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 

Abstract— System design tools are often only available as input-

output blackboxes: for a given design as input they compute an 

output representing system behavior. Blackboxes are intended to 

be run in the forward direction. This paper presents a new method 

of solving the “inverse design problem” namely, given 

requirements or constraints on output, find an input that also 

optimizes an objective function. This problem is challenging for 

several reasons. First, blackboxes are not designed to be run in 

reverse. Second, inputs and outputs can be discrete and 

continuous. Third, finding designs concurrently satisfying a set of 

requirements is hard because designs satisfying individual 

requirements may conflict with each other. Fourth, blackbox 

evaluations can be expensive. Finally, evaluations can sometimes 

fail to produce an output due to non-convergence of underlying 

numerical algorithms. This paper presents CNMA, a new method 

of solving the inverse problem that overcomes these challenges. 

CNMA tries to sample only the part of the design space relevant 

to solving the inverse problem, leveraging the power of neural 

networks, Mixed Integer Linear Programs, and a new learning-

from-failure feedback loop. The paper also presents a parallel 

version of CNMA that improves the efficiency and quality of 

solutions over the sequential version, and tries to steer it away 

from local optima. CNMA’s performance is evaluated against 

conventional optimization methods for seven nonlinear design 

problems of 8 (two problems), 10, 15, 36 and 60 real-valued 

dimensions and one with 186 binary dimensions.  Conventional 

methods evaluated are stable, off-the-shelf implementations of 

Bayesian Optimization with Gaussian Processes, Nelder Mead and 

Random Search. The first two do not produce a solution for 

problems that are high-dimensional, have both discrete and 

continuous variables or whose blackboxes fail to return values for 

some inputs. CNMA produces solutions for all problems. When 

conventional methods do produce solutions, CNMA improves 

upon their performance by up to 87%.    

 

Index Terms— Blackbox optimization; constrained 

optimization; Mixed-Integer Linear Program (MILP); neural 

networks; optimization; sample efficiency. 

I. INTRODUCTION 

System design knowledge is often encapsulated inside 

blackboxes such as simulators, spreadsheets and program 

scripts. Blackboxes are, typically, nonlinear functions that 

accept a design as input and produce a representation of system 

behavior as output. New designs can be created by solving the 

“inverse problem”: from requirements or constraints on 

blackbox output, compute an input that also optimizes an 

objective function.   

Relevant to solving this problem are the mature, constrained 

nonlinear optimization methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. 
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Also available is a large online collection of these methods 

[11] along with a companion guide [12]. These methods can 

be adapted to solve the problem of finding 𝑥 that optimizes an 

objective function 𝜙(𝑥, 𝐹(𝑥)) subject to a 

constraint 𝑃(𝑥, 𝐹(𝑥)) where 𝐹 is a blackbox function, 𝜙 an 

objective function and 𝑃 a constraint or a requirement. Any 

solution 𝑥 is a solution to the inverse problem since 𝑥 is an input 

to 𝐹 that optimizes 𝜙  and satisfies 𝑃 on the output of 𝐹. 

Figure 1 presents a taxonomy of these methods. These fall 

into two categories: derivative-based and derivative-free. The 

former compute derivatives of the objective function to 

determine the direction in which to search for a point where the 

derivative becomes zero. They are restricted to smooth, 

continuous functions. Thus, they do not apply to functions with 

discontinuities or discrete variables. Moreover, derivative 

computation is not sample-efficient in that it requires a large 

number of function evaluations. Thus, these methods are 

infeasible when function evaluation is expensive, as is often the 

case for blackboxes.  

Derivative-free methods [5, 7] try to overcome the 

limitations of derivative-free ones.  One class of such methods 

is called direct search whose well-known members include 

Nelder-Mead (NM) [6] and COBYLA [13]. They maintain a 

simplex (convex hull) of points around the current point and use 

it to compute the next point to sample in the direction of the 

optima. These methods require starting points whose incorrect 

choices can cause the methods to be stuck in local optima.  

Another class of derivative-free methods is metamodeling or 

surrogate-based [7, 8]. They do not require starting points. 

Instead, they sample the blackbox function at some set of points 

and construct a surrogate model by fitting the values to a 

mathematical expression or by using machine learning. Active-

learning metamodeling methods are conservative in the number 

of samples they evaluate. They do this by constructing a merit 

or acquisition function from the surrogate model. This merit 

function is optimized to compute the best point to sample next. 
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If this point does not satisfy a halting condition, the point is 

added to the set of samples and the search is restarted. Examples 

include ALAMO [3] and Bayesian Optimization (BO) with 

Gaussian Processes (BO/GP) [9]. In geostatistics, BO/GP is 

called Kriging [1] and the use of Kriging for circuit design is 

reported in [14].  In earlier BO/GP versions, the complexity of 

building surrogate functions was cubic in the number of 

samples [1] although asymptotically faster versions on GPUs 

are reported in [15]. To optimize with constraints, various 

extensions to BO/GP have been presented in [16, 17, 18, 19]. 

Parallel BO/GP algorithms have been presented in [20, 21, 22].   

Non active-learning metamodeling methods, e.g., [23, 24, 25, 

26], directly use the surrogate as a fast evaluator of the blackbox 

function for use by optimization methods, including derivative-

based ones. They may not be feasible for higher-dimensional 

functions where the number of samples needed to construct an 

accurate enough surrogate may be astronomical.  

Genetic algorithms [27] form a third type of derivative-free 

optimization. A population of samples is maintained that is 

systematically improved over multiple generations. While such 

algorithms can avoid local optima and operate on functions with 

discrete and continuous variables, they may converge to the 

final solutions slowly. The sister Part II of this paper  [28] 

shows how the conjunction of genetic algorithm and CNMA 

can overcome this problem.  
The above methods can be susceptible to failure of objective 

functions to evaluate, as can happen, for example due to non- 

convergence of computational fluid dynamics simulators [29]. 

If an artificial value has to be assigned to the function it could 

distort the simplexes and surrogates.  

Many of the above methods handle constraints indirectly by 

reducing constrained optimization with a sequence of one or 

more unconstrained optimization problems [2, 4, 30, 31]. The 

principle is to encode the cost of violating a constraint as a 

penalty/barrier function and rely on an optimization engine to 

drive this cost to zero. For example, to model the constraint 𝑥 ≤
1, the term max(0, 𝑥 − 1) can be added to the objective 

function. Whenever 𝑥 > 1,  the term would evaluate to a 

positive number. Hence, the optimization engine (doing 

minimization) would search in a region where the cost is zero. 

However, such functions can distort the shape of the new 

objective function making it harder to find the optima. 

Reducing such distortion requires substantial creativity on the 

part of the penalty/barrier function designer [4, 32].  

This paper presents CNMA (it stands for Constrained 

optimization with Neural networks, MILP and Active learning), 

a new surrogate-based method for solving the inverse problem 

for blackboxes. Formally, CNMA finds values of 𝑥, 𝑦 that 

optimize 𝜙(𝑥, 𝑦) such that 𝐹(𝑥) = 𝑦 ∧  𝑃(𝑥, 𝑦) where 𝐹 is a 

potentially nonlinear function available as a blackbox, 𝑥, 𝑦 are 

vectors of discrete and continuous variables, 𝜙 is a linear  

function and 𝑃 is a linear constraint. 𝑃 can also be a conjunction 

of several constraints. Note that ∧ denotes logical conjunction 

(AND). This is a straightforward reformulation of the earlier 

inverse problem definition, with 𝑦 being an explicit handle on 

the output. This reformulation allows a natural implementation 

using the constituent technologies. As shown in Section V.H, 

CNMA handles nonlinear objective functions and constraints 

by moving their nonlinearities inside the definition of 𝐹.  

A. CNMA Innovations 

CNMA’s innovation is connecting the modeling power of 

neural networks and constraint-solving power of MILP solvers 

into a learning-from-failure feedback loop in such a way that 

they do much of the work for us, permitting straightforward, 

efficient implementations of the following desirable features 

into a single, cohesive system:   

 

1. Efficient construction of a surrogate function. The 

complexity of neural network is linear in the number of 

samples.  

2. Efficient constraint-solving without penalty functions. 
This feature is enabled by the transformation of neural 

networks with the ReLU activation function into an 

equivalent MILP. In addition, constraints are directly 

expressed in the MILP language and then efficiently solved 

by industrial-strength MILP solvers such as CPLEX and 

GUROBI [11, 12].  

 

3. Sample efficiency. This feature is enabled by CNMA’s 

learning-from-failure feedback loop. A surrogate is learnt 

as a neural network that is then transformed into an MILP. 

Using this MILP, a constrained optimization problem is 

solved and if the solution is unacceptable, it is used to find 

a new point to sample.  

4. Optimization with discrete and continuous variables.  
Function inputs, outputs and constraints can all contain 

discrete and continuous variables. This feature is enabled 

by the use of both neural networks and MILP solvers.   

5. Solving constraints whose evaluation itself requires 

blackbox evaluations. CNMA handles this by introducing 

new variables for components of constraints that must be 

evaluated via blackbox methods and shifts the blackbox 

estimation to the underlying surrogate that is created. See 

Section V.H.  

