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Abstract—Memristor-based accelerator (MBA) has demon-
strated its capability in accelerating matrix-vector multiplication
(MVM) with high performance and energy efficiency. However,
it is hard to determine whether and how well an application
can benefit from MBAs in a heterogeneous computing archi-
tecture. In this article, we propose a simulation framework
called MHSim to evaluate the energy efficiency and performance
of applications running with both MBAs and CPUs. MHSim
provides flexible system-level interfaces and circuit-level simula-
tion models for designers to configure heterogeneous computing
architectures. We design a general-purpose MBA which enables
floating-point computation models for general matrix-matrix
multiplication (GEMM). Our simulation framework can quan-
tify the performance and energy efficiency of different MBA
architectures for various applications. We validate our simu-
lation framework with SPICE and evaluate the accuracy and
performance of MBAs via several case studies. Experimental
results demonstrate that the deviations of energy consumption
and latency are only 0.47% and 0.49% on average compared
with SPICE-based simulation.

Index Terms—Heterogeneous computing architecture, memris-
tor, memristor-based accelerator (MBA), simulation framework.

I. INTRODUCTION

ATRIX multiplications are fundamental operations in
Ma wide range of applications, such as convolutional
neural networks (CNNs) [1] and graph processing [2], [3].
They often lead to massive data movement between CPU
and main memory, which has become a major performance
bottleneck in traditional von Neumann architectures. To min-
imize data movement, a promising approach is to exploit
processing-in-memory (PIM) architectures using nonvolatile
memory (NVM) devices, such as memristor [4]-[7], phase
change memory (PCM) [8], and flash [9], [10].

Emerging memristor-based PIM accelerators have
demonstrated their efficiency in accelerating matrix-vector
multiplication (MVM) operations. An element of a matrix
can be encoded as an analog charge state or a conductance
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state of a memristor. Thus, a whole matrix can be mapped
in memristor-based crossbar (XB) arrays, and the in-situ
MVM operation can be conducted in a constant time (O(1)
complexity) by exploiting Kirchhoff’s circuit laws. Compared
with traditional CMOS circuits, memristor-based accelerators
(MBAs) eliminate data movement and enhance the paral-
lelism of computation, and thus significantly improve energy
efficiency and application performance.

Recently, many studies [1], [2], [4], [5], [11]-[15] have
explored MBAs for various applications, such as neural
networks [1], [4], [5], [13], graph processing [2], [14], [15],
and scientific computing [11]. However, there is not a public
and general-purpose simulation framework that can support
all these applications. Researchers usually have to evaluate the
performance and energy efficiency of their MBA designs based
on in-house simulators, which are integrated into application
programming frameworks, such as Caffe or TenserFlow [1],
[13], [16]-[19]. Thus, it is difficult to evaluate different
state-of-the-art works fairly. Some existing open-source sim-
ulation frameworks, such as MNSIM [20], DL-RSIM [16],
NeuroSim [21], AIHWKit [18], and PUMAsim [13] are
designed for special goals and applications. Without a high-
level abstraction for MVM operations, existing memris-
tor simulators are not sufficient for diverse purposes and
applications. Moreover, for a given MBA design, simula-
tion results (energy consumption and speedup) generated
by different simulators may be significantly different. On
the other hand, existing MBA simulators can only simulate
a small portion of computation (such as iterative MVMs)
that can be offloaded to MBAs. It is hard to use them
to estimate the overall performance of complex applications
in a heterogeneous computing architecture comprising both
CPUs and MBAs. To facilitate the exploration of heteroge-
neous computer architectures with MBAs, it is essential to
develop an easy to use and flexible simulation framework
to support diverse applications and heterogeneous computing
architectures.

However, there remain several challenges to develop such a
simulation framework. First, existing architectural simulators,
such as GEMS [22] or ZSim [23] do not provide interfaces
for MBAs. Although there have been some MBA simulators,
such as MNSIM [20] and NeuroSim [21], they mainly focus
on simulating the electrical properties of memristor XBs at
the behavior level or the circuit level. It is not easy to inte-
grate MBA simulators into architectural simulators. Second, a
general-purpose and flexible simulation framework for various
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applications requires high-level abstractions of computation
operators that can be accelerated by MBAs. Third, exist-
ing MBA simulators have not yet supported floating-point
operations in MVMs. Since floating-point numbers are com-
monly used in many real-world applications, it is necessary
to support floating-point operands in matrix multiplications.
Furthermore, it is challenging to map different matrices to
memristor arrays with high resource utilization and significant
performance improvement. Thus, a general and flexible MBA
simulator and the corresponding resource management scheme
are desired.

In this article, we take the first step to simulate the
“CPU + MBA” heterogeneous computing architecture by
extending ZSim [23] and NeuroSim [21] simulators. We propose
MHSim [24], a general-purpose and open-source simulation
framework for benchmarking all real-world applications in the
heterogeneous computing architecture. We use dynamic binary
instrumentation (DBI) to hook MVM functions in applications
and use a simple performance model to offload MVM oper-
ations to the MBA. MHSim provides easy-to-use interfaces
to design heterogeneous computing systems and evaluate their
performance and energy efficiency with high accuracy, without
modifying applications’ source codes. