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Abstract—Tensor algebra plays a major role in various appli-
cations, including data analysis, machine learning, and hydro-
dynamics simulation. Different tensor algebra inherently varies
in dimension, size, and computation, leading to different execu-
tion preference, including parallelization, data arrangement, and
accumulation. Another critical aspect for tensor algebra is the
involved tensors can be with varying mixes of dense and sparse
representation. Such diversified applications are notoriously diffi-
cult to accelerate. Prior ASIC architectures do not meet the needs
due to fixed dataflow and prior fine-grained fabrics (e.g., FPGAs)
solutions offer limited performance and power improvement due
to bit-level reconfigurable structure. In this article, we propose
Morphling, a reconfigurable architecture that can flexibly handle
both dense and sparse tensor computation. We first generalize a
flexible execution model that decomposes tensor operations into
three steps, including tensor vectorization, vector computation,
and output reduction. The dense and sparse tensor computation
share the same execution model, but differ in the vector compu-
tation step where the multiplications are conducted. Depending
on the number of inputs and outputs that are linked together in
the computation step, we define three parallel patterns, includ-
ing many-to-one, one-to-many, and one-to-one, which correspond
to different implementations for dense and sparse computation.
Furthermore, to efficiently support sparse tensor, we design a
tiled-BCSR format that enables high parallelism and balanced
workload. At the architecture level, we propose a reconfigurable
design to support the execution model. The hardware units can
be reconfigured to support different datapath and enable differ-
ent types of data reuse. We evaluate Morphling using various
tensor operations and compare it with CPU, GPU, FPGA, and
state-of-the-art ASIC designs. Overall, Morphling achieves 13.4X,
677.7X, 44.7X energy efficiency over Xilinx ZC706 FPGA, Intel
i7-9700K CPU, and NVIDIA TitanX GPU.

Index Terms—Accelerator architectures, data flow computing,
reconfigurable architectures, sparse matrices.

I. INTRODUCTION

TENSOR algebra is a powerful tool in many applications,
such as data analysis, machine learning, and hydro-

dynamics simulation [1], [2], [19], [33], [37], [54], [71],
[79], [84]. Distinct tensor algebra exhibits inherent variation in
tensor dimension, computation, and accumulation. For exam-
ple, 2D-convolution (2D-CONV) and general-purpose matrix
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multiplication (GEMM) are two frequently used kernels in
modern complex DNNs, such as Resnet [31], GoogLeNet [76],
and data analysis [6], [56]. 2D-CONV in Resnet involves
4-order tensors and 3-order tensors with sizes ranging from
10 to 1K [31], while GEMM contains three 2-order matri-
ces and the size of the matrices can be much larger, e.g.,
Filter3D dataset involves 106K × 106K matrices [56]. In 2D-
CONV, the 2D-kernel slides through the feature map where the
elements inside the sliding window conduct a multiply-and-
accumulation (MAC) operation to generate a single output,
while in GEMM each output element is generated by accu-
mulating the multiplication results from one row of a matrix
and one column of another matrix. Another important feature
for tensor algebra is the tensors can be with different mixes of
dense and sparse representation. For sparse computation, the
sparsity can vary hugely for different tensors. For example, for
deep learning algorithms, the sparsity of 2D-CONV can vary
from 30% to 95% for input tensor depending on the used prun-
ing techniques [27], [28]; for tensor factorization algorithms,
the tensors exhibit different degrees of sparsity for different
dataset [6], [56].

Variation in tensor algebra leads to different execution pref-
erence, including parallelization, data arrangement, and accu-
mulation. We compare the hardware efficiency of two widely
used parallelization strategies for 2D-CONV and GEMM in
Fig. 1. Dot-product (DP) parallelization yields a single value
by multiplying and accumulating elements from two vec-
tors, which is widely used in prior accelerator designs [25],
[26], [35], [42], [43], [48], [49], [52], [80]–[82], [85], [89].
Outer-product (OP) parallelization returns a matrix where each
element in one vector is multiplied with all the elements in the
other vector [53], [61], [62]. Both two parallelization strategies
can be used for executing 2D-CONV and GEMM by trans-
forming the tensors as shown in Fig. 2. Fig. 1(a) computes the
hardware efficiency of these two parallelization strategies for
the first 24 layers of GoogLeNet [76] using 2D-CONV. The
hardware efficiency refers to the utilization of MAC units. We
observe that no single parallelization strategy wins all cases.
In particular, OP wins for 18 layers while DP wins for six
layers. For GEMM, the x-axis in Fig. 1(b) represents different
shapes of the matrices including regular, tall-skin, and short-fat
matrices. When multiplying matrix A (M × K) with matrix B
(K × N), DP parallelization achieves high efficiency when K
is large while OP is better when M and N are large. The
difference in hardware efficiency for different parallelization
strategies is caused by the variation in the size of different
tensors.
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Fig. 1. Hardware efficiency for 2D-CONV and GEMM. C1-C24 are the first 24 layers of GoogLeNet [76]. For GEMM, when one dimension changes, the
other two are set to 4096. The architecture is assumed to have 512 MAC units. For OP parallelization, we apply output stationary systolic array architecture.
For DP parallelization, we apply input stationary systolic array architecture. (a) 2D-CONV tensor operation. (b) GEMM tensor operation.

Meanwhile, it is well established that tensor algebra involves
overwhelming computation [6], [22], [56]. Traditional accel-
erators, such as CPUs and GPUs have been employed to
accelerate tensor operations which suffer from low energy
efficiency [10], [64]. Dedicated ASIC accelerators solve this
problem, but lose flexibility to handle various tensor applica-
tions [11], [14], [18], [34], [48]. The requirement for flexibility
and efficiency motivates the idea of accelerating tensor algebra
using reconfigurable architectures. FPGAs are reconfigurable
architectures that provide bit-level reconfigurability in logic
blocks. However, this fine-grained reconfigurability results in
a high area and power overheads [9], [38], [39], [65]. To
solve these architectural inefficiencies, coarse-grain recon-
figurable architectures (CGRAs) realize the best possible
tradeoff between flexibility and efficiency, which use word-
level reconfigurability and contain larger logic blocks and
datapath-oriented interconnections.

