
Testing Cyber-Physical Systems Using a Line-Search Falsification Method

Downloaded from: https://research.chalmers.se, 2024-05-01 05:06 UTC

Citation for the original published paper (version of record):
Ramezani, Z., Claessen, K., Smallbone, N. et al (2022). Testing Cyber-Physical Systems Using a
Line-Search Falsification Method. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(8): 2393-2406. http://dx.doi.org/10.1109/TCAD.2021.3110740

N.B. When citing this work, cite the original published paper.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022 2393

Testing Cyber–Physical Systems Using a
Line-Search Falsification Method

Zahra Ramezani , Koen Claessen, Nicholas Smallbone, Martin Fabian , Senior Member, IEEE,
and Knut Åkesson, Associate Member, IEEE

Abstract—Cyber–physical systems (CPSs) are complex and
exhibit both continuous and discrete dynamics, hence it is dif-
ficult to guarantee that they satisfy given specifications, i.e., the
properties that must be fulfilled by the system. Falsification of
temporal logic properties is a testing approach that searches
for counterexamples of a given specification that can be used
to increase the confidence that a CPS does fulfill its specifica-
tions. Falsification can be done using random search methods
or optimization methods, both of which have their own bene-
fits and drawbacks. This article introduces two methods that
exploit randomness to different degrees: 1) the optimization-free
Hybrid-Corner-Random (HCR) and 2) the direct-search method
Line-Search Falsification (LSF). HCR combines randomly chosen
parameter values with extreme parameter values, which performs
surprisingly well on benchmark evaluations. The gradient-free
optimization-based LSF optimizes over line segments through a
vector of inputs in the n-dimensional parameter space. The two
methods are compared to the Nelder-Mead and SNOBFIT meth-
ods, using a well-known set of benchmark problems and LSF
shows better performance than any of the evaluated methods.

Index Terms—Cyber–physical systems (CPSs), simulation-
based optimization, testing, falsification.

I. INTRODUCTION

CYBER–PHYSICAL systems (CPSs), [1], bridge the
cyber-world of communications and computing to the

physical world. These systems exhibit both continuous and
discrete dynamics. CPSs are often safety-critical systems,
e.g., autonomous cars and medical devices, hence their cor-
rect functioning is crucial. Two commonly used methods for
assessing the correctness of CPSs, see [2], are formal verifica-
tion and testing. The main problem is to decide if it is possible

Manuscript received 22 March 2021; revised 17 June 2021; accepted
17 August 2021. Date of publication 6 September 2021; date of current
version 19 July 2022. This work was supported in part by the Swedish
Research Council (VR) Project SyTeC VR under Grant 2016-06204; in part
by the Swedish Governmental Agency for Innovation Systems (VINNOVA)
under Project TESTRON 2015-04893; and in part by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation. This article was recommended by Associate
Editor Q. Zhu. (Corresponding author: Zahra Ramezani.)

Zahra Ramezani, Martin Fabian, and Knut Åkesson are with the
Department of Electrical Engineering, Chalmers University of Technology,
41718 Gothenburg, Sweden (e-mail: rzahra@chalmers.se; fabian@
chalmers.se; knut@chalmers.se).

Koen Claessen and Nicholas Smallbone are with the Department of
Computer Science and Engineering, Chalmers University of Technology,
41718 Gothenburg, Sweden (e-mail: koen@chalmers.se; nicsma@
chalmers.se).

Digital Object Identifier 10.1109/TCAD.2021.3110740

to construct counterexamples, i.e., inputs that make the system
under test (SUT) violate the specifications.

Formal verification is used to prove or disprove the cor-
rectness of the system with respect to a formal specification.
This is typically done using model-checking or deductive ver-
ification [3]. However, for many industrial systems, formal
verification is not a viable approach because of three reasons:
1) typically there are no formal models available to do verifica-
tion on; 2) even if formal models were available, the time and
space complexity of the verification algorithms makes them
intractable for large systems; and 3) even if formal models
were available and the algorithmic complexity tractable, ver-
ification of systems exhibiting a combination of discrete and
continuous dynamics is, in general, an undecidable problem [4].
Though formal verification is both possible and practical for
certain types of systems that are limited in their behavior and/or
size, for large systems comprising other systems that all have
different behavior, it is not a tractable approach.

Testing is a less formal approach that evaluates if the SUT
behaves correctly with respect to given inputs. In testing, it
is often assumed that the system can be simulated, but it is
not assumed that a mathematical model is available. Contrary
to formal verification, with testing, it is possible to prove the
presence of counterexamples but not their absence. The main
challenge with testing is to reduce the number of tests done so
as to find as many counterexamples for a given specification
as early as possible. Thus, there is a need for rigorous methods
to cleverly search for inputs that break the specification.

Simulation-based falsification approaches [5] are a class of
methods that can be used to test CPSs given only a black-box
model of the SUT, but with formal specifications of the closed-
loop behavior available. These specifications can, for example,
be given in metric interval temporal logic (MITL) [6] or signal
temporal logic (STL) [7], but the specification can also be
defined using high-level languages. Eddeland et al. [8] presented
how STL specifications can be automatically generated from
Simulink charts, hence supporting engineers in the specification
of formal specifications without their needing to be trained
in temporal logic. The combination of black-box models for
the SUT, together with white-box formal specifications, is a
reasonable assumption in many industrial applications.

CPSs are typically developed using a model-based
development paradigm. The models are often used for
control design or optimization, but can also be used in
simulation-based falsification. In simulation-based falsification
using optimization, the goal is to reduce the number of tests

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0873-7712
https://orcid.org/0000-0003-1287-9748

2394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

by using an optimization method to decide on the next set of
input signals from the evaluation of the simulation results from
the previous simulations. A key challenge here is to choose
the optimization method and the kind of information that the
optimization method should use to decide on the next set of
parameter values. Since the number of input signals might be
large, and optimization methods are sensitive to the number of
parameters, the allowed input signals are often parameterized
using relatively few parameters. For example, for sinusoidal
signals, the parameters might be the period and the amplitude.

The falsification process is performed using quantitative
semantics [9], [10], of the specification. Quantitative semantics
define an objective function that expresses a virtual distance
to falsifying the specification. Given input and output traces
from a simulation, the objective function is used to calcu-
late an objective value that can guide the falsification process
toward an input that is more likely to falsify the specification.
Claessen et al. [11] introduced the concept of valued booleans
(VBools) to express different quantitative semantics, e.g., Max
and Additive.

The choice of optimization method affects the efficiency
of the falsification. By assuming that the SUT is given as a
black-box model, the optimization approach is restricted to
black-box simulation-based optimization methods [12], [13],
where gradients cannot be analytically computed. Black-box
optimization is generally divided into direct search methods
and model-based methods.

Direct-search methods are in [14] defined as the sequential
examination of trial solutions generated by a certain strat-
egy. A direct-search method uses and compares only objective
function values at a collection of input parameters (points) to
directly determine new candidate points for future exploration
without any gradient approximation. Direct-search methods
include the classic Nelder–Mead (NM) procedure [15].

Model-based search methods build a surrogate model of
the objective function to guide the optimization process [13].
Bayesian optimization [16] is a global optimization method
that has shown to be efficient for black-box optimization
when the objective function is expensive to evaluate. Bayesian
optimization is best suited for continuous domains and a
relatively moderate number of input parameters. For CPSs,
the system dynamics might switch between different discrete
modes, each having different system dynamics and constraints,
see for example [17]. This behavior of the system dynamics
negatively affects the usefulness of a model-based approach
for falsification of CPSs, and has to be explicitly handled for
a Bayesian optimization approach to be successfully used for
simulation-based falsification.