6. Resilience to the failure of blackboxes to compute 

outputs. CNMA leverages the ability of neural networks 

to learn despite missing information. It makes no 

 

 

Figure 2. An example of a function over which 

CNMA can optimize. It is non-continuous and not even 

defined at all points. Only two dimensions of the 15 

are shown. See Section V.B for details. 
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assumptions about function continuity or smoothness. 

Figure 2 shows an example of a function CNMA can 

optimize over.  

7. Parallelism. A simple parallel version of CNMA, also 

presented in this paper, improves the efficiency and quality 

of solutions over the sequential version, and also tries to 

steer it away from local optima. No restriction is placed on 

functions that can be optimized in parallel.  

CNMA samples points in the domains of the function, and 

learns a neural network surrogate of the function. By the 

Universal Approximation Theorem [33], neural networks can 

approximate any continuous function, although in practice, they 

are also used to approximate non-continuous, non-smooth 

functions. CNMA transforms that surrogate into an equivalent 

MILP [34] and constructs its conjunction with 𝑃(𝑥, 𝑦). It 

optimizes 𝜙(𝑥, 𝑦) subject to this conjunction using industrial-

strength MILP solvers. It then checks the solution for 

correctness, i.e., whether it satisfies 𝑃(𝑥, 𝑦) and whether the 

objective function is of acceptable value. If so, CNMA outputs 

the solution. If not, CNMA computes a new training instance 

from the solution and restarts. This “learning-from-failure” 

feedback loop has the effect of trying to sample the region of 

the domain relevant to solving the optimization problem. Thus, 

it reduces the number of function evaluations by orders of 

magnitude compared to that needed for learning the function 

over its entire domain.  

 A parallel version of CNMA uses multiple agents with each 

using a different neural network architecture but operating off 

the same training set. Each independently computes the next 

best point to sample and adds it to the common training set. The 

resulting model diversity decreases the chances of getting stuck 

in local optima. Parallel neural network training, MILP solving 

and sample evaluation also contribute to improved performance 

over the sequential version.   

Genetic algorithms can be combined with CNMA in a form 

of hybrid optimization to find solutions that may not be found 

by one or the other alone. This idea is thoroughly explored in a 

sister paper of the same title but Part II [28].  

CNMA presents a novel method of addressing a major 

challenge posed in [49]: how to combine inductive and 

deductive reasoning in the design of cyber-physical systems. In 

CNMA, inductive reasoning is accomplished by neural 

networks and deductive reasoning by MILP solvers, with the 

two tied together in a feedback loop.  

The paper is organized as follows. Section II discusses 

related work, in particular, highlighting the relationship of 

CNMA with BO/GP. Section III provides the necessary 

background. Section IV presents sequential and parallel CNMA 

and illustrates them with a simple example. Section V evaluates 

CNMA performance for seven nonlinear problems of 8 (two 

problems), 10, 15, 36 and 60 real-valued dimensions and one 

with 186 binary dimension. Its performance is compared with 

that of the skopt [35] implementation of BO/GP 

(abbreviated BO-S) and the scipy.optimize [36] 

implementation of NM (abbreviated NM-S), and Random 

Search. BO-S and NM-S are stable, off-the-shelf tools. Note, 

however, that BO-S did not return a solution for two problems 

and NM-S did not return one for three. Section VI concludes 

the paper.  

II. RELATED WORK 

Surrogate-based methods are most closely related to CNMA. 

Of these methods, perhaps the most well-researched is BO/GP 

[9]. Let the objective function to be maximized be 𝐹(𝑥)  and let 

a blackbox be available to evaluate 𝐹(𝑥). BO/GP is initialized 

with a covariance function 𝑘(𝑥, 𝑦), also called a kernel.  BO/GP 

is also initialized with a set 𝑆 of samples  in the domain of 𝐹 

and their associated values.  With this information, BO/GP 

iteratively updates the posterior distribution of the underlying 

Gaussian Process, parameterized by 𝜇(𝑥) and 𝜎(𝑥).  

Intuitively, 𝜇(𝑥) is the mean of the values at 𝑥, of all possible 

functions whose value for any sample 𝑣 in 𝑆  is 𝐹(𝑣).  𝜎(𝑥) is 

the standard deviation of all these values. These two functions 

are combined in different ways to create a merit or acquisition 

function. This function is maximized using an optimization 

engine such as L-BFGS [37]. The value of 𝑥 in the solution 

represents a new point to sample, relevant to the optimization 

problem that balances exploration with exploitation. It is added 

to 𝑆 and the step repeats till a sample satisfying some halting 

condition is found. One such acquisition function is the Upper 

Confidence Bound 𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + 𝛽 ∗ 𝜎(𝑥) with 𝛽 ≥ 0.  

The construction of 𝜇(𝑥) and 𝜎(𝑥) requires the inversion of the 

covariance matrix that lists 𝑘(𝑢, 𝑣) for each pair (𝑢, 𝑣) where 

𝑢, 𝑣 are samples in 𝑆. In earlier versions of BO/GP, a matrix 

inversion method cubic in the number of samples was used [1], 

although faster methods on GPUs are reported in [15]. 

If 𝐹(𝑥) is to be optimized subject to a constraint 𝑃(𝑥, 𝐹(𝑥)), 

𝑃(𝑥, 𝐹(𝑥)) could be modeled as a penalty/barrier function and 

added to 𝐹(𝑥). If 𝑃(𝑥, 𝐹(𝑥)) itself requires a blackbox 

evaluation, extensions of BO/GP have been proposed [16, 17, 

18, 19] that, in their inner loop, find an 𝑥 for which the 

likelihood of  𝐹(𝑥) being the maximum and that of  𝑃(𝑥, 𝐹(𝑥)) 

being true is high.  

Parallel versions of BO/GP have been proposed in [20, 21, 

22]. Some, such as ref. [20], assume function “additivity,” i.e., 

the function can be decomposed into a sum of functions on 

disjoint subsets of the function domain. Ref. [38] reports the use 

of a neural network as a surrogate but the surrogate remains 

inside the Gaussian Processes framework. It is not solved with 

an MILP solver. Ref. [39] reports a scheme for mixed discrete-

continuous variables in BO/GP. To handle failure of function 

evaluation, ref. [40] reports a scheme for learning problematic 

areas of the search space and avoiding it.  

Like BO/GP, CNMA also builds a surrogate of 𝐹(𝑥), say 

𝐹𝑛𝑛(𝑥),  from sampling the blackbox. The selection of the 

neural network architecture is analogous to selection of the 

kernel and  𝐹𝑛𝑛(𝑥) is analogous to 𝜇(𝑥). The MILP solver is 

analogous to an engine such as L-BFGS. It is directly used to 

find 𝑥 that maximizes 𝑦  such that 𝐹𝑛𝑛 (𝑥) = 𝑦 ∧  𝑃(𝑥, 𝑦).  Any 

solution is used to compute the next point to sample.  

Connecting neural networks and MILP solvers in a learning-

from-failure feedback loop permits efficient, straightforward 

implementation of above features: efficient surrogate function 

construction, sample efficiency, constraint solving without 

penalty functions, solving blackbox constraints, optimization 

with discrete and continuous variables, resilience to non-

terminating function evaluations, and parallelism.  

CNMA does not compute the variance of the surrogate it 

learns. Effectively, its merit function is 𝑈𝐶𝐵(𝑥) with 𝛽 = 0. 
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There is, thus, a risk that it could get stuck in local optima 

finding more and more points around the current optima. 

CNMA provides two methods for trying to avoid this problem 

and searching globally. The first is to use a constraint stating 

that the objective function is above a threshold. Then, the MILP 

solver will not produce solutions for which the objective is 

below the threshold. The second is to introduce model diversity 

to reduce the chances of different models computing the same 

local optima. Model diversity is a byproduct of parallel CNMA 

whose multiple agents create their own models. Independently, 

parallel CNMA also contributes to improved performance via 

parallel neural network training, MILP solving and sample 

evaluation.  

If the current surrogate is not good enough then 

𝐹𝑛𝑛(𝑥) subject to 𝑃(𝑥) may have no solution. In that case, 

CNMA generates a random point and restarts. How to mitigate 

such randomness is one problem of current research. Other 

future research problems include introducing additional 

diversity, e.g., by use of bootstrapping, multi-function CNMA, 

finding an appropriate initial neural network architecture and 

adapting that architecture as new samples are created, e.g., via 

the use of network compression [41]. 

We now discuss CNMA in detail.  

III. BACKGROUND 

A mixed-integer linear constraint is of the form 𝑎0 ∗ 𝑥0 +
 … + 𝑎𝑘 ∗ 𝑥𝑘 ≤ 𝑏 where 𝑎𝑖 , 𝑏 are real-valued constants and the 

𝑥𝑖 are real-valued or integer-valued. An MILP is a set of such 

constraints with a linear objective function 𝜙(𝑣0, . . , 𝑣𝑚) where 

each 𝑣𝑖 is a variable appearing in a constraint. An MILP solver 

finds values of all variables in the program optimizing the 

function while satisfying all constraints. It makes no distinction 

between input and output variables.  