To accelerate diverse tensor algebra on hardware, we intro-
duce a tensor-specific CGRA framework, which can accelerate
various tensor operations with arbitrary dimension, size, and
sparsity. We first propose a flexible tensor execution model
that generalizes the tensor operation into three steps, includ-
ing vectorization, computation, and reduction for both dense
and sparse tensor computation. The vectorization step rear-
ranges the original tensor into vectors for parallelization.
The reduction step accumulates the outputs in the compu-
tation step and generates the final results. Depending on
the number of inputs and outputs that are linked together
in the computation step, we abstract three parallel pat-
terns, including many-to-one, one-to-many, and one-to-one.
The three parallel patterns have the flexibility to choose
different implementations for dense and sparse tensor com-
putation. For dense operations, they correspond to DP, OP,
and element-wise vector multiplication (EWVM), respectively.
For sparse operations, they correspond to the row-wise prod-
uct, Kronecker product [75], and block-wise multiplication,
respectively. To efficiently support sparsity, we also propose
a tiled-Block Compress Sparse Row (tiled-BCSR) format,
where the nonzeros are first packed in blocks and then orga-
nized in tiles. This format leads to regular accumulation and
data access patterns. Besides, blocks are evenly distributed in

tiles, which helps to balance the workload and provide high
parallelism.

Traditional vectorization is a linear transformation which
converts a matrix into a column vector. In this work, our
vectorization step duplicates tensor elements with a certain
manner to unify the tensor computation pattern. This duplica-
tion also enables data reuse during the computation. Though
many spatial architectures support vector operators like DP,
OP, they did not answer how to decompose tensor applica-
tions into these vector operators and gather their partial sums.
Our contribution is to provide an execution model integrated
with a reconfigurable architecture that can formulate different
dataflow for a wide range of tensor applications.

At the architecture level, we propose a CGRA design with
a reconfigurable PE array and a reconfigurable network for
data communication to implement the execution model. Each
PE is responsible for the vectorization and computation step,
while the reduction step is implemented as the nPE data com-
munication. The PE features a reconfigurable adder tree to
gather the partial sum in different manners by controlling the
forward data of each adder. The communication network is a
2-D array of switches, which is used for the reduction step
and data communication among PEs. Each switch contains
local buffers and accumulator lanes (ALs). The local buffer
can store either the input data or the results of adjacent PEs,
which provides multidimensional data reuse. The ALs can be
cooperated to conduct different accumulation patterns. By con-
figuring the PE array and communication network, Morphling
can support a wide range of hardware dataflow represented
in our execution model. Finally we apply polyhedral model
for application mapping, which takes tensor notation as the
input and explores different loop transformations under archi-
tectural constraints. Prior CGRA designs are mainly designed
for general applications [17], [23], [29], [30], [83]. Morphling
is a domain-specific CGRA architecture with specialization in
computation and accumulation in the PE and communication
design and flexibility in the execution model and compiler
mapping for tensor computation.

In summary, this article makes the following contributions.
1) We propose a flexible domain-specific CGRA archi-

tecture and compiler mapping for sparse and dense
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TABLE I
TENSOR SIZE, COMPUTATION OF COMMON TENSOR OPERATIONS. THE COLORED DIMENSIONS INVOLVE INDEX GATHER OPERATORS.

STEP 1: VECTORIZATION STEP. STEP 2: COMPUTATION STEP. STEP 3: REDUCTION STEP

tensor applications. Morphling can handle different ten-
sor algebra with variations in dimension, computation,
and representation.

2) We define a flexible execution model to generalize the
tensor algebra to a programmable form and design a
reconfigurable architecture to support this.

3) We propose tile-BCSR format where the data in the
block shows regular accumulation and access patterns.
Tiled-BCSR first packs the nonzeros into blocks and
then stores in tiles.

We evaluate Morphling using various tensor operations and
compare it with CPU, GPU, FPGA, and state-of-the-art ASIC
design. Overall, Morphling achieves 13.4X, 677.7X, 44.7X
energy efficiency over Xilinx ZC706 FPGA, Intel i7-9700K
CPU, NVIDIA TitanX GPU.

II. BACKGROUND

Tensor is defined as matrices to any number of dimen-
sions. The number of dimensions is defined as its order.
For example, a scalar is a zero-order tensor and a vector
is a one-order tensor. Table I lists eight widely used tensor
operations in two categories. The first six operations require
partial sum accumulations while the last two only involve
multiplications. In Table I, we use A(i, :) to represent the
dimension where elements are selected with a fixed index
i. For example, the MTTKRP tensor operation in Table I
is widely used in tensor factorization (e.g., recommended

system); Stencil is an operation that updates the original
matrix by accumulating neighboring elements; in element-
wise matrix-matrix multiplication (EWMM), elements from
two equal-size matrices in the same position is multiplied with-
out accumulation; Khatri-Rao product (KRP) is the operation
without accumulation where each element in one matrix is
multiplied with all elements in another matrix.

The real-world tensors can be involved with different mixes
of dense and sparse representation. For example, the tensor in
MTTKRP is naturally with high sparsity. The sparsity in deep
learning algorithms is caused by the nonlinear operator recti-
fied linear unit (ReLU) function and model pruning. Table I
shows the computation of sparse matrix-matrix multiplication
(SpMM) in compressed sparse row (CSR) format [4]. CSR is
widely used to store sparse matrices where a matrix is rep-
resented by three 1-D arrays: 1) row pointers to record the
number of nonzeros from the first row to the ith row (Aptr);
2) column indices to record the column index of each nonzero
(Aidx); and 3) values to record the value of each nonzero (Aval).
There are other formats like compressed sparse column (CSC)
and coordinate list (COO) to store sparse matrices [4].

The variation in tensor operation renders hardware acceler-
ation difficult. Although most tensor computation is composed
of a series of MACs or only multiplications, the parallel
pattern and accumulation pattern of partial sums vary in
dimensions and size. Besides, the tensor can be sparse in
real-world applications where the sparsity may differ in orders
of magnitude. Finally, the difference in size and computation
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Fig. 2. Examples of execution model in three steps. In this figure, we only depict (size, replica, vec_type). C: circular manner. S: sequential manner.

leads to different data reuse opportunities and preference of
parallelization, making it hard to accelerate tensor operations
with a fixed execution model.