In [18], seventeen gradient-free optimization methods are
reviewed and evaluated on a set of benchmark problems.
These include both direct-search methods, such as NM and
Mesh adaptive direct search algorithms [19], and model-based
methods, like SNOBFIT [20]. The results show that no single
optimization method consistently outperforms the others, but
SNOBFIT was one of the best-evaluated methods.

Simulation-based falsification using different combinations
of optimization algorithms and quantitative semantics were
evaluated on a set of benchmark problems in [21]. The

evaluation showed that quantitative semantics matter but also
that the choice of optimization methods is very important.
Furthermore, the study showed that NM and SNOBFIT have
the best performance, with SNOBFIT as the overall top
performer.

Three quantitative semantics, Max, Additive, and constant,
were evaluated in [21]. The latter semantics works by assign-
ing a constant positive value if the specification is fulfilled and
a constant negative value if it is falsified. A constant objec-
tive value does not hold any information for the optimization
methods about how far away from or close to falsifying the
specification the current point is. In these experiments, it was
observed that when SNOBFIT uses a constant semantics and
thus does not get any hints in which direction to continue
the search, it tends to explore new parameter values that are
toward the extreme values of the allowed parameter ranges. We
refer to these extreme values as the corner points. Surprisingly,
SNOBFIT using a constant objective value performed as well
as or better than NM using both Max and Additive semantics.

Random testing [22] is an optimization-free approach that,
despite its simplicity, has proven to be useful for large systems.
In [23], random testing is used to test space mission software
and was shown to be a good complement to formal verifi-
cation. In [24], the feedback-directed random test generation
had better fault detection and coverage than the structured test
generation used in the study. Extensions of random testing
include adaptive random testing [25], where empirical obser-
vations show that many faults occur in contiguous areas of
the input domain. In [26], the risks of using coverage-based
criteria are discussed where completely randomized test-suites
identified 13.5% more faults than test suites that were gener-
ated to specifically achieve coverage. Random search has also
been explored as a strategy for hyper-parameter optimization
in machine learning approaches. Bergstra and Bengio [27]
showed that randomized trials are more efficient than uniform
trials for hyper-parameter optimization. One reason for this is
that only a few parameters really matter for many data sets,
but which ones differ from case to case. Together, these obser-
vations from practical software systems highlight the benefits
of randomness in testing applications.

This article focuses on CPSs with software components
integrating with a physical environment typically described
using differential equations. Evaluation results for falsifica-
tion of CPSs in this article show that randomized testing is
also an efficient strategy for CPSs. Hence, this article intro-
duces two methods that explore the search space randomly
to different degrees. The first one is Hybrid-Corner-Random
(HCR), an optimization-free method that will serve as a base-
line method to compare with. The second one is Line-Search
Falsification, a direct-search method. The strong dependence
on randomness in these methods is motivated by the complex
dynamic behavior of the SUT, which complicates model-based
optimization approaches. However, as is shown in this article
for many falsification problems, it is also useful to consider
corner points.

While HCR only relies on random and corner points, LSF
combines random exploration with local search, by randomly
generating lines in the n-dimensional parameter space for local

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

RAMEZANI et al.: TESTING CPSs USING LINE-SEARCH FALSIFICATION METHOD 2395

search. The implementation of LSF is very small and straight-
forward, and evaluation on benchmark falsification problems
indicates that LSF performs as well as or better than more
complex optimization methods.

For simulation-based falsification of CPSs, several tool-
boxes are available. S-TaLiRo [28] and Breach [29] are both
MATLAB/Simulink toolboxes that can be used for the fal-
sification of large-scale industrial systems. S-TaLiRo finds
counterexamples using specifications expressed in MITL, and
Breach performs falsification using specifications in STL. In
this article, Breach is used to evaluate the proposed methods,
but they are generic and could be implemented in most other
tools.

The main contributions of this article are given in the
following.

1) The introduction of LSF, an optimization-based method
that exploits corners and random points, combined with
local search. These techniques are well chosen for
efficient falsification of CPSs.

2) The introduction of the optimization-free method HCR,
that combines using corner points of the parameter
space with random search. HCR is proposed as a base-
line method to benchmark more sophisticated techniques
against.

3) The benchmarking of the optimization-free methods,
Corners, Random, and HCR with the optimization-based
methods, LSF, NM, and SNOBFIT. The benchmarks are
published CPS falsification problems [30], [31].

This article is organized as follows: STL and falsification
of temporal logic are introduced in Section II. Section III pro-
poses the suggested HCR method. Section IV introduces the
LSF method. Section V evaluates the performance of the sug-
gested methods on the chosen benchmark problems. Finally,
Section VI summarizes the contributions.

II. SIGNAL TEMPORAL LOGIC FOR FALSIFICATION

Falsification of temporal specifications needs a quantitative
semantics that defines an objective function to measure the
distance of the specification to being falsified. In optimization-
free methods, the objective function is used only to evaluate
if the specification is falsified or not. In optimization-based
methods, though, the objective function is used to guide the
falsification process by choosing the next set of input values
such that they are more likely to falsify the specification.

Temporal specifications are typically expressed in linear
temporal logic (LTL) [32]. However, LTL cannot reason about
time intervals, something that is necessary for many spec-
ifications of CPSs. For this, MITL [6] and STL [7] have
been introduced. In our work, STL specifications are used,
but the proposed methods work with any quantitative seman-
tics, though the performance of the falsification process might
depend on the particular quantitative semantics. Thus, the
proposed methods can be evaluated using two different quan-
titative semantics defined for STL, Max, and Additive. Both
of these can be expressed in terms of VBools [11].

A. Signal Temporal Logic

The syntax of STL [7] is defined as follows:

ϕ : := μ|¬μ|ϕ ∧ ψ |ϕ ∨ ψ |�[a,b]ϕ|♦[a,b]ϕ

where the predicate μ is μ ≡ μ(xs) > 0 and xs is a signal; ϕ
and ψ are STL formulas; �[a,b] denotes the globally operator
between times a and b (with a < b); and ♦[a,b] denotes the
finally operator between a and b.

The satisfaction of the formula ϕ for the discrete signal
xs, consisting of both inputs and outputs to the SUT, at the
discrete-time instant k is defined as

(xs, k) |= μ ⇔ μ(xs[k]) > 0
(xs, k) |= ¬μ ⇔ ¬((xs, k) |= μ

)

(xs, k) |= ϕ ∧ ψ ⇔ (xs, k) |= ϕ ∧ (xs, k) |= ψ

(xs, k) |= ϕ ∨ ψ ⇔ (xs, k) |= ϕ ∨ (xs, k) |= ψ

(xs, k) |= �[a,b]ϕ ⇔ ∀k′ ∈ [k + a, k + b], (xs, k′) |= ϕ

(xs, k) |= ♦[a,b]ϕ ⇔ ∃k′ ∈ [k + a, k + b], (xs, k′) |= ϕ.

Instead of only checking the Boolean satisfaction of an STL
formula, the notion of quantitative value, i.e., an objective
value, will be defined to measure how far away a specification
is from being falsified. A VBool [11] 〈v, y〉 is a combination
of a Boolean value v (true , or false ⊥) together with a real
number y that is a measure of how true or false the VBool is.
This value will be used as a measure of how convincingly a
test passed, or how severely it failed, respectively. This value
is defined by the quantitative semantics.

B. Quantitative Semantics

While Max is the most widely used quantitative semantics
for STL, it has the disadvantage that for an and-clause only
the smallest value will affect the final value, making the other
part of the clause invisible. To allow both parts of the clause to
affect the final value, Additive was introduced in [11], and later
evaluated for falsification purposes in [8], [21], [31]. Additive
is, in general, as good as or better than Max for falsification
problems. In this paper we thus consider only the Additive in
the evaluation part.

The and operator in Additive is defined using VBools as
follows.

(, y) ∧ (, s) =
(

, 1
1
y + 1

s

)

,

(, y) ∧ (⊥, s) = (⊥, s),
(⊥, y) ∧ (, s) = (⊥, y),

(⊥, y) ∧ (⊥, s) =
(
⊥, (y + s)

)
.