A neural network is a set of layers with each layer consisting 

of a set of neurons. In the fully-connected neural network used 

in CNMA, each neuron in a layer is connected to each neuron 

in the previous layer. Such a network has one input layer, one 

output layer and zero or more hidden layers. When the values 

of neurons in the input layer are initialized, they are propagated 

forward to compute values of all neurons. The output layer can 

have multiple neurons allowing modeling of multi-output 

functions. Associated with the edge between two neurons is a 

weight. Associated with each neuron is a bias or intercept. The 

value of a hidden-layer neuron is a linear combination of its 

bias, values in the previous layer and weights of connecting 

edges, but passed through an activation function. Activation 

functions give neural networks the power to model nonlinear 

functions. We use the ReLU activation function 𝑚𝑎𝑥(𝑥, 0) 

because it can be converted into an MILP constraint using the 

big-M method [34]. By also modeling the overall system 

requirement as another mixed integer linear constraint, scalable 

MILP solvers can be used to efficiently solve the neural 

network along with the requirement. To allow neural networks 

to model negative outputs, no activation function is applied at 

the output layer.  

We now illustrate the above plan with a short example. To 

model the equation 𝑦 =  𝑚𝑎𝑥(𝑥, 0) as an MILP, select a large 

number 𝑀 and let an integer 𝑑 ∈ {0, 1}. Then, 𝑦 = 𝑚𝑎𝑥(𝑥, 0) 

is equivalent to (𝑦 ≥ 0 ∧ 𝑦 ≥ 𝑥 ∧ 𝑦 ≤ 𝑥 + 𝑀 ∗ 𝑑 ∧ 𝑦 ≤

𝑀(1 − 𝑑)).  

Proof of correctness of tranformation of ReLU into MILP. 

To see how the MILP (𝑦 ≥ 0 ∧ 𝑦 ≥ 𝑥 ∧ 𝑦 ≤ 𝑥 + 𝑀 ∗ 𝑑 ∧ 𝑦 ≤
𝑀(1 − 𝑑)) is equivalent to 𝑦 = 𝑚𝑎𝑥(𝑥, 0), consider two cases. 

In the first case, let 𝑑 = 0. The MILP simplifies to (𝑦 ≥ 0 ∧
𝑦 ≥ 𝑥 ∧ 𝑦 ≤ 𝑥 ∧ 𝑦 ≤ 𝑀). Because M is a large number, 𝑦 ≤ 𝑀 

is satisfied trivially and the MILP further simplifies to (𝑦 ≥ 0 ∧
𝑦 = 𝑥) which can also be written as (𝑦 = 𝑥 ∧ 𝑥 ≥ 0). In the 

second case, let 𝑑 = 1. The MILP simplifies to (𝑦 ≥ 0 ∧ 𝑦 ≥
𝑥 ∧ 𝑦 ≤ 𝑥 + 𝑀 ∧ 𝑦 ≤ 0). Because M is a large number 𝑦 ≤
𝑥 + 𝑀 is satisfied trivially and the MILP further simplifies to 

(𝑦 = 0 ∧ 𝑦 ≥ 𝑥) which can also be written as (𝑦 = 0 ∧ 𝑥 ≤ 0). 

By combining these two cases, the MILP is equivalent to 𝑦 = 𝑥 

if 𝑥 ≥ 0, otherwise 𝑦 = 0. Finally, this is equivalent to 𝑦 =
𝑚𝑎𝑥(𝑥, 0). 

We now show how to model a whole neural network as an 

MILP.  

 
Figure 3. A fully-connected neural network. 

The neural network in Figure 3 uses the ReLU activation 

function. Each blue circle represents a single neuron. 𝑥1 and 𝑥2 

represent the two inputs that get fed into the neural network. 

Neurons ℎ1 and ℎ2 represent the values of each neuron in the 

hidden layer after the activation function is applied, and 

𝑦1 represents the output of the neural network. 𝑤1 to 𝑤4 

represent the weights of the first layer and 𝑤5 and 𝑤6 represent 

the weights of the output layer. Finally, 𝑏ℎ1, 𝑏ℎ2, and 

𝑏𝑦1 represent the bias term of the respective neuron. The value 

of each neuron can then be computed by the following 

equations: 

ℎ1 = max(𝑤1 ∗ 𝑥1 + 𝑤3 ∗ 𝑥2 +  𝑏ℎ1, 0) ∧ 

ℎ2 = max(𝑤2 ∗ 𝑥1 +  𝑤4 ∗ 𝑥2 + 𝑏ℎ2, 0) ∧ 

𝑦1 = 𝑤5 ∗ ℎ1 + 𝑤6 ∗ ℎ2 + 𝑏𝑦1  

Letting 𝑀 = 100000 and 𝑑1, 𝑑2 integers ∈  {0, 1}, the 

equivalent MILP for this network, 𝑛𝑛_𝑚𝑖𝑙𝑝, is: 

 

𝑛𝑛_𝑚𝑖𝑙𝑝 = (ℎ1 ≥  0 ∧ 

ℎ1  ≥  𝑤1 ∗ 𝑥1 +  𝑤3 ∗ 𝑥2 +  𝑏ℎ1 ∧ 

 ℎ1 ≤  𝑤1 ∗ 𝑥1 +  𝑤3 ∗ 𝑥2 +  𝑏ℎ1 + 100000 ∗ 𝑑1 ∧ 

ℎ1 ≤  100000 ∗ (1 − 𝑑1) ∧ 

 

ℎ2 ≥  0 ∧ 

ℎ2 ≥  𝑤2 ∗ 𝑥1 +  𝑤4 ∗ 𝑥2 + 𝑏ℎ2 ∧ 

ℎ2 ≤  𝑤2 ∗ 𝑥1 + 𝑤4 ∗ 𝑥2 + 𝑏ℎ2 + 100000 ∗ 𝑑2 ∧ 

ℎ2 ≤  100000 ∗ (1 − 𝑑2) ∧ 

 

𝑥1 

𝑥2 

𝑦1 

ℎ2 

ℎ1 
𝒘𝟏 

𝒃𝒉𝟏 

𝒘𝟑 

𝒘𝟒 

𝒘𝟐 

𝒃𝒉𝟐 

𝒃𝒚𝟏 
𝒘𝟓 

𝒘𝟔 
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𝑦1 =  𝑤5 ∗ ℎ1 + 𝑤6 ∗ ℎ2 + 𝑏𝑦1) 

Let the above neural network model a blackbox function 

𝐹(𝑥1, 𝑥2) = 𝑦1  and let  𝜙(𝑥1, 𝑥2, 𝑦1), 𝑃(𝑥1, 𝑥2, 𝑦1) be an MILP 

objective function and constraint, respectively.  Then, to 

optimize 𝜙(𝑥1, 𝑥2, 𝑦1)  subject to 𝐹(𝑥1, 𝑥2) = 𝑦1 ∧
𝑃(𝑥1, 𝑥2, 𝑦1), we can use an MILP solver to optimize  

𝜙(𝑥1, 𝑥2, 𝑦1) subject to 𝑛𝑛_𝑚𝑖𝑙𝑝 ∧  𝑃(𝑥1, 𝑥2, 𝑦1).  
A central innovation of CNMA is that the neural network 

does not have to model 𝐹 exactly to solve the optimization 

problem. To model it exactly would require an astronomical 

number of samples from 𝐹’s domain. Instead, CNMA tries to 

choose samples that are relevant to solving the optimization 

problem and are thus a tiny fraction of the number required for 

accurate modeling. After each sample, the neural network 

surrogate is reconstructed and the optimization problem solved 

again. The solution is used to compute the next promising 

sample and the step repeated till an acceptable solution is found.  

IV. METHODOLOGY 

CNMA solves the problem of finding 𝑥, 𝑦 that optimize 

𝜙(𝑥, 𝑦) such that 𝐹(𝑥) = 𝑦 ∧  𝑃(𝑥, 𝑦) where 𝐹 is a nonlinear 

function, 𝑥, 𝑦 are vectors of discrete and continuous variables, 

𝜙 is a linear function and 𝑃 is a linear constraint.  𝐹 is called the 

forward function. As shown in Figure 4, CNMA uses a Sample 

Generator to sample points in 𝐹’s domain, evaluates those 

points and creates a training set. These points are inputs to the 

neural network (NN) ReLU Regression Engine that outputs a 

neural network 𝑛𝑛. This is transformed into an equivalent 

MILP 𝑚𝑖𝑙𝑝 by the NN-MILP transformer. 𝑚𝑖𝑙𝑝 is a surrogate 

or model of 𝐹 based on current 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. An MILP solver 

solves 𝜙(𝑥, 𝑦) such that 𝑚𝑖𝑙𝑝 ∧  𝑃(𝑥, 𝑦) is true. If a solution is 

not found, the Sampling Engine is called upon to extend 

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 with a new one in the hope of improving upon the 

current surrogate, and CNMA restarts. Otherwise, let (𝑥∗, 𝑦̂) be 

a solution. It is then checked for correctness, i.e., whether 

𝑃(𝑥∗, 𝐹(𝑥∗)) holds. If it does, then the value of the objective 

function 𝜙(𝑥∗, 𝐹(𝑥∗)) is checked for acceptability, e.g., 

whether it is above or below a desired threshold or whether the 

evaluation budget has been reached. If the solution is 

acceptable, (𝑥∗, 𝐹(𝑥∗))  is output and CNMA halts. Otherwise, 

(𝑥∗, 𝐹(𝑥∗))  is added to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. If  𝑃(𝑥∗, 𝐹(𝑥∗)) is false, then 

(𝑥∗, 𝐹(𝑥∗)) is also added to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. Now, CNMA restarts. 

