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Making the Most of Scarce Input Data in Deep
Learning-based Source Code Classification for

Heterogeneous Device Mapping
Emanuele Parisi, Francesco Barchi, Andrea Bartolini, and Andrea Acquaviva

Abstract—Despite its relatively recent history, Deep Learning
(DL) based source code analysis is already a cornerstone in
machine learning for compiler optimization. When applied to the
classification of pieces of code to identify the best computation
unit in a heterogeneous Systems-on-Chip, it can be effective in
supporting decisions that a programmer has otherwise to take
manually. Several techniques have been proposed exploiting differ-
ent networks and input information, prominently sequence-based
and graph-based representations, complemented by auxiliary
information typically related to payload and device configuration.
While the accuracy of DL methods strongly depends on the
training and test datasets, so far no exhaustive and statistically
meaningful analysis has been done on its impact on the results
and on how to effectively extract the available information. This
is relevant also considering the scarce availability of source
code datasets that can be labelled by profiling on heterogeneous
compute units. In this paper, we first present such study, that
leads us to devise the contribution of code sequences and auxiliary
inputs separately. Starting from this analysis, we then demonstrate
that by using normalization of auxiliary information it is possible
to improve state-of-art results in terms of accuracy. Finally,
we propose a novel approach exploiting Siamese networks that
further improve mapping accuracy by increasing the cardinality
of the dataset, thus compensating for its relatively small size.

Index Terms—Heterogeneous platform, Deep learning, Machine
learning, Source Code analysis, Computation mapping.

I. INTRODUCTION

Augmenting the intelligence of compilers to solve the prob-
lem of efficiently mapping programs to heterogenous platforms
is the subject of very recent and rich research [1], [2]. In the last
five years, new approaches based on supervised Deep Learning
(DL) models have been proposed to analyse and classify source
code to decide the best compute unit or allocation configuration
using performance or energy metrics [3], [4], [5]. It is known
that DL algorithms are very powerful and able to automatically
extract relevant features from input data, however they require
a representative dataset for train and test to achieve high classi-
fication accuracy and avoid overfitting. In case of source code
analysis, a dataset is represented by fragments of source code
that are compiled and profiled for all the possible compute units
in the target platform. Depending on the selected metric (e.g.
execution time, power or energy), a label is assigned indicating
the best compute unit where each fragment has to be allocated.
In literature, basically all state-of-art papers dealing with DL
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for source code analysis targeting heterogeneous CPU/GPU
platforms make use of the dataset designed by Cummins et
al. in [5]. This is composed by 256 kernels (belonging to
different benchmark suites) written in C with OpenCL libraries
and profiled for CPU and GPU. As additional input to the
network, besides code sequences, auxiliary information (we
also refer to it as meta-information) representing payload and
work group size is provided. Auxiliary inputs increase the size
of the dataset creating additional combinations. Typically, they
enter the network directly in the final classification layer, that
takes as another input the output of a DL language model
stage, whose job is to extract meaningful information from code
sequences.

The dataset used [5] has become a de-facto reference for any
new techniques proposed. However, the impact of the relatively
limited size of the dataset and of auxiliary inputs has never been
discussed nor analysed. The large majority of literature papers
use this dataset as it is without making a careful analysis of
the information content and how to maximize its exploitation
for DL algorithms training and test. This is in true for source
code datasets in general.

Conversely, such analysis it is of uttermost importance not
only to understand the contribution to classification accuracy
of auxiliary information and DL-based language models sepa-
rately, but also to devise techniques able to better exploit both
type of information.

In this paper we first present an in-depth statistical analysis
of the dataset introduced in [5]. In particular we study the
similarity between code sequences and discuss their subdivision
in train and test set, revisiting the conclusion provided in [6]
and showing a more fair and effective subdivision. Apart from
its importance because of its impact on this widespread used
reference, the analysis we present provides insight for evalua-
tion or creation of benchmarks for source code classification.

Second, we evaluate the impact of the meta-information on
the classification and we show how this can be enhanced by
a normalization technique, increasing the accuracy of kernel
mapping with respect to state-of-art DL networks.

Finally, we propose a novel approach to exploit the informa-
tion contained in the dataset through Siamese networks [7]. The
dataset size is a general issue related to code benchmarks for
language modelling with the purpose of classification. Since the
kernels have to be compiled and executed on different targets,
using code collections downloaded from on-line repositories



as they are is not viable in general. From the other side,
synthetic code generation based on predefined models lacks
generality and significance. This is the reason it is so hard to
find alternative datasets in this research line.

Siamese networks have been recently proposed to overcome
the issues lead by small datasets. Indeed, they increase the
cardinality of the dataset by creating couples of dataset points
and using the information of their distance for classification.
They are called Siamese because they implement two equal
networks each one working on a single element of a dataset
pair. Through a contrastive loss function and a subsequent
projection to a bidimensional space the final classification is
performed. In this work Siamese are exploited to increase the
dataset cardinality (the considered one is made of 680 samples
of which 256 are code sequences). The resulting classification
accuracy of CPU/GPU mapping reaches around 92% on AMD
and 89% on NVIDIA datasets, leading to an improvement of
around 6% with respect to the best state of art technique.
By introducing and demonstrating the effectiveness of Siamese
networks for information extraction from source code datasets,
this work opens the way to the application of the proposed
method to code datasets designed for purposes beyond device
mapping.

The rest of the paper is organised as follows: In Section II, we
provide background on source code analysis and Siamese net-
works, we describe the relevant related works and the reference
dataset. In Section III, we describe our methodology, focusing
on source code, meta-information and dataset evaluation. In
Section IV, we evaluate the accuracy of the proposed methods
compared with state-of-art DL approaches. Finally, in Section
V we draw some conclusions and we discuss possible future
works.

II. BACKGROUND AND RELATED WORKS

As the effect of the end of Dennard’s scaling and the
slow down of Moore’s law, heterogeneous architectures com-
posed of general-purpose processors tightly coupled with HW
accelerators have become prominent in the full-spectrum of
computing systems. Often, to decide if a given source code
can effectively take advantage of the HW accelerator requires
to port the source code to the target accelerator. Moreover, the
accelerators’ performance does not depend only on the source
code but also on auxiliary parameters, which depends on the
dataset/payload [5].

