
 1



Abstract— System design tools are often only available as input-

output blackboxes: for a given design as input they compute an

output representing system behavior. Blackboxes are intended to

be run in the forward direction. This paper presents a new method

of solving the “inverse design problem” namely, given

requirements or constraints on output, find an input that also

optimizes an objective function. This problem is challenging for

several reasons. First, blackboxes are not designed to be run in

reverse. Second, inputs and outputs can be discrete and

continuous. Third, finding designs concurrently satisfying a set of

requirements is hard because designs satisfying individual

requirements may conflict with each other. Fourth, blackbox

evaluations can be expensive. Finally, evaluations can sometimes

fail to produce an output due to non-convergence of underlying

numerical algorithms. This paper presents CNMA, a new method

of solving the inverse problem that overcomes these challenges.

CNMA tries to sample only the part of the design space relevant

to solving the inverse problem, leveraging the power of neural

networks, Mixed Integer Linear Programs, and a new learning-

from-failure feedback loop. The paper also presents a parallel

version of CNMA that improves the efficiency and quality of

solutions over the sequential version, and tries to steer it away

from local optima. CNMA’s performance is evaluated against

conventional optimization methods for seven nonlinear design

problems of 8 (two problems), 10, 15, 36 and 60 real-valued

dimensions and one with 186 binary dimensions. Conventional

methods evaluated are stable, off-the-shelf implementations of

Bayesian Optimization with Gaussian Processes, Nelder Mead and

Random Search. The first two do not produce a solution for

problems that are high-dimensional, have both discrete and

continuous variables or whose blackboxes fail to return values for

some inputs. CNMA produces solutions for all problems. When

conventional methods do produce solutions, CNMA improves

upon their performance by up to 87%.

Index Terms— Blackbox optimization; constrained

optimization; Mixed-Integer Linear Program (MILP); neural

networks; optimization; sample efficiency.

I. INTRODUCTION

System design knowledge is often encapsulated inside

blackboxes such as simulators, spreadsheets and program

scripts. Blackboxes are, typically, nonlinear functions that

accept a design as input and produce a representation of system

behavior as output. New designs can be created by solving the

“inverse problem”: from requirements or constraints on

blackbox output, compute an input that also optimizes an

objective function.

Relevant to solving this problem are the mature, constrained

nonlinear optimization methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

This work was done under a contract from the Defense Advanced Research

Projects Agency (DARPA) and Air Force Research Laboratory (AFRL). The
views, opinions and/or findings expressed are those of the authors and should

not be interpreted as representing the official views or policies of the

Department of Defense or the U.S. Government. Distribution A. Approved for
Public Release, Distribution Unlimited.

Sanjai Narain, Emily Mak and Dana Chee are with Peraton Labs (e-mail:

Also available is a large online collection of these methods

[11] along with a companion guide [12]. These methods can

be adapted to solve the problem of finding 𝑥 that optimizes an

objective function 𝜙(𝑥, 𝐹(𝑥)) subject to a

constraint 𝑃(𝑥, 𝐹(𝑥)) where 𝐹 is a blackbox function, 𝜙 an

objective function and 𝑃 a constraint or a requirement. Any

solution 𝑥 is a solution to the inverse problem since 𝑥 is an input

to 𝐹 that optimizes 𝜙 and satisfies 𝑃 on the output of 𝐹.

Figure 1 presents a taxonomy of these methods. These fall

into two categories: derivative-based and derivative-free. The

former compute derivatives of the objective function to

determine the direction in which to search for a point where the

derivative becomes zero. They are restricted to smooth,

continuous functions. Thus, they do not apply to functions with

discontinuities or discrete variables. Moreover, derivative

computation is not sample-efficient in that it requires a large

number of function evaluations. Thus, these methods are

infeasible when function evaluation is expensive, as is often the

case for blackboxes.

Derivative-free methods [5, 7] try to overcome the

limitations of derivative-free ones. One class of such methods

is called direct search whose well-known members include

Nelder-Mead (NM) [6] and COBYLA [13]. They maintain a

simplex (convex hull) of points around the current point and use

it to compute the next point to sample in the direction of the

optima. These methods require starting points whose incorrect

choices can cause the methods to be stuck in local optima.

Another class of derivative-free methods is metamodeling or

surrogate-based [7, 8]. They do not require starting points.

Instead, they sample the blackbox function at some set of points

and construct a surrogate model by fitting the values to a

mathematical expression or by using machine learning. Active-

learning metamodeling methods are conservative in the number

of samples they evaluate. They do this by constructing a merit

or acquisition function from the surrogate model. This merit

function is optimized to compute the best point to sample next.

snarain@peratonlabs.com), Basking Ridge, NJ, Brendan Englot and Kishore

Pochiraju are with Stevens Institute of Technology, Niraj K. Jha is with
Princeton University and Karthik Narayan with Starfruit-LLC.

Published in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 19 October, 2021

Sanjai Narain, Emily Mak, Dana Chee, Brendan Englot, Kishore Pochiraju, Niraj K. Jha, Karthik Narayan

Fast Design Space Exploration of Nonlinear

Systems: Part I

Figure 1. Taxonomy of Nonlinear Optimization Methods

 2

If this point does not satisfy a halting condition, the point is

added to the set of samples and the search is restarted. Examples

include ALAMO [3] and Bayesian Optimization (BO) with

Gaussian Processes (BO/GP) [9]. In geostatistics, BO/GP is

called Kriging [1] and the use of Kriging for circuit design is

reported in [14]. In earlier BO/GP versions, the complexity of

building surrogate functions was cubic in the number of

samples [1] although asymptotically faster versions on GPUs

are reported in [15]. To optimize with constraints, various

extensions to BO/GP have been presented in [16, 17, 18, 19].

Parallel BO/GP algorithms have been presented in [20, 21, 22].

Non active-learning metamodeling methods, e.g., [23, 24, 25,

26], directly use the surrogate as a fast evaluator of the blackbox

function for use by optimization methods, including derivative-

based ones. They may not be feasible for higher-dimensional

functions where the number of samples needed to construct an

accurate enough surrogate may be astronomical.

Genetic algorithms [27] form a third type of derivative-free

optimization. A population of samples is maintained that is

systematically improved over multiple generations. While such

algorithms can avoid local optima and operate on functions with

discrete and continuous variables, they may converge to the

final solutions slowly. The sister Part II of this paper [28]

shows how the conjunction of genetic algorithm and CNMA

can overcome this problem.
The above methods can be susceptible to failure of objective

functions to evaluate, as can happen, for example due to non-

convergence of computational fluid dynamics simulators [29].

If an artificial value has to be assigned to the function it could

distort the simplexes and surrogates.

Many of the above methods handle constraints indirectly by

reducing constrained optimization with a sequence of one or

more unconstrained optimization problems [2, 4, 30, 31]. The

principle is to encode the cost of violating a constraint as a

penalty/barrier function and rely on an optimization engine to

drive this cost to zero. For example, to model the constraint 𝑥 ≤
1, the term max(0, 𝑥 − 1) can be added to the objective

function. Whenever 𝑥 > 1, the term would evaluate to a

positive number. Hence, the optimization engine (doing

minimization) would search in a region where the cost is zero.

However, such functions can distort the shape of the new

objective function making it harder to find the optima.

Reducing such distortion requires substantial creativity on the

part of the penalty/barrier function designer [4, 32].

This paper presents CNMA (it stands for Constrained

optimization with Neural networks, MILP and Active learning),

a new surrogate-based method for solving the inverse problem

for blackboxes. Formally, CNMA finds values of 𝑥, 𝑦 that

optimize 𝜙(𝑥, 𝑦) such that 𝐹(𝑥) = 𝑦 ∧ 𝑃(𝑥, 𝑦) where 𝐹 is a

potentially nonlinear function available as a blackbox, 𝑥, 𝑦 are

vectors of discrete and continuous variables, 𝜙 is a linear

function and 𝑃 is a linear constraint. 𝑃 can also be a conjunction

of several constraints. Note that ∧ denotes logical conjunction

(AND). This is a straightforward reformulation of the earlier

inverse problem definition, with 𝑦 being an explicit handle on

the output. This reformulation allows a natural implementation

using the constituent technologies. As shown in Section V.H,

CNMA handles nonlinear objective functions and constraints

by moving their nonlinearities inside the definition of 𝐹.

A. CNMA Innovations

CNMA’s innovation is connecting the modeling power of

neural networks and constraint-solving power of MILP solvers

into a learning-from-failure feedback loop in such a way that

they do much of the work for us, permitting straightforward,

efficient implementations of the following desirable features

into a single, cohesive system:

1. Efficient construction of a surrogate function. The

complexity of neural network is linear in the number of

samples.

2. Efficient constraint-solving without penalty functions.
This feature is enabled by the transformation of neural

networks with the ReLU activation function into an

equivalent MILP. In addition, constraints are directly

expressed in the MILP language and then efficiently solved

by industrial-strength MILP solvers such as CPLEX and

GUROBI [11, 12].

3. Sample efficiency. This feature is enabled by CNMA’s

learning-from-failure feedback loop. A surrogate is learnt

as a neural network that is then transformed into an MILP.

Using this MILP, a constrained optimization problem is

solved and if the solution is unacceptable, it is used to find

a new point to sample.

4. Optimization with discrete and continuous variables.
Function inputs, outputs and constraints can all contain

discrete and continuous variables. This feature is enabled

by the use of both neural networks and MILP solvers.

5. Solving constraints whose evaluation itself requires

blackbox evaluations. CNMA handles this by introducing

new variables for components of constraints that must be

evaluated via blackbox methods and shifts the blackbox

estimation to the underlying surrogate that is created. See

Section V.H.

6. Resilience to the failure of blackboxes to compute

outputs. CNMA leverages the ability of neural networks

to learn despite missing information. It makes no

Figure 2. An example of a function over which

CNMA can optimize. It is non-continuous and not even

defined at all points. Only two dimensions of the 15

are shown. See Section V.B for details.

 3

assumptions about function continuity or smoothness.

Figure 2 shows an example of a function CNMA can

optimize over.

7. Parallelism. A simple parallel version of CNMA, also

presented in this paper, improves the efficiency and quality

of solutions over the sequential version, and also tries to

steer it away from local optima. No restriction is placed on

functions that can be optimized in parallel.