Note that CNMA can be used in pure constraint satisfaction 

mode by letting 𝜙(𝑥, 𝑦) = 0 and in pure optimization mode by 

letting 𝑃(𝑥, 𝑦) = 𝑡𝑟𝑢𝑒. 

The addition of (𝑥∗, 𝐹(𝑥∗)) if 𝑃(𝑥∗, 𝐹(𝑥∗)) does not hold is a 

form of learning from the failure to produce a surrogate of 𝐹 

that intersects 𝑃. It has the effect of trying to restrict the 

sampling to only the part of 𝐹’s domain that is relevant to the 

satisfaction of 𝑃. Thus, the sampling of 𝐹 is reduced by many 

orders of magnitude over the fine-grained sampling needed to 

learn 𝐹 over its entire domain. Even if 𝑃(𝑥∗, 𝐹(𝑥∗)) does hold, 

adding it to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 in the hopes of improving upon 𝜙(𝑥) also 

restricts the sampling.  

 
Figure 4. Sequential CNMA overview 

For clarity, the flowchart in Figure 4 (and Algorithms 1, 2 

and Figure 5) omit an important case: the failure to evaluate 𝐹 

for a given input either in the creation of the initial samples or 

in the evaluation of 𝑃(𝑥∗, 𝐹(𝑥∗)). In this case, CNMA just calls 

upon the Sample Generator to generate a new sample and 

restarts. Neural networks are resilient to missing data.   

Algorithm 1 precisely defines the above plan.  

Algorithm 1 CNMA, Single Forward Function 

 Input: a problem definition of the form 

max
𝑥,𝑦

𝜙(𝑥, 𝑦)  s. t.  𝑦 = 𝐹(𝑥) ∧ 𝑃(𝑥, 𝑦), a method to 

randomly sample candidate solutions 𝑥 ∈ 𝑋, maximum 

number 𝑁 of CNMA iterations. 𝜙, 𝑃 are linear, 𝑥, 𝑦 are 

vectors of discrete and continuous variables, and 𝐹 is a 

potentially nonlinear function available as a blackbox.  

Output: a solution, (𝑥∗, 𝑦∗), to the above problem 

 

function CNMA(𝜙, 𝐹, 𝑃, 𝑋, 𝑁) 

 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← {(𝑥𝑖 , 𝐹(𝑥𝑖))}
𝑖=1,2,⋯,𝑛

 where 𝑥𝑖 denotes a 

random sample drawn from 𝑋 

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← empty list 

for 𝑖 = 1, 2, ⋯ , 𝑁:  

𝑛𝑛 ← a fully-connected ReLU regression network, 

i.e., with identity activation for the last layer, which 

takes in as input a vector 𝑥 ∈ 𝑋 and attempts to 

predict 𝑓(𝑥); use 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 to train this neural 

network 

𝑚𝑖𝑙𝑝 ← the mixed-integer linear program: 

max
𝑥,𝑦

𝜙(𝑥, 𝑦)  s. t. 𝑛𝑛_𝑡𝑜_𝑚𝑖𝑙𝑝(𝑛𝑛) ∧ 𝑃(𝑥, 𝑦) 

𝑥∗, 𝑦̂ ← potentially infeasible solution to 𝑚𝑖𝑙𝑝, 

obtained via an MILP solver 

if (𝑥∗, 𝑦̂) is a feasible solution to 𝑚𝑖𝑙𝑝: 
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    𝑦∗ ← 𝐹(𝑥∗) // if 𝐹 does not terminate within some 

time limit then 𝐹 returns ∞ 

    if 𝑦∗ is finite: 

        if 𝑃(𝑥∗, 𝑦∗) is satisfied: 

            Append (𝑥∗, 𝑦∗) to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

            Append (𝑥∗, 𝑦∗) to 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠  

        else: 

            Append (𝑥∗, 𝑦∗) to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

        endif 

    endif 

else: // the solution to 𝑚𝑖𝑙𝑝 is infeasible 

    Append randomly drawn sample(s) 

{𝑥𝑖 , 𝐹(𝑥𝑖)}𝑖=1,2,⋯ to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

endif  

return the best solution from 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, sorting by 

𝜙(𝑥, 𝑦) 

 endfunction 

It is possible that CNMA could get stuck in local optima. 

There are two methods of steering it away from them. The first 

is adding a constraint on an upper or lower bound of the 

objective function so that the MILP solver finds solutions 

satisfying that constraint. The second is to use multiple 

concurrent copies of CNMA, each producing a different 

surrogate and therefore adding different “good” points to 

𝑠𝑎𝑚𝑝𝑙𝑒𝑠. By pooling together these good points, the chances 

of finding the true optima can be improved. This method is a 

byproduct of Parallel CNMA that parallelizes sampling, 

training and solving to improve the quality and performance of 

the sequential version.  

A. Parallel CNMA 

 

 
Figure 5. Parallel CNMA overview 

As shown in Figure 5, the CNMA algorithm can also be 

parallelized by having multiple instances of CNMA run 

simultaneously while periodically sharing information with 

each other. During each iteration, each CNMA solver uses the 

existing evaluated samples as training data to create a surrogate 

model of the forward function, 𝐹. Each solver may use a 

different neural network architecture or initialize the neural 

network weights differently, causing each solver to end up with 

a unique MILP problem to solve and produce a different point 

to sample next. Because there are many different neural 

networks that all may fit the training data, running CNMA in 

parallel allows us to explore more of these diverse surrogate 

models in a single iteration. At the end of each iteration, all 

evaluated samples are shared among the solvers. See Algorithm 

2 for a precise definition of Parallel CNMA.  

Algorithm 2 Parallel CNMA, Single Forward Function 

 Input: a problem definition of the form 

max
𝑥,𝑦

 𝜙(𝑥, 𝑦)  s. t.  𝑦 = 𝐹(𝑥) ∧ 𝑃(𝑥, 𝑦), a method to 

randomly sample candidate solutions 𝑥 ∈ 𝑋, maximum 

number 𝑁 of CNMA iterations, 𝑀 parallel solvers. 

𝜙, 𝑃 are linear, 𝑥, 𝑦 are vectors of discrete and continuous 

variables, and 𝐹 is a potentially nonlinear function 

available as a blackbox. 

Output: a solution, (𝑥∗, 𝑦∗), to the above problem 

function CNMA(𝜙, 𝐹, 𝑃, 𝑋) 

 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← {(𝑥𝑖 , 𝐹(𝑥𝑖))}
𝑖=1,2,⋯,𝑛

, where 𝑥𝑖 denotes a 

random sample drawn from 𝑋 

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← empty list 

for 𝑖 = 1, 2, ⋯ , 𝑁 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← empty list 

parallel for 𝑗 = 1,2, ⋯ , 𝑀 

𝑛𝑛 ← a fully-connected ReLU regression 

network (with any arbitrary architecture), 

which takes in as input a vector 𝑥 ∈ 𝑋 and 

attempts to predict 𝐹(𝑥); use 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 to 

train this neural network. 

𝑚𝑖𝑙𝑝 ← the mixed-integer linear program: 

max
𝑥,𝑦

𝜙(𝑥, 𝑦)  s. t. 𝑛𝑛_𝑡𝑜_𝑚𝑖𝑙𝑝(𝑛𝑛) ∧ 𝑃(𝑥, 𝑦) 

𝑥∗, 𝑦̂ ← solution to 𝑚𝑖𝑙𝑝, obtained, e.g., via an 

MILP solver 

if (𝑥∗, 𝑦̂) is feasible: 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠[𝑗] ← (𝑥∗, 𝑦̂) 

𝑒𝑣𝑎𝑙𝑠 ← in parallel, compute (𝑥𝑖 , 𝐹(𝑥𝑖)) for each 

𝑥𝑖 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

𝑛𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ← 0 

for 𝑗 = 1,2, ⋯, size_of(evals) 

𝑥∗, 𝑦̂ ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠[𝑗] 
if (𝑥∗, 𝑦̂) is infeasible: 

𝑛𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ← 𝑛𝑖𝑛𝑣𝑎𝑙𝑖𝑑 + 1 

else: 

Append (𝑥∗, 𝑦̂) to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

if 𝑃(𝑥∗, 𝑦̂): 

Append (𝑥∗, 𝑦̂) to 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

In parallel, append 𝑛𝑖𝑛𝑣𝑎𝑙𝑖𝑑  randomly drawn 

sample(s) (𝑥𝑖 , 𝐹(𝑥𝑖)) to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

return the best solution from 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, sorting by 

𝜙(𝑥, 𝑦) 

 endfunction 

B. Illustrating CNMA 

The Rastrigin function is a common benchmark problem for 

optimization methods because it is highly nonlinear and has 

many local optima. We illustrate three different ways in which 

CNMA can be used to solve the optimization problem: 

max
𝑥𝜖[−5.12,5.12]

𝐹(𝑥) = 10 + 𝑥2 − 10 ∗ cos (2 ∗ 𝜋 ∗ 𝑥) 

The true maximum of F(x) is 40.353 at x = −4.522 and x =
4.522. 
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Figure 6. Maximizing Rastrigin. A: During the first iteration the 

surrogate function predicts that the maximum is at -5.12. We evaluate 

Rastrigin at this point and the new sample, shown as a purple dot, is 

added to the training set. B: During iteration 2, the surrogate 

incorrectly predicts where the maximum value of the function is. The 

new sample, shown as a purple dot, is added to the training set. C: 

During iteration 3, the surrogate incorrectly predicts where the 

maximum value of the function is. The new sample, shown as a purple 

dot, is added to the training set.  D: During iteration 4, the surrogate 

incorrectly predicts where the maximum value of the function is. The 

new sample, shown as a purple dot, is added to the training set. 