A. Source Code Analysis

To ease the programmer from this daunting task several
works in the recent years aim at exploiting source code features
for predicting the device with the shortest runtime where to
execute a computation.

To do so researchers tried to answer the question can we
analyse the code like text? exploiting natural language code
modelling, translation, and classification techniques for code
quality assessment [8], plagiarised source code detection [9],
classification for execution on a certain hardware target [5],
[10], [11], [12], [13]. Source code analysis could also be

applied in optimisations for power energy and thermal resources
[14] and in the context of code execution and memory ac-
cess patterns optimization [15]. As shown in the survey of
Allamanis [1], the source code maintains some properties of
natural languages (it can be considered, like text, a human
communication form) but it has profound differences. Some
of the code properties like executability, formality and struc-
ture make it more complex to analyse than text. Compiler
designers started considering the adoption of machine learning
techniques to obtain heuristic compilers capable of learning
from the data [2], [16] for code optimisation. Research in
the field of Natural Language Processing (NLP) has evolved
considerably in recent years. The current SOTA is composed
by the language models BERT [17], XLNet [18] and GPT [19].
While BERT uses Autoencoders and token-masking to gener-
alise model knowledge, XLNet and GPT use self-regressive
models based on transformer networks [20]. Different versions
of GPT-3 composed of a variable number of weights (from
3B to 175B) are able to solve problems of text generation,
question answering, reading comprehension in zero-shot, one-
shot and few-shot mode. Recently the ability of GPT-3 to
generate JavaScript XML (JSX) code in few-shot (two sample
context) mode has been shown. These techniques are the cutting
edge of research on generic text understanding models, but
their size does not make them easily applicable in domain-
specific contexts. Several domain-specific techniques, instead,
have been proposed in the literature to represent programs
using a set of quantifiable properties or features compatible
with the inputs of the learning module [21]. Standard machine
learning algorithms typically work on fixed-length inputs, so
the selected properties shall be transformed into a fixed-length
vector of features (boolean, integer, or real values). Compiler
researchers have designed, during the years, various forms
of program features for machine learning algorithms. These
include static code structures extracted from the source code
or the compiler intermediate representation [22] and dynamic
profiling information obtained through run-time profiling of the
program execution [23]. Compiler optimisation methods based
on supervised learning have been proposed using Bayesian
Networks [24], Support Vector Machines [25], [26], Decision
Trees [21], [27] and Graph Kernels [28]. In the last decade,
the problem of deciding the most suitable hardware unit on
which to execute a given computational kernel raised with the
increasing complexity and heterogeneity of digital platforms.
Source code analysis can help this decision avoiding to make
useless porting efforts. Moreover, a profiling approach based
on source code analysis without the need for the final target
hardware or an accurate virtual (simulation or emulation) plat-
form can speed up the embedded systems development process.
Along this direction, in 2013, Grewe [29] developed a workflow
to translate an OpenMP program in OpenCL and to decide for
each generated OpenCL kernel the most suitable compute unit
between CPU and GPU. There, the authors defined metrics to
extract from the code (like the number of calculation operations
or local and global memory access) to make decisions based
on a probabilistic method (i.e. a decision tree classifier). In last



years, a research line exploiting the maturity of deep learning
methods has started since the work of Cummins et al. [5],
where the decision tree classifier was replaced with a deep
learning model based on a RNN. Thanks to deep learning, it is
no longer needed to extract the features manually since they are
inferred automatically during the training phase and improves
classification accuracy compared to [29]. The methodologies
proposed in [29] and [5] were developed and customised for
kernels implemented in OpenCL, thus constraining the method-
ology to work with a given source programming language.
To overcome this limitation, Ben-Nun et al. [11] and Barchi
et al. [10] introduced the adoption of code analysis at the
intermediate representation (IR) level of the LLVM compiler.
LLVM is increasingly adopted in the embedded system world,
because it is capable of decoupling the front-end compiler from
the target architecture, in this way many optimisation steps
can be performed at the IR level before generating the binary
machine code. Source code features, at this intermediate level,
can be exploited to perform complex compilation decisions,
including allocating code fragments to architecture devices.
Machine learning techniques can be applied to learn these
characteristics by creating a learning model based on training
code fragments. The LLVM based methods presented in [10]
and [11] differ for the strategy for the projection of source
code in the continuous metric space. In [10] the code stream is
filtered and then introduced directly into the network, relying
on the Embedding Layer for the learning of the best token
projection. On the other side, in [11], the authors propose
Inst2Vec a system to pre-train the embedding layer analysing
the Contextual Flow Graph (XFG). Further contributions to
this projection problem have been devised later. In Kheerthy
et al. [12], a procedure to project an IR in a continuous metric
space directly, called IR2Vec is proposed. In Cummins et al.
[13], the authors propose ProGraML, an extension of [11]
where a GNN-based classifier is proposed for the first time.
Independently, in Brauckmann et al. [6] another GNN-based
classifier was proposed able to learn vertex embeddings by
itself. Moreover, in [6] the GNN is used to analyse both an
LLVM-IR Control and Data Flow Graph (GNN-CDFG) and a
Clang Abstract Syntax Tree (GNN-AST). Concerning the deep
neural network model, all previous work use RNNs, that have
been introduced to process temporal sequences [30], [31]. An
RNN maintains an internal state, acting as a memory, that sum-
marises the information extracted from the input sequence. Very
successful implementation of RNN is the Long Short-Term
Memory (LSTM), a network able to learn when to memorise or
forgot information of the input sequence and correlate together
elements at different times. For this reason, LSTM is the model
adopted in state-of-art papers [5], [11], [12]. However, given
the widespread use of CNN in the context of image recognition
[32] but also in NLP [33] as well as fast learning time and the
maturity of network design and configuration tools, it is worth
exploring their application to source code classification. Behind
the success of this type of network, there is the assumption of
information locality in the input data. All data inside a region
called “kernel” are considered correlated, and this correlation

Suite Version Benchmarks Kernels Samples

amd-sdk 3.0 12 16 16
npb 3.3 7 114 527
nvidia-sdk 4.2 6 12 12
parboil 0.2 6 8 19
polybench 1.0 14 27 27
rodinia 3.1 14 31 31
shoc 1.1.5 12 48 48

Total 71 256 680

Table I: Dataset composition [5]. The first two columns are the
number of benchmarks in suite (Benchmarks) and the number of
unique kernels in suite (Kernels). In the complete dataset, composed
by the tuple Code and Meta-information, each suite has a different
number of pairs (Pairs).

is weighed by a filter, identical for any region considered in
the input. For image classification, the kernel shape has two
dimensions, but this technique can also be used in temporal
signals using one-dimensional kernels. This is the approach we
follow in this work, where we give as an input to the CNN
a tokenised and filtered code stream directly without using
additional information.