CNMA samples points in the domains of the function, and

learns a neural network surrogate of the function. By the

Universal Approximation Theorem [33], neural networks can

approximate any continuous function, although in practice, they

are also used to approximate non-continuous, non-smooth

functions. CNMA transforms that surrogate into an equivalent

MILP [34] and constructs its conjunction with 𝑃(𝑥, 𝑦). It

optimizes 𝜙(𝑥, 𝑦) subject to this conjunction using industrial-

strength MILP solvers. It then checks the solution for

correctness, i.e., whether it satisfies 𝑃(𝑥, 𝑦) and whether the

objective function is of acceptable value. If so, CNMA outputs

the solution. If not, CNMA computes a new training instance

from the solution and restarts. This “learning-from-failure”

feedback loop has the effect of trying to sample the region of

the domain relevant to solving the optimization problem. Thus,

it reduces the number of function evaluations by orders of

magnitude compared to that needed for learning the function

over its entire domain.

 A parallel version of CNMA uses multiple agents with each

using a different neural network architecture but operating off

the same training set. Each independently computes the next

best point to sample and adds it to the common training set. The

resulting model diversity decreases the chances of getting stuck

in local optima. Parallel neural network training, MILP solving

and sample evaluation also contribute to improved performance

over the sequential version.

Genetic algorithms can be combined with CNMA in a form

of hybrid optimization to find solutions that may not be found

by one or the other alone. This idea is thoroughly explored in a

sister paper of the same title but Part II [28].

CNMA presents a novel method of addressing a major

challenge posed in [49]: how to combine inductive and

deductive reasoning in the design of cyber-physical systems. In

CNMA, inductive reasoning is accomplished by neural

networks and deductive reasoning by MILP solvers, with the

two tied together in a feedback loop.

The paper is organized as follows. Section II discusses

related work, in particular, highlighting the relationship of

CNMA with BO/GP. Section III provides the necessary

background. Section IV presents sequential and parallel CNMA

and illustrates them with a simple example. Section V evaluates

CNMA performance for seven nonlinear problems of 8 (two

problems), 10, 15, 36 and 60 real-valued dimensions and one

with 186 binary dimension. Its performance is compared with

that of the skopt [35] implementation of BO/GP

(abbreviated BO-S) and the scipy.optimize [36]

implementation of NM (abbreviated NM-S), and Random

Search. BO-S and NM-S are stable, off-the-shelf tools. Note,

however, that BO-S did not return a solution for two problems

and NM-S did not return one for three. Section VI concludes

the paper.

II. RELATED WORK

Surrogate-based methods are most closely related to CNMA.

Of these methods, perhaps the most well-researched is BO/GP

[9]. Let the objective function to be maximized be 𝐹(𝑥) and let

a blackbox be available to evaluate 𝐹(𝑥). BO/GP is initialized

with a covariance function 𝑘(𝑥, 𝑦), also called a kernel. BO/GP

is also initialized with a set 𝑆 of samples in the domain of 𝐹

and their associated values. With this information, BO/GP

iteratively updates the posterior distribution of the underlying

Gaussian Process, parameterized by 𝜇(𝑥) and 𝜎(𝑥).

Intuitively, 𝜇(𝑥) is the mean of the values at 𝑥, of all possible

functions whose value for any sample 𝑣 in 𝑆 is 𝐹(𝑣). 𝜎(𝑥) is

the standard deviation of all these values. These two functions

are combined in different ways to create a merit or acquisition

function. This function is maximized using an optimization

engine such as L-BFGS [37]. The value of 𝑥 in the solution

represents a new point to sample, relevant to the optimization

problem that balances exploration with exploitation. It is added

to 𝑆 and the step repeats till a sample satisfying some halting

condition is found. One such acquisition function is the Upper

Confidence Bound 𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + 𝛽 ∗ 𝜎(𝑥) with 𝛽 ≥ 0.

The construction of 𝜇(𝑥) and 𝜎(𝑥) requires the inversion of the

covariance matrix that lists 𝑘(𝑢, 𝑣) for each pair (𝑢, 𝑣) where

𝑢, 𝑣 are samples in 𝑆. In earlier versions of BO/GP, a matrix

inversion method cubic in the number of samples was used [1],

although faster methods on GPUs are reported in [15].

If 𝐹(𝑥) is to be optimized subject to a constraint 𝑃(𝑥, 𝐹(𝑥)),

𝑃(𝑥, 𝐹(𝑥)) could be modeled as a penalty/barrier function and

added to 𝐹(𝑥). If 𝑃(𝑥, 𝐹(𝑥)) itself requires a blackbox

evaluation, extensions of BO/GP have been proposed [16, 17,

18, 19] that, in their inner loop, find an 𝑥 for which the

likelihood of 𝐹(𝑥) being the maximum and that of 𝑃(𝑥, 𝐹(𝑥))

being true is high.

Parallel versions of BO/GP have been proposed in [20, 21,

22]. Some, such as ref. [20], assume function “additivity,” i.e.,

the function can be decomposed into a sum of functions on

disjoint subsets of the function domain. Ref. [38] reports the use

of a neural network as a surrogate but the surrogate remains

inside the Gaussian Processes framework. It is not solved with

an MILP solver. Ref. [39] reports a scheme for mixed discrete-

continuous variables in BO/GP. To handle failure of function

evaluation, ref. [40] reports a scheme for learning problematic

areas of the search space and avoiding it.

Like BO/GP, CNMA also builds a surrogate of 𝐹(𝑥), say

𝐹𝑛𝑛(𝑥), from sampling the blackbox. The selection of the

neural network architecture is analogous to selection of the

kernel and 𝐹𝑛𝑛(𝑥) is analogous to 𝜇(𝑥). The MILP solver is

analogous to an engine such as L-BFGS. It is directly used to

find 𝑥 that maximizes 𝑦 such that 𝐹𝑛𝑛 (𝑥) = 𝑦 ∧ 𝑃(𝑥, 𝑦). Any

solution is used to compute the next point to sample.

Connecting neural networks and MILP solvers in a learning-

from-failure feedback loop permits efficient, straightforward

implementation of above features: efficient surrogate function

construction, sample efficiency, constraint solving without

penalty functions, solving blackbox constraints, optimization

with discrete and continuous variables, resilience to non-

terminating function evaluations, and parallelism.

CNMA does not compute the variance of the surrogate it

learns. Effectively, its merit function is 𝑈𝐶𝐵(𝑥) with 𝛽 = 0.

 4

There is, thus, a risk that it could get stuck in local optima

finding more and more points around the current optima.

CNMA provides two methods for trying to avoid this problem

and searching globally. The first is to use a constraint stating

that the objective function is above a threshold. Then, the MILP

solver will not produce solutions for which the objective is

below the threshold. The second is to introduce model diversity

to reduce the chances of different models computing the same

local optima. Model diversity is a byproduct of parallel CNMA

whose multiple agents create their own models. Independently,

parallel CNMA also contributes to improved performance via

parallel neural network training, MILP solving and sample

evaluation.

If the current surrogate is not good enough then

𝐹𝑛𝑛(𝑥) subject to 𝑃(𝑥) may have no solution. In that case,

CNMA generates a random point and restarts. How to mitigate

such randomness is one problem of current research. Other

future research problems include introducing additional

diversity, e.g., by use of bootstrapping, multi-function CNMA,

finding an appropriate initial neural network architecture and

adapting that architecture as new samples are created, e.g., via

the use of network compression [41].

We now discuss CNMA in detail.

III. BACKGROUND

A mixed-integer linear constraint is of the form 𝑎0 ∗ 𝑥0 +
 … + 𝑎𝑘 ∗ 𝑥𝑘 ≤ 𝑏 where 𝑎𝑖 , 𝑏 are real-valued constants and the

𝑥𝑖 are real-valued or integer-valued. An MILP is a set of such

constraints with a linear objective function 𝜙(𝑣0, . . , 𝑣𝑚) where

each 𝑣𝑖 is a variable appearing in a constraint. An MILP solver

finds values of all variables in the program optimizing the

function while satisfying all constraints. It makes no distinction

between input and output variables.

A neural network is a set of layers with each layer consisting

of a set of neurons. In the fully-connected neural network used

in CNMA, each neuron in a layer is connected to each neuron

in the previous layer. Such a network has one input layer, one

output layer and zero or more hidden layers. When the values

of neurons in the input layer are initialized, they are propagated

forward to compute values of all neurons. The output layer can

have multiple neurons allowing modeling of multi-output

functions. Associated with the edge between two neurons is a

weight. Associated with each neuron is a bias or intercept. The

value of a hidden-layer neuron is a linear combination of its

bias, values in the previous layer and weights of connecting

edges, but passed through an activation function. Activation

functions give neural networks the power to model nonlinear

functions. We use the ReLU activation function 𝑚𝑎𝑥(𝑥, 0)

because it can be converted into an MILP constraint using the

big-M method [34]. By also modeling the overall system

requirement as another mixed integer linear constraint, scalable

MILP solvers can be used to efficiently solve the neural

network along with the requirement. To allow neural networks

to model negative outputs, no activation function is applied at

the output layer.

We now illustrate the above plan with a short example. To

model the equation 𝑦 = 𝑚𝑎𝑥(𝑥, 0) as an MILP, select a large

number 𝑀 and let an integer 𝑑 ∈ {0, 1}. Then, 𝑦 = 𝑚𝑎𝑥(𝑥, 0)

is equivalent to (𝑦 ≥ 0 ∧ 𝑦 ≥ 𝑥 ∧ 𝑦 ≤ 𝑥 + 𝑀 ∗ 𝑑 ∧ 𝑦 ≤

𝑀(1 − 𝑑)).

Proof of correctness of tranformation of ReLU into MILP.

To see how the MILP (𝑦 ≥ 0 ∧ 𝑦 ≥ 𝑥 ∧ 𝑦 ≤ 𝑥 + 𝑀 ∗ 𝑑 ∧ 𝑦 ≤
𝑀(1 − 𝑑)) is equivalent to 𝑦 = 𝑚𝑎𝑥(𝑥, 0), consider two cases.

