values lead
to deviations. Keeping vGS small hence leads to accurate
performance results using HPEL. Future work is on integrating
more complex transistor models, such as the EKV model,
into HPEL. The EKV model has a low complexity compared
to BSIM3v3, but features a good accuracy in all transistor
regions. Integrating more advanced transistor models makes
the method also usable for modern technologies with small
channel lengths. Other approaches integrate the gm/Id-method
based on look-up tables in the sizing tool [38].

XIV. CONCLUSIONS, LIMITATIONS, OUTLOOK

This paper presented a method to automate the set-up of an
equation-based behavioral description of an op-amp and ap-
plied it to circuit sizing. A hierarchical performance equation
library (HPEL) was developed, allowing the equations to be
automatically set up based on a functional block analysis of
the circuit. The created circuit model combines simulation and
sizing as it uses KCL/KVL to simulate the currents and volt-
ages in the circuit and performance equations to describe the
circuit behavior suitable for sizing. The analytical performance
equation makes the usage of numerical performance evaluation
during sizing unnecessary. The method is generic in the sense
that new types of circuits are not considered by setting up the
equations from scratch, but by extending the HPEL with the
respective new functional blocks and equations.

For the method to be applicable, an analytical description
of the circuit class has to be available. While for established
circuit classes, e.g., [43], [44], such descriptions exist, this may
not be the case for a brandnew circuit class that just evolves.

Currently, the HPEL supports one- and two-stage op-amps
with simple compensation structures. The method can be
extended to advanced frequency compensation techniques as
[45], [46] and multi-stage op-amps. As [43], [44] show, multi-
stage op-amps are describable with analytical equations on a
high level of abstraction, which can be added to the HPEL.
This, e.g., needs new equations to support the arising poles
and zeros of nested compensation and feedback-loops, which
can be developed based on the structural studies in [43], [44].
Additionally, the concept of functional block description can
be transferred to other analog circuit classes. This requires an
extension of the functional block decomposition method in [1]
as well as an extension of the HPEL and the corresponding
algorithms. A cross-coupled pair for example is frequently part
of an oscillator or comparator circuit. Its formalized structural
description would be added to [1]. Its behavioral equations
would be added to the HPEL.
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