 Figure 6 shows the progression of CNMA at each iteration 

solving: maximize 𝜙(𝑥, 𝑦) = 𝑦  s.t. 𝐹(𝑥) = 𝑦 ∧ −5.12 ≤ 𝑥 ≤
5.12. CNMA first generates two initial samples in the domain 

of 𝑥 to create the training set: 

𝒙 𝑭(𝒙) 
−𝟑. 𝟒𝟗𝟓 32.210 

−𝟐. 𝟒𝟑𝟔 25.161 
CNMA then learns a neural network from this set to create a 

surrogate of 𝐹(𝑥). Figure 6 shows the surrogate function plotted 

in orange. CNMA converts this neural network into an MILP 

and uses an MILP solver to solve it along with 𝑃(𝑥, 𝑦) =
−5.12 ≤ 𝑥 ≤ 5.12 such that 𝑦 is maximized. 

During the first iteration, the solution found is 𝑥 = −5.12. 

This is where the maximum of the orange curve is within 𝑥’s 

domain. After checking the solution against the correct 

definition of 𝐹(𝑥), the dot shown in purple is added to the 

training set and a new neural network is trained during Iteration 

2. While CNMA is able to find a local maximum after just three 

iterations and five function calls, CNMA gets stuck here and a 

global maximum is not found even after 100 iterations.  

To help CNMA explore outside this local maximum, we can 

use Parallel CNMA to add neural network diversity. Figure 7 

shows how Parallel CNMA solves the same problem but is able 

to find the global maximum by using 10 different CNMA 

workers simultaneously. During the first iteration, 10 neural 

networks, each initialized with different weights, are trained on 

the same two initial samples. This creates 10 different MILP 

problems to be solved. Because each neural network is slightly 

different, each MILP problem produces a different solution. 

The eighth neural network predicts that the maximum value of 

the function is at 𝑥 = −4.571, which is close to one of the true 

maxima at 𝑥 = −4.5229. Since all samples are shared among 

all parallel workers, by the next iteration each neural network 

predicts that the maximum is very close to the true maximum at 

𝑥 = −4.522. After only three iterations, the best solution found 

is 𝑥 = −4.521, which has an objective function value of 𝑦 =
40.353.  

 
Figure 7. Maximizing Rastrigin with multiple CNMA solvers. A: 

During Iteration 1, 10 surrogates are trained. B: The eighth 

surrogate trained in Iteration 1 has a maximum at x=-4.571. This is 

very close to the true maximum of the Rastrigin function. C: During 

Iteration 2, all 10 surrogates accurately predict the maximum value 

of the Rastrigin function. 

 
Figure 8. Maximizing Rastrigin with constraints. A: In Iteration 1 

the surrogate overlaps with the constraint, P(X,Y). The point shown 

in purple is added to the training set. B: In Iteration 2 the surrogate 

does not overlap with P(X,Y). A random sample, shown in green, is 

added to the training set. C: In Iteration 3 the surrogate does not 

overlap with P(X,Y). A random sample, shown in green, is added to 

the training set. D: Again, in Iteration 36, the surrogate does not 

overlap with P(X,Y). A random sample, shown in green, is added to 

the training set. E: In Iteration 37 the surrogate does overlap with 

P(X,Y). The dot shown in purple is added to the training set. F: In 

Iteration 50, the maximum value is found at x=4.523. 

 

Another way to try to ensure CNMA does not get stuck in 
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local maxima is to add a constraint to ensure that the objective 

function value is above a desired threshold. In Figure 8, we 

depict the progression of CNMA with the added constraint 𝑦 ≥
35. During Iteration 1, the MILP solver finds 𝑥 = −5.12 

because it maximizes the surrogate in orange and 𝑃(𝑥, 𝑦) 

(shaded in light green) is satisfied. However, when the solution 

is evaluated by the true function (shown in purple), 𝑃(𝑥, 𝑦) no 

longer holds. In the second iteration, there is no 𝑥 such that the 

surrogate and 𝑃(𝑥, 𝑦) overlap. Thus, the MILP problem is 

infeasible and a random sample is evaluated instead (depicted 

as a green dot). Many random samples continue to be generated 

until Iteration 37, where the surrogate function again overlaps 

with 𝑃(𝑥, 𝑦). After evaluating the MILP solution through the 

true function, this time 𝑃(𝑥, 𝑦) is satisfied. This causes the 

surrogate function to continue to overlap with 𝑃(𝑥, 𝑦) during 

subsequent iterations. The solution 𝑥 = 4.523 with objective 

function 𝑦 = 40.353 is found after 50 iterations and 52 

function calls (2 initial + one each for 50 iterations). 

 

V. EXPERIMENTAL RESULTS 

For seven nonlinear design problems of 8 (two problems), 

10, 15, 36, 60 real-valued dimensions and one with 186 binary 

dimension, we compare the performance of CNMA with the 

skopt [35] implementation of BO/GP (abbreviated BO-S), 

the scipy.optimize [36] implementation of NM 

(abbreviated NM-S), and with Random Search. We evaluated 

CNMA with 1, 5, and 10 solvers in parallel. For neural 

networks, we use the scikit-learn package [42]. We use 

a commercial MILP solver. All of these packages are stable-

off-the-shelf.  

For each problem, we allocate a fixed time budget that is, in 

our estimate, the longest a user would wait for a solution to that 

problem.  

For each problem, we compare the optimization engines 

against two metrics. The first metric is the best value of the 

objective function computed within the problem’s time budget. 

It is evaluated by plotting the improvement of the objective 

function value against time, and comparing the best values from 

each engine. 

The second metric is the minimum number of function 

evaluations needed to produce the best value of the objective 

function within the problem’s time budget. This metric is 

intended to capture the idea of  “sample efficiency” since it can 

be quite expensive to evaluate blackboxes. This metric is 

evaluated by plotting the improvement of the objective function 

against the number of function evaluations, and comparing the 

minimum number of evaluations needed by each engine to 

produce the best value of the objective function.  

We also compare Random Search by randomly generating 

the maximum number of samples used by any one of the 

optimization methods which found solutions.  

For BO-S, we use the expected improvement (EI) acquisition 

function, and the Matérn kernel. The following 

hyperparameters are automatically tuned by BO-S: (1) all 

kernel length scales, (2) covariance amplitudes, and (3) 

parameters of the i.i.d. Gaussian noise added to the kernel.  

For CNMA with 1 solver, we use a neural network 

architecture with two hidden layers of 35 and 10 neurons. For 

CNMA with 5 solvers, we use the same neural network 

architecture in addition to ones with single hidden layers of 10, 

30, 35, and 50 neurons. We use the same architectures (each 

repeated twice) for CNMA with 10 solvers.  

For BO-S and NM-S, we model constraints as a penalty 

function. 

Note that BO-S did not return a solution for two problems 

and NM-S did not return one for three. These problems are 

high-dimensional, have both discrete and continuous variables, 

and their blackboxes do not return outputs for some inputs. For 

other problems, CNMA improves the performance over BO-S, 

NM-S and Random Search by 1%-87%.  

Some comparative visualizations are available at 

https://collab.perspectalabs.com/nonlinearbenchmarks/.  

A. Designing a Wave-Energy-Propelled Boat 

 

This example shows the ability of CNMA to optimize 

with functions that may fail to return a value for some 

inputs, as can happen with the xfoil [29] computational 

fluid dynamics simulator used here. Figure 9 indicates how 

the rise and fall of a boat floating on a wave pulls and pushes 

at a hydrofoil below, causing a rotation about an axis. This 

rotation generates forward force during both the upward and 

downward wave motion; much like when swimmers flap 

flippers in a pool, their body is propelled forward. The 

marine robot is inspired by the Wave Glider [43]. The design 

problem is to compute the dimensions of the boat and 

hydrofoil which will maximize the steady-state forward 

sailing speed for a given wave condition. The equilibrium 

constraints are that the force generated by the hydrofoil 

equals that applied to the boat and that the glider and boat 

velocities are equal. An additional constraint is that the 

magnitude of the horizontal velocity be higher than that of 

the vertical velocity. Note the recursive relationship 

between the variables: force is an output of 𝐻𝑦𝑑𝑟𝑜𝑓𝑜𝑖𝑙 but 

an input to 𝐵𝑜𝑎𝑡 whereas velocities are outputs of the latter 

and inputs to the former.  