In the first case, let 𝑑 = 0. The MILP simplifies to (𝑦 ≥ 0 ∧
𝑦 ≥ 𝑥 ∧ 𝑦 ≤ 𝑥 ∧ 𝑦 ≤ 𝑀). Because M is a large number, 𝑦 ≤ 𝑀

is satisfied trivially and the MILP further simplifies to (𝑦 ≥ 0 ∧
𝑦 = 𝑥) which can also be written as (𝑦 = 𝑥 ∧ 𝑥 ≥ 0). In the

second case, let 𝑑 = 1. The MILP simplifies to (𝑦 ≥ 0 ∧ 𝑦 ≥
𝑥 ∧ 𝑦 ≤ 𝑥 + 𝑀 ∧ 𝑦 ≤ 0). Because M is a large number 𝑦 ≤
𝑥 + 𝑀 is satisfied trivially and the MILP further simplifies to

(𝑦 = 0 ∧ 𝑦 ≥ 𝑥) which can also be written as (𝑦 = 0 ∧ 𝑥 ≤ 0).

By combining these two cases, the MILP is equivalent to 𝑦 = 𝑥

if 𝑥 ≥ 0, otherwise 𝑦 = 0. Finally, this is equivalent to 𝑦 =
𝑚𝑎𝑥(𝑥, 0).

We now show how to model a whole neural network as an

MILP.

Figure 3. A fully-connected neural network.

The neural network in Figure 3 uses the ReLU activation

function. Each blue circle represents a single neuron. 𝑥1 and 𝑥2

represent the two inputs that get fed into the neural network.

Neurons ℎ1 and ℎ2 represent the values of each neuron in the

hidden layer after the activation function is applied, and

𝑦1 represents the output of the neural network. 𝑤1 to 𝑤4

represent the weights of the first layer and 𝑤5 and 𝑤6 represent

the weights of the output layer. Finally, 𝑏ℎ1, 𝑏ℎ2, and

𝑏𝑦1 represent the bias term of the respective neuron. The value

of each neuron can then be computed by the following

equations:

ℎ1 = max(𝑤1 ∗ 𝑥1 + 𝑤3 ∗ 𝑥2 + 𝑏ℎ1, 0) ∧

ℎ2 = max(𝑤2 ∗ 𝑥1 + 𝑤4 ∗ 𝑥2 + 𝑏ℎ2, 0) ∧

𝑦1 = 𝑤5 ∗ ℎ1 + 𝑤6 ∗ ℎ2 + 𝑏𝑦1

Letting 𝑀 = 100000 and 𝑑1, 𝑑2 integers ∈ {0, 1}, the

equivalent MILP for this network, 𝑛𝑛_𝑚𝑖𝑙𝑝, is:

𝑛𝑛_𝑚𝑖𝑙𝑝 = (ℎ1 ≥ 0 ∧

ℎ1 ≥ 𝑤1 ∗ 𝑥1 + 𝑤3 ∗ 𝑥2 + 𝑏ℎ1 ∧

 ℎ1 ≤ 𝑤1 ∗ 𝑥1 + 𝑤3 ∗ 𝑥2 + 𝑏ℎ1 + 100000 ∗ 𝑑1 ∧

ℎ1 ≤ 100000 ∗ (1 − 𝑑1) ∧

ℎ2 ≥ 0 ∧

ℎ2 ≥ 𝑤2 ∗ 𝑥1 + 𝑤4 ∗ 𝑥2 + 𝑏ℎ2 ∧

ℎ2 ≤ 𝑤2 ∗ 𝑥1 + 𝑤4 ∗ 𝑥2 + 𝑏ℎ2 + 100000 ∗ 𝑑2 ∧

ℎ2 ≤ 100000 ∗ (1 − 𝑑2) ∧

𝑥1

𝑥2

𝑦1

ℎ2

ℎ1
𝒘𝟏

𝒃𝒉𝟏

𝒘𝟑

𝒘𝟒

𝒘𝟐

𝒃𝒉𝟐

𝒃𝒚𝟏
𝒘𝟓

𝒘𝟔

 5

𝑦1 = 𝑤5 ∗ ℎ1 + 𝑤6 ∗ ℎ2 + 𝑏𝑦1)

Let the above neural network model a blackbox function

𝐹(𝑥1, 𝑥2) = 𝑦1 and let 𝜙(𝑥1, 𝑥2, 𝑦1), 𝑃(𝑥1, 𝑥2, 𝑦1) be an MILP

objective function and constraint, respectively. Then, to

optimize 𝜙(𝑥1, 𝑥2, 𝑦1) subject to 𝐹(𝑥1, 𝑥2) = 𝑦1 ∧
𝑃(𝑥1, 𝑥2, 𝑦1), we can use an MILP solver to optimize

𝜙(𝑥1, 𝑥2, 𝑦1) subject to 𝑛𝑛_𝑚𝑖𝑙𝑝 ∧ 𝑃(𝑥1, 𝑥2, 𝑦1).
A central innovation of CNMA is that the neural network

does not have to model 𝐹 exactly to solve the optimization

problem. To model it exactly would require an astronomical

number of samples from 𝐹’s domain. Instead, CNMA tries to

choose samples that are relevant to solving the optimization

problem and are thus a tiny fraction of the number required for

accurate modeling. After each sample, the neural network

surrogate is reconstructed and the optimization problem solved

again. The solution is used to compute the next promising

sample and the step repeated till an acceptable solution is found.

IV. METHODOLOGY

CNMA solves the problem of finding 𝑥, 𝑦 that optimize

𝜙(𝑥, 𝑦) such that 𝐹(𝑥) = 𝑦 ∧ 𝑃(𝑥, 𝑦) where 𝐹 is a nonlinear

function, 𝑥, 𝑦 are vectors of discrete and continuous variables,

𝜙 is a linear function and 𝑃 is a linear constraint. 𝐹 is called the

forward function. As shown in Figure 4, CNMA uses a Sample

Generator to sample points in 𝐹’s domain, evaluates those

points and creates a training set. These points are inputs to the

neural network (NN) ReLU Regression Engine that outputs a

neural network 𝑛𝑛. This is transformed into an equivalent

MILP 𝑚𝑖𝑙𝑝 by the NN-MILP transformer. 𝑚𝑖𝑙𝑝 is a surrogate

or model of 𝐹 based on current 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. An MILP solver

solves 𝜙(𝑥, 𝑦) such that 𝑚𝑖𝑙𝑝 ∧ 𝑃(𝑥, 𝑦) is true. If a solution is

not found, the Sampling Engine is called upon to extend

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 with a new one in the hope of improving upon the

current surrogate, and CNMA restarts. Otherwise, let (𝑥∗, 𝑦̂) be

a solution. It is then checked for correctness, i.e., whether

𝑃(𝑥∗, 𝐹(𝑥∗)) holds. If it does, then the value of the objective

function 𝜙(𝑥∗, 𝐹(𝑥∗)) is checked for acceptability, e.g.,

whether it is above or below a desired threshold or whether the

evaluation budget has been reached. If the solution is

acceptable, (𝑥∗, 𝐹(𝑥∗)) is output and CNMA halts. Otherwise,

(𝑥∗, 𝐹(𝑥∗)) is added to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. If 𝑃(𝑥∗, 𝐹(𝑥∗)) is false, then

(𝑥∗, 𝐹(𝑥∗)) is also added to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. Now, CNMA restarts.

Note that CNMA can be used in pure constraint satisfaction

mode by letting 𝜙(𝑥, 𝑦) = 0 and in pure optimization mode by

letting 𝑃(𝑥, 𝑦) = 𝑡𝑟𝑢𝑒.

The addition of (𝑥∗, 𝐹(𝑥∗)) if 𝑃(𝑥∗, 𝐹(𝑥∗)) does not hold is a

form of learning from the failure to produce a surrogate of 𝐹

that intersects 𝑃. It has the effect of trying to restrict the

sampling to only the part of 𝐹’s domain that is relevant to the

satisfaction of 𝑃. Thus, the sampling of 𝐹 is reduced by many

orders of magnitude over the fine-grained sampling needed to

learn 𝐹 over its entire domain. Even if 𝑃(𝑥∗, 𝐹(𝑥∗)) does hold,

adding it to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 in the hopes of improving upon 𝜙(𝑥) also

restricts the sampling.

Figure 4. Sequential CNMA overview

For clarity, the flowchart in Figure 4 (and Algorithms 1, 2

and Figure 5) omit an important case: the failure to evaluate 𝐹

for a given input either in the creation of the initial samples or

in the evaluation of 𝑃(𝑥∗, 𝐹(𝑥∗)). In this case, CNMA just calls

upon the Sample Generator to generate a new sample and

restarts. Neural networks are resilient to missing data.

Algorithm 1 precisely defines the above plan.

Algorithm 1 CNMA, Single Forward Function

 Input: a problem definition of the form

max
𝑥,𝑦

𝜙(𝑥, 𝑦) s. t. 𝑦 = 𝐹(𝑥) ∧ 𝑃(𝑥, 𝑦), a method to

randomly sample candidate solutions 𝑥 ∈ 𝑋, maximum

number 𝑁 of CNMA iterations. 𝜙, 𝑃 are linear, 𝑥, 𝑦 are

vectors of discrete and continuous variables, and 𝐹 is a

potentially nonlinear function available as a blackbox.

Output: a solution, (𝑥∗, 𝑦∗), to the above problem

function CNMA(𝜙, 𝐹, 𝑃, 𝑋, 𝑁)

 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← {(𝑥𝑖 , 𝐹(𝑥𝑖))}
𝑖=1,2,⋯,𝑛

 where 𝑥𝑖 denotes a

random sample drawn from 𝑋

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← empty list

for 𝑖 = 1, 2, ⋯ , 𝑁:

𝑛𝑛 ← a fully-connected ReLU regression network,

i.e., with identity activation for the last layer, which

takes in as input a vector 𝑥 ∈ 𝑋 and attempts to

predict 𝑓(𝑥); use 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 to train this neural

network

𝑚𝑖𝑙𝑝 ← the mixed-integer linear program:

max
𝑥,𝑦

𝜙(𝑥, 𝑦) s. t. 𝑛𝑛_𝑡𝑜_𝑚𝑖𝑙𝑝(𝑛𝑛) ∧ 𝑃(𝑥, 𝑦)

𝑥∗, 𝑦̂ ← potentially infeasible solution to 𝑚𝑖𝑙𝑝,

obtained via an MILP solver

if (𝑥∗, 𝑦̂) is a feasible solution to 𝑚𝑖𝑙𝑝:

 6

 𝑦∗ ← 𝐹(𝑥∗) // if 𝐹 does not terminate within some

time limit then 𝐹 returns ∞

 if 𝑦∗ is finite:

 if 𝑃(𝑥∗, 𝑦∗) is satisfied:

 Append (𝑥∗, 𝑦∗) to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 Append (𝑥∗, 𝑦∗) to 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

 else:

 Append (𝑥∗, 𝑦∗) to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 endif

 endif

else: // the solution to 𝑚𝑖𝑙𝑝 is infeasible

 Append randomly drawn sample(s)

{𝑥𝑖 , 𝐹(𝑥𝑖)}𝑖=1,2,⋯ to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

endif

return the best solution from 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, sorting by

𝜙(𝑥, 𝑦)

 endfunction

It is possible that CNMA could get stuck in local optima.