In [3] authors introduced for the first time in a code classifier
method CNNs, by giving as an input to the network a tokenised
and filtered code stream directly without using additional infor-
mation. Authors compared the CNN-based proposed approach
with the RNN-based network used in [5] and [10] outperform-
ing previously proposed methods. Results from [3] confirm that
features extraction from IR is a valuable strategy for analysing
sources without dealing with complex high-level constructs,
and it can be done keeping all the information required for
performing classification tasks in the context kernel-device
mapping.

B. Reference Dataset

The majority of the methods discussed [6], [13], [5], [10],
[3] are trained and evaluated on a common dataset intro-
duced in [5]. The dataset consists of 256 OpenCL kernels
sourced from seven benchmark suites on two combinations of
CPU/GPU pairs. Each pair is labeled CPU/GPU accordingly to
the processing element in which it executes faster. The same
pair has been executed in two different heterogeneus system
configurations: The AMD set uses an Intel Core i7-3820 CPU
and AMD Tahiti 7970 GPU; the NVIDIA set uses an Intel Core
i7-3820 CPU and an NVIDIA GTX 970 GPU. Each dataset
consists of 680 labeled pairs derived from the 256 unique
kernels by varying dynamic inputs. Each pair is characterized
by three values: the code, and two auxilliary inputs, namely the
payload size and OpenCL Work Group size. The 256 unique
kernels belong to 7 suites and 71 benchmarks as reported in
the Table I.

In [6], [13], [5], [10], [3] the proposed models’ performance
evaluation has been conducted with k-fold cross-validation.
Authors of [6] introduce a k-groups-split methodology to stress
out the generalization capability of the proposed methods. In
the latter, the dataset is split into parts along the benchmark
suites. Then models are trained in all the pairs belonging to the
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k-1 and evaluated in the k-th part. Authors of [6] report poor
code generalization performance on the k-groups-split. In this
manuscript we will tackle this issue by doing further analysing
the issue. Table I shows that the number of pairs in each suite is
strongly inbalanced. With the NPB benchmark suite accounting
for more than three quarters of the total pairs composing the
dataset.

In this manuscript we propose an in depth analysis of the
code generalization capability of the models by studying in
isolation the relative impact of the code and of the auxiliary
inputs on the models accuracy. We focus our analysis on
the CNN-based approach presented in [3] as it outperforms
previous methods[13], [6].

Our results show that previous methods fail in extracting
usefull information from the auxiliary inputs. To do so we pro-
pose a pipeline of value normalization capable of reprensenting
in a correct way the information presents in auxiliary input.
Our result show an increase of the 10− 20% of accuracy w.r.t
previous methods when only auxiliary inputs are considered.
When both the code and auxiliary inputs are considered the
proposed method achieves an increase of the 4−6% in accuracy
w.r.t previous methods.

To overcome the limitation of k-groups-split validation we
propose a new partitioning based on the benchmarks rather than
on the suite.

We than propose a new training method based on siamese
networks to increase the dataset size without adding new pairs.
Siamese networks increase the cardinality of the dataset by
training the parameters of the model on the distance between
each pair in the dataset.

III. METHODOLOGY

The proposed methodology starts from the dataset analysis.
Each dataset element is composed of a source-code component
and a meta-information component. We will refer to these
elements with the following notation: D : (DC , DM ) where
DC is the code component and DM is the meta-information
component. In [5] the dataset structure is composed of a triple
of values. The meta information in this case is DM : (A1, A2)
where A1 and A2 (also called auxiliary inputs) represent the
amount of data processed (Payload) and the device config-
uration (OpenCL Work Group size) respectively. The third
element is the kernel sequence that is associated to these
inputs. The payload impacts the transfer time of data towards
the accelerator, and the workgroup size affects the kernel
parallelism. Because of its structure, using the dataset D for
train and test, the overall classification depends both on source-
code analysis capabilities and impact of auxiliary information.
However, to distinguish these contributions is relevant to better
design deep learning models. This is even more important
considering the small size of the datasets available [5]. In that
case, the strategy, used in split data to build training-set and
test-set, must be analyzed in detail to avoid creating sets with
insufficient coverage in the feature space.

This section will explore the dataset shape in terms of meta-
information, source-code and dataset division strategies. We

Suite Samples D - AMD D - NVD

CPU GPU Imb. CPU GPU Imb.

amd-sdk 16 10 6 62/38 1 15 6/94
npb 527 326 201 62/38 199 328 38/62
nvidia-sdk 12 1 11 8/92 5 7 42/58
parboil 19 9 10 47/53 13 6 68/32
polybench 27 2 25 7/93 12 15 44/56
rodinia 31 17 14 55/45 19 12 61/39
shoc 48 35 13 73/27 44 4 92/8

Total 680 400 280 59/41 293 387 43/57

Table II: Class imbalance in the complete datasets. For each suite we
point out the number of samples and the percentage of label imbalance.