Using the de Morgan laws, the or operator can be defined in
terms of and, as: 〈vy, y〉 ∨ 〈vs, s〉 = ¬v(¬v〈vy, y〉 ∧ ¬v〈vs, s〉),
where VBool negation is defined as ¬v〈vy, y〉 = 〈¬vy, y〉.

always is defined as �[a;b]ϕ =
b∧

k=a
ϕ[k]#δt, where ϕ is a

finite sequence of VBools defined for all the discrete time
instants in [a, b]. δt is the simulation step size that makes the
quantitative value independent of the simulation time, and #
is defined as

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

2396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Fig. 1. Flowchart of optimization-based falsification. The input and output
signals are denoted by xs

i and xs
o, respectively.

〈⊥, y〉#δt = 〈⊥, y · δt〉,
〈, y〉#δt = 〈, y/δt〉.

Furthermore, the eventually operator is defined over
an interval [a, b] in terms of always, as: ♦[a,b]ϕ =
¬(�[a,b](¬v ϕ)).

C. Falsification

The main falsification procedure is shown in Fig. 1 for the
optimization-based falsification approach. The possible input
signals are parameterized with an n-dimensional vector, x,
where each element is allowed to be within a defined range.
A discrete sequence of inputs is generated by the Generator
module that, given the parameters x, generates an input trace
describing a sequence of input vectors, xs

i [k], for the input
signals. Each element in the sequence is indexed by k, where
k ranges from the start of the simulation to the end of the
simulation, and we denote the full sequence by xs

i . Note that
the dimension of the input vector xs

i is often lower than the
dimension of x, since multiple parameters are used to param-
eterize each input signal. The SUT is simulated with the xs

i
as inputs, and its corresponding output xs

o is generated by the
Simulator. In the evaluation of specifications both the input
and output signals are used, and we denote the combination
of xs

i and xs
o by xs.

The input xs
i and output vectors xs

o and the specification ϕ
are used together with the objective function f ϕ(xs) to evaluate
whether the specification ϕ is falsified or not.

By using a quantitative semantics the specification can be
determined to be satisfied or not. If it is satisfied, the seman-
tics will also give a value of how convincingly the test passed.
If the specification is not fulfilled, the current set of input and
output traces is a counterexample, and thus the falsification
process can terminate. However, in the sequel, we will con-
sider the situation where the specification is fulfilled and the
aim of the falsification is to lower the value in order to try to
find counterexamples.

Let ϕ be the specification, possibly containing temporal
operators. Given ϕ, the traces xs, and the choice of quantita-
tive semantics, the evaluation of xs will return a VBool 〈v, y〉,
where v denotes if ϕ is satisfied or not, and y is the measure.

Define f ϕ(xs) such that

f ϕ(xs) =
{

y, if v =
−y, if v = ⊥.

A negative objective function value, f ϕ(xs) < 0, means that
the specification is falsified; thus, the falsification procedure
may stop. A non-negative objective function value, f ϕ(xs) ≥ 0,

means that the specification is not falsified; it leads to new
parameters being sampled, and the process is repeated. The
parameter optimizer generates new parameter values within
given ranges to find lower objective function values.

The optimization problem is formulated as follows. Let f ϕ

be the objective function defined above. The lower and upper
bounds on the n-dimensional parameter vector x are defined
as l = (l1, l2, . . . , ln)T and u = (u1, u2, . . . , un)

T , respectively.
The falsification problem is to check if f ϕ(x∗) < 0 where x∗
is defined by

x∗ = arg min
l≤x≤u

f ϕ(xs). (1)

With slight abuse of notation we will write f (x) as shorthand
for f ϕ(xs), where xs

i is defined by the Generator by using the
parameters x, and xs

o is the output of the Simulator with xs
i as

the input trace.
It is important to note that for falsification of CPSs, the

objective function value is defined by the input and output
traces of the CPS. The output traces are defined by the inputs
and the system dynamics. In the simulation-based falsification,
the objective function is fully known, but the system dynamics
is given as a black-box model.

The optimization methods that are compared to in this
article are NM and SNOBFIT, both briefly described below.

NM [15] is a direct-search method that starts with a sim-
plex set of n + 1 points where n is the number of dimensions
of the optimization problem. In each iteration, the points are
sorted from the lowest to highest objective function value. NM
attempts to replace the point with the highest objective func-
tion value with a new point obtained by reflection, expansion,
or contraction. If all of these fail, the entire simplex shrinks
toward the point with the lowest objective function value, n
new points are generated, and the above process is continued.

SNOBFIT [20] is a model-based method that works by
building surrogate models around each evaluated point. The
optimization proceeds by processing of parameter values and
the corresponding function values and recommending a new
set of parameters values to evaluate. SNOBFIT typically
has a fast local search and contains parameters that con-
trol the balance between the local and global search of the
optimization.

III. HYBRID CORNER-RANDOM METHOD (HCR)

This section introduces the Hybrid Corner-Random (HCR)
falsification method. This is an optimization-free method that
explores corner points, i.e., extreme values within the allowed
parameter ranges, in combination with evaluating random
parameter values also within the allowed parameter ranges.

To clarify the meaning of a corner point, assume a system
with n input parameters x1, . . . , xn, where each parameter has
a lower and upper bound. There are 2n corner points, where
a corner point only contains values that are at the lower or
upper bound for each parameter.

For HCR, shown in Algorithm 1, the quantitative seman-
tics used does not matter. It is merely evaluated whether the
specification is falsified or not at the currently selected point.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

RAMEZANI et al.: TESTING CPSs USING LINE-SEARCH FALSIFICATION METHOD 2397

Algorithm 1 Hybrid Corner-Random Method for Falsification
1: curr_simulation = 0;
2: Pick a corner point, x.
3: while curr_simulation < max_simulations do
4: Simulate system with x as input.
5: curr_simulation++;
6: Evaluate spec at x.
7: if the spec is falsified then
8: Return 〈Falsified, x〉.
9: else

10: if curr_simulation mod 2 == 0 or corners exhausted then
11: Pick a random point x.
12: else
13: Pick a corner point x, not previously selected.
14: end if
15: end if
16: end while
17: Return 〈Not Falsified, the last evaluated x〉.

Algorithm 1 outputs the tuple 〈Falsified /Not Falsified, x〉,
where the first element describes if the specification was fal-
sified or not, and the second element x is an n-dimensional
parameter point with the following properties.

1) If the specification is falsified, f (x) < 0.
2) If the maximum number of simulations is reached and

the specification is not falsified, x is the last evaluated
point.

A. Description

Algorithm 1 starts with a corner point, x, at line 2. In each
iteration, while the number of simulations, curr_simulation,
is less than the given max_simulations, the algorithm picks a
corner or random point x. Then, the system is simulated at the
current point x to evaluate the specification. If the specification
is falsified, the algorithm terminates, lines 7 and 8. Otherwise,
if the specification is not falsified, for the next iteration, a new
random or corner point x will be picked, lines 9–15.

It should be mentioned here that the number of corners
depends on the dimension of the input parameters, x. Since the
number of corners is constant, if there are no new corners to
select, the algorithm will continue working with only random
points, lines 10–14, until the maximum number of iterations
has been executed.

Note that, the uniform-random (UR) method is used in this
article as the random method. Other random search methods
could be used in the HCR method.