The boat is modeled with two functions. The first is 

𝐻𝑦𝑑𝑟𝑜𝑓𝑜𝑖𝑙(𝑐ℎ, 𝑉𝑥 , 𝑉𝑦 , 𝜃) = 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥 that computes the 

forward force output by a hydrofoil of length 𝑐ℎ, moving 

through water at velocity 𝑉𝑥 , 𝑉𝑦 at an angle of attack 𝜃. This 

is the force it applies to the boat. It is implemented with the 

Figure 9. Structure of wave energy propelled boat. Note the 

recursive relationship between the input and output variables 

of Boat and Hydrofoil 

https://collab.perspectalabs.com/nonlinearbenchmarks/
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computational fluid dynamics package xfoil. The second 

function is (𝑙𝑒𝑛𝑔𝑡ℎ, 𝑏𝑒𝑎𝑚, 𝑑𝑟𝑎𝑓𝑡, 𝑎𝑚𝑝𝑙, 𝑝𝑒𝑟𝑖𝑜𝑑,

𝑓𝐵𝑜𝑎𝑡𝑥) = [𝑉𝐵𝑜𝑎𝑡𝑥, 𝑉𝐵𝑜𝑎𝑡𝑦]. It outputs the steady-state 

forward speed of a boat given its 3D dimensions: 

𝑙𝑒𝑛𝑔𝑡ℎ, 𝑏𝑒𝑎𝑚, 𝑑𝑟𝑎𝑓𝑡, the amplitude 𝑎𝑚𝑝𝑙 and 𝑝𝑒𝑟𝑖𝑜𝑑 of the 

wave, and the forward force 𝑓𝐵𝑜𝑎𝑡𝑥 applied to it by the 

hydrofoil. This function is computed by a program encoding 

a solution to a differential equation. The first two 

equilibrium constraints are enforced by eliminating 𝑉𝑥  and 

𝑉𝑦  and consolidating the two functions into the CNMA 

forward function  𝐹(𝑥) = 𝑦 where:  

𝑥 = [𝑙𝑒𝑛𝑔𝑡ℎ, 𝑏𝑒𝑎𝑚, 𝑑𝑟𝑎𝑓𝑡, 𝑎𝑚𝑝𝑙, 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑓𝐵𝑜𝑎𝑡𝑥, 𝑐ℎ, 𝜃]   

𝑦 =  [𝑉𝐵𝑜𝑎𝑡𝑥, 𝑉𝐵𝑜𝑎𝑡𝑦 , 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥] 

𝐹 calls 𝐵𝑜𝑎𝑡 to compute 𝑉𝐵𝑜𝑎𝑡𝑥 and 𝑉𝐵𝑜𝑎𝑡𝑦 and then 

inputs them to 𝐻𝑦𝑑𝑟𝑜𝑓𝑜𝑖𝑙 to compute 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥. The third 

equilibrium constraint is now 𝑓𝐵𝑜𝑎𝑡𝑥 =  𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥 . To 

tolerate small force differences, the equality is modeled as 
|𝑓𝐵𝑜𝑎𝑡𝑥 − 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥| ≤ 𝜖 ∗ 𝑓𝐵𝑜𝑎𝑡𝑥 where 𝜖 is set to 5%.  
Note that a constraint with an absolute value can be modeled 

as a pair of linear constraints [44]. Finally, 𝑃(𝑥, 𝑦) =
(|𝑓𝐵𝑜𝑎𝑡𝑥 −  𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥 | ≤ 𝜖 ∗ 𝑓𝐵𝑜𝑎𝑡𝑥 ∧ 𝑉𝐵𝑜𝑎𝑡𝑥 ≥ 𝑉𝐵𝑜𝑎𝑡𝑦) 

and 𝜙(𝑋, 𝑌) =  𝑉𝐵𝑜𝑎𝑡𝑥. In the optimization problem, 𝑎𝑚𝑝𝑙 
and 𝑝𝑒𝑟𝑖𝑜𝑑 are set to 4 and 7, respectively.    

With 30 initial samples and a budget of 2500 seconds, with 

1, 5, and 10 solvers, CNMA is able to find a solution with a 

speed of 3.9036, 3.8993, and 3.8999 m/s, respectively. BO-S 

and NM-S are unable to find any feasible solutions given the 

same time budget. Out of 3890 randomly samples, none of them 

are valid solutions. Figure 10 and Figure 11 show the 

performance of CNMA with respect to time and number of 

function evaluations.  

 

 
 

Figure 10. Boat velocity in the x direction vs. time for Wave-

Energy-Propelled Boat. BO-S and NM-S are not shown since these 

are not able to find valid solutions. After 1000 seconds all three 

CNMA runs find solutions with a speed above 3.89 m/s. 

 

B. OpenAI Gym’s LunarLander: Robot System-Controller 

Codesign 

Robots and their 

controllers are often 

designed separately. This 

can lead to design 

inconsistency whose 

resolution can be time-

consuming. If robots can be 

efficiently reconfigured 

and their controllers 

efficiently designed, we 

raise the possibility of 

system-controller codesign by solving a single optimization 

problem that encodes system and controller constraints and 

objectives. The lander we use, as depicted in Figure 12, is 

part of the robotic benchmarks at OpenAI/Gym [45]. We 

assume that the controller is proportional-integral-

derivative (PID)-based. Hence, the controller design 

problem reduces to finding optimal values for the PID 

coefficients. From a mothership, the module is ejected with 

a certain force and then its engines fire both vertically and 

horizontally to guide it towards landing on the flat pad 

between two flagpoles. Our goal is to compute the system 

and controller design and initial position and force that 

would maximize the reward while satisfying constraints on 

a successful landing, time to land and fuel usage.  

The input vector to the CNMA forward function 𝐹 is 𝑥 = 

[𝑚𝑒𝑝, 𝑠𝑒𝑝,  𝑙𝑎, 𝑙𝑑, 𝑙𝑤, 𝑙ℎ, 𝑙𝑠𝑡, 𝑘𝑝_𝑎𝑙𝑡, 𝑘𝑑_𝑎𝑙𝑡, 𝑘𝑝_𝑎𝑛𝑔, 

𝑘𝑑_𝑎𝑛𝑔, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑥, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑦, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑓𝑥, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑓𝑦]. The 

variables 𝑚𝑒𝑝, 𝑠𝑒𝑝,  𝑙𝑎,  𝑙𝑑, 𝑙𝑤, 𝑙ℎ 𝑙𝑠𝑡 are system design 

parameters denoting, respectively, main engine power, side 

engine power, leg away length, leg down length, leg width, 

leg height, and leg spring torque. The variables   

𝑘𝑝_𝑎𝑙𝑡, 𝑘𝑑_𝑎𝑙𝑡, 𝑘𝑝_𝑎𝑛𝑔, 𝑘𝑑_𝑎𝑛𝑔  are controller design 

parameters denoting, respectively, the P and D values for 

the vertical and horizontal engine controllers. The I 

Figure 12. Lunar lander 

attempting to land on flat terrain 

between flagpoles 

Figure 11. Boat velocity in the x direction vs. number of 

function evaluations for Wave-Energy-Propelled Boat. BO-S, 

NM-S, and Random Search are not shown since they are not 

able to find valid solutions. After 1750 function evaluations all 

three CNMA runs find solutions with a speed above 3.89 m/s. 
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coefficient is set to 0. The variables 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑥, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑦,
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑓𝑥, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑓𝑦  are initial condition parameters, 

denoting, respectively, the initial position and force at the 

time of lunar lander ejection from the mother ship. The 

forward function 𝐹(𝑥) = 𝑦 simulates the trajectory of the 

lander defined by its system design parameters, PID 

parameters and the initial conditions. It runs for a fixed 

number of time steps or until the lander lands or crashes. At 

each time step, it measures the “error,” i.e., the distance 

between its current position and the landing point, and using 

the PID values computes engine firing actions to guide the 

lander towards the landing point. It outputs 𝑦 =
 [𝑓𝑢𝑒𝑙, 𝑡𝑖𝑚𝑒, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑟𝑒𝑤𝑎𝑟𝑑] denoting, respectively, the 

fuel used, time taken to land, whether the landing is safe, 

and the reward, a measure of the quality of the landing, as 

defined by OpenAI/Gym. The codesign problem is now to 

maximize the objective function 𝜙(𝑥, 𝑦) = 𝑟𝑒𝑤𝑎𝑟𝑑 subject 

to 𝐹(𝑥) =  𝑌 ∧  𝑃(𝑥, 𝑦) where 𝑃(𝑥, 𝑦)  = (𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 1 ∧
 𝑓𝑢𝑒𝑙 ≤ 75 ∧  𝑡𝑖𝑚𝑒 ≤ 10). 

 

 
Figure 13. Reward vs. time for Lunar Lander. After 100 seconds 

all three CNMA runs find better solutions than BO-S and NM-S. Note 

that NM-S stops after 28 seconds due to early convergence. 

 
Figure 14. Reward vs. number of function evaluations for Lunar 

Lander. When given the same number of function evaluations, CNMA 

either matches or outperforms both BO-S and NM-S. CNMA with 5, 

and 10 solvers always outperforms Random Search with a function 

evaluation budget of less than 1750. 

With 100 initial samples and a time budget of 1500 seconds, 

CNMA finds solutions with rewards of 437.139, 469.589, and 

465.136 with 1, 5, and 10 solvers, respectively. In the same 

amount of time, BO-S only finds a solution with a reward of 

395.118 and NM-S only finds a solution with a reward of 

409.857. Out of 1966 random samples, the best solution which 

meets the constraints has a reward of 446.199. Figure 13 and 

Figure 14 show the performance of CNMA, BO-S, NM-S and 

Random Search with respect to time and number of function 

evaluations. 