Suite D̃C - AMD D̃C - NVD

K. CPU GPU Imb. K. CPU GPU Imb.

amd-sdk 16 10 6 62/38 16 1 15 6/94
npb 45 37 8 82/18 68 22 46 32/68
nvidia-sdk 12 1 11 8/92 12 5 7 42/58
parboil 6 2 4 33/67 6 4 2 67/33
polybench 27 2 25 7/93 27 12 15 44/56
rodinia 31 17 14 55/45 31 19 12 61/39
shoc 48 35 13 73/27 48 44 4 92/8

Total 185 104 81 56/44 208 107 101 51/49

Table III: Class imbalance in the datasets with no auxiliary inputs.
For each suite we point out the number of samples and the percentage
of label imbalance.

will show how this information can be used to lay the founda-
tions for a fair comparison between classifiers techniques. In
section III-A we will explore DC in its hierarchical structure as
benchmark suites. Moreover, the code serialization of kernels
can be compared using string distance algorithm; this provides
a way to explore the benchmark suite similarity. In section
III-B we will explore three different ways to build training-
set and test-set; stratified k-fold, benchmark-folding and suite-
folding. Finally, in section III-C we will explore DM in its
feature space using Decision Trees (DT) and a Multi-Layer
Perceptron (MLP).

A. Source Code Impact Analysis
The source code can be grouped in a three level hierarchy:

suite, benchmark, kernel. The dataset has seven suites, and each
suite is composed of a variable number of benchmarks. Each
benchmark, in turn, is composed of one or more kernels. Our
goal is to explore the dataset DC to identify the best way to
analyze the code and evaluate language models based on deep
learning.

The source code is provided in OpenCL. As described in [3]
we transform the source code in a sequence of tokens after a
compilation step in LLVM-IR. In [10], a detailed discussion
about the sequence length and the padding procedure explains
how to reduce the code in a limited range of 2048 items.

Given a dataset D : (DC , DM ) with 680 entries, if we
remove the meta-information component the resulting dataset
DC is composed of 680 sequences of code. Still, only 256 of
them are uniques (see Table I).

When we try to reduce this dataset (removing the duplicates)
to obtain a dataset composed of unique sequences we face



Figure 1: Each triangle rapresents the suite self-similarity computed using Needleman–Wunsch. The color code represents the dissimilar pairs
with cold tones (blue) and the most similar pairs with warm tones (red).

the following problem. Some kernels present label incoherency,
meaning that the same kernel has been assigned with different
labels depending on the meta-information. Since our goal is to
decouple code and meta-information impact, in this phase we
only consider code sequences that have a single label match.

If a sequence of code has the same label independently from
the meta-information value for which it has been evaluated,
then it will be assigned that label. If, on the other hand, the
code sequence has, for instance, label A if coupled with a
given meta-information value and label B if coupled with other
meta-information values, then it will not be considered for the
construction of the dataset. After this procedure, we obtain a
new dataset; we will refer to it with the following symbol D̃C .
The usage of this dataset is only for analyzing the training-
set and test-set construction methods and for evaluating the
language analysis models directly on the code. In Section IV,
to make a comparison with the state of the art, we will use
the complete dataset, which includes the meta-information. In
section III-B, we present the classification performance of D̃C ,
using different strategies to build test-set and training-set.

Small datasets are subject to high accuracy fluctuations due
to incomplete manifolds considered in training and testing.
The ideal condition for making fair comparisons is that both
training-set and test-set embrace the same feature space of the
entire population we consider (the dataset we have). Given the
limited number of sequences in our dataset, it is useful to build
a strategy to identify similarities between code sequences to
evaluate the classification results and training-set and test-set
split strategies.

As specified in Schölkopf et al. [34], when a statistical
learning method is used (i.e. DL), if the data do not satisfy the
condition of “independent and identically distributed (i.i.d.)”, it
is not possible to obtain an adequate level of generalization and
therefore learning. So, we can say that if the test and train sets
are not “statistically” similar, then a model cannot be learned.
In this subsection, we study the code similarity in the dataset. In
the following subsection, this analysis provides the foundation
to study dataset split methods that mitigate code dissimilarities
during train/test set creation.

We use Needleman–Wunsch (NW), a global alignment algo-
rithm belong to family of algorithms used in compilers in order
to reduce the program size choosing how to fuse functions [35].
It is also used in other fields: from optimizing the configuration
time of neuromorphic hardware, [36], [37], [38] to genetic
sequence and amino acid sequence alignment [39], [40] in
bioinformatics. We apply NW using naive scores for Match,

Mismatch and Insertion or Deletion cases. We assign a positive
score of +1 for a token match and −1 for all other cases.
Considering the token sequences, we have sequences of a fixed
length of 2048 tokens. Sequences shorter than 2048 tokens fill
the remaining positions with a special token (padding). When
we consider the similarity between two sequences, we want
to avoid to take into account the padding as match-cases; we
remove all the padding from the sequence with less padding
and reduce the length of the sequence with more padding until
we get two sequences of the same size.

Preserving padding in only the shortest sequence allows us
to penalize the similarity score in the unlucky case that a short
sequence A is very similar to a portion of a longer sequence
B. It also simplifies the normalization of the similarity score.

A pair of two sequences that share the same tokens in the
same order (identical sequences) has a similarity-score equal
to the number of tokens. For this reason, the similarity-score
is normalized by the number of tokens, obtaining a value in a
[-1, +1] range.

Given a set of sequences the mean of the distribution of the
similarities of all pairs in the set is the self-similarity of the
set. Given two sets of sequences, say A and B, the mean of
the distribution of similarities of all pairs (a, b) where a is an
element of A and b an element of B is the cross-similarity of
the sets.

In Figure 1 we show the matrix of similarity-score for
each suite in the dataset. The colour coding uses cold tones
for negative similarity (prevalence of mismatch, insertions and
deletions in the code-sequence pair) and warm tones for positive
similarity (prevalence of token match in the code-sequence
pair). It is possible to qualitatively evaluate the high similarity
of polybench, shoc and npb suites.

B. Dataset Creation Strategies

Deep learning methods need huge amount of data to learn
useful features and to provide reliable accuracy scores. When
the amount of data is limited, due to the difficulty of finding
or labeling large quantities of samples, the DL methods are
evaluated using a different strategy to increase the data cover-
age. Mainly, this is performed by training the model different
times using each time a different way to split the dataset in
training-set and test-set.

One of these procedures is called k-fold cross-validation.
In k-fold cross-validation the dataset is split in K folds, in
turn each fold is used to test a classifier trained using the
remaining K − 1 folds. As result the entire dataset is valuated



in test. A variant, called “stratified”, try to preserve the dataset
imbalance in labels for each fold. We will refer to this variant,
the “stratified k-fold cross-validation”, using the acronym SKF.
If the dataset is very small the cross-validation procedure can
be performed multiple times in order to evaluate a statistic.