IV. LINE-SEARCH FALSIFICATION (LSF)

In the previous section, HCR, an optimization-free approach
was presented. From the evaluation in Section V we will see that
while the HCR method is quite successful in falsifying many
of the specifications, there are also harder problems where an
optimization-based approach might be more efficient. In this
section, Line-Search Falsification, LSF, is introduced. LSF is a
gradient-free direct-search optimization-based approach. While
HCR only relies on random and corner points, LSF combines
random exploration with local search, by randomly generating
lines in the n-dimensional parameter space. On these lines,
corner points for different sets of parameters are evaluated

together with a local search to find the minimal value of the
objective function along the lines. When no improvements are
reported for a number of iterations, a new line is generated for
further exploration. LSF combines random search, with corner
points, with a local search without being dependent on building
a surrogate model of the objective function.

The method is presented in Algorithm 2, and has been
implemented in Breach. The output of LSF is the tuple
〈Falsified /Not Falsified, x〉, where the first element describes
if the specification was falsified or not, and the second element
x is an n-dimensional parameter point where:

1) if the specification is falsified, f (x) < 0;
2) if the maximum number of simulations is reached and

the specification is not falsified, x is the point with the
minimum positive objective function value, f (x) ≥ 0.

A. Description

LSF generates random lines through the parameter space
and then does local search along the line but always within the
allowed parameter range. Technically, the local search is done
along a line segment since it has two end points, and not along
a line that extends infinitely in both directions. However, in the
description below line is used to refer to both line segments
and lines when the exact meaning is clear from the context.

LSF (see Algorithm 2) consists of the following steps.
1) Initial Points: LSF needs three-parameter points during

the optimization process, and a new point is generated in each
iteration. The first one point has to be identified, line 1. This
point is the middle point x = [(l + u)/2] in each of the
n dimensions. Note that, this point could instead be chosen
randomly within the range (l, u). The SUT is then simulated
with x as input parameters, that define xs as the discrete input
signals, and the corresponding objective function value f (x)
is computed. This is handled by the call to Eval(x), which
returns f (x). If f (x) < 0, then the specification is falsified and
the algorithm terminates. If max_simulations have been done
without falsifying the specification, Not Falsified is returned
together with the point with the minimum positive objective
function value, lines 4–6. Otherwise, if curr_simulations is
larger than one, the heuristic H1 is called, lines 7–9. When
curr_simulations is not larger than 1, H1 is not called, as will
be discussed later. Then, SelectPoints(x) is called, line 10.

2) SelectPoints: The three points, xM , xL, and xR,
are defined and generated in the SelectPoints(x) function.
SelectPoints(x) picks a random line that goes through x and
computes end points xL and xR, lines 23 and 24. There are
four options for how to pick these end points, described in the
following paragraphs.

3) Pick Line Segments Through Point x: Let x =
(x1, . . . , xn)

T , where li ≤ xi ≤ ui, be an n-dimensional point
within the given boundaries. Pick a random direction vector
d = (d1, . . . , dn)

T where di �= 0 for 1 ≤ i ≤ n. Define the
function g:Rn → R

n where each dimension i, 1 ≤ i ≤ n, of g
is defined by gi as

gi (z) =

⎧
⎪⎨

⎪⎩

ui, if xi + z di > ui

xi + z di, if li ≤ xi + z di ≤ ui

li, if xi + z di < li.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

2398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Algorithm 2 Line-Search Falsification

1: x = (l+u)
2 ;

2: global curr_simulation = 0;
3: while Eval(x) ≥ 0 do
4: if curr_simulation ≥ max_simulations then
5: Return 〈Not Falsified, x〉
6: end if
7: if curr_simulations > 1 then
8: x = Heuristic H1(xold, x)
9: end if

10: (xL, xM, xR) = SelectPoints (x)
11: xold = x;
12: x = FalsifyLine(xL, xM, xR, x)
13: end while
14: Return 〈Falsified, x〉

f (x) = Eval(x)

15: map(x,f (x)) evaluations;
16: if x is not in the evaluations map then
17: Simulate with x as input, compute f (x) using the quantitative

semantics.
18: Store (x, f (x)) in the evaluations map;
19: curr_simulations++;
20: end if
21: Look up the value, f (x), of x in the evaluations map.
22: Return f (x)

(xL, xM, xR) = SelectPoints(x)

23: Pick a random line that goes through x.
24: Compute the end-points xL and xR by using one of Options 1-4.

Option 1: xL = x, xM = (xR+xL)
2 , xR is a point where one of

the dimensions is on the boundary of l or u.
Option 2: xL = x, xM = (xR+xL)

2 , xR is a point where half of
the dimensions are on the boundary of l and u.
Option 3: xL = x, xM = (xR+xL)

2 , xR is a corner point.
Option 4: xM = x, xR and xL are the points where at least one
of the dimensions is on the boundary of l or u, or is a corner
points.

25: Return (xL, xM, xR)

x = Heuristic H1

26: if f (xold) < f (x) then
27: x = be the second point with lowest objective function value

of the last call to FalsifyLine.
28: end if
29: Return x

x = FalsifyLine(xL, xM, xR, x)

30: iterations_without_improvement = 0;
31: while iterations_without_improvement < max_iterations do
32: if Eval(xL) < 0 then Return xL end
33: if Eval(xR) < 0 then Return xR end
34: if Eval(xM) < 0 then Return xM end
35: if Eval(xL) < Eval(xR) and Eval(xL) < Eval(xM) then
36: Let xnew = (xL+xM)

2 ,
37: if Eval(xnew) < Eval (xL) then
38: x = xnew
39: end if
40: xR = xM , xM = xnew
41: else if Eval(xR) < Eval(xL) and Eval(xR) < Eval(xM) then
42: Let xnew = (xM+xR)

2 ,
43: if Eval(xnew) < Eval(xR) then
44: x = xnew
45: end if
46: xL = xM , xM = xnew
47: else
48: if

(||xL − xM ||2 ≥ ||xM − xR||2
)

then
49: Let xnew = (xL+xM)

2 ,
50: if Eval(xnew) < Eval(xM) then
51: x = xnew
52: xR = xM , xM = xnew
53: else
54: xL = xnew
55: end if
56: else
57: Let xnew = (xM+xR)

2 ,
58: if Eval(xnew) < Eval(xM) then
59: x = xnew
60: xL = xM , xM = xnew
61: else
62: xR = xnew
63: end if
64: end if
65: end if
66: if x == xnew then
67: iterations_without_improvement = 0;
68: else
69: iterations_without_improvement++;
70: end if
71: end while
72: Return x

Let z+
k ∈ Rf>0 be the smallest positive value such that for

at least k distinct dimensions

gi
(
z+

k

) = ui or gi
(
z+

k

) = li.

Let z−
k ∈ R<0 for 1 ≤ k ≤ n be the smallest negative value

such that for at least k distinct dimensions

gi
(
z−

k

) = ui or gi
(
z−

k

) = li.

In the sequel, we refer to the end points defined by z+
1

as Option 1, z+
�(n/2)� as Option 2, and z+

n as Option 3. Let
zj,k = (z−

j , z+
k), 1 ≤ j, k ≤ n for Option 4.

For Options 1–3, define end points for a given z+
k as xL = x,

xR = g (z+
k), and xM = [(xL + xR)/2]. For Option 4, define end

points for a given zj,k as xL = g (z−
j), xR = g (z+

k), and xM = x.

Note that which option to use is predetermined before
Algorithm 2 starts, and the same option is used during the
entire execution.

Fig. 2 exemplifies these four options in two dimensions
n = 2, i.e., two input parameters with respective lower and
upper bounds. We are allowed to take points within the input
parameter box (l, u). Thus, the four corner points are

⎛

⎜
⎝
l1
l2

⎞

⎟
⎠,

⎛

⎜
⎝

l1
u2

⎞

⎟
⎠,

⎛

⎜
⎝
u1
l2

⎞

⎟
⎠,

⎛

⎜
⎝
u1
u2

⎞

⎟
⎠.