There are two methods of steering it away from them. The first

is adding a constraint on an upper or lower bound of the

objective function so that the MILP solver finds solutions

satisfying that constraint. The second is to use multiple

concurrent copies of CNMA, each producing a different

surrogate and therefore adding different “good” points to

𝑠𝑎𝑚𝑝𝑙𝑒𝑠. By pooling together these good points, the chances

of finding the true optima can be improved. This method is a

byproduct of Parallel CNMA that parallelizes sampling,

training and solving to improve the quality and performance of

the sequential version.

A. Parallel CNMA

Figure 5. Parallel CNMA overview

As shown in Figure 5, the CNMA algorithm can also be

parallelized by having multiple instances of CNMA run

simultaneously while periodically sharing information with

each other. During each iteration, each CNMA solver uses the

existing evaluated samples as training data to create a surrogate

model of the forward function, 𝐹. Each solver may use a

different neural network architecture or initialize the neural

network weights differently, causing each solver to end up with

a unique MILP problem to solve and produce a different point

to sample next. Because there are many different neural

networks that all may fit the training data, running CNMA in

parallel allows us to explore more of these diverse surrogate

models in a single iteration. At the end of each iteration, all

evaluated samples are shared among the solvers. See Algorithm

2 for a precise definition of Parallel CNMA.

Algorithm 2 Parallel CNMA, Single Forward Function

 Input: a problem definition of the form

max
𝑥,𝑦

 𝜙(𝑥, 𝑦) s. t. 𝑦 = 𝐹(𝑥) ∧ 𝑃(𝑥, 𝑦), a method to

randomly sample candidate solutions 𝑥 ∈ 𝑋, maximum

number 𝑁 of CNMA iterations, 𝑀 parallel solvers.

𝜙, 𝑃 are linear, 𝑥, 𝑦 are vectors of discrete and continuous

variables, and 𝐹 is a potentially nonlinear function

available as a blackbox.

Output: a solution, (𝑥∗, 𝑦∗), to the above problem

function CNMA(𝜙, 𝐹, 𝑃, 𝑋)

 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← {(𝑥𝑖 , 𝐹(𝑥𝑖))}
𝑖=1,2,⋯,𝑛

, where 𝑥𝑖 denotes a

random sample drawn from 𝑋

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← empty list

for 𝑖 = 1, 2, ⋯ , 𝑁

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← empty list

parallel for 𝑗 = 1,2, ⋯ , 𝑀

𝑛𝑛 ← a fully-connected ReLU regression

network (with any arbitrary architecture),

which takes in as input a vector 𝑥 ∈ 𝑋 and

attempts to predict 𝐹(𝑥); use 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 to

train this neural network.

𝑚𝑖𝑙𝑝 ← the mixed-integer linear program:

max
𝑥,𝑦

𝜙(𝑥, 𝑦) s. t. 𝑛𝑛_𝑡𝑜_𝑚𝑖𝑙𝑝(𝑛𝑛) ∧ 𝑃(𝑥, 𝑦)

𝑥∗, 𝑦̂ ← solution to 𝑚𝑖𝑙𝑝, obtained, e.g., via an

MILP solver

if (𝑥∗, 𝑦̂) is feasible:

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠[𝑗] ← (𝑥∗, 𝑦̂)

𝑒𝑣𝑎𝑙𝑠 ← in parallel, compute (𝑥𝑖 , 𝐹(𝑥𝑖)) for each

𝑥𝑖 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑛𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ← 0

for 𝑗 = 1,2, ⋯, size_of(evals)

𝑥∗, 𝑦̂ ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠[𝑗]
if (𝑥∗, 𝑦̂) is infeasible:

𝑛𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ← 𝑛𝑖𝑛𝑣𝑎𝑙𝑖𝑑 + 1

else:

Append (𝑥∗, 𝑦̂) to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

if 𝑃(𝑥∗, 𝑦̂):

Append (𝑥∗, 𝑦̂) to 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

In parallel, append 𝑛𝑖𝑛𝑣𝑎𝑙𝑖𝑑 randomly drawn

sample(s) (𝑥𝑖 , 𝐹(𝑥𝑖)) to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

return the best solution from 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, sorting by

𝜙(𝑥, 𝑦)

 endfunction

B. Illustrating CNMA

The Rastrigin function is a common benchmark problem for

optimization methods because it is highly nonlinear and has

many local optima. We illustrate three different ways in which

CNMA can be used to solve the optimization problem:

max
𝑥𝜖[−5.12,5.12]

𝐹(𝑥) = 10 + 𝑥2 − 10 ∗ cos (2 ∗ 𝜋 ∗ 𝑥)

The true maximum of F(x) is 40.353 at x = −4.522 and x =
4.522.

 7

Figure 6. Maximizing Rastrigin. A: During the first iteration the

surrogate function predicts that the maximum is at -5.12. We evaluate

Rastrigin at this point and the new sample, shown as a purple dot, is

added to the training set. B: During iteration 2, the surrogate

incorrectly predicts where the maximum value of the function is. The

new sample, shown as a purple dot, is added to the training set. C:

During iteration 3, the surrogate incorrectly predicts where the

maximum value of the function is. The new sample, shown as a purple

dot, is added to the training set. D: During iteration 4, the surrogate

incorrectly predicts where the maximum value of the function is. The

new sample, shown as a purple dot, is added to the training set.

 Figure 6 shows the progression of CNMA at each iteration

solving: maximize 𝜙(𝑥, 𝑦) = 𝑦 s.t. 𝐹(𝑥) = 𝑦 ∧ −5.12 ≤ 𝑥 ≤
5.12. CNMA first generates two initial samples in the domain

of 𝑥 to create the training set:

𝒙 𝑭(𝒙)
−𝟑. 𝟒𝟗𝟓 32.210

−𝟐. 𝟒𝟑𝟔 25.161
CNMA then learns a neural network from this set to create a

surrogate of 𝐹(𝑥). Figure 6 shows the surrogate function plotted

in orange. CNMA converts this neural network into an MILP

and uses an MILP solver to solve it along with 𝑃(𝑥, 𝑦) =
−5.12 ≤ 𝑥 ≤ 5.12 such that 𝑦 is maximized.

During the first iteration, the solution found is 𝑥 = −5.12.

This is where the maximum of the orange curve is within 𝑥’s

domain. After checking the solution against the correct

definition of 𝐹(𝑥), the dot shown in purple is added to the

training set and a new neural network is trained during Iteration

2. While CNMA is able to find a local maximum after just three

iterations and five function calls, CNMA gets stuck here and a

global maximum is not found even after 100 iterations.

To help CNMA explore outside this local maximum, we can

use Parallel CNMA to add neural network diversity. Figure 7

shows how Parallel CNMA solves the same problem but is able

to find the global maximum by using 10 different CNMA

workers simultaneously. During the first iteration, 10 neural

networks, each initialized with different weights, are trained on

the same two initial samples. This creates 10 different MILP

problems to be solved. Because each neural network is slightly

different, each MILP problem produces a different solution.

The eighth neural network predicts that the maximum value of

the function is at 𝑥 = −4.571, which is close to one of the true

maxima at 𝑥 = −4.5229. Since all samples are shared among

all parallel workers, by the next iteration each neural network

predicts that the maximum is very close to the true maximum at

𝑥 = −4.522. After only three iterations, the best solution found

is 𝑥 = −4.521, which has an objective function value of 𝑦 =
40.353.

Figure 7. Maximizing Rastrigin with multiple CNMA solvers. A:

During Iteration 1, 10 surrogates are trained. B: The eighth

surrogate trained in Iteration 1 has a maximum at x=-4.571. This is

very close to the true maximum of the Rastrigin function. C: During

Iteration 2, all 10 surrogates accurately predict the maximum value

of the Rastrigin function.

Figure 8. Maximizing Rastrigin with constraints. A: In Iteration 1

the surrogate overlaps with the constraint, P(X,Y). The point shown

in purple is added to the training set. B: In Iteration 2 the surrogate

does not overlap with P(X,Y). A random sample, shown in green, is

added to the training set. C: In Iteration 3 the surrogate does not

overlap with P(X,Y). A random sample, shown in green, is added to

the training set. D: Again, in Iteration 36, the surrogate does not

overlap with P(X,Y). A random sample, shown in green, is added to

the training set. E: In Iteration 37 the surrogate does overlap with

P(X,Y). The dot shown in purple is added to the training set. F: In

Iteration 50, the maximum value is found at x=4.523.

Another way to try to ensure CNMA does not get stuck in

 8

local maxima is to add a constraint to ensure that the objective

function value is above a desired threshold. In Figure 8, we

depict the progression of CNMA with the added constraint 𝑦 ≥
35. During Iteration 1, the MILP solver finds 𝑥 = −5.12

because it maximizes the surrogate in orange and 𝑃(𝑥, 𝑦)

(shaded in light green) is satisfied. However, when the solution

is evaluated by the true function (shown in purple), 𝑃(𝑥, 𝑦) no

longer holds. In the second iteration, there is no 𝑥 such that the

surrogate and 𝑃(𝑥, 𝑦) overlap. Thus, the MILP problem is

infeasible and a random sample is evaluated instead (depicted

as a green dot). Many random samples continue to be generated

until Iteration 37, where the surrogate function again overlaps

with 𝑃(𝑥, 𝑦). After evaluating the MILP solution through the

true function, this time 𝑃(𝑥, 𝑦) is satisfied. This causes the

surrogate function to continue to overlap with 𝑃(𝑥, 𝑦) during

subsequent iterations. The solution 𝑥 = 4.523 with objective

function 𝑦 = 40.353 is found after 50 iterations and 52

function calls (2 initial + one each for 50 iterations).