III. FLEXIBLE EXECUTION MODEL

A. Execution Model Design

The fundamental component of Morphling is a flexible
execution model that can support various tensor operations.
Depending on how the data are vectorized and reduced to the
final output, we generalize the tensor execution model in three
steps.

Step 1 (Vectorization): In this step, the input tensor is trans-
formed into a vector. During transformation, the input tensor
can be duplicated either in a circular or sequential manner

in_vec = vectorize(src, size, replica, vec_type) (1)

where src is the input tensor, size is the size of input tensor,
replica represents how many times these elements are dupli-
cated, vec_type can be either circular or sequential. For exam-
ple, vectorizing (x1, x2, x3) to (x1, x1, x1, x2, x2, x2, x3, x3, x3)

is in sequential manner with replica = 3.
Step 2 (Computation): In this step, the transformed vectors

are multiplied together following different parallel patterns.
The computation step can be formulated as follows:

out_vec = compute(in_vec1, in_vec2, length, para_type) (2)

where in_vec1 and in_vec2 are the vectorized tensors with the
same length, para_type is the type of parallel pattern.

The computation step has the flexibility to parallelize the
multiplications in different ways. Depending on the number of
inputs and outputs that are linked together in the computation
step, we define three parallel patterns, including many-to-one,
one-to-many, and one-to-one. The many-to-one pattern refers
to the operator where a single output depends on multiple
inputs. The one-to-many pattern refers to the operator where
a single input element is used for multiple output elements.
The one-to-one pattern refers to the operator where a single
output depends solely on a single input element.

For dense tensor computation, we implement these three
parallel patterns using DP, OP, and EWVM operators as shown
in Table II. DP operator corresponds to many-to-one pattern
where the partial sums are accumulated together to yield a sin-
gle output element. For example, in GEMM, the intermediate

TABLE II
DENSE AND SPARSE OPERATORS FOR PARALLEL PATTERNS

results of multiple multiplications are accumulated together in
the dimension “K” using DP. OP corresponds to one-to-many
pattern where output elements are generated by multiplying the
element in one vector with all other elements in another vector.
For example, in the KRP operation, each element in one matrix
is multiplied with all elements in the other matrix. EWVM cor-
responds to one-to-one pattern, e.g., EWMM operation. The
operators for sparse tensor operations will be introduced in
Section III-C.

Step 3 (Reduction): The output vector from the computation
step could be the partial sums of the final result. Therefore, this
step accumulates the output vectors from multiple computation
steps to generate the final output

rst = reduce(out_vec1, out_vec2, length, type, start, end) (3)

where out_vec1 and out_vec2 are output vectors from the com-
putation step, start and end are used to specify the range if
partial accumulation (PA) is needed, type is one of three accu-
mulation types, including full accumulation (FA), PA, or no
accumulation manner (NA). GEMM2 is an example of FA,
and 2D-CONV2 is an example of PA.

These three steps are tightly correlated. The computation
step determines how the input tensors are transformed in the
vectorization step and how the output tensors are accumulated
in the reduction step. Table I lists the three steps for vari-
ous tensor operations. Fig. 2 presents two examples of using
this execution model for GEMM, where we show how to use
DP (GEMM1) and OP(GEMM2) for GEMM. For example,
in GEMM2, the elements from tensor A are duplicated in a
sequential manner, and the elements from tensor B are dupli-
cated in a circular manner to form an OP in the computation
step. Different output vectors are accumulated using the FA
pattern.

B. Format for Sparsity

For sparse tensor operation, the computation is tightly cou-
pled with the compression format. Block compress sparse row
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Fig. 3. (a) Tiled-BCSR format with nonzeros stored in dense blocks and sparse blocks. (b) Example tiled-BCSR using sparse block.

TABLE III
SPARSE TENSOR REPRESENTED IN TILED-BCSR FORMAT. WE USE (:,:) TO DENOTE THE DIMENSIONS THAT REPRESENTED IN TILED-BCSR FORMAT.

“×”: ROW-WISE PRODUCT; “⊗”: KRONECKER PRODUCT; AND “�”: BLOCK-WISE MULTIPLICATION

(BCSR) format is a structural representation and allows con-
tinuous data access within a block. Previously, BCSR format
has been used in software library in HPC domain for specific
kernel such as SpMV [7], [8]. However, the real-world ten-
sor often shows the irregular distribution of nonzeros, which
makes the hardware suffer workload imbalancing problem. To
address this, we propose a tiled-BCSR format where nonze-
ros are first packed into blocks and then organized into tiles.
Compared with traditional formats, such as CSR, CSC, tiled-
BCSR format shows regular accumulation, and data access
patterns. Besides, sparse tensor operations can be parallelized
in multiple tiles, which helps to balance the workload and
provide high parallelism.

We first design two types of blocks that are: 1) dense block
and 2) sparse block as shown in Fig. 3(a). As the computa-
tion step only involves a vector operator, we restrict the block
shape as a vector. In a dense block, the entire row is first com-
pressed into a dense vector by eliminating the zero elements
and then divided into blocks. In a sparse block, the entire row
is first divided into blocks and then compressed. The dense
block is designed to increase the utilization of multipliers.
The sparse block has a low overhead of locating the out-
put address since the column indices are continuous within a
block.

To achieve a balanced workload for each PE, the blocks
are batched into multiple tiles with each tile contains multiple
continuous rows, as shown in Fig. 3(b). Each tile has a row
entry information which indicates the starting row index of
the tile. For each tile, there is a bit-flag matrix to record the
row index change where “1” means this block is in the next

Fig. 4. Operators for the sparse computation step.

row. To calculate the row index, we only need to insert a bit
counter logic in each PE.

C. Enabling Sparse Computation

In our execution model, the parallel patterns are unified,
while the meta-operator is different, as shown in Table II. Both
sparse and dense operation can be executed on our unified
architecture design. To establish a general sparse tensor exe-
cution model, we begin with a tensor operation whose input
tensors are represented as a set of matrices stored in tiled-
BCSR format. For example, in Table III, the 4-D tensor A in
2D-CONV is compressed in the last two dimensions with the
first two dimensions stored as a pointer.