C. Optimizing Hexapod Gaits 

 

We now address a problem 

inspired by the work of [46] for 

adapting robot gait to failures in 

the field. The robot is six-legged 

with each leg consisting of three 

segments. Associated with each 

leg 𝑖 is a vector of six parameters 
(𝛼𝑖1, 𝛼𝑖2, 𝜑𝑖1, 𝜑𝑖2, 𝜏𝑖1, 𝜏𝑖2) with each 𝛼, 𝜙, 𝜏 ∈ [0, 1].  These 

parameters determine, respectively, the amplitude phase and 

duty cycle of the walking signal sent to the first two legs 

every 30 ms. The walking signal for the third segment is the 

inverse of that for the second so does not need independent 

control parameters. The hexapod (as shown in Figure 15) 

controller is defined by the six parameters for each leg for a 

total of 36 parameters, and fully determines the hexapod 

gait. Using the hexapod simulator in [46], we define a 

CNMA forward function ℎ𝑒𝑥𝑎𝑝𝑜𝑑(𝑥) = 𝑦 that takes a 

controller 𝑥 = [𝑐0, . . , 𝑐35] as input, simulates the hexapod 

gait for 5 seconds and outputs a vector 𝑦 =
 [𝑠𝑝𝑒𝑒𝑑𝑥 , 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6] where 𝑠𝑝𝑒𝑒𝑑𝑥 is the hexapod’s 

𝑥-axis displacement in meters divided by 5.0 and each 𝑏𝑖 is 

the fraction of the time leg 𝑖 is in contact with the ground. 

Hexapod speeds above 0.20 m/sec are hard to find with 

Random Search [46].  

If a hexapod leg is broken then we would like to find a 

new controller that can achieve a speed of above 0.20 m/sec 

while satisfying any new constraints on the movement. Let 

us assume leg 1 is broken. Then, we might constrain its 

contact with the ground to be the least of that of all the legs. 

The problem is now: maximize 𝑠𝑝𝑒𝑒𝑑 subject to 

ℎ𝑒𝑥𝑎𝑝𝑜𝑑([𝑐0, . . , 𝑐35]) =  [𝑠𝑝𝑒𝑒𝑑, 𝑏1, . . , 𝑏6] ∧  𝑏1 ≤ 𝑏2 ∧
 𝑏1 ≤ 𝑏3 ∧  𝑏1 ≤ 𝑏4 ∧  𝑏1 ≤ 𝑏5 ∧  𝑏1 ≤ 𝑏6 and stop when the 

speed is close enough to 0.20 m/sec. As can be seen above, 

the baseline controller does not satisfy the constraint.  

We can try searching over [0,1]36 for a new controller. 

However, another option is to search just in the 

neighborhood of the baseline controller.  We change the 

bounds for each field in the baseline controller to be within 

0.1 of its current value, subject to the lower bound being at 

least 0 and the upper bound at most 1.  

Figure 15. A hexapod 
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Figure 16. Speed vs. time for Hexapod. NM-S stops after 207 

seconds due to early convergence. NM-S is not shown because it is 

not able to find any valid solutions. After 2000 seconds CNMA with 5 

and 10 solvers outperforms BO-S. 

 
Figure 17. Speed vs. number of function evaluations for Hexapod. 

NM-S is not shown because it is not able to find valid solutions. 

CNMA outperforms Random Search for any given budget of function 

evaluations less than 4422. CNMA with 5 and 10 solvers matches or 

outperforms BO-S given a budget of function evaluations between 

400 and 600. 

With two initial samples and a time budget of 10000 seconds, 

CNMA finds solutions with speeds of 0.2043, 0.2579, and 

0.2619 m/sec with 1, 5, and 10 solvers, respectively. BO-S finds 

a solution with a speed of 0.2064 m/sec while NM-S is not able 

to find any valid solutions. Out of 4422 randomly generated 

samples, the best solution has a speed of 0.2058 m/sec. Figure 

16 and Figure 17 show the performance of CNMA, BO-S, NM-

S, and Random Search with respect to time and number of 

function evaluations.  

 

D. Acrobot Design 

The Acrobot [45], as shown in Figure 

18, is a two-link robot arm with a single 

actuator placed at the elbow. Initially, the 

links hang downwards. The Acrobot’s 

goal is to execute a series of actions that 

vertically orients and balances both links. 

The Acrobot problem is well-studied, 

and is known to be challenging to solve. 

In Figure 18, system design variables 𝑚𝑖, 

𝐼𝑖 , and 𝑙𝑐𝑖
 denote, respectively, the mass, 

moment of inertia, and center of mass 

location of link 𝑖. The CNMA function 𝐹 takes as input a system 

design vector 𝑥 =  [𝑚1, 𝑚2, 𝐼1, 𝐼2, 𝑙𝑐1
, 𝑙𝑐2

, 𝑙1, 𝑙2 ], runs iterative 

linear-quadratic regulator (LQR) as our controller on an 

Acrobot system with this vector and returns 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 , the total 

time taken to balance the system. 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒  is listed as t_stabilize 

in the chart below. The problem is to find a system design that 

minimizes 𝜙(𝑥, 𝑦)  =  𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒  subject to 𝐹(𝑥) =  𝑌 ∧  𝑃(𝑥, 𝑦) 

where: 

𝑃(𝑥, 𝑦)  = (𝐼1 = 𝐼2 ∧ 0.1 ≤ 𝑚1, 𝑚2 ≤ 3.0 ∧ 0.1 ≤ 𝐼1, 𝐼2 ≤
3.0 ∧ 0.1 ≤ 𝑙1, 𝑙2 ≤ 3.0 ∧ 0.3 ≤ 𝑙𝑐1 , 𝑙𝑐2

≤ 0.7) 

The constraint 𝐼1 = 𝐼2 reflects OpenAI/Gym’s 

implementation of the Acrobot problem.  

With 20 initial samples and a budget of 5000 seconds, 

CNMA finds solutions with objective function values 3.4, 3.2, 

and 2.8 with 1, 5, and 10 solvers, respectively. In the same 

amount of time, BO-S is able to find a solution with an objective 

function of 3.2 and NM-S is able to find a solution with an 

objective function of 8.6. Out of 500 randomly generated 

solutions, the best solution found has an objective function 

value of 4.2. Figure 19 and Figure 20 show the performance of 

CNMA, BO-S, NM-S, and Random Search with respect to time 

and number of function evaluations.  

 
Figure 19. Stabilization time vs. time for Acrobot. CNMA 

outperforms NM-S when given a time budget of less than 5000 

seconds. CNMA matches or outperforms BO-S when given a time 

budget of less than 5000 seconds. 

Figure 18. 

Acrobot schematic 
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Figure 20. Stabilization time vs. number of function evaluations 

for Acrobot. CNMA matches or outperforms NM-S, BO-S, and 

Random Search when given the same budget of function 

evaluations.  

E. Optimal Sensor Placement for Power Grids 

We now design a system in which all inputs are discrete but 

the output is continuous. Placing current and voltage sensors on 

a power grid can help identify which power lines are down 

during power outages. However, placing these sensors can be 

expensive and their number has to be limited. Given a limited 

sensor budget, the problem is to determine where to place the 

sensors such that their readings give the best chance of 

predicting the line failure pattern. We define a forward function 

𝐹 that takes in a sensor placement 𝑥 of bits and outputs 𝑦 =
[𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦], the “ambiguity” of the placement. In 𝑥, if a 

sensor is placed at line 𝑖, then 𝑥[𝑖] = 1 else 𝑥[𝑖] = 0.  For a 

given 𝑥, we simulate all single line failures and record the 

associated set of readings at the sensors placed in 𝑥. If a reading 

set appears more than once then it is ambiguous since more than 

one failure can cause it. We then divide the number of 

ambiguous reading sets by the total number of reading sets to 

compute [𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦] of 𝑥. Sensor readings are computed by 

the power line simulator OpenDSS [47], which takes in a model 

of the power grid, sensor placement, and a line failure pattern 

and outputs sensor readings. The objective function to minimize 

is 𝜙(𝑥, 𝑦)  =  𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 subject to the constraint that the 

number of sensors placed at most meets some budget. For the 

Bus118 power grid with 186 power lines, and a budget of 50 

sensors, the constraint is specified as 𝑃(𝑥, 𝑦) = sum(𝑥) ≤ 50.  

With 30 initial samples and a time budget of 1500 seconds, 

CNMA finds solutions with objective function values 0.04813, 

0.02139, and 0.02139 with 1, 5, and 10 solvers, respectively. In 

the same amount of time, BO-S and NM-S are not able to find 

solutions that meet the constraints. Since these two only work 

with real-valued variables, we round their outputs to 1 or 0 to 

evaluate the forward function. Out of 460 randomly generated 

samples, none of them are valid solutions. Figure 21 and Figure 

22 show the performance of CNMA, BO-S, NM-S and Random 

Search with respect to time and number of function evaluations. 

 

.

 
Figure 21. Ambiguity of the sensor placement vs. time for 

CNMA for sensor placement. All three CNMA runs find a solution 

with an ambiguity less than 0.05 within 1500 seconds. BO-S, NM-

S and Random Search are not shown since these are not able to 

find any solutions. 