Fig. 2(a) shows an example for Option 1 where k = 1.
Since this is a 2-D case, Options 1 and 2 will be the same.
In this graph, the chosen line starts from xL in the box and

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

RAMEZANI et al.: TESTING CPSs USING LINE-SEARCH FALSIFICATION METHOD 2399

(a) (b)

(c) (d)

Fig. 2. Examples in two dimensions for the four options: (a) Example for
Option 1 and Option 2, where k = 1 and x = xL; (b) Example for Option 3,
where k = 2 and x = xL; (c) and (d) Examples for Option 4, where k = 1,
j = 1 and k = 2, j = 1, respectively, and x = xM .

ends up at the point xR where it cuts off at the upper bound
of dimension 1.

Fig. 2(b) shows an example for Option 3 where k = 2. In
this graph, the chosen line starts from xL in the box and ends
up at the point xR where it cuts off the corner point (u1, u2)

T .
To get a clear understanding of how to choose a line accord-

ing to Option 4, Fig. 2(c) and (d) are given. In Fig. 2(c) where
k = 1 and j = 1, we work with a line segment where xR is on
the upper bound of the first dimension, u1, and xL is on the
lower bound of the first dimension, l1. The line can be a line
that passes through xM , but it can also be two line segments
that connect xM to xL and xM to xR as is shown in Fig. 2(d)
where k = 2 and j = 1. In this graph, xL is on the lower bound
of the first dimension l1, and xR is a corner point (u1, u2)

T .
4) Comparison Among the Four Options to Choose Line:

Which option performs best for a given SUT and specification
is heavily application dependent, and thus comparing them has
no clear outcome.

In Options 1 and 2, we work with lines that cut off at
the upper or lower bound in one and half of the dimensions,
respectively. In these options, one of the points, xR, is on the
bound of the box. In Option 3, one of the points, xR, is on a
corner point. On the other hand, in Option 4, xR and xL are
either on a bound of the box or on corner points.

Options 1 and 2 search more points on the boundaries, while
Option 3 searches more corner points and moves toward them
if the optimization process guides in that direction. Since lines
are chosen randomly, Options 1–3 may lead to using short
lines that do not guide the process toward falsification or might
get stuck for some iterations in a local area. On the other hand,
Option 4 works with long lines, extending between the bound-
aries, which has a higher chance of finding a better point. A
comparison from a practical perspective based on the examples
evaluated in this article will be given in Section V.

Admittedly, there are many possible ways to pick the lines.
What heuristics should be used to choose a line is an open
question for future research.

5) Algorithm 2’s Main Loop in FalsifyLine: Now it is time
to perform the falsification process over a line by calling
FalsifyLine, line 12. Before calling this function, we need to
save the current point x in a variable xold at line 11. FalsifyLine

tries to find a new point with a lower objective function value,
the ultimate goal being to find a point with a negative value.

The FalsifyLine algorithm is the local search loop in LSF.
The SUT is simulated and evaluated at the three-parameter
points xM , xL, and xR by calling the Eval function, lines 32–34.
If the specification is falsified, i.e., the objective function value
is negative, FalsifyLine terminates. Otherwise, if the specifi-
cation is not falsified at any of the points xL, xM , or xR, the
algorithm starts the local search by looking for new points that
can potentially have lower objective function values.

The variable iterations_without_improvement is used to
count the number of iterations that we stay with a line inside
FalsifyLine. The local search along the line is completed when
iterations_without_improvement has reached max_iterations.

There are three cases, depending on which of the points
xM , xL, and xR has the smallest objective function value. In
each iteration, a new point is searched that is the middle point
between xM and xL, or xM and xR. This new point will first be
evaluated to decide if it falsifies the specification or not. If it
does not, the new point will be replaced by one of the three
points, xL, xM , or xR, based on some rules presented below.
The optimization will now be done on a shorter line segment
than the initial line segment, defined by the selected end points,
for the next iteration. The following cases determine the rule
for selecting the new point and the shorter line segment.

Case 1: The point xL has the lowest objective function value
among the three points, lines 35–40, i.e.,

f (xL) < f (xM) and f (xL) < f (xR).

If the above condition is satisfied then let xnew =
([xL + xM]/2) be defined as the point midway between xL and
xM . Then, check whether xnew has a lower objective function
value than xL or not, if it does, then update x = xnew. For the
next iteration, xR will be omitted and replaced to work with
a shorter line that connects xM to xL and passing from xnew.
The new points are

xR = xM and xM = xnew. (2)

The point xL, which was the point with the lowest objective
function value, is not changed.

Case 2: The point xR has the lowest objective function value
among the three points, lines 41–46, i.e.,

f (xR) < f (xM) and f (xR) < f (xL).

In this case, the middle point xnew = ([xM + xR]/2) is com-
puted and checked to see whether xnew has a lower objective
function value than xR. If it does then x = xnew. For the
next iteration, xL will be omitted and replaced to work with
a shorter line segment that connects xM to xR and passing
through xnew. The three points for the next iteration are

xL = xM and xM = xnew (3)

while xR, with the lowest objective function value, will not be
changed.

Case 3: The point xM has the lowest objective function value
among the three points, lines 47–62, i.e.,

f (xM) ≤ f (xL) and f (xM) ≤ f (xR).

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

2400 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

TABLE I
RESULTS FOR THE AUTOMATIC TRANSMISSION (AT) SYSTEM, INSTANCES 1 AND 2

Here, we need to decide on which line segment to continue
the search, i.e., the line segment (xM, xL) or (xM, xR). We do an
evaluation that depends on which interval (xL, xM) or (xM, xR)

that is longer; for this purpose we use the Euclidean distance
(|| · ||2). xnew is selected to be the middle point on the longer
of the two segments

xnew =
{ xL+xM

2 , if ‖xL − xM‖2 ≥ ‖xM − xR‖2
xM+xR

2 , otherwise.
(4)

When ||xL −xM||2 ≥ ||xM −xR||2 the end points are updated
as (lines 48–55)

{
xR = xM and xM = xnew, if f (xnew) < f (xM)

xL = xnew, otherwise.
(5)

When ||xL −xM||2 < ||xM −xR||2 the end points are updated
as (lines 56–63)

{
xL = xM and xM = xnew, if f (xnew) < f (xM)

xR = xnew, otherwise.
(6)

Those points that are not explicitly updated in (5) and (6)
will keep their previous value. Note that in this case, where
xM has the lowest objective function value, the decision about
which line segment to continue on is based solely on the length
of the line segments. The longest line segment is a sensible
choice because this is the line segment that has the largest
uncertainty in the sense of being least explored. Considering
f (xL) and f (xR) would add complexity since it would require
the algorithm to balance between the distance and objective
function value.

Based on which of the above cases occurs, in each iteration,
one of the new points [(xL + xM)/2] or [(xM + xR)/2] is
searched, and one of the old three points will be replaced
with the new point.

If we can improve the point x and find a better point
with lower objective function value, where x = xnew, the
iterations_without_improvement resets to zero, line 67. This
leads us to work more with the lines that reach points with
lower objective function values. On the other hand, if we
cannot improve the point x, iterations_without_improvement
is increased by 1, line 69. This leads us to work less with
the lines that do not help reach points with lower objec-
tive function values. When iterations_without_improvement
reaches max_iterations, we get out from the currently chosen
line and pick a new one.

When iterations_without_improvement has reached
max_iterations, the FalsifyLine process is finished and it

returns a value for x. Now, we are at line 3. If the specifica-
tion is not falsified yet and curr_simulation has not reached
max_simulations and curr_simulation > 1, then Heuristic H1
is called at line 8.

6) Heuristic H1: In function Heuristic H1, we compare the
objective function value of xold with x. If f (xold) < f (x),
FalsifyLine could not give a better point, i.e., one with a
lower objective function value than xold. In this case, in order
to force the algorithm to never return the same x as was
given to FalsifyLine, we consider x to be the point with
the second lowest objective function value of the last call
to FalsifyLine. Our experimental evaluations show that this
heuristic helps the algorithm to avoid getting stuck in local
minima.