To support the parallel patterns in the computation step
in Section III-A, we define three operators for sparse ten-
sor computation as shown in Fig. 4. In the row-wise product
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operator ×, each block in matrix A (denoted as block-A) is
required to be multiplied with several blocks in different rows
of matrix B (denoted as block-B), where the row entry of
block-B is determined by the column index of the nonzero
value from block-A [24]. This corresponds to the many-to-one
pattern, as multiple rows of matrix B are calculated for one row
in the result matrix. The Kronecker product operator (⊗) is a
generalization of the OP from vectors to matrices, which corre-
sponds to the one-to-many pattern. Block-wise multiplication
operator � is similar to EWVM pattern [75].

Using these operators, the sparse tensor computation can be
represented as follows:

Y(:, :) = M(n-1) � M(n-2) � · · · M(2) �M(0). (4)

M(i) is defined as a tiled-BCSR matrix selected from the ith
input tensor. The output Y(:, :) can be a vector or a matrix of
the final results. � is the operator of two tiled-BCSR matrices.
Table III shows how the sparse tensor operations are repre-
sented using (4). For example, MTTKRP can be represented
as Y(i, :) = ∑

j A(i, :, j) × B(:, :) � C(:, j).
Depending on the parallel pattern shown in Table II, the

matrices can be either encoded using dense block or sparse
block. In a row-wise product, multiple blocks of matrix B may
link to the same output element if they share the same column
index. Therefore, we store matrix B in sparse block to keep
the column index continuous and matrix A in dense block to
maintain enough workload for multipliers, which achieves a
balanced tradeoff between hardware efficiency and indexing
overhead. As the Kronecker product does not require index
matching, both two matrices are stored in dense blocks to
maximize the utilization of multipliers. In block-wise multi-
plication, the indices of blocks from two matrices need to be
strictly the same. The two matrices are stored in sparse blocks
to reduce index comparison.

Table III also gives the dependency between the blocks
of two tiled-BCSR matrices for different tensor computation.
For row-wise product, as one block in matrix A is linked to
multiple blocks in matrix B, therefore, elements in block-A
are replicated multiple times in the vectorization step. And, the
computation step needs to accumulate the results that share the
same column index in the block-B. Similar to the outer prod-
uct, the Kronecker product operator replicates values in both
matrices in the vectorization step. And, it is a one-to-many
operator as one input block is linked with multiple elements
in the output. Block-wise multiplication does not require the
vectorization step, and the blocks with the same row entry and
column index will be multiplied in the computation step.

IV. ARCHITECTURE DESIGN

Morphling is a tiled architecture consisting of a reconfig-
urable PE array and a reconfigurable communication network.
Fig. 5 presents the overview of Morphling architecture where
each PE contains a local memory for data storage and a router
to transfer data. Each switch contains buffers to exploit data
reuse and ALs to support accumulation in the reduction step.
The on-chip scratchpad interfaces with the DRAM through
multiple channels.

Fig. 5. Architecture overview. PE: processing element. S: switch.
FU: function unit. The FIFO is used to transfer data between PEs and switches.

Fig. 6. Architecture details of reconfigurable adder tree.

A. PE Design

The vectorization and computation steps in the tensor exe-
cution model are implemented within a PE. In other words,
each PE vectorizes the input tensor and performs one of three
basic vector operations in the computation step. As shown in
Fig. 5, the data vectorization unit (DVU) is used to vectorize
the selected elements into two vectors with the same length.
The function unit (FU) will first check whether multiplication
operations are needed (if it is DP or OP) for the tensor oper-
ation. Then, it sends the results to an adder tree to generate
the output vector.

Each PE features three kinds of reconfigurability. First, the
input tensor can be loaded either from the global scratch-
pad via the router, or from the switch buffer via the local
FIFOs. Each PE has two input tensor buffers, and each buffer
interfaces with a control unit that can be dynamically con-
figured to switch the source of the input tensor. Second, the
DVU has the flexibility to support different vectorization. The
vectorization step can be different in terms of tensor size
and duplication type, which is configured by the instructions.
Third, the FU has the flexibility to support different vec-
tor computation. The FU includes a multiplier array and a
reconfigurable adder tree. The adder tree can support DP oper-
ations with different lengths. Besides, if the tensor is sparse
and stored in a compressed format, then addition operations
will be performed according to the compressed index. Special
instructions are needed to configure the PE for different vec-
tor computation and the configuration information is stored in
registers.

B. Reconfigurable Adder Tree

Fig. 6 shows the micro-architecture of the reconfigurable
adder tree with eight inputs. The reconfigurable adder tree
receives multiplication results from the multiplier array. The
tree is divided into multiple stages where the intermediate
result from each stage is stored separately in registers. Each
reconfigurable adder receives two inputs and sends one output
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(a) (b) (c)

Fig. 7. Architecture configurations for GEMM and 2D-Conv. We use Lx to represent the parallelization degree in the dimension x. White color means not
activated. S and R mean switch and router. (a) GEMM. PE : OP op. Switch: iterative accumulation. (b) GEMM. PE : DP op. Switch: forward accumulation.
(c) 2D-CONV. PE : EW op. Switch: forward accumulation with shift.

forward to the next adder. The forward element is selected
among the two inputs and their addition result via a mul-
tiplexer (MUX). When accelerating dense tensor operations,
the adder tree is symmetrically configured for DP paralleliza-
tion. In the example of GEMM1, the adders in stages 1
and 2 are activated to form two DP operations. Similarly, in
2D-CONV1 example, only the adders in stage 1 are activated.
When handling sparse tensor operation, each adder is dynam-
ically reconfigured according to indices. Details of sparse
optimization is discussed in Section IV-F.

C. Switch Design

In the computation step, each PE generates one output vec-
tor. The reduction step is an inter-PE operation implemented
using switch. The switch has the flexibility to support either
iterative accumulation or forward accumulation pattern, as
shown in Fig. 7. Iterative accumulation pattern, as shown in
Fig. 7(a) gathers the output vectors from the same PE, which
only has a single input source and iteratively accumulates the
output vectors at different cycles. Forward accumulation, as
shown in Fig. 7(b) is an accumulate-and-forward chain to
accumulate output vectors from different PEs. To ensure the
accumulation pattern can be alternated, both data from adja-
cent PEs and the result in the last cycle are buffered in the
local memory. There is a selector to distinguish whether it is
the output vector from the PE or the previous result in the
local buffer. Besides, the AL can shift the output vector with
a given length to enable PA in the reduction step.