 
Figure 22. Ambiguity of the sensor placement vs. number of 

function evaluations for CNMA for sensor placement. All three 

CNMA runs find a solution with an ambiguity less than 0.05 with less 

than 300 function calls. BO-S, NM-S, and Random Search are not 

shown since they are not able to find any solutions. 

F. Rover Path Planning 

This problem, defined in [20], 

involves finding a trajectory, such 

as the one shown in Figure 23, for a 

robot with starting and end goal 

positions. The trajectory is 

specified by a set of 30 2D 

points that are fit by a BSpline to 

define a path. Each trajectory 

also has an associated cost which penalizes obstacle collisions 

and should be minimized. The CNMA function 𝐹 takes as 

input the 2D coordinates of the 30 points (60 inputs) that 

define a path and outputs the cost of the trajectory. Each input 

ranges from 0.0 to 1.0. The objective is to maximize the 

negative cost of the trajectory.  

Figure 23. Path avoiding 

obstacles in the x-y plane 
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Figure 24. Negative cost vs. time for Rover Path Planning. CNMA 

outperforms BO-S and NM-S when given a time budget of less than 

9000 seconds. Note that NM-S stops after 6 seconds due to early 

convergence.  

Figure 25. Negative cost vs. number of function evaluations for Rover 

Path Planning. CNMA outperforms both NM-S and BO-S. While 

Random Search and CNMA with 10 solvers find similar solutions, 

CNMA with 10 solvers finds the solution in fewer function 

evaluations.  Note that BO-S is only able to complete 30 function 

evaluations in the given time budget. 

With two initial samples and a time budget of 9000 seconds, 

CNMA finds solutions with costs of 1.148, 0.997, and 0.778 

with 1, 5, and 10 solvers, respectively. Given the same time 

budget, BO-S finds a solution with a cost of 3.530 and NM-S 

finds a solution with a cost of 5.867. Out of 4452 random 

samples, the best solution has a cost of 0.788. Figure 24 and 

Figure 25 shows the performance of CNMA, BO-S, NM-S, and 

Random Search with respect to time and number of function 

evaluations. 

G. Polak3 

This optimization benchmark [48] involves minimizing the 

maximum value of 10 different transcendental functions. The 

CNMA forward function 𝐹(𝑥) = 𝑦 takes in 10 values, 

𝑥1, . . , 𝑥10,  each 𝑥𝑖 ∈  [−1, 1], and outputs 𝑦, the maximum 

value of the 10 transcendental functions. The best known 

minimum is 5.93. An example of one of the transcendental 

functions is  (𝑒(𝑥1−𝑠𝑖𝑛(0.0+1.0+1.0))∗(𝑥1−sin(0.0+1.0+1.0))) + 

 0.5 ∗ (𝑒(𝑥2−sin(0.0+2.0+2.0))∗(𝑥2−sin(0.0+2.0+2.0))) + 

0.3333 ∗ (e(𝑥3−sin(0.0+3.0+3.0))∗(𝑥3−sin(0.0+3.0+3.0))) + 

0.25 ∗  (𝑒(𝑥4−sin(0.0+4.0+4.0))∗(𝑥4−sin(0.0+4.0+4.0))) + 

0.2 ∗  (𝑒(𝑥5−𝑛𝑝.sin(0.0+5.0+5.0))∗(𝑥5−sin(0.0+5.0+5.0))) + 

0.1666 ∗  (𝑒(𝑥6−sin(0.0+6.0+6.0))∗(𝑥6−sin(0.0+6.0+6.0))) + 

0.1428 ∗  (𝑒(𝑥7−sin(0.0+7.0+7.0))∗(𝑥7−sin(0.0+7.0+7.0))) 

+ 0.125 ∗  (𝑒(𝑥8−sin(0.0+8.0+8.0))∗(𝑥8−sin(0.0+8.0+8.0))) + 

0.1111 ∗  (𝑒(𝑥9−sin(0.0+9.0+9.0))∗(𝑥9−sin(0.0+9.0+9.0))) + 

0.1 ∗  (𝑒(𝑥10−sin(0.0+10.0+10.0))∗(𝑥10−sin(0.0+10.0+10.0))) + 

0.0909 ∗  (𝑒(𝑥11−sin(0.0+11.0+11.0))∗(𝑥11−sin(0.0+11.0+11.0))) 

 
Figure 26. The maximum value of the 10 transcendental 

functions vs. time Polak3. While CNMA and BO-S are able to find 

solutions with similar objective values, it takes BO-S 

approximately 250 seconds longer. Note that NM-S stops after 186 

seconds due to early convergence. 

With 20 initial samples and a time budget of 2000 seconds, 

with 1, 5, and 10 solvers CNMA finds solutions with 

objective function values 5.97, 6.06, and 5.98, respectively. 

Given the same time budget, BO-S finds a solution with an 

objective function value of 6.08 and NM-S finds a solution 

with an objective function value of 6.99. Out of 2680 

randomly generated samples, the best solution has an 

objective function of 6.81. Figure 26 and Figure 27 show the 

performance of CNMA, BO-S, NM-S, and Random Search 

with respect to time and number of function evaluations. 
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Figure 27: The maximum value of the 10 transcendental functions 

vs. number of function evaluations for Polak3. Random Search 

and NM-S find solutions with an objective around 6.9 while 

CNMA and BO-S are able to find better solutions with an 

objective around 6. 

H. Modeling Nonlinear Constraints and Objective Functions 

To model a nonlinear constraint 𝑃, we add, for each nonlinear 

expression in 𝑃, an extra output to 𝐹 denoting the value of the 

expression and then express 𝑃 as a linear constraint on these 

outputs. For example, we show how to solve a benchmark 

problem in [19]: minimize 𝑔(𝑥1, 𝑥2) subject to 𝑐1(𝑥1, 𝑥2) ≥ 0 ∧
  𝑐2(𝑥1, 𝑥2) ≥ 0 where 𝑔(𝑥1, 𝑥2) =  𝑥1 + 𝑥2, 𝑐1(𝑥1, 𝑥2) =

 0.5 ∗ sin(2𝜋 (𝑥1
2 −  2𝑥2)) + 𝑥1 + 2𝑥2 +  1.5,  𝑐2(𝑥1, 𝑥2) =

 −(𝑥1
2) −  (𝑥2

2) +  1.5. We define a function 𝐹(𝑥1, 𝑥2) that 

produces two outputs 𝑣1, 𝑣2  computing, respectively,  

𝑐1(𝑥1, 𝑥2) and 𝑐2(𝑥1, 𝑥2).  Then with CNMA we solve the 

problem of minimizing 𝑥1 + 𝑥2 subject to 𝐹(𝑥1, 𝑥2) =
 [𝑣1, 𝑣2] ∧  𝑣1 ≥ 0, 𝑣2 ≥ 0.  In 84 evaluations (10 initial + 74 

additional), CNMA finds a solution of 0.6003. The minimum is 

0.599. Our neural network architecture has 35 and 10 neurons 

in the two hidden layers. The important point to note is that we 

can solve this problem through specification, not by changing 

CNMA. If the objective function 𝑔 had been nonlinear, we 

would have added an extra output to 𝐹 and minimized that. 

VI. CONCLUSIONS 

System design tools are often only available as blackboxes 

with complex nonlinear relationships between inputs and 

outputs. This article presents CNMA, a new constrained 

optimization method for blackboxes for solving the inverse 

problem of finding designs from requirements on output.  

CNMA’s innovation is connecting the modeling power of 

neural networks and constraint-solving power of MILP solvers 

into a learning-from-failure feedback loop in such a way that 

they do much of the work for us, permitting straightforward 

implementations of  several desirable features into a single, 

cohesive system: efficient surrogate function construction, 

sample efficiency, constraint solving without penalty functions, 

solving blackbox constraints, optimization with discrete and 

continuous variables, resilience to nonterminating function 

evaluations, and parallelism.  

If a large and deep neural network is needed to model a 

complex function, its MILP equivalent may not be efficiently 

solvable. However, CNMA does not need to model the function 

in its entire domain. It only needs to model it in the part of the 

domain relevant to solving the constrained optimization 

problem. If this region is not too complex, a smaller neural 

network is adequate so that its MILP equivalent could be 

efficiently solvable. This region is automatically computed by 

CNMA. As we have seen, the largest network used had [35, 10] 

neurons in its hidden layers and most problems start with few 

tens of initial samples, some even with just two. In fact, a large 

or deep neural network may be detrimental to performance as it 

would overfit the small number of points CNMA samples.   

CNMA is evaluated for seven nonlinear design problems of 

8 (2 problems), 10, 15, 36 and 60 real-valued dimensions and 

one with 186 binary dimension. It is shown that CNMA 

improves upon stable, off-the-shelf implementations of BO/GP 

(BO-S), Nelder Mead (NM-S), and Random Search by 1%-87% 

for a fixed time and function evaluation budget. Note, however, 

that BO-S did not return a solution for two problems and NM-

S did not return one for three. Future research problems include 

introducing additional diversity, e.g., via bootstrapping, multi-

function CNMA, and finding a good initial neural network 

architecture and adapting it  as new samples are created. 
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