7) Stopping Condition: Algorithm 2 works until a falsified
point is found, i.e., a point with a negative objective func-
tion value or until curr_simulation reaches max_simulations.
If a falsified point is not found, the algorithm returns
the point with the lowest objective function value found
so far.

V. EXPERIMENTAL SETUP AND RESULTS

We consider the simulation-based falsification of all bench-
mark examples of the ARCH19 workshop [30], which is a
friendly competition in falsification of temporal logic specifi-
cations over CPSs. For these benchmark problems, two vari-
ants of input signals are considered Instance 1 and Instance 2,
respectively. Instance 1 allows arbitrary piece-wise continu-
ous input signal while Instance 2 are restricted to constrained
input signals. The problems AT, CC, NN, and SC have speci-
fications both of Instance 1 and Instance 2 type. Additionally
the benchmarks from [31] are included. Note that the exam-
ple Automatic Transmission (AT′) presented in Table III has
different specifications from the Automatic Transmission (AT)
presented in Table I.

In this section, the Corners and UR methods are compared
with the HCR approach. The LSF method is compared with
NM, SNOBFIT, and HCR. Finally, all methods are compared
together. The results are shown in Tables I–VII. Each falsi-
fication is set to have max_simulations = 1000. There are
20 falsification runs for each method and objective function
to account for most algorithms’ random nature. The Additive
semantics is considered in this paper. The evaluation results
for Max can be found in [34].

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

RAMEZANI et al.: TESTING CPSs USING LINE-SEARCH FALSIFICATION METHOD 2401

TABLE II
RESULTS FOR THE CHASING CARS (CC) SYSTEM, INSTANCES 1 AND 2

TABLE III
RESULTS FOR THE AUTOMATIC TRANSMISSION (AT′) SYSTEM

TABLE IV
RESULTS FOR �−� MODULATOR AND THE STATIC SWITCHED (SS) SYSTEM

TABLE V
RESULTS FOR NEURAL NETWORK (NN), INSTANCES 1 AND 2

TABLE VI
RESULTS FOR THE AIRCRAFT GROUND COLLISION AVOIDANCE (F16),

THE STEAM CONDENSER SC AND THE FUEL CONTROL OF AUTOMOTIVE

POWER TRAIN (AFC) SYSTEM

(Instances 1, 2)

1) Corners Implementation Setup: Each specification and
example has a different number of corners. For some exam-
ples, the number of corners is less than the maximum number
of simulations. Then, the Corners method terminates when all
corners have been evaluated.

2) Uniform-Random Implementation Setup: For each of
20 falsification runs, uniformly distributed random points are
generated from different seeds, i.e., 20 different seeds are
considered.

3) Hybrid Corner-Random Implementation Setup: The HCR
method starts with the Corners point, and the next point is the

TABLE VII
RESULTS FOR THE WIND TURBINE (WT) SYSTEM.

UR point. It switches between the Corners and UR until the
maximum number of simulations, 1000 here, is reached or a
falsified point is found. The number of corners is limited, and
it depends on how many corner points the SUT has. If the
maximum number of corners is reached, the HCR algorithm
continues using only the UR points.

4) Nelder-Mead Implementation Setup: This algorithm is
implemented as fminsearch [33] in MATLAB. Before starting
NM, 100 random sampling points for all examples are gener-
ated. After evaluating 100 random sampling points, the point
with the lowest objective value is picked as a starting point if
none falsifies the specification. NM needs a simplex of n + 1
points for n-dimensional vectors, while we have one point. The
n points will be generated by MATLAB’s fminsearch using
that minimum point. The minimum point is similar to x0 when
calling fminsearch (f , x0) in MATLAB, where it starts at the
point x0 and tries to find a local minimum. For fminsearch the
default parameters are used.

5) Line-Search Falsification Implementation Setup: The
value of max_iterations is set to 3.

In Tables I-VII, the first row denotes the specification, as
defined in [30] and [31]. For the problems where specification
of both Instance 1 and Instance 2 are available, this is indicated

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

2402 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Fig. 3. Cactus plot showing the performance of Corners, UR, and HCR for all examples. The plotted values show how many successful falsifications (x-axis)
were completed in less than 1000 simulations (y-axis, logarithmic scale).

by the second row. The following row contains the results for
the different optimization methods, and the last row the results
for the optimization-free methods. Two values are presented
for all examples. The first value is the relative success rate of
falsification in percent. There are 20 falsification runs for each
parameter value and specification, thus the success rate will be
a multiple of 5%. The second value, inside parentheses, is the
average number of simulations (rounded) per successful falsi-
fication. The presented results for LSF use Option 4 presented
above.

A. Optimization-Free Versus Optimization-Based
Falsification

First, we compare the optimization-free methods Corners,
UR, and HCR. Based on the results shown in Tables I–IV, for
many specifications, one of Corners or UR succeeds. Hence,
HCR outperforms the other two methods for many specifica-
tions. For a comparison between Corners, UR, and HCR, a
cactus plot is shown in Fig. 3. The results presented in this
plot relate to all examples. As can be seen in Fig. 3, while
UR is more successful than Corners, for those cases that are
falsified at the corner points, Corners falsifies much faster and
with fewer simulations. Thus, HCR manages to falsify more
examples than either of the other two.

To get a better understanding of the difference in
performance between optimization-free and optimization-
based methods, we go through some examples in
more detail to compare HCR with NM, SNOBFIT,
and LSF.

For ϕAT
2 in Instance 2, Table I, NM is not 100 percent suc-

cessful, and SNOBFIT and LSF need more simulations than
Corners and HCR. On the other hand, HCR manages to falsify
the property with just a few simulations. As can be seen in
Table II, all optimization-based methods needed more sim-
ulations to falsify ϕCC

2 for Instance 2. On the other hand,
with only one simulation, HCR falsifies this specification.
Similarly, HCR performs better than the optimization-based
methods for specifications ϕAT ′

1 (T = 30) and (T = 40),
ϕAT ′

3 (T = 4.5), ϕAT ′
4 (T = 1), ϕAT ′

8 (ω̄ = 3500) in Table III.
There is a significant advantage for HCR for the specifications

ϕ�−�
1 (U ∈ [0.40, 0.40] and U ∈ [0.45, 0.45]) and all

specifications of SS system in Table IV, which HCR manages
to falsify with fewer simulations.

To compare Corners, UR, and HCR with NM, SNOBFIT,
and LSF, a cactus plot is shown in Fig. 4 for those exam-
ples where using an optimization-based approach to improve
the falsification process is not needed. As can be seen in this
figure, HCR beats all methods and manages to falsify more
examples than either of the optimization methods and requires
fewer simulations than all other methods.

On the other hand, there are specifications that neither
Corners nor UR can falsify. Here, the HCR method will not
be successful either. These are the specifications 1 and 7-9
of the AT example for Instance 2, Table I; specification 4 of
both instances 1 and 2 of the CC example, Table II; specifica-
tions 6 for both T = 10, T = 12 and 7 of AT′, Table III; the
first specification of the Modulator example, Table IV; speci-
fication 2 of the NN example for Instance 2, Table V; and the
F16 example Table VI.

B. Line-Search Falsification Using the Four Options

Section IV introduced four different options for LSF to pick
a line. A cactus plot comparing these options is given in Fig. 5.

Option 1, where we work with the lines that cut off at the
upper or lower bound in one of the dimensions, does not work
as well as the other options. Options 2 and 3 perform approx-
imately the same, where Option 2 works with the lines that
cut off at the half of the dimensions, and Option 3 searches
more corner points. As can be seen in Fig. 5, Option 3 is
more successful and requires fewer simulations. Option 3 is a
good approach for those easy benchmark examples that can be
falsified on the corners. On the other hand, Option 4 is more
successful in the falsification process because it uses the com-
bination of three options. Hence, in the tables, we just quote
the results using Option 4 for LSF.