On the other hand, the switch can be used as a bridge for
nPE data communication by gating the AL. As shown in Fig. 5,
the switch is employed to enable data sharing among PEs.
Each switch is connected with four adjacent PEs using simple
FIFO logic. The FIFO can either send the input tensor or the
output vector from PEs to the switch. Similarly, a configurable
multiplexer, connected with input buffer and result buffer of
the switch, controls which data is required to send back to the
PE array.

D. Reuse Analysis

Morphiling architecture exploits three types of data reuses.
First, there exists data reuse in a single PE, named same PE

same cycle reuse (SPSC). The SPSC reuse is from the vector-
ization step in the execution model. It reuses the input tensor at
the register level, where the PE duplicates the tensor and stores
it in local registers. Moreover, the data reuse may arise from
different PEs, which can be further categorized into different
PE same cycle reuse (DPSC) and different PE different cycle
reuse (DPDC). The DPSC reuse means that the computation
steps in different PEs share the same input tensor at the same
cycle. The DPSC reuse is exploited by reading the tensor from
the buffer only once and broadcasting the data to multiple
PEs via routers. Our switch design supports the DPDC reuse
among PEs. Clearly, the switch enables both multicycle input
reuse or output reuse by buffering the intermediate data within
two cycles. Multicycle output data reuse is achieved by making
output results stationary in the switch and iteratively updating
the input buffer in different cycles. The input data reuse is
enabled by configuring the multiplexer to directly transfer the
input data to another PE, as shown in Fig. 5. The multicycle
input data reuse is also supported between distant PEs by con-
necting multiple switches and configuring the datapath. Both
SPSC and DPSC are spatial data reuse, while the DPDC reuse
is temporal.

E. Architectural Examples

We use three examples to illustrate our reconfigurable archi-
tecture. Fig. 7(a) applies OP to GEMM using output-stationary
dataflow [13], [40], [69]. We depict the detailed configuration
of PE(1,0) and switch. This PE is configured to access one input
tensor from PE(0,0) via switch and the other input tensor from
scratchpad via router. For this dataflow, output vectors from the
same PE need to be accumulated. Therefore, the switch is con-
figured as iterative accumulation to generate the final result.
Meanwhile, SPSC and DPDC reuses are exploited. Fig. 7(b)
applies DP to GEMM using input-stationary dataflow [13],
[40], [69]. The input tensor is directly sent to the multiplier
array with the vectorization unit skipped. Besides, the output
vectors from the PE(0,0) and PE(1,0) are accumulated using
forward accumulation configuration of the switch. Fig. 7(c)
uses row-stationary dataflow [12] for 2D-CONV. The convo-
lution filter slides with overlap and thus the output vectors
from PEs are partially accumulated in the AL. In Fig. 7(b)
and (c), DPSC reuse is exploited.
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(a) (b)

Fig. 8. Working flow example of row-wise product using tiled-BCSR format
and the congestion example. The blue block is from matrix A and green blocks
are from matrix B. (a) Working flow for sparse tensor operation. (b) Example
of congestion.

F. Sparse Computation Optimization

Though a unified computation pattern for sparse tensor oper-
ations is proposed, an inefficient hardware implementation
may cause an accumulation congestion problem. Fig. 8(b)
shows the datapath of row-wise DP that exists accumulation
congestion. The multiplication results 4h and 6d from different
block-B is required to be added, however, distributed in the
different adders at the first stage. This phenomenon also hap-
pens to the results 5a and 7f . Therefore, the adder in the next
stage has to finish two addition operations which can decrease
the hardware efficiency. To handle the congestion problem, we
design a column index comparator that rearranges the data in
a more hardware-efficient manner as shown in Fig. 8(a). The
column index comparator checks the column index of block-B
and sets the values continuously whose column indices are the
same in block-B. By doing this, the accumulation congestion is
reduced. Note that the values in block-A and block-B also need
to be rearranged according to the column index comparator,
as shown in Fig. 8.

G. Application Mapping

There exist different parallelization strategies for the same
tensor application. Different dataflow results in different con-
figurations of the Morphling architecture which affects data
reuse, execution latency, and energy cost. We begin with a ten-
sor application represented as a loop-based iteration domain
where each node is one loop instance in the original code.

We use the polyhedral model to select different schedul-
ings to map tensor applications on Morphling. The polyhedral
model provides powerful abstractions to optimize loop nests
with regular accesses and captures a complex sequence of
loop transformations [5]. The objective function aims at min-
imizing latency and energy cost. The constraints consist of
resource constraints, bandwidth constraints, and energy bud-
get. The resource constraints include the number of multipliers
that determines the node number that can be executed in par-
allel and the length of the AL which determines how many
partial sums can be accumulated together. The bandwidth
constraints limited the number of nodes accessed in parallel
which further affects the time scheduling function. In sum-
mary, the optimization problem turns to be an integer linear

Fig. 9. Architecture instructions.

programming (ILP) problem. Then we enumerate the solu-
tions whose resource or bandwidth utilization is lower than
30%, and choose the solution with minimum latency.

H. Architecture Instructions

We design a set of instructions which are used to configure
the Morphling architecture. Fig. 9 summarizes instructions for
data transfer and computation configuration. Each instruction
is aligned to 64 bits which are sufficient to support recon-
figurable features and data address. Data transfer instruction
supports variable data size across different dimensions. The
off-chip data transfer instructions have three modes. Vectors
and matrices are two commonly used tensor types which are
specified as two data transfer modes. For the tensor that has
higher dimensions, the instruction can load length elements
from a given dimension and offset. mem2pe and pe2mem are
used to transfer data between on-chip scratchpad and registers
of PEs. Computation configuration instructions help to config-
ure the unit in each PE so that the PE can perform specified
tensor execution dataflow.