Other techniques to split the dataset in training-set and test-
set can be used. For example, we can use the membership of a
kernel in a suite or in a benchmark in order to define a dataset
splitting policy. The most radical choice in this case is to use the
suite membership as done in [6]. With this splitting policy we
divide the dataset in seven folds, each containing all the kernels
of a suite. In tables II and III are shown the compositions of
these suite for both the full dataset D and the code-only dataset
D̃C .

Another way to create folds can be the usage of benchmark
membership. The following procedure create a valid fold com-
posed by kernels belonging to seven benchmarks.

function GET FOLD(len min, len max, imbalance max)
iter ← 0
repeat

fold ← new list
for all suite in dataset do

benchmark ← get random benchmark(suite)
for all kernel in benchmark do

fold ← add kernel
end for

end for
f size ← len min ≤ len(fold) ≤ len max
f imbalance ← imbalance(fold) ≤ imbalance max
iter ← iter + 1

until (!f size or !f imbalance) and (iter≤max iter)
return fold

end function
A valid fold must have a number of kernels in a range between
the 15% of the dataset size and a label imbalance less than
70/30.

To summarize, we have three different methodologies to
build the training set: i) SKF, ii) Benchmark Folding iii) Suite
Folding. In order to evaluate these dataset splitting policies, we
trained a DeepLLVM model [4] on D̃C dataset, which, in these
experiments, will therefore be fed using only code sequences.

Table IV describes the performance of the CNN model on the
dataset D̃C . Experiments based on Benchmark Folding perform
always better than Suite Folding. In particular, Benchmark
Folding causes the CNN to have accuracies higher than 70%
and MCC better than 0.4. On the contrary, Suite Folding
accuracy never reaches 50% and a MCC around zero.

Such results can be explained by referring to Figure 2, where
the Suite Folding has the larger self-similarity in the test-set.
This shows that the set of samples used to train the model
may not be sufficiently representative of the kernel space. This
splitting policy is unfair to evaluate how good a model is at
learning program representation.

1The Matthews correlation coefficient is a fair metrics for unbalanced dataset,
its values range is in [-1, +1]

AMD
ACC MCC

SKF Bench. Suite SKF Bench. Suite

C
N

N µ .808 .730 .492 .611 .471 -.007
σ .020 .124 .047 .041 .250 .089
CI95 .014 .025 .033 .010 .051 .064

(a) Accuracy and MCC obtained with D̃C - AMD Dataset

NVIDIA
ACC MCC

SKF Bench. Suite SKF Bench. Suite

C
N

N µ .774 .756 .443 .548 .521 -.137
σ .026 .116 .049 .053 .225 .107
CI95 .019 .024 .035 .038 .046 .076

(b) Accuracy and MCC obtained with D̃C - NVIDIA Dataset

Table IV: Benchmark and Suite splitting methodologies experiments.
We consider as metrics the well-known accuracy and the Matthews
correlation coefficient (MCC1).

More specifically, in Figure 2 we compare the properties of
the three techniques used to split the dataset in training-set and
test-set, namely SKF (Red dots), Benchmark Folding (Green
dots) and Suite Folding (Blue dots). In the Figure, each dot
represents one fold, and each star represents the centroid of the
folds. The left plot in Figure 2 shows, in the x-axis, the cross-
similarity between the training-set and test-set. In the y-axis, it
shows the average accuracy, averaged among the repetitions of
each fold. The size of each dot represents the min-max variation
in the model accuracy. The right plot in Figure 2 shows, in the
x-axis, the self-similarity of the training-set. In the y-axis, it
shows the self-similarity of the test-set.

All the similarity-scores have been normalized with respect
to the self-similarity of the whole dataset. In this way, we can
observe the deviation of training-set and test-set from the mean
of the whole dataset when the three different fold construction
techniques are used.

From the plot on the left, it is apparent that, on average,
the SKF has a cross-similarity equal to the self-similarity of
the entire dataset. In contrast, the Benchmark Folding has on
average the lowest cross-similarity. It is important to notice
that even if the Benchmark Folding has a lower cross-similarity
between the test-set and training-set, the models trained with
this policy has an higher accuracy than the Suite Folding. This
can be explained by looking at the right plot in Figure 2.
The plot reports in the x-axis the average self-similarity for
the training-set and in the y-axis the average self-similarity
for the test-set. From it, we can notice that the Suite Folding
has on average the highest self-similarity in the test-set. This
information, when combined with the standard deviation in the
accuracy, which is the highest for the Suite Folding, suggests
that the resulting folds have test-set populated with more similar
codes samples. It is likely that the trained model between the
different repetition is subject to overfitting and local minima
(high min-max variability) and achieves poor performance on
average when tested in relatively similar codes. This does
not happen in the SKF and Benchmark Folding which is by



Figure 2: Results of CNN analysis in D̃C - AMD using different train-test divisions: In red the Stratified 10-Fold, in green the Benchmark
division, in blue the Suite division.

construction more representative of the entire dataset in each
fold.

It is also important to note that SKF has the lowest self-
similarity in the training-set and thus is characterized by a
more ”rich” training-set. As expected, this split leads to the
best model results. We must notice that being the dataset pruned
by kernels repetitions training-set and test-set by construction
cannot contain the same kernels. Notice that this does exclude
the case in which some kernels in the training set happen to
be highly similar to one or more kernels in the test set. We
conclude that, in this evaluation, the SKF split has the best
characteristics in terms of separation of the test and train set
and fidelity with the original dataset content.

C. Meta-information Impact Analysis

Figure 3: Distribution of auxiliary input features for the two datasets
considered. Each point is coloured in green or orange depending on
its label.