C. Line-Search Falsification Versus Nelder-Mead and
SNOBFIT

This part compares the results of the new LSF method with
NM and SNOBFIT for those specifications and examples that

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

RAMEZANI et al.: TESTING CPSs USING LINE-SEARCH FALSIFICATION METHOD 2403

Fig. 4. Cactus plot showing performance of Corners, UR, and HCR against NM, SNOBFIT, and LSF for those examples where using an optimization-based
approach to improve the falsification process is not needed. The plotted values show how many successful falsifications (x-axis) were completed in less than
1000 simulations (y-axis, logarithmic scale).

Fig. 5. Cactus plot showing the performance of LSF using different options for all examples. The plotted values show how many successful falsifications
(x-axis) were completed in less than 1000 simulations (y-axis, logarithmic scale).

it is not possible to falsify by Corners or UR. It is only for
a subset of the specifications and models that an optimization
method can perform better than an optimization-free approach.
These are specifications 1 and 7-9 of the AT example for
Instance 2, Table I; the fourth specification of both instances 1
and 2 of the CC example, Table II; specifications 6 for both
T = 10,T = 12 and 7 of AT′, Table III; the first specification
of the Modulator example, Table IV; the second specification
of the NN example for Instance 2, Table V; and the F16 exam-
ple Table VI. For some specifications and systems, there is a
clear tendency for a specific optimization method to perform
better.

Instance 2 of the AT example, Table I, is an excellent exam-
ple to show the performance of LSF. Except for ϕAT

1 , LSF
manages to falsify all specifications 100% of the runs, while
NM cannot falsify any of the ϕAT

i with i = 7, 8, 9. There is
also a significant advantage for LSF relative to SNOBFIT for
these specifications. Note that, ϕAT

1 can be falsified using a
method not considered in this article [30].

For the CC example (Table II), in Instance 1 with ϕCC
4 , while

NM is not successful in the falsification process, SNOBFIT,

and LSF are successful in some runs, and SNOBFIT works
better than LSF. In Instance 2 of this example, LSF is able
to falsify ϕCC

4 in 10% of the runs, while neither of NM and
SNOBFIT are successful. For the AT′ (Table III), only in the
two specifications ϕAT′

6 (T = 10, andT = 12), NM performs
better than the others. Compared to SNOBFIT, which is not
successful for ϕAT′

6 (T = 12), LSF performs better and man-
ages to falsify this specification in some runs. ϕAT′

7 is the only
specification of this example where SNOBFIT works better
than LSF. For the � − � Modulator example (Table IV),
LSF manages to falsify to 100%, which is a slight improve-
ment over SNOBFIT, and a big improvement over NM. For
the NN example, (Table V), in Instance 2 of specification
ϕNN

2 , LSF and SNOBFIT perform similarly to and better than
NM, respectively. For the F16 example (Table VI), LSF and
SNOBFIT work similarly to and better than NM, respectively.

Note that the SC example, Table VI, is one example where it
does not matter which the semantics or optimization method
is used since none of them can falsify the specification for
both instances. Yaghoubi and Fainekos [32] used a Simulated
Annealing global search in combination with an optimal

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

2404 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Fig. 6. Cactus plot showing the performance of each optimization-based methods for those examples where using an optimization-based approach to improve
the falsification process is needed. The plotted values show how many successful falsifications (x-axis) were completed in less than 1000 simulations (y-axis,
logarithmic scale).

Fig. 7. Cactus plot showing the performance of all evaluated methods in this article for all examples. The plotted values show how many successful
falsifications (x-axis) were completed in less than 1000 simulations (y-axis, logarithmic scale).

control-based local search on the infinite-dimensional input
space to successfully falsify the specification for Instance 1.

An aggregated comparison is shown in Fig. 6. As can
be seen, and is evident from the discussion above, LSF
outperforms NM. LSF can falsify using fewer simulations,
which is important as simulations are costly. LSF also works
better than SNOBFIT while being simple.

D. Evaluation and Discussion

An aggregated comparison among all methods presented
and discussed in this article for all examples is shown in Fig. 7.
As can be seen, HCR not only manages to falsify more exam-
ples than Corners and UR but also has a better performance
than NM.

LSF, compared to the other evaluated optimization free and
optimization-based approaches, falsifies the most examples, as
shown in Fig. 7. The LSF method covers the corner points
and combines randomly generated lines in the n-dimensional
parameter range with local search. This method has a simple
strategy compared to SNOBFIT, but a performance that is on
par with or better than SNOBFIT on the benchmark problems.
LSF can falsify some examples that none of the other evaluated

methods could successfully falsify. Instance 2 of CC is one
example that shows the better performance of LSF.

The main focus in this article has been to develop and
describe an approach that works well for falsification prob-
lems by investigating and exploiting the typical properties
of these problems. It is beyond the scope of this article to
discuss statistical guarantees or local and/or global conver-
gence. However, we note that global convergence can typically
be shown for random search algorithms, but local conver-
gence requires assumptions on the underlying function. The
evaluation is instead done using available benchmark prob-
lems. The nature of the complexity of the SUT present in
many industrial applications, typically having discrete modes
where the dynamics might change completely, invalidates the
assumptions typically necessary for giving any guarantees.

We have evaluated the approach on a set of benchmark
problems that are available within the falsification community.
We encourage researchers to post more problems, problems of
larger complexity, and problems with more involved specifica-
tions, since this would increase the quality of the evaluations.
However, it is important to note that the problems used are not
cherry-picked to show the benefits of the proposed approach,
but they are the set of problems available to us.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

RAMEZANI et al.: TESTING CPSs USING LINE-SEARCH FALSIFICATION METHOD 2405

VI. CONCLUSION

In this article, two optimization methods have been
proposed to enhance the falsification of CPSs. The first
method is the combination of Corners and UR, Hybrid Corner-
Random. For systems that are falsified on the parameter
corners or by randomly choosing parameters, this method man-
ages to falsify in the fewest number of simulations. On the
other hand, there are specifications and models for which nei-
ther Corners nor UR are efficient, and then optimization-based
methods are needed.

The second proposed method is a gradient-free
optimization-based method, called Line-Search Falsification,
that optimizes over line segments through a vector of inputs
in the n-dimensional parameter space. The method is designed
by using insights from the optimization-free approaches in
order to combine randomness, corner points, and local search.
This method is compared to the NM and SNOBFIT methods.
The proposed method has been evaluated on standard bench-
mark problems. LSF has better performance than all other
evaluated methods in this article.

A conclusion that can be drawn from the combinations of
methods and quantitative semantics is that the choice of the
optimization method appears to matter more than the choice
of quantitative semantics [34]. This conclusion is counter-
intuitive, but the evaluation of the benchmark problems shows
that for falsification of CPSs the problem is not only about
solving the optimization problem as efficiently as possible but
also about exploring corner cases and the parameter space.

Testing benefits from running a large number of simulations.
If the closed-loop system can be simulated, testing can take
advantage of computing clusters to run the models in parallel,
using thousands of computing nodes. The proposed methods
can easily be adapted to execute on computing clusters, thus
raising the confidence in the correctness of the SUT.

LSF uses heuristics in its internal process. For future work,
it would be interesting to evaluate the efficiency of using
different heuristics. In particular, it would be interesting to
evaluate the suggested LSF method on several large-scale
industrial applications.

ACKNOWLEDGMENT

The simulations of all benchmark problems in this article
were performed on resources at High Performance Computing
Center North (HPC2N), Umeå University, a Swedish national
center for Scientific and Parallel Computing.

REFERENCES

[1] R. Alur, Principles of Cyber–Physical Systems. Cambridge, MA, USA:
MIT Press, 2015.