V. EXPERIMENTS

A. Methodology

Morphling Configuration: The Morphling architecture is
organized as an 8×8 PE array and an 8×8 switch array. The
target data type is 16-bit fixed point.Each PE has 16 multipliers
with a 16-input reconfigurable adder tree. The scratchpad for
input and output tensor is a 512 × 16 bit SRAM in the PE,
and the scratchpad in the switch is a 256 × 16 bit SRAM.
The design is written in the Chisel hardware description lan-
guage [3]. We use Chisel to generate Verilog RTL. Then,
we use Synopsys Design Compiler to estimate the chip area
and total power under the TSMC 28 nm technology. The
synthesized frequency is 600 MHz. Theoretically, the peak
performance of Morphling is 64 × 16 × 0.6 = 0.61 TOP/s.
Table IV provides the detailed area and power breakdown
for Morphling at a total area of 8.62 mm2 and total power



LU AND LIANG: MORPHLING: RECONFIGURABLE ARCHITECTURE FOR TENSOR COMPUTATION 4741

Fig. 10. Latency result of each step. SpMTTKRP is divided into two stages denoted as S1 and S2.

TABLE IV
MORPHLING AREA AND POWER BREAKDOWN

of 1.21 W. To evaluate the performance of Morphling, we
developed a cycle-accurate model based on Chisel. All the
required data are initially stored in DRAM where the sparse
matrices are stored in tiled-BCSR format. Morphling interfaces
with DRAM through multiple DDR channels. The DRAM
bandwidth is assumed to be 40 GB/s which provides ample
bandwidth for most tensor applications. For the input data
size that is larger than the size of the on-chip scratchpad, we
divided the data into multiple tiles. For DRAM simulation, we
measure the data size and the number of DRAM access from
the Chisel tester. We build our polyhedral model based on the
integer set library (ISL) [45].

Other Platforms: On GPUs, we run tensor applications on
Titan X using CuBLAS 10.0 [58] for dense tensor operations,
CuSPARSE 10.0 [60] for sparse tensor operations and CuDNN
6 [59] for deep learning applications. On CPUs, we evaluate ten-
sor operations on Intel processor i7-9700k using Pytorch [67].
On FPGAs, we run experiments on Xilinx ZC706 FPGA. Our
FPGA implementation is operated at 166-MHz frequency. The
benchmark is implemented in OpenCL code and synthesized
using Xilinx SDx 2018.2 [86]. On tensor processing units
(TPUs), we build a TPU-like platform for comparison. We
model a 32 × 32 systolic engine which has the same compu-
tational ability as Morphling. The estimated power is 0.78 W
using Synopsys Design Compiler under the same technology
and synthesis frequency as Morphling.

Benchmark: We first use the tensor algebra in Table I. Then,
we evaluate four real-world tensor applications as shown in
Table V. Resnet is a deep neural network (NN) for image
recognition which consists of many residual blocks [31]. We
then prune Resnet using the technique in [27] and [28]. As
a result, we achieve 91.3% weight sparsity, and the average
sparsity of input images 43%. We transform the sparse Resnet

TABLE V
BENCKMARKS OF DIFFERENT TENSOR OPERATIONS

into a series of SpMM and use it to evaluate the performance
of Morphling. Alternating least squares (ALSs) are most
widely used method for canonical polyadic decomposition
(CPD) where MTTKRP is a core operation. We use Netflix as
the data set which is taken from Netflix Prize competition [6].

B. PE Latency Profiling

Fig. 10 presents the cycle latency of three steps in
Morphling architecture. The latency of each step varies for dif-
ferent tensor algebra due to different hardware configurations.
For dense tensor operations, the latency of the computation
step mainly depends on the activated stage in the adder tree.
The latency of the reduction step is affected by the data trans-
fer between PEs and the configuration of ALs in the switch.
GEMM, 2D-CONV, and 3D-CONV are computation-intensive
operations and there exists data reuse opportunities. GEMM1,
2D-CONV1, and 3D-CONV apply DP parallelization with
the input tensor broadcast to multiple PEs. Therefore, they
need extra cycles in the computation step as the adder tree
is activated. On the other hand, GEMM2 and 2D-CONV2 are
parallelized using OP, which exploits SPSC reuse as the input
tensor is duplicated in the vectorization step. They also feature
DPDC reuse as they are implemented in a systolic array by
configuring the switch. They show lower latency in the com-
putation step but higher latency in the reduction, as the adder
tree is inactivated while the ALs are configured to gather the
output. KRP has no addition operation thus shows the lowest
latency of the computation step and reduction step.

The latency of three steps for sparse tensor operations is
higher due to format decoding and data rearrangement. As
shown in Fig. 8(a), the vectorization involves column index
comparison to avoid congestion, which costs extra cycles.
Besides, the reconfigurable adder tree is dynamically config-
ured to determine the forward data, which leads to higher
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(a) (b)

Fig. 11. Energy breakdown and comparison with FPGA. (a) Normalized energy consumption. (b) Speedup and energy efficiency over FPGA.

Fig. 12. Normalized hardware efficiency of different parallel pattern on the first 18 layers of GoogLeNet. aDPb means a DP operations with the vector size
b. axbOP means OP operation with one vector size is a the other is b.

latency in the computation step. For the reduction step, the
gap between dense and sparse operation is small as the indices
within a sparse block are continuous. SpMTTKRP-S2 applies
a block-wise multiplication parallel pattern, which has low
complexity. Therefore, it shows the lowest latency in the
vectorization step compared with other sparse operations.

C. PE Energy Breakdown

Fig. 11(a) reports the energy breakdown for the modules in
the PE, including routers, vectorization unit, FU, and switch.
The energy cost of the vectorization unit and FU mainly
depends on the computation complexity. The data transfer
between the PE array and on-chip scratchpad affects the energy
cost of routers. The energy cost of switch results from two
aspects: 1) buffer controller to enable data transfer between
PEs and 2) ALs to support different accumulation patterns.