Meta-information defines the application context such as
payload and device configuration (such as GPU work group
size) For the heterogeneous-mapping problem used in [5] the
meta-information space is shown in Figure 3. As done in
section III-A, in order to analyze this dataset, we start from

AMD
ACC MCC

DT MLP DT MLP

D̃M Raw 0.738 0.465 0.488 -0.012
D̃M Normalized 0.711 0.731 0.422 0.472

(a) Accuracy and MCC obtained with AMD Dataset

NVIDIA
ACC MCC

DT MLP DT MLP

D̃M Raw 0.727 0.535 0.456 0.074
D̃M Normalized 0.724 0.636 0.453 0.248

(b) Accuracy and MCC obtained with NVIDIA Dataset

Table V: Results of meta-information dataset classification using
decision tree (DT) and multi layers perceptron (MLP)

D : {DC , DM} and remove the source code component. The
resulting dataset DM : {A1, A2} is composed of auxiliary in-
formation pairs. A1 is the kernel payload in byte and affects the
data movement phases. A2 is the work-group size, an OpenCL
platform parameter that changes the device parallelism.

We want to analyze this dataset in order to evaluate the
classification accuracy of two classifier models: a decision
tree (DT), a machine learning technique used in [4], and a
multi-layer perceptron (MLP), the baseline of all deep learning
techniques. This analysis can give insight in how manage this
part of dataset. For the same reasons discussed in section
III-A about the incoherency in labels, from the DM dataset
we removed duplicated elements with incoherent labels. The
resulting dataset D̃M is then analyzed in Stratified 10-Fold
Cross Validation (SKF) using both DT and MLP. The evaluation
was repeated ten times in order to provide more stable results
(random initialization of model parameters and training-set
division lead to slightly different results)

In Table Va we can observe a 73% of accuracy in the decision



Figure 4: Distribution of the meta-information before and after
normalization. In blue the train-set distribution, in orange the test-set
distribution.

tree model, which is acceptable considering the use of meta-
information. On the other side, the MLP model is unable to
learn giving accuracy of around 50% (and around 0 for MCC.
The problem is that Deep-learning techniques assume well
formed data, where the range lies in [0, 1] or [-1, 1] [41].
This is necessary in order to compute correct gradients and
avoid issues related to the numerical stability of the learning
procedure. This is not the case for the considered auxiliary
inputs.

We address this problem indroducing a pre-processing pro-
cedure of data in the training-set. Specifically we used three
different normalization steps in cascade: A power transform, a
standard scaler, and a min-max scaler. The power transform
[42] implement a parametric monotonic transformations to
make data more Gaussian-like. The standard scaler removes
the mean and scales data to obtain unitary variance. Finally,
the min-max scaler scales the data values in a [-1,1] range. In
Figure 4 an example of pre-processing procedure is depicted.
The parameters of the pre-processing procedure was learned
from the training-set (in blue) and applied in the test-set
(orange). The data coverage in enough to avoid out-of-range
values in test-set. In this way, the huge features range is
transformed and can be processd by the MLP.

The results obtained with this procedure are presented in
Table Vb. The MLP now is able to learn in both dataset
flavors (AMD and NVIDIA), and reaches the performance of
the decision tree classifier. Although the decision tree performs
reasonably well, we are interested in the use of MLP as it is
embeddable in the code analysis model.

The CNN model, as described in [3], merges the aux

Parameters CNN Siamese

Epochs 70 15
Batch size 32 64

Optimizer Learning rate 1e-3 1e-3
Weight decay 5e-4 5e-4

LR scheduler
Factor 5e-1 -
Threshold 1e-4 -
Patience 5 -

Contrastive loss Margin - 2

Table VI: Training and callbacks hyper-parameters used to train the
proposed machine learning models.

inputs with the source code features, then performs a batch-
normalization step in the same way as in previous works
[5], [11], [10], [6], [13]. The proposed techniques, input
pre-processing and MLP, can be applied jointly with batch-
normalization and improve its performance. In section IV we
will show that pre-processing step and the embedded MLP layer
improve the classification accuracy of the CNN based classifier.
Furthermore, we will show that the proposed technique also im-
proves the results of other methods found in literature originally
using batch normalization without input pre-processing.

IV. RESULTS

This section reports a set of experiments we designed to
validate the methodologies described in Section III. Subsec-
tion IV-A provides the details about the structure of the
machine learning model tested. We also provide information
about the hyper-parameters we used to setup the gradient
descend optimizer and the learning-rate scheduler. Subsection
IV-B reports the impact of auxiliary input pre-processing on
classification performance. At last, Subsection IV-C compares
the performance of our models with alternative state-of-the-art
methodologies. The source code of our implementation can be
found online in a public Git repository2.

A. Machine learning models and training hyper-parameters

We conducted a set of experiments using two machine learn-
ing models, which from now on will be referenced as CNN and
Siamese. The CNN model is designed taking inspiration from
the network presented in [3]. It exploits a 1D convolutional
layer and a global max pooling filter to extract the most relevant
features from a stream of LLVM-IR tokens. Such features are
concatenated with the auxiliary inputs and classified using a
multi-layer perceptron. As discussed in Subsection III-C, we
enhance the previous CNN topology adding a fully-connected
layer of neurons before joining auxiliary input features with the
output of the language modelling sub-network. Subsection IV-B
shows how auxiliary inputs pre-processing and the additional
dense layer introduced in their processing path impact the
classification performance of the CNN.

Siamese refers to the siamese network we implemented. It
has the CNN described in the previous paragraph at its core
tuned to project every dataset sample in a two-dimensional

2https://gitlab.com/ecs-lab/deepllvm



Figure 5: Siamese network training. First, the weight of the core
network are trainined using the contrastive loss computed on the
projections of the points in the train folds. Then, centroids of same
class samples are computed and the a label is assigned to each sample
in the test set, depending on the closer centroid.

space. It means that the final layer of the multi-layer perceptron
has two neurons without activation function. The procedure
to train siamese networks is depicted in Figure 5. For each
combination of sample pairs in the train folds, each element S1

and S2 of the pair is separately fed into the core of the siamese
network which projects it into a 2-dimensional space. Then, the
distance between the projections of S1 and S2 is computed and
the weights of the siamese core network are updated according
to the following function, called constrastive loss

loss =

{
d(S1, S2)

2, if label(S1) = label(S2)

max(0,m− d(S1, S2))
2 otherwise

where m is a function hyper-parameter. The loss function
behaves such that samples with different labels are moved away,
while samples with equal labels are penalized proportionally to
the distance of their projections. At the end of training epochs,
all projections of train samples are collected and for each class
a centroid is computed by averaging all the projections of
samples of that class. Finally, the siamese network is tested
by computing the projections of all points in the test fold and
assigning a label depending on the closer centroid.