V. EXPERIMENTAL RESULTS

For seven nonlinear design problems of 8 (two problems),

10, 15, 36, 60 real-valued dimensions and one with 186 binary

dimension, we compare the performance of CNMA with the

skopt [35] implementation of BO/GP (abbreviated BO-S),

the scipy.optimize [36] implementation of NM

(abbreviated NM-S), and with Random Search. We evaluated

CNMA with 1, 5, and 10 solvers in parallel. For neural

networks, we use the scikit-learn package [42]. We use

a commercial MILP solver. All of these packages are stable-

off-the-shelf.

For each problem, we allocate a fixed time budget that is, in

our estimate, the longest a user would wait for a solution to that

problem.

For each problem, we compare the optimization engines

against two metrics. The first metric is the best value of the

objective function computed within the problem’s time budget.

It is evaluated by plotting the improvement of the objective

function value against time, and comparing the best values from

each engine.

The second metric is the minimum number of function

evaluations needed to produce the best value of the objective

function within the problem’s time budget. This metric is

intended to capture the idea of “sample efficiency” since it can

be quite expensive to evaluate blackboxes. This metric is

evaluated by plotting the improvement of the objective function

against the number of function evaluations, and comparing the

minimum number of evaluations needed by each engine to

produce the best value of the objective function.

We also compare Random Search by randomly generating

the maximum number of samples used by any one of the

optimization methods which found solutions.

For BO-S, we use the expected improvement (EI) acquisition

function, and the Matérn kernel. The following

hyperparameters are automatically tuned by BO-S: (1) all

kernel length scales, (2) covariance amplitudes, and (3)

parameters of the i.i.d. Gaussian noise added to the kernel.

For CNMA with 1 solver, we use a neural network

architecture with two hidden layers of 35 and 10 neurons. For

CNMA with 5 solvers, we use the same neural network

architecture in addition to ones with single hidden layers of 10,

30, 35, and 50 neurons. We use the same architectures (each

repeated twice) for CNMA with 10 solvers.

For BO-S and NM-S, we model constraints as a penalty

function.

Note that BO-S did not return a solution for two problems

and NM-S did not return one for three. These problems are

high-dimensional, have both discrete and continuous variables,

and their blackboxes do not return outputs for some inputs. For

other problems, CNMA improves the performance over BO-S,

NM-S and Random Search by 1%-87%.

Some comparative visualizations are available at

https://collab.perspectalabs.com/nonlinearbenchmarks/.

A. Designing a Wave-Energy-Propelled Boat

This example shows the ability of CNMA to optimize

with functions that may fail to return a value for some

inputs, as can happen with the xfoil [29] computational

fluid dynamics simulator used here. Figure 9 indicates how

the rise and fall of a boat floating on a wave pulls and pushes

at a hydrofoil below, causing a rotation about an axis. This

rotation generates forward force during both the upward and

downward wave motion; much like when swimmers flap

flippers in a pool, their body is propelled forward. The

marine robot is inspired by the Wave Glider [43]. The design

problem is to compute the dimensions of the boat and

hydrofoil which will maximize the steady-state forward

sailing speed for a given wave condition. The equilibrium

constraints are that the force generated by the hydrofoil

equals that applied to the boat and that the glider and boat

velocities are equal. An additional constraint is that the

magnitude of the horizontal velocity be higher than that of

the vertical velocity. Note the recursive relationship

between the variables: force is an output of 𝐻𝑦𝑑𝑟𝑜𝑓𝑜𝑖𝑙 but

an input to 𝐵𝑜𝑎𝑡 whereas velocities are outputs of the latter

and inputs to the former.

The boat is modeled with two functions. The first is

𝐻𝑦𝑑𝑟𝑜𝑓𝑜𝑖𝑙(𝑐ℎ, 𝑉𝑥 , 𝑉𝑦 , 𝜃) = 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥 that computes the

forward force output by a hydrofoil of length 𝑐ℎ, moving

through water at velocity 𝑉𝑥 , 𝑉𝑦 at an angle of attack 𝜃. This

is the force it applies to the boat. It is implemented with the

Figure 9. Structure of wave energy propelled boat. Note the

recursive relationship between the input and output variables

of Boat and Hydrofoil

https://collab.perspectalabs.com/nonlinearbenchmarks/

 9

computational fluid dynamics package xfoil. The second

function is (𝑙𝑒𝑛𝑔𝑡ℎ, 𝑏𝑒𝑎𝑚, 𝑑𝑟𝑎𝑓𝑡, 𝑎𝑚𝑝𝑙, 𝑝𝑒𝑟𝑖𝑜𝑑,

𝑓𝐵𝑜𝑎𝑡𝑥) = [𝑉𝐵𝑜𝑎𝑡𝑥, 𝑉𝐵𝑜𝑎𝑡𝑦]. It outputs the steady-state

forward speed of a boat given its 3D dimensions:

𝑙𝑒𝑛𝑔𝑡ℎ, 𝑏𝑒𝑎𝑚, 𝑑𝑟𝑎𝑓𝑡, the amplitude 𝑎𝑚𝑝𝑙 and 𝑝𝑒𝑟𝑖𝑜𝑑 of the

wave, and the forward force 𝑓𝐵𝑜𝑎𝑡𝑥 applied to it by the

hydrofoil. This function is computed by a program encoding

a solution to a differential equation. The first two

equilibrium constraints are enforced by eliminating 𝑉𝑥 and

𝑉𝑦 and consolidating the two functions into the CNMA

forward function 𝐹(𝑥) = 𝑦 where:

𝑥 = [𝑙𝑒𝑛𝑔𝑡ℎ, 𝑏𝑒𝑎𝑚, 𝑑𝑟𝑎𝑓𝑡, 𝑎𝑚𝑝𝑙, 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑓𝐵𝑜𝑎𝑡𝑥, 𝑐ℎ, 𝜃]

𝑦 = [𝑉𝐵𝑜𝑎𝑡𝑥, 𝑉𝐵𝑜𝑎𝑡𝑦 , 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥]

𝐹 calls 𝐵𝑜𝑎𝑡 to compute 𝑉𝐵𝑜𝑎𝑡𝑥 and 𝑉𝐵𝑜𝑎𝑡𝑦 and then

inputs them to 𝐻𝑦𝑑𝑟𝑜𝑓𝑜𝑖𝑙 to compute 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥. The third

equilibrium constraint is now 𝑓𝐵𝑜𝑎𝑡𝑥 = 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥 . To

tolerate small force differences, the equality is modeled as
|𝑓𝐵𝑜𝑎𝑡𝑥 − 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥| ≤ 𝜖 ∗ 𝑓𝐵𝑜𝑎𝑡𝑥 where 𝜖 is set to 5%.
Note that a constraint with an absolute value can be modeled

as a pair of linear constraints [44]. Finally, 𝑃(𝑥, 𝑦) =
(|𝑓𝐵𝑜𝑎𝑡𝑥 − 𝑓𝐺𝑙𝑖𝑑𝑒𝑟𝑥 | ≤ 𝜖 ∗ 𝑓𝐵𝑜𝑎𝑡𝑥 ∧ 𝑉𝐵𝑜𝑎𝑡𝑥 ≥ 𝑉𝐵𝑜𝑎𝑡𝑦)

and 𝜙(𝑋, 𝑌) = 𝑉𝐵𝑜𝑎𝑡𝑥. In the optimization problem, 𝑎𝑚𝑝𝑙
and 𝑝𝑒𝑟𝑖𝑜𝑑 are set to 4 and 7, respectively.

With 30 initial samples and a budget of 2500 seconds, with

1, 5, and 10 solvers, CNMA is able to find a solution with a

speed of 3.9036, 3.8993, and 3.8999 m/s, respectively. BO-S

and NM-S are unable to find any feasible solutions given the

same time budget. Out of 3890 randomly samples, none of them

are valid solutions. Figure 10 and Figure 11 show the

performance of CNMA with respect to time and number of

function evaluations.

Figure 10. Boat velocity in the x direction vs. time for Wave-

Energy-Propelled Boat. BO-S and NM-S are not shown since these

are not able to find valid solutions. After 1000 seconds all three

CNMA runs find solutions with a speed above 3.89 m/s.

B. OpenAI Gym’s LunarLander: Robot System-Controller

Codesign

Robots and their

controllers are often

designed separately. This

can lead to design

inconsistency whose

resolution can be time-

consuming. If robots can be

efficiently reconfigured

and their controllers

efficiently designed, we

raise the possibility of

system-controller codesign by solving a single optimization

problem that encodes system and controller constraints and

objectives. The lander we use, as depicted in Figure 12, is

part of the robotic benchmarks at OpenAI/Gym [45]. We

assume that the controller is proportional-integral-

derivative (PID)-based. Hence, the controller design

problem reduces to finding optimal values for the PID

coefficients. From a mothership, the module is ejected with

a certain force and then its engines fire both vertically and

horizontally to guide it towards landing on the flat pad

between two flagpoles. Our goal is to compute the system

and controller design and initial position and force that

would maximize the reward while satisfying constraints on

a successful landing, time to land and fuel usage.

The input vector to the CNMA forward function 𝐹 is 𝑥 =

[𝑚𝑒𝑝, 𝑠𝑒𝑝, 𝑙𝑎, 𝑙𝑑, 𝑙𝑤, 𝑙ℎ, 𝑙𝑠𝑡, 𝑘𝑝_𝑎𝑙𝑡, 𝑘𝑑_𝑎𝑙𝑡, 𝑘𝑝_𝑎𝑛𝑔,

𝑘𝑑_𝑎𝑛𝑔, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑥, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑦, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑓𝑥, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑓𝑦]. The

variables 𝑚𝑒𝑝, 𝑠𝑒𝑝, 𝑙𝑎, 𝑙𝑑, 𝑙𝑤, 𝑙ℎ 𝑙𝑠𝑡 are system design

parameters denoting, respectively, main engine power, side

engine power, leg away length, leg down length, leg width,

leg height, and leg spring torque. The variables

𝑘𝑝_𝑎𝑙𝑡, 𝑘𝑑_𝑎𝑙𝑡, 𝑘𝑝_𝑎𝑛𝑔, 𝑘𝑑_𝑎𝑛𝑔 are controller design

parameters denoting, respectively, the P and D values for

the vertical and horizontal engine controllers. The I

Figure 12. Lunar lander

attempting to land on flat terrain

between flagpoles

Figure 11. Boat velocity in the x direction vs. number of

function evaluations for Wave-Energy-Propelled Boat. BO-S,

NM-S, and Random Search are not shown since they are not

able to find valid solutions. After 1750 function evaluations all

three CNMA runs find solutions with a speed above 3.89 m/s.