GEMV, KRP, and Stencil are communication-intensive oper-
ators. These operations show low utilization of computing
resources, such as FU and the switch. Stencil requires more
switch resources because the switch array is configured as a
systolic array. Fig. 11(b) shows the performance and energy
comparison results over the FPGA platform. We observe
that Morphling can achieve higher speedup and energy effi-
ciency for those computation-intensive operations, such as
GEMM, 2D-CONV, and 3D-CONV. These operations show
a high resource utilization. Overall, we achieve 1.1X–7.4X
performance speedup and 1.3X–37X energy efficiency over
FPGA. This benefit comes from the architectural advantage
of our reconfigurable design.

D. Dataflow Optimization

There exists a design space composed of different parallel
pattern choices for tensor applications. For the same tensor

operation, the optimal dataflow varies as the input tensor shape
and size change. The flexible execution model of Morphling
opens up the opportunities for design space exploration of
different parallel patterns.

We use the first 18 layers of GoogLeNet with varied ten-
sor sizes to evaluate the efficiency of different implementation
choices. These layers are composed of 2D-CONV, GEMM
(transformed from the convolution with 1 × 1 filter) and
Pooling (down-sampling operation without multiplication),
which have different behaviors. Fig. 12 shows the results.
The optimal configuration varies across different layers result-
ing from the diverse dimension size of the involved tensor.
For example, layer “C2, C3, C5, and C8” show higher hard-
ware efficiency by using DP parallelization because the size of
the parallelized dimension is large. Thanks to the polyhedral
mapping, Morphling always chooses the best parallel pattern.

E. Efficiency for Sparsity

Fig. 13 shows the comparison with GPU, Cambricon-
X [89], OuterSPACE [61], SCNN [62], and SMASH [35].
The baseline of GPU-CuSPARSE, OuterSPACE, and SMASH
is set as dense GEMM in GPU-CuBLAS. The baseline of
Cambricon-X and SCNN is set as the dense version of their
architecture since these accelerators support both dense and
sparse operations. We also draw the line of theoretical speed
up calculated by (1/sparsity).

Comparison With GPU: Compared with GPU-CuBLAS,
when the sparsity is higher than 0.05, GPU-CuSPARSE shows
lower performance due to the memory uncoalesing problem
and workload imbalance problem. Morphling inherently sup-
ports sparse computation by extending the parallel pattern to
tiled-BCSR format under a unified execution model. More
importantly, tiled-BCSR format helps to balance the workload.
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(a) (b)

Fig. 13. Speedup of Morphling over GPU and state-of-the-art accelerators using synthetic matrices with sparsity (the sparsity is defined as the proportion
of nonzeros) varying from 0.9 to 0.001. The data of SCNN [62], Cambircon-X [89], SMASH [35], and OuterSPACE [61] are from the original paper. The
data of SpArch [90], MatRaptor [72], and Gamma [88] are obtained by simulator. The data of GPU-CuBLAS and GPU-CuSPARSE are measured on TitanX
and obtained using NV profiling. (a) Baseline with baseline with GPU-CuBLAS. (b) Baseline with the dense version of the architecture.

Therefore, Morphling can achieve nearly ideal performance
when the sparsity is high, and achieves around 10.8X speedup
compared with GPU-CuSPARSE when the sparsity is lower
than 0.01.

Comparison With ASIC Accelerators: Morphling shows
1.6X–8.4X speedup and 1.2X–2.2X compared with
SMASH [35] and OuterSPACE [61] when the sparsity
is lower than 0.01. SMASH uses a software encoding scheme
based on a hierarchy of bitmaps. This format shows highly
efficient indexing for output address, however, requires a
decoding module. OuterSPACE applies OP dataflow and
has a long linked list of partial sums that requires index
sorting, while the column comparator of Morphling has fewer
inputs and only checks equality. When the sparsity is high,
Morphling shows similar speedup compared with SCNN [62]
and Cambricon-X [89]. When the sparsity reduces to 0.2,
Morphling outperforms SCNN and Cambricon-X with 1.4X
and 3.9X speedup. SCNN uses the format that stores the
number of nonzero values followed by the number of zeros
before each value. This format incurs a high overhead in
the computation of the output address. And, Cambricon-X
uses DP dataflow which requires index comparison leading
to low multiplier utilization. We also build an analytical
simulator to estimate the speedup of three state-of-the-art
sparse accelerators, SpArch [90], MatRaptor [72], and
Gamma [88]. SpArch [90] applied an OP-based approach
with a Huffman tree scheduler to merge the results. When
the sparsity is more than 0.1, SpArch shows less speedup
compared to the traditional OP method (CSC × CSR).
This is because the encoding overhead of the input matrix
and merge overhead of the output matrix are large. Both
MatRaptor [72] and Gamma [88] employed row-wise product
(In Gamma, it is called Gustavson dataflow) that is similar
to our approach. We observe that MatRaptor and Gamma
exhibits a liitle higher speedup compared to Morphling due
to architectural efficiency and format efficiency. Morphling is
a much more general architecture that aims to handle various
tensor algebra, and adopts a less complex format. The benefit
of MatRaptor comes from its C2SR format that improves the
memory coalescing, and merge queues to gather results in

Fig. 14. Performance and energy-efficiency comparison using four tensor
benchmarks.

parallel. On the other hand, Gamma proposed a new cache
design that is specific to minimize memory traffic.

Comparison With Traditional Formats: To demonstrate the
efficiency of tiled-BCSR, we depict the efficiency of two cases
using CSR and CSC format, where CSR(CSC) × CSC(CSR)
means the matrices A and B are stored in CSR(CSC)
and CSC(CSR) format. Tiled-BCSR format outperforms
CSR × CSC approach with 1.1x–68.2x speedup. This is
because CSR × CSC needs an index comparison operation
which can lead to a low utilization of multipliers, while
Morphling adopts row-wise product operation which does
not require index comparison. On the other hand, the Tiled-
BCSR format shows 1.2X–18.1X speedup compared with
CSC × CSR approach. Though CSC × CSR approach shows
no index comparison, it results in a large number of write
operations with irregular output addresses. Another benefit of
tiled-BCSR format is it has a balanced workload compared
with CSR and CSC format.