Table VI details the training framework we set up to evaluate
our models. The CNN was trained with a batch size of 32 for 70
epochs, while the siamese training used 64 samples batch and
lasts for 15 epochs. Both models are trained using the Adam
optimizer with a learning rate of 0.001. Since the CNN model
is trained for a larger number of epochs, it takes advantage
of a learning-rate scheduler which pregressively reduces the
learning rate the optimizer uses as the model advance trough
the epochs. The learning rate scheduler we use is controlled
by three parameters: patience, threshold and factor. After each
training epoch the train loss of the model is compared with
the one of previous epochs. If it does not improve more than
threshold for a number of epochs (patience), then the learning
rate of the optimizer is multiplied by factor. Such a technique
may prevent the gradient descend algorithm to get stuck in
some local minima of the features space and it is known to

Additional model techniques

Experiment input pre-processing input dense-layer

A No No
B Yes No
C No Yes
D Yes Yes

(a) Experiments composition.

AMD Experiments
ACC MCC

A B C D A B C D

C
N

N µ .853 .882 .868 .890 .695 .758 .726 .775
σ .013 .008 .008 .006 .027 .015 .017 .012
CI95 .009 .006 .006 .004 .020 .011 .012 .008

Si
am

. µ .882 .910 .873 .917 .757 .816 .738 .829
σ .006 .008 .009 .007 .012 .015 .019 .014
CI95 .004 .005 .007 .005 .009 .011 .014 .010

(b) AMD Experiments

NVIDIA Experiments
ACC MCC

A B C D A B C D
C

N
N µ .823 .843 .830 .873 .638 .678 .653 .767

σ .010 .008 .009 .009 .021 .017 .017 .018
CI95 .007 .006 .006 .006 .015 .012 .012 .013

Si
am

. µ .859 .885 .832 .888 .713 .765 .657 .771
σ .010 .008 .010 .009 .021 .017 .020 .018
CI95 .007 .006 .007 .006 .015 .012 .014 .013

(c) NVIDIA Experiments

Table VII: Impact of auxiliary input pre-processing on model accuracy.

be beneficial to improve deep learning models performance.
We set the margin (m) hyper-parameter of the contrastive loss
equal to 2.

Experiment outcomes are evaluated using two metrics: accu-
racy (ACC) and Matthews correlation coefficient (MCC). We
consider MCC since it is proven to be more effective than
accuracy and F1 score to evaluate the effectiveness of binary
classifiers when classes are imbalanced [43]. All experiments
are repeated 10 times with different fold splits and the results
are described providing mean (µ), standard deviation (σ) and
95% confidence interval (CI95). All experiments were run on
a server equipped with a 24 GB RAM NVIDIA Quadro RTX
6000 GPU.

B. Impact of auxiliary input pre-processing

The impact of pre-processing and the presence of the ad-
ditional dense layer on the auxiliary inputs processing path is
validated checking the classification performance of the CNN
and the Siamese model. We propose two modifications over the
traditional way auxiliary inputs are treated in other literature
works on the topic.

First, the raw auxiliary input values present in the dataset are
pre-processed using three successive scalers:

• A power transformer based on the Yeo-Johnson method
[42] is used to make the shape of the data distribution
more Gaussian-like.



Test on state-of-the-art models
AMD NVD

A B ∆ A B ∆

D
ee

pT
. µ .814 .855 .041 .805 .839 .034

σ .020 .015 -.005 .008 .007 -.007
CI95 .014 .007 -.001 .006 .005 -.001

C
D

FG

µ .864 .889 .025 .814 .853 .039
σ .010 .007 -.003 .006 .009 .003
CI95 .007 .005 -.002 .004 .006 .002

Table VIII: Impact of auxiliary input pre-processing on DeepTune
[5] and CDFG [6] methodologies.

• A standard scaler removes the mean from the samples and
scales them to unit variance.

• As a last step, the data are scaled to a fixed range, between
-1 and +1.

Additionally, we add a single-layer fully-connected percep-
tron in the auxiliary input analysis path, in order to give the
network more degree of freedom for reshaping the features
space at training time. The two modifications we propose are
orthogonal, and one does not imply the other. We run four
experiments, namely A,B,C,D, to evaluate them separately. The
composition of each experiment is reported in Table VIIa.
Experiment A reproduces the results shown in [3] for the CNN,
and provides a baseline for the evaluation of the performance
of the siamese network.

Tables VIIb and VIIc describe the outcome of the four
experiments. For each metric and statistics computed, the
best result is bolded. Experiment D consistently maximizes
both accuracy and MCC scores in all experiments for both
datasets. It proves that not only auxiliary input normalization
is beneficial for classification performance but also adding an
additional dense layer is a promising strategy. The CNN reaches
a classification accuracy of 89.0% in the AMD dataset, showing
3.7% better accuracy than the baseline depicted in experiment
A. Considering the NVIDIA dataset, the two modifications we
propose deliter a boost of 5% of accuracy which increases from
82.3% to 87.3%.

We also observe that using the CNN in the siamese frame-
work still increase classification performance. The siamese
networks reach a top classification accuracy of 91.7% on the
AMD dataset and of 88.8% on the NVIDIA dataset, providing
higher performance with respect to alternative methodologies
for source code mapping on heterogeneous platforms.

Additionally, we prove that auxiliary input pre-processing is
beneficial when applied to other state-of-the-art methodologies
for source code device mapping. Table VIII shows the impact
of the proposed pre-processing pipeline on DeepTune [5] and
CDFG [6]. Experiments highlight that adding auxiliary input
pre-processing leads to an increase in accuracy of at least 2.5%,
with a peak increase of 4.1% in the case of DeepTune tested
on the AMD dataset.