 10

coefficient is set to 0. The variables 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑥, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑦,
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑓𝑥, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑓𝑦 are initial condition parameters,

denoting, respectively, the initial position and force at the

time of lunar lander ejection from the mother ship. The

forward function 𝐹(𝑥) = 𝑦 simulates the trajectory of the

lander defined by its system design parameters, PID

parameters and the initial conditions. It runs for a fixed

number of time steps or until the lander lands or crashes. At

each time step, it measures the “error,” i.e., the distance

between its current position and the landing point, and using

the PID values computes engine firing actions to guide the

lander towards the landing point. It outputs 𝑦 =
 [𝑓𝑢𝑒𝑙, 𝑡𝑖𝑚𝑒, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑟𝑒𝑤𝑎𝑟𝑑] denoting, respectively, the

fuel used, time taken to land, whether the landing is safe,

and the reward, a measure of the quality of the landing, as

defined by OpenAI/Gym. The codesign problem is now to

maximize the objective function 𝜙(𝑥, 𝑦) = 𝑟𝑒𝑤𝑎𝑟𝑑 subject

to 𝐹(𝑥) = 𝑌 ∧ 𝑃(𝑥, 𝑦) where 𝑃(𝑥, 𝑦) = (𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 1 ∧
 𝑓𝑢𝑒𝑙 ≤ 75 ∧ 𝑡𝑖𝑚𝑒 ≤ 10).

Figure 13. Reward vs. time for Lunar Lander. After 100 seconds

all three CNMA runs find better solutions than BO-S and NM-S. Note

that NM-S stops after 28 seconds due to early convergence.

Figure 14. Reward vs. number of function evaluations for Lunar

Lander. When given the same number of function evaluations, CNMA

either matches or outperforms both BO-S and NM-S. CNMA with 5,

and 10 solvers always outperforms Random Search with a function

evaluation budget of less than 1750.

With 100 initial samples and a time budget of 1500 seconds,

CNMA finds solutions with rewards of 437.139, 469.589, and

465.136 with 1, 5, and 10 solvers, respectively. In the same

amount of time, BO-S only finds a solution with a reward of

395.118 and NM-S only finds a solution with a reward of

409.857. Out of 1966 random samples, the best solution which

meets the constraints has a reward of 446.199. Figure 13 and

Figure 14 show the performance of CNMA, BO-S, NM-S and

Random Search with respect to time and number of function

evaluations.

C. Optimizing Hexapod Gaits

We now address a problem

inspired by the work of [46] for

adapting robot gait to failures in

the field. The robot is six-legged

with each leg consisting of three

segments. Associated with each

leg 𝑖 is a vector of six parameters
(𝛼𝑖1, 𝛼𝑖2, 𝜑𝑖1, 𝜑𝑖2, 𝜏𝑖1, 𝜏𝑖2) with each 𝛼, 𝜙, 𝜏 ∈ [0, 1]. These

parameters determine, respectively, the amplitude phase and

duty cycle of the walking signal sent to the first two legs

every 30 ms. The walking signal for the third segment is the

inverse of that for the second so does not need independent

control parameters. The hexapod (as shown in Figure 15)

controller is defined by the six parameters for each leg for a

total of 36 parameters, and fully determines the hexapod

gait. Using the hexapod simulator in [46], we define a

CNMA forward function ℎ𝑒𝑥𝑎𝑝𝑜𝑑(𝑥) = 𝑦 that takes a

controller 𝑥 = [𝑐0, . . , 𝑐35] as input, simulates the hexapod

gait for 5 seconds and outputs a vector 𝑦 =
 [𝑠𝑝𝑒𝑒𝑑𝑥 , 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6] where 𝑠𝑝𝑒𝑒𝑑𝑥 is the hexapod’s

𝑥-axis displacement in meters divided by 5.0 and each 𝑏𝑖 is

the fraction of the time leg 𝑖 is in contact with the ground.

Hexapod speeds above 0.20 m/sec are hard to find with

Random Search [46].

If a hexapod leg is broken then we would like to find a

new controller that can achieve a speed of above 0.20 m/sec

while satisfying any new constraints on the movement. Let

us assume leg 1 is broken. Then, we might constrain its

contact with the ground to be the least of that of all the legs.

The problem is now: maximize 𝑠𝑝𝑒𝑒𝑑 subject to

ℎ𝑒𝑥𝑎𝑝𝑜𝑑([𝑐0, . . , 𝑐35]) = [𝑠𝑝𝑒𝑒𝑑, 𝑏1, . . , 𝑏6] ∧ 𝑏1 ≤ 𝑏2 ∧
 𝑏1 ≤ 𝑏3 ∧ 𝑏1 ≤ 𝑏4 ∧ 𝑏1 ≤ 𝑏5 ∧ 𝑏1 ≤ 𝑏6 and stop when the

speed is close enough to 0.20 m/sec. As can be seen above,

the baseline controller does not satisfy the constraint.

We can try searching over [0,1]36 for a new controller.

However, another option is to search just in the

neighborhood of the baseline controller. We change the

bounds for each field in the baseline controller to be within

0.1 of its current value, subject to the lower bound being at

least 0 and the upper bound at most 1.

Figure 15. A hexapod

 11

Figure 16. Speed vs. time for Hexapod. NM-S stops after 207

seconds due to early convergence. NM-S is not shown because it is

not able to find any valid solutions. After 2000 seconds CNMA with 5

and 10 solvers outperforms BO-S.

Figure 17. Speed vs. number of function evaluations for Hexapod.

NM-S is not shown because it is not able to find valid solutions.

CNMA outperforms Random Search for any given budget of function

evaluations less than 4422. CNMA with 5 and 10 solvers matches or

outperforms BO-S given a budget of function evaluations between

400 and 600.

With two initial samples and a time budget of 10000 seconds,

CNMA finds solutions with speeds of 0.2043, 0.2579, and

0.2619 m/sec with 1, 5, and 10 solvers, respectively. BO-S finds

a solution with a speed of 0.2064 m/sec while NM-S is not able

to find any valid solutions. Out of 4422 randomly generated

samples, the best solution has a speed of 0.2058 m/sec. Figure

16 and Figure 17 show the performance of CNMA, BO-S, NM-

S, and Random Search with respect to time and number of

function evaluations.

D. Acrobot Design

The Acrobot [45], as shown in Figure

18, is a two-link robot arm with a single

actuator placed at the elbow. Initially, the

links hang downwards. The Acrobot’s

goal is to execute a series of actions that

vertically orients and balances both links.

The Acrobot problem is well-studied,

and is known to be challenging to solve.

In Figure 18, system design variables 𝑚𝑖,

𝐼𝑖 , and 𝑙𝑐𝑖
 denote, respectively, the mass,

moment of inertia, and center of mass

location of link 𝑖. The CNMA function 𝐹 takes as input a system

design vector 𝑥 = [𝑚1, 𝑚2, 𝐼1, 𝐼2, 𝑙𝑐1
, 𝑙𝑐2

, 𝑙1, 𝑙2], runs iterative

linear-quadratic regulator (LQR) as our controller on an

Acrobot system with this vector and returns 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 , the total

time taken to balance the system. 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 is listed as t_stabilize

in the chart below. The problem is to find a system design that

minimizes 𝜙(𝑥, 𝑦) = 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 subject to 𝐹(𝑥) = 𝑌 ∧ 𝑃(𝑥, 𝑦)

where:

𝑃(𝑥, 𝑦) = (𝐼1 = 𝐼2 ∧ 0.1 ≤ 𝑚1, 𝑚2 ≤ 3.0 ∧ 0.1 ≤ 𝐼1, 𝐼2 ≤
3.0 ∧ 0.1 ≤ 𝑙1, 𝑙2 ≤ 3.0 ∧ 0.3 ≤ 𝑙𝑐1 , 𝑙𝑐2

≤ 0.7)

The constraint 𝐼1 = 𝐼2 reflects OpenAI/Gym’s

implementation of the Acrobot problem.

With 20 initial samples and a budget of 5000 seconds,

CNMA finds solutions with objective function values 3.4, 3.2,

and 2.8 with 1, 5, and 10 solvers, respectively. In the same

amount of time, BO-S is able to find a solution with an objective

function of 3.2 and NM-S is able to find a solution with an

objective function of 8.6. Out of 500 randomly generated

solutions, the best solution found has an objective function

value of 4.2. Figure 19 and Figure 20 show the performance of

CNMA, BO-S, NM-S, and Random Search with respect to time

and number of function evaluations.

Figure 19. Stabilization time vs. time for Acrobot. CNMA

outperforms NM-S when given a time budget of less than 5000

seconds. CNMA matches or outperforms BO-S when given a time

budget of less than 5000 seconds.

Figure 18.

Acrobot schematic

 12

Figure 20. Stabilization time vs. number of function evaluations

for Acrobot. CNMA matches or outperforms NM-S, BO-S, and

Random Search when given the same budget of function

evaluations.

E. Optimal Sensor Placement for Power Grids

We now design a system in which all inputs are discrete but

the output is continuous. Placing current and voltage sensors on

a power grid can help identify which power lines are down

during power outages. However, placing these sensors can be

expensive and their number has to be limited. Given a limited

sensor budget, the problem is to determine where to place the

sensors such that their readings give the best chance of

predicting the line failure pattern. We define a forward function

𝐹 that takes in a sensor placement 𝑥 of bits and outputs 𝑦 =
[𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦], the “ambiguity” of the placement. In 𝑥, if a

sensor is placed at line 𝑖, then 𝑥[𝑖] = 1 else 𝑥[𝑖] = 0. For a

given 𝑥, we simulate all single line failures and record the

associated set of readings at the sensors placed in 𝑥. If a reading

set appears more than once then it is ambiguous since more than

one failure can cause it. We then divide the number of

ambiguous reading sets by the total number of reading sets to

compute [𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦] of 𝑥. Sensor readings are computed by

the power line simulator OpenDSS [47], which takes in a model

of the power grid, sensor placement, and a line failure pattern

and outputs sensor readings. The objective function to minimize

is 𝜙(𝑥, 𝑦) = 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 subject to the constraint that the

number of sensors placed at most meets some budget. For the

Bus118 power grid with 186 power lines, and a budget of 50

sensors, the constraint is specified as 𝑃(𝑥, 𝑦) = sum(𝑥) ≤ 50.