F. Study of Real-World Tensor Applications

Here, we compare our design with state-of-the-art accel-
erators using four real-world tensor applications in Table V.
Specifically, we use 1024-PE design in Eyeriss-v2 [13],
4 Cambricon-F cores in Cambricon-F [91], the original design
in SCNN [62]. For other designs, we scale their design to 1024
multiplier and build a cycle-accurate model for evaluation.
Fig. 14 shows the performance speedup and energy efficiency
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of Morphling over these accelerators. As shown in Fig. 14,
Morphling can support a wide range of tensor applications.
Compared with general processors, such as CPU and GPU,
Morphling shows higher energy efficiency with comparable
performance to GPU.

For Resnet, Morphling has attained 4.1X speedup
and 677.7X energy-efficiency compared with CPU. The
performance of Morphling is 0.47X of TitanX GPU due to
the limited computing resource, but Morphling achieves 44.7X
energy efficiency. Compared with TPU, SCNN-dense [62],
Eyeriss-v2 [13], and DaDiannao [14], Morphling shows 1.9X,
1.6X, 1.3X, and 2.1X speedup, respectively. The resnet algo-
rithm has different tensor operations and diverse dimension
size. Morphling can flexibly configure the hardware for
the tensor operation. Morphling shows 29X, 2.8X speedup
and 4666.7X, 256.3X energy-efficiency compared with CPU
and GPU, and Morphling achieves similar performance to
Cambricon-F. For Resnet-sparse, we transform it to SpMM
operation. Morphling achieves 18X and 7X speedup com-
pared with CPU and GPU. We also compare to other sparse
ASIC accelerators, including SCNN-sparse [62], Eyeriss-
v2 [13], Cambricon-X [89], EIE [26], OuterSpace [61],
and SIGMA [69]. The difference has been discussed in
Section V-E. EIE [26] adopts CSC format where DP is per-
formed in different PEs, leading to high PE communication
overhead. Morphling shows similar performance compared to
SIGMA, which also applies a reconfigurable adder tree to
gather the results.

VI. RELATED WORK

Coarse-Grained Reconfigurable Architectures (CGRAs):
CGRAs has been developing rapidly since the 2000s and
continue to attract increasing interest [15], [20], [36], [47],
[55], [63]. Recently, the demand for massive parallel compu-
tation has grown continuously in the field of CGRAs [16],
[66], [70], [77], [78], [87]. Plasticine [66] is a CGRA writ-
ten in Chisel. At the architecture level, Plasticine is designed
for general application, which is not tensor specific and lacks
a flexible execution model to guide the hardware dataflow.
Gorgon [78] and Capstan [70] are derivatives of the Plasticine,
which are designed for enabling sparsity. Aurochs [77] is
extended from Gorgon [78] where it introduces a threading
model that extracts parallelism from irregular data structures.
Thinker [87] can be reconfigured for Hybrid NNs that can
process different layer types of NNs in parallel. Thinker
only focuses on the CNN domain, while Morphling targets
a wide range of tensor applications. Nowatzki et al. [57]
also proposed an execution model using stream dataflow.
However, this execution model is supported by designing
peripheral control logic. In contrast, Morphling design a
tensor-specific PE and ALs to support the execution model.
Dadu et al. [16] proposed a reconfigurable systolic array that
was composed of sparse processing units (SPUs). SPU is a
general CGRA design which primarily focuses on stream-
join control for general data dependency, while Morphling
is a tensor-specific CGRA which targets applications with
massive MACs.

Dense Tensor Accelerators: As many applications involve
tensor computation, various tensor accelerators are designed
for acceleration. However, these accelerators are usually
focused on a single operation, e.g., convolution or matrix mul-
tiplication. TPU [34] is developed by Google for NNs process-
ing in datacenters. TPU is a systolic data flow of the Matrix
Multiply Unit. Cambricon [48] is a domain-specific instruc-
tion set architecture for convolution and GEMM. Diannao,
Pudiannao, Shidiannao, and Dadiannao [11], [14], [18], [46]
are a set of architectures extended from Cambricon as machine
learning accelerators. DySER [23] is a tensor accelerator that
features with functionality specialization and parallelism spe-
cialization. Similar to our reconfigurable tree, DySER contains
a reduction tree. The difference is that our adder tree has addi-
tional logic that helps to handle irregular sparsity with high
hardware efficiency. Convolution Engine [68] has the recon-
figurability for different types of convolution. Convolution
Engine also contains a flexible reduction tree to fuse multiple
instructions, while the main goal of our reconfigurable adder
is to provide support for sparsity.

Sparse Tensor Accelerators: References [13], [25], [26],
[44], [50], [51], [89], [92] are sparse DNN accelerators.
MAERI [41] uses tree-based interconnects for data dis-
tribution and reduction which is similar to our reconfig-
urable adder tree. T2S [74] is a framework to generate
high-performance systolic arrays for dense tensor operations.
ExTensor [32] and Tensaurus [73] are sparse tensor accelera-
tors targeting MTTKRP, TTM, SpMV, and SpMM operations.
OuterSPACE [61] and SIGMA [69] are SpMM accelerators.
OuterSPACE applies OP dataflow. SIGMA proposes a flex-
ible systolic array for different matrix size and a collection
network for partial sum accumulation. The collection network
decodes the sparse tensor in bitmap format, which shows
higher hardware overhead compared with using the BCSR
format. SMASH [35] proposed a hierarchical bitmap format
and a bitmap management unit for decoding in the CPU
platform.

VII. CONCLUSION

In this article, we propose Morphling, a reconfigurable
architecture for efficiently executing both dense and sparse
tensor operations. We first propose a flexible tensor execu-
tion model which consists of three steps, including tensor
vectorization, vector computation, and output reduction. The
computation step features three types of parallel patterns that
are many-to-one, one-to-many, and one-to-one. The dense and
sparse operations differ in the implementation of these pat-
terns. To cooperated with the execution model, we proposed
tiled-BCSR format that packs nonzeros into tiles. The archi-
tecture of Morphling features a reconfigurable PE array with
switches for data communication. The PE can be dynami-
cally configured to support flexible hardware dataflow and
enable different types of data reuse. Morphling is synthesized
in 28 nm TSMC library with 8.62 mm2 area at 600-MHz
frequency and achieves 13.4X, 677.7X, and 44.7X energy
efficiency over Xilinx ZC706 FPGA, Intel i7-9700K CPU,
NVIDIA TitanX GPU.
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