Table IX gives an idea of how much auxiliary inputs impact
the performance of a source code classifier trained on the avail-
able dataset. If D̃C is used in place of D classification accuracy
experience a drop of approximately 8.2% in AMD dataset and
9.9% in NVIDIA. Interestingly, the mean performance does not

drop drammatically, which gives a hint that the neural networks
are able to extract sufficient information from the source code
alone. We can also comment on how the presence of auxiliary
inputs make the outcome of the models more stable. In facts,
removing them make the standard deviation and the confidence
interval larger in the general case, with respect to the standard
experiment.

C. Comparative results
Table X compares the CNN and the Siamese with other

state-of-the-art tools that solve the problem of heterogeneous
device mapping. To be fair, we limit the selection of alternative
methodologies to the one which focus on LLVM-IR analysis
(we include DeepTune [5] for historical reasons.).

All state-of-the-art works considered, including the proposed
one, use Stratified K-Fold Cross Validation (SKF). Depending
on the authors, the methodology used to build training-set and
test-set is referred to by different names (e.g. fixed split, random
split). The work in [5] shows the results of only one experiment,
while [6] reports the average of 10 experiments. In this work,
we report results on an average of 10 experiments, where each
one has a different assignment of the samples in the folds.
Considering the small size of the dataset, the composition of
the folds may lead to significant performance variations for a
given model. To obtain a fair comparison between the different
techniques and machine learning models, it is thus preferable
to consider the statistics of the results obtained by varying
the order of the samples within the folds across different
experiments, which is achieved by re-running SKF for each
experiment. To this purpose, we have replicated the techniques
used for comparison, where each experiment was performed
using the same setup used for our models. Specifically, we used
“SKF Training Set with 9/10 folds - 10 Repetitions - Rebuild
Folds”. 3 To obtain a fair comparison between the proposed
technique and ProGraML [13], which uses a smaller training
set (80%), and therefore a less favourable condition in training,
we re-trained CNN and Siamese using a splitting rule with
the same fraction of the dataset used for training as in [13].
Specifically, we used “SKF Training Set with 8/10 folds - 10
Repetitions - Rebuild Folds”. Looking at results reported in
Table X, it can be observed that the proposed methods show a
significant accuracy improvement with respect to state-of-the-
art.

The two auxiliary input processing techniques described in
the present work (normalization and additional dense layer)
boost classification accuracy of the baseline model described
in [3] from 85.5% to 88.2% on average. Using such model
configured for siamese training provides a further performance
improvement, significantly outperforming currently available
methodologies. Furthermore, an interesting feature of auxiliary
inputs normalization and siamese framework is that they can
be applied to all of the methods reported in Table X.

3When designing the testbed architecture to compare our methodology to
state-of-the-art, we chose to rebuild the SKF folds for each methodology tested.
The reason is that most state-of-the-art tools have custom test code and do not
allow to force training on a specific set of samples without jacking with their
implementation.



AMD
ACC MCC

D D̃C D D̃C
C

N
N µ .890 .808 .775 .611

σ .006 .020 .012 .041
CI95 .004 .014 .008 .010

Si
am

. µ .917 .789 .829 .578
σ .007 .019 .014 .038
CI95 .005 .013 .029 .027

(a) AMD dataset

NVIDIA
ACC MCC

D D̃C D D̃C

C
N

N µ .873 .774 .741 .548
σ .009 .026 .018 .053
CI95 .006 .019 .013 .038

Si
am

. µ .888 .769 .771 .539
σ .009 .024 .018 .048
CI95 .006 .017 .013 .035

(b) NVIDIA dataset

Table IX: Stratified 10-folds cross-validation experiments.

State-of-the-art methodologies
AMD NVIDIA Mean

DeepTune [5] .814 .805 .810
NCC/inst2vec [11] .802 .810 .806
CDFG [6] .864 .814 .839
DeepLLVM [3] .853 .823 .838

CNN this work .890 .873 .882
Siamese .917 .888 .903

(a) State-of-the-art methods were re-evaluated in this work using SKF and
Training Set with 9/10 folds.

State-of-the-art methodologies
AMD NVIDIA Mean

ProGraML [13] .866 .800 .833

CNN this work .894 .877 .886
Siamese .908 .879 .894

(b) CNN and Siamese methods were re-evaluated in this work using SKF
and Training Set with 8/10 folds.

Table X: Comparison with state-of-the-art methodologies.

V. CONCLUSIONS

In this work, we presented a strategy for making the most of
a source code dataset used in heterogeneous device mapping by
using a deep learning classifier. We analysed the dataset in its
components: the source code and the meta-information. For the
source code dataset, we analysed the code repetitions and label
incoherence, and we define a procedure to obtain a similarity
measure between two kernels (code sequences). Moreover, we
explored three different strategies to define training-set and
test-set. Stratified K-Fold (SKF), Benchmark Folding and Suite
Folding was evaluated training a classifier based on the CNN
model. The classification performance and similarity metrics
were used to investigate the best strategy to split the dataset
to evaluate a DL model. The Stratified K-Fold proved to keep
stable cross and self-similarities of the test and training-sets.
We adopted it for the experimental results section (Section IV),
where we compare the accuracy of state-of-the-art models.

We also analysed the meta-information dataset using two
different techniques, a Decision Tree (DT) and a Multi-Layer
Perceptron (MLP). While DT was generally more performant,
integrating MLP with code analysis makes this methodol-
ogy more attractive for our purposes. Using a normalisation
pipeline, we were able to obtain good results also using MLP.
Finally, we introduced the Siamese Network a new training

paradigm that uses contrastive loss to learn by similarities
between samples belonging to the same class. Using the new
MLP and Meta-information normalisation procedure and a
Siamese Network, we obtained a classification accuracy in
the heterogeneous device mapping of 91.7% and 88.8% in
the AMD and NVIDIA variants of the dataset, respectively.
In future works, we will explore new techniques to improve
classification accuracy by enhancing the language model and
consider the dataset label incoherency. Moreover, we will
explore new models able to deal with statistically different
training and test-sets, like the one generated by the suite split.
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He received his M.Sc. degree (summa cum laude)
in Computer Engineering - Embedded Systems, at
Politecnico di Torino. His research activity mainly
focuses on compiler optimizations for cyber-physical
systems and low-power embedded systems.

Francesco Barchi is Research Assistant at the De-
partment of Electrical, Electronic, and Information
Engineering at Alma Mater Studiorum - Università
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