With 30 initial samples and a time budget of 1500 seconds,

CNMA finds solutions with objective function values 0.04813,

0.02139, and 0.02139 with 1, 5, and 10 solvers, respectively. In

the same amount of time, BO-S and NM-S are not able to find

solutions that meet the constraints. Since these two only work

with real-valued variables, we round their outputs to 1 or 0 to

evaluate the forward function. Out of 460 randomly generated

samples, none of them are valid solutions. Figure 21 and Figure

22 show the performance of CNMA, BO-S, NM-S and Random

Search with respect to time and number of function evaluations.

.

Figure 21. Ambiguity of the sensor placement vs. time for

CNMA for sensor placement. All three CNMA runs find a solution

with an ambiguity less than 0.05 within 1500 seconds. BO-S, NM-

S and Random Search are not shown since these are not able to

find any solutions.

Figure 22. Ambiguity of the sensor placement vs. number of

function evaluations for CNMA for sensor placement. All three

CNMA runs find a solution with an ambiguity less than 0.05 with less

than 300 function calls. BO-S, NM-S, and Random Search are not

shown since they are not able to find any solutions.

F. Rover Path Planning

This problem, defined in [20],

involves finding a trajectory, such

as the one shown in Figure 23, for a

robot with starting and end goal

positions. The trajectory is

specified by a set of 30 2D

points that are fit by a BSpline to

define a path. Each trajectory

also has an associated cost which penalizes obstacle collisions

and should be minimized. The CNMA function 𝐹 takes as

input the 2D coordinates of the 30 points (60 inputs) that

define a path and outputs the cost of the trajectory. Each input

ranges from 0.0 to 1.0. The objective is to maximize the

negative cost of the trajectory.

Figure 23. Path avoiding

obstacles in the x-y plane

 13

Figure 24. Negative cost vs. time for Rover Path Planning. CNMA

outperforms BO-S and NM-S when given a time budget of less than

9000 seconds. Note that NM-S stops after 6 seconds due to early

convergence.

Figure 25. Negative cost vs. number of function evaluations for Rover

Path Planning. CNMA outperforms both NM-S and BO-S. While

Random Search and CNMA with 10 solvers find similar solutions,

CNMA with 10 solvers finds the solution in fewer function

evaluations. Note that BO-S is only able to complete 30 function

evaluations in the given time budget.

With two initial samples and a time budget of 9000 seconds,

CNMA finds solutions with costs of 1.148, 0.997, and 0.778

with 1, 5, and 10 solvers, respectively. Given the same time

budget, BO-S finds a solution with a cost of 3.530 and NM-S

finds a solution with a cost of 5.867. Out of 4452 random

samples, the best solution has a cost of 0.788. Figure 24 and

Figure 25 shows the performance of CNMA, BO-S, NM-S, and

Random Search with respect to time and number of function

evaluations.

G. Polak3

This optimization benchmark [48] involves minimizing the

maximum value of 10 different transcendental functions. The

CNMA forward function 𝐹(𝑥) = 𝑦 takes in 10 values,

𝑥1, . . , 𝑥10, each 𝑥𝑖 ∈ [−1, 1], and outputs 𝑦, the maximum

value of the 10 transcendental functions. The best known

minimum is 5.93. An example of one of the transcendental

functions is (𝑒(𝑥1−𝑠𝑖𝑛(0.0+1.0+1.0))∗(𝑥1−sin(0.0+1.0+1.0))) +

 0.5 ∗ (𝑒(𝑥2−sin(0.0+2.0+2.0))∗(𝑥2−sin(0.0+2.0+2.0))) +

0.3333 ∗ (e(𝑥3−sin(0.0+3.0+3.0))∗(𝑥3−sin(0.0+3.0+3.0))) +

0.25 ∗ (𝑒(𝑥4−sin(0.0+4.0+4.0))∗(𝑥4−sin(0.0+4.0+4.0))) +

0.2 ∗ (𝑒(𝑥5−𝑛𝑝.sin(0.0+5.0+5.0))∗(𝑥5−sin(0.0+5.0+5.0))) +

0.1666 ∗ (𝑒(𝑥6−sin(0.0+6.0+6.0))∗(𝑥6−sin(0.0+6.0+6.0))) +

0.1428 ∗ (𝑒(𝑥7−sin(0.0+7.0+7.0))∗(𝑥7−sin(0.0+7.0+7.0)))

+ 0.125 ∗ (𝑒(𝑥8−sin(0.0+8.0+8.0))∗(𝑥8−sin(0.0+8.0+8.0))) +

0.1111 ∗ (𝑒(𝑥9−sin(0.0+9.0+9.0))∗(𝑥9−sin(0.0+9.0+9.0))) +

0.1 ∗ (𝑒(𝑥10−sin(0.0+10.0+10.0))∗(𝑥10−sin(0.0+10.0+10.0))) +

0.0909 ∗ (𝑒(𝑥11−sin(0.0+11.0+11.0))∗(𝑥11−sin(0.0+11.0+11.0)))

Figure 26. The maximum value of the 10 transcendental

functions vs. time Polak3. While CNMA and BO-S are able to find

solutions with similar objective values, it takes BO-S

approximately 250 seconds longer. Note that NM-S stops after 186

seconds due to early convergence.

With 20 initial samples and a time budget of 2000 seconds,

with 1, 5, and 10 solvers CNMA finds solutions with

objective function values 5.97, 6.06, and 5.98, respectively.

Given the same time budget, BO-S finds a solution with an

objective function value of 6.08 and NM-S finds a solution

with an objective function value of 6.99. Out of 2680

randomly generated samples, the best solution has an

objective function of 6.81. Figure 26 and Figure 27 show the

performance of CNMA, BO-S, NM-S, and Random Search

with respect to time and number of function evaluations.

 14

Figure 27: The maximum value of the 10 transcendental functions

vs. number of function evaluations for Polak3. Random Search

and NM-S find solutions with an objective around 6.9 while

CNMA and BO-S are able to find better solutions with an

objective around 6.

H. Modeling Nonlinear Constraints and Objective Functions

To model a nonlinear constraint 𝑃, we add, for each nonlinear

expression in 𝑃, an extra output to 𝐹 denoting the value of the

expression and then express 𝑃 as a linear constraint on these

outputs. For example, we show how to solve a benchmark

problem in [19]: minimize 𝑔(𝑥1, 𝑥2) subject to 𝑐1(𝑥1, 𝑥2) ≥ 0 ∧
 𝑐2(𝑥1, 𝑥2) ≥ 0 where 𝑔(𝑥1, 𝑥2) = 𝑥1 + 𝑥2, 𝑐1(𝑥1, 𝑥2) =

 0.5 ∗ sin(2𝜋 (𝑥1
2 − 2𝑥2)) + 𝑥1 + 2𝑥2 + 1.5, 𝑐2(𝑥1, 𝑥2) =

 −(𝑥1
2) − (𝑥2

2) + 1.5. We define a function 𝐹(𝑥1, 𝑥2) that

produces two outputs 𝑣1, 𝑣2 computing, respectively,

𝑐1(𝑥1, 𝑥2) and 𝑐2(𝑥1, 𝑥2). Then with CNMA we solve the

problem of minimizing 𝑥1 + 𝑥2 subject to 𝐹(𝑥1, 𝑥2) =
 [𝑣1, 𝑣2] ∧ 𝑣1 ≥ 0, 𝑣2 ≥ 0. In 84 evaluations (10 initial + 74

additional), CNMA finds a solution of 0.6003. The minimum is

0.599. Our neural network architecture has 35 and 10 neurons

in the two hidden layers. The important point to note is that we

can solve this problem through specification, not by changing

CNMA. If the objective function 𝑔 had been nonlinear, we

would have added an extra output to 𝐹 and minimized that.

VI. CONCLUSIONS

System design tools are often only available as blackboxes

with complex nonlinear relationships between inputs and

outputs. This article presents CNMA, a new constrained

optimization method for blackboxes for solving the inverse

problem of finding designs from requirements on output.

CNMA’s innovation is connecting the modeling power of

neural networks and constraint-solving power of MILP solvers

into a learning-from-failure feedback loop in such a way that

they do much of the work for us, permitting straightforward

implementations of several desirable features into a single,

cohesive system: efficient surrogate function construction,

sample efficiency, constraint solving without penalty functions,

solving blackbox constraints, optimization with discrete and

continuous variables, resilience to nonterminating function

evaluations, and parallelism.

If a large and deep neural network is needed to model a

complex function, its MILP equivalent may not be efficiently

solvable. However, CNMA does not need to model the function

in its entire domain. It only needs to model it in the part of the

domain relevant to solving the constrained optimization

problem. If this region is not too complex, a smaller neural

network is adequate so that its MILP equivalent could be

efficiently solvable. This region is automatically computed by

CNMA. As we have seen, the largest network used had [35, 10]

neurons in its hidden layers and most problems start with few

tens of initial samples, some even with just two. In fact, a large

or deep neural network may be detrimental to performance as it

would overfit the small number of points CNMA samples.

CNMA is evaluated for seven nonlinear design problems of

8 (2 problems), 10, 15, 36 and 60 real-valued dimensions and

one with 186 binary dimension. It is shown that CNMA

improves upon stable, off-the-shelf implementations of BO/GP

(BO-S), Nelder Mead (NM-S), and Random Search by 1%-87%

for a fixed time and function evaluation budget. Note, however,

that BO-S did not return a solution for two problems and NM-

S did not return one for three. Future research problems include

introducing additional diversity, e.g., via bootstrapping, multi-

function CNMA, and finding a good initial neural network

architecture and adapting it as new samples are created.

Acknowledgments. We thank the anonymous reviewers and

Antoine Cully, Robert Gramacy, Matthias Poloczek, Robert

Vanderbei, John Chinneck, Nick Sahinidis, Jaime Fisac,

Nicholas Kraus, Taylor Njaka, Jeremy Cohen, Todd Huster,

Mengdi Wang and Chetan Narain, for helpful comments.