[2] S. Mitra, Verifying Cyber–Physical Systems: A Path to Safe Autonomy.
Cambridge, MA, USA: MIT Press, 2021.

[3] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking:
Algorithmic verification and debugging,” Commun. ACM, vol. 52,
no. 11, pp. 74–84, 2009.

[4] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decid-
able about hybrid automata?” in Proc. 27th Annu. ACM Symp. Theory
Comput., 1995, pp. 373–382.

[5] E. Bartocci et al., “Specification-based monitoring of cyber–physical
systems: A survey on theory, tools and applications,” in Lectures on
Runtime Verification. Cham, Switzerland: Springer, 2018, pp. 135–175.

[6] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Syst., vol. 2, no. 4, pp. 255–299, 1990.

[7] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems. Heidelberg, Germany: Springer,
2004, pp. 152–166.

[8] J. L. Eddeland, K. Claessen, N. Smallbone, Z. Ramezani, S. Miremadi,
and K. Åkesson, “Enhancing temporal logic falsification with specifica-
tion transformation and valued booleans,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 12, pp. 5247–5260, Dec. 2020.

[9] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in Proc.
18th Int. Conf. Hybrid Syst. Comput. Control, 2015, pp. 239–248.

[10] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theor. Comput. Sci., vol. 410,
no. 42, pp. 4262–4291, 2009.

[11] K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani, and K. Åkesson,
“Using valued booleans to find simpler counterexamples in random
testing of cyber-physical systems,” IFAC-PapersOnLine, vol. 51, no. 7,
pp. 408–415, 2018.

[12] S. Amaran, N. Sahinidis, B. Sharda, and S. Bury, “Simulation
optimization: A review of algorithms and applications,” Ann. Oper. Res.,
vol. 240, no. 1, pp. 351–380, 2016.

[13] C. Audet and W. Hare, Derivative-Free and Blackbox Optimization
(Operations Research and Financial Engineering). Cham, Switzerland:
Springer, 2017.

[14] R. Hooke and T. A. Jeeves, “‘Direct search’ solution of numerical and
statistical problems,” J. ACM, vol. 8, no. 2, pp. 212–229, 1961.

[15] J. A. Nelder and R. Mead, “A simplex method for function
minimization,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965.

[16] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016.

[17] J. Eddeland, J. G. Cepeda, R. Fransen, S. Miremadi, M. Fabian, and
K. Åkesson, “Automated mode coverage analysis for cyber-physical
systems using hybrid automata,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 9260–9265, 2017.

[18] L. Rios and N. Sahinidis, “Derivative-free optimization: A review of
algorithms and comparison of software implementations,” J. Global
Optim., vol. 56, no. 3, pp. 1247–1293, 2013.

[19] C. Audet and J. E. Dennis, Jr., “Mesh adaptive direct search algo-
rithms for constrained optimization,” SIAM J. Optim., vol. 17, no. 1,
pp. 188–217, 2006.

[20] W. Huyer and A. Neumaier, “Snobfit—Stable noisy optimization by
branch and fit,” ACM Trans. Math. Softw., vol. 35, no. 2, pp. 1–25,
2008.

[21] J. L. Eddeland, S. Miremadi, and K. Åkesson, “Evaluating optimization
solvers and robust semantics for simulation-based falsification,” in Proc.
7th Int. Workshop Appl. Verification Continuous Hybrid Syst., 2020, pp.
259–266.

[22] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random testing: Theoretical
results and practical implications,” IEEE Trans. Softw. Eng., vol. 38,
no. 2, pp. 258–277, Mar./Apr. 2012.

[23] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing
as a prelude to formal verification,” in Proc. 29th Int. Conf. Softw. Eng.
(ICSE), 2007, pp. 621–631.

[24] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proc. 29th Int. Conf. Softw. Eng. (ICSE),
2007, pp. 75–84.

[25] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, “Adaptive random
testing: The art of test case diversity,” J. Syst. Softw., vol. 83, no. 1,
pp. 60–66, 2010.

[26] G. Gay, M. Staats, M. Whalen, and M. P. E. Heimdahl, “The risks of
coverage-directed test case generation,” IEEE Trans. Softw. Eng., vol. 41,
no. 8, pp. 803–819, Aug. 2015.

[27] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, no. 10, pp. 281–305, 2012.

[28] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems,” in
Tools and Algorithms for the Construction and Analysis of Systems.
Heidelberg, Germany: Springer, 2011, pp. 254–257.

[29] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of
hybrid systems,” in Computer Aided Verification, T. Touili, B. Cook, and
P. Jackson, Eds. Heidelberg, Germany: Springer, 2010, pp. 167–170.

[30] G. Ernst et al., “ARCH-COMP 2019 category report: Falsification,”
in Proc. 6th Int. Workshop Appl. Verification Continuous Hybrid Syst.,
vol. 61, 2019, pp. 129–140.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

2406 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

[31] Z. Ramezani, J. L. Eddeland, K. Claessen, M. Fabian, and K. Åkesson,
“Multiple objective functions for falsification of cyber-physical systems,”
IFAC-PapersOnLine, vol. 53, no. 4, pp. 417–422, 2020.

[32] S. Yaghoubi and G. Fainekos, “Gray-box adversarial testing for control
systems with machine learning components,” in Proc. 22nd ACM Int.
Conf. Hybrid Syst. Comput. Control, 2019, pp. 179–184.

[33] J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence proper-
ties of the Nelder–Mead simplex method in low dimensions,” SIAM J.
Optim., vol. 9, no. 1, pp. 112–147, 1998.

[34] Z. Ramezani, K. Claessen, N. Smallbone, M. Fabian, and K. Åkesson,
“Testing cyber-physical systems using a line-search falsification
method,” Jul. 2021. [Online]. Available: 10.36227/techrxiv.14555826.v3.

Zahra Ramezani received the B.Sc. and M.Sc.
degrees in electrical engineering from the Iran
University of Science and Technology, Tehran, Iran,
in 2011 and 2013, respectively. She is currently
pursuing the Ph.D. degree with the Department
of Electrical Engineering, Chalmers University of
Technology, Gothenburg, Sweden.

Her research interest is testing of cyber–physical
systems.

Koen Claessen received the Ph.D. degree in com-
puter science from the Chalmers University of
Technology, Gothenburg, Sweden, in 2001.

He has been a Full Professor of Computer Science
with the Chalmers University of Technology, since
2010. His research interests include software testing
(particularly random property-based testing), formal
verification, automated reasoning, and functional
programming.

Nicholas Smallbone received the Ph.D. degree in
computer science from the Chalmers University of
Technology, Gothenburg, Sweden, in 2013.

Then, he has been employed with the Chalmers
University of Technology first as a Postdoctoral
Researcher and currently as a Researcher. His
research interests include software testing (partic-
ularly random property-based testing), formal ver-
ification, automated reasoning, and functional pro-
gramming.

Martin Fabian (Senior Member, IEEE) received
the Ph.D. degree in control engineering from the
Chalmers University of Technology, Gothenburg,
Sweden, in 1995.

He is a Full Professor of Automation and the Head
of the Automation Research Group, Department
of Electrical Engineering, Chalmers University of
Technology. He has authored more than 200 publica-
tions, and is a Co-Developer of the formal methods
tool Supremica, which implements several state-of-
the-art algorithms for supervisory control synthesis.

His research interests include formal methods for automation systems in a
broad sense, merging the fields of control engineering and computer science.

Knut Åkesson (Associate Member, IEEE) received
the Master of Science degree in computer sci-
ence and technology from the Lund Institute of
Technology, University of Lund, Lund, Sweden, and
the Ph.D. degree in control engineering from the
Chalmers University of Technology, Gothenburg,
Sweden, in 1997.

He is a Professor with the Department of
Electrical Engineering, Chalmers University of
Technology. His main research is in using rigorous
methods for analysis of cyber–physical systems.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:52:26 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