REFERENCES

1. C. Rasmussen and C. Williams, Gaussian Processes for

Machine Learning, The MIT Press, 2006.

2. J. Chinnek, Practical Optimization: A Gentle Introduction.

https://bit.ly/3eoIBid

3. L. Rios and N. V. Sahinidis, ``Derivative-free

optimization: A review of algorithms and comparison of

software implementations,” J. Glob. Optim., vol. 56, p.

1247, 2013.

4. J. Roberts and M. Kochenderfer, Mathematical

Optimization, 2014. https://stanford.io/3qygM9V.

5. J. Mueller, Optimizing Expensive Blackbox Simulations,

https://bit.ly/2OGQWmx

6. S. Singer and S. Singer, ``Efficient implementation of the

Nelder–Mead search algorithm,” Appl. Numer. Anal.

Comput. Math., vol. 1, pp. 524-534, 2004.

7. R. Gramacy, Surrogates, CRC Press, 2020.

8. V. Ky, C. D’Ambrosio, Y. Hamadi, and L. Liberti,

``Surrogate-based methods for black-box optimization,”

Int. Trans. in Operations Research, 2016.

9. M. Ahmed and S. Prince, “Bayesian Optimization,”

Borealis AI. https:/www.borealisai.com/en/blog/tutorial-8-

bayesian-optimization/

10. R. Vanderbei. LOQO User’s Manual – Version 4.05,

https://bit.ly/3qQR4xo

11. NEOS Server: State-of-the-Art Solvers for Numerical

Optimization, https://neos-server.org/neos/

12. NEOS Guide, https://neos-guide.org/

13. M. Powell, ̀ `A view of algorithms for optimization without

https://bit.ly/3eoIBid
https://bit.ly/2OGQWmx
https://bit.ly/3qQR4xo
https://neos-server.org/neos/
https://neos-guide.org/

 15

derivative,” Mathematics Today, vol. 43, 2007.

14. O. Okobiah, S. Mohanty and E. Kougianos, "Fast design

optimization through simple Kriging metamodeling: A

sense amplifier case study," IEEE Trans. Very Large Scale

Integration (VLSI) Systems, vol. 22, no. 4, pp. 932-937,

Apr. 2014

15. J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A.

G. Wilson. “GPyTorch: Blackbox matrix-matrix Gaussian

process inference with GPU acceleration,” in Proc.

Advances in Neural Information Processing Systems, 2018.

16. J. Hernandez-Lobato, M. Gelbart, R. Adams, M. Hoffman,

and Z. Ghahramani, “A general framework for constrained

Bayesian optimization using information-based search,” J.

Machine Learning Research, vol. 17, 2016.

17. D. Eriksson and M. Poloczek, ``Scalable constrained

Bayesian optimization,” in Proc. Int. Conf. on Artificial

Intelligence and Statistics, 2021.

18. S. Ariafar, J. Coll-Font, D. Brooks, and J. Dy,

“ADMMBO: Bayesian optimization with unknown

constraints using ADMM,” J. Machine Learning Research,

vol. 20, 2019.

19. V. Picheny, R. Gramacy, S. Wild., and S. Le Digabel,

``Bayesian optimization under mixed constraints with a

slack-variable augmented Lagrangian,” arXiv:1605.09466,

2016.

20. Z. Wang, C. Gehring, P. Kohli, and S. Jegelka, ``Batched

large-scale Bayesian optimization in high-dimensional

spaces,” in Proc. Int. Conf. on Artificial Intelligence and

Statistics, 2018.

21. J. Want, S. Clark, E. Liu, and P. Frazier, ``Parallel

Bayesian global optimization of expensive functions,”

arXiv:1602.05149, 2019.

22. K. Kandasamy, A. Krishnamurthy, J. Schneider, and B.

Póczos, ``Parallelised Bayesian optimisation via

Thompson sampling,” in Proc. Int. Conf. on Artificial

Intelligence and Statistics, 2018.

23. I. Pan, M. Babaei, A. Korre, and S. Durucan, ``Artificial

neural network based surrogate modelling for multi-

objective optimisation of geological CO2 storage

operations,” Energy Procedia, vol. 63, 2014.

24. B. Grimstad and H. Andersson, ``ReLU networks as

surrogate models in mixed-integer linear programs,”

arXiv:1907.03140, 2019.

25. S. P. Mohanty, Metamodel-Based Fast AMS-SoC Design

Methodologies, Nanoelectronic Mixed-Signal System

Design, McGraw-Hill, 2015.

26. O. Garitselov, S. P. Mohanty and E. Kougianos, "Fast-

accurate non-polynomial metamodeling for nano-CMOS

PLL design optimization," in Proc. 25th Int. Conf. on VLSI

Design, 2012, pp. 316-321

27. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast

and elitist multiobjective genetic algorithm: NSGA-II,”

IEEE Trans. Evolutionary Computation, vol. 6, no. 2, pp.

182–197, 2002.

28. P. Terway, K. Hamidouche, N. K. Jha. “Fast design space

exploration of nonlinear systems Part II”.

arxiv:2104.02464, 2021.

29. Xfoil. Subsonic Airfoil Development System,

https://bit.ly/3rzsFh5.

30. D. Bertsekas, ``On penalty and multiplier methods for

constrained minimization,” SIAM J. Control and

Optimization, vol. 14, no. 2, Feb. 1976.

31. J. Nocedal and S. Wright, Penalty and Augmented

Lagrangian Methods, Numerical Optimization, Springer

Series in Operations Research and Financial Engineering.

Springer, 2006.

32. R. Fletcher and S. Leyffer, ``Nonlinear programming

without a penalty function,” Math. Program., Ser. A 91,

2002.

33. L. Guilhoto, An Overview of Artificial Neural Networks for

Mathematicians. https://bit.ly/3yIxBUU

34. M. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano,

``Reachability analysis for neural agent-environment

systems,” in Proc. Int. Conf. on Principles of Knowledge

Representation and Reasoning, 2018.

35. scikit-optimize, https://scikit-optimize.github.io/stable/

36. scipy.optimize,

https://docs.scipy.org/doc/scipy/reference/optimize.html

37. D. C. Liu and J. Nocedal, ``On the limited memory BFGS

method for large scale optimization,” Mathematical

Programming, vol. 45, pp. 503–528, 1989.

38. J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N.

Sundaram, M. Patwary, Prabhat, and R. Adams, ``Scalable

Bayesian optimization using deep neural networks,” in

Proc. Int. Conf. on Machine Learning, 2015.

39. E. Daxberger, A. Makarova, M. Turchetta, A. Krause,

“Mixed-variable Bayesian optimization,”

arXiv:1907.01329, 2020.

40. H. Lee, R. Gramacy, C. Linkletter, C. Gray, "Optimization

subject to hidden constraints via statistical

emulation," Pacific Journal of Optimization, vol. 7.3, pp.

467-478, 2011.

41. S. Hassantabar, Z. Wang, and N. K. Jha, ``Synthesis of

compact and accurate neural networks,”

arXiv:1904.09090, 2019.

42. scikit-learn, https://scikit-learn.org/stable/

43. N. Kraus, Wave Glider Dynamic Modeling, Parameter

Identification and Simulation, M.S. Thesis, University of

Hawaii, Manoa, 2012.

44. B. Granger, M. Yu, and K. Zhou, Optimization with

Absolute Values, 2014, https://bit.ly/3buDz1N

45. Open AI/Gym Classic Control Problems,

https://gym.openai.com/envs/#classic_control

46. A. Cully, J. Clune, D. Tarapore, et al. ``Robots that can

adapt like animals,” Nature, vol. 521, pp. 503–507, 2015.

47. OpenDSS: Electrical Power System Simulation Tool,

https://bit.ly/2O9aoZB.

48. Nonlinear Minmax Problem in 11 Variables,

https://bit.ly/38r2O39

49. S. A. Seshia, S. Hu, W. Li and Q. Zhu, "Design automation

of cyber-physical systems: Challenges, advances, and

opportunities," IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, vol. 36, no. 9, pp. 1421-

1434, Sept. 2017.

50. A. Doboli and A. Vemuri, ``A VHDL-AMS compiler and

architecture generator for behavioral synthesis of analog

systems," in Proc. Design, Automation and Test in Europe

Conference and Exhibition, 1999, pp. 338-345.

51. A. Doboli and R. Vemuri, "Behavioral modeling for high-

level synthesis of analog and mixed-signal systems from

https://bit.ly/3rzsFh5
https://bit.ly/3yIxBUU
https://scikit-optimize.github.io/stable/
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://scikit-learn.org/stable/
https://bit.ly/3buDz1N
https://gym.openai.com/envs/#classic_control
https://bit.ly/38r2O39

 16

VHDL-AMS," IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, vol. 22, no. 11, pp. 1504-

1520, Nov. 2003.

Sanjai Narain is Fellow and Chief Scientist

at Peraton Labs, Basking Ridge, NJ. He

received his B.Tech. in EE from IIT Delhi in

1979 and his Ph.D. in CS from UCLA in

1988.

Emily Mak is Research Scientist at Peraton

Labs, Basking Ridge, NJ. She received her

B.S. and M.S. in Applied Math from Johns

Hopkins University in 2018.

Dana Chee is Senior Research Scientist at

Peraton Labs, Basking Ridge, NJ. She

received her M.S. in Electrical Engineering

from Howard University.

Brendan Englot is Geoffrey Inman

Professor of Mechanical Engineering at

Stevens Institute of Technology, Hoboken,

NJ. He received his B.S., M.S. and Ph.D. in

Mechanical Engineering from MIT in 2007,

2009, and 2012, respectively.

Kishore Pochiraju is Professor of

Mechanical Engineering at Stevens Institute

of Technology, Hoboken, NJ. He received

his M. Tech. in Mechanical Engineering

from IIT Kanpur and a Ph.D. from Drexel

University in 1993.

Niraj K. Jha is Professor of Electrical

Engineering at Princeton University,

Princeton, NJ. He obtained his B.Tech. in

E&ECE from IIT Kharagpur in 1981 and a

Ph.D. in EE from University of Illinois at

Urbana-Champaign, IL in 1985. He is a

Fellow of IEEE and ACM.

Karthik Narayan is the CEO of Starfruit-

LLC. He obtained his B.S. in Math/CS from

Georgia Tech. in 2011 and a Ph.D. in CS/AI

from University of California, Berkeley in

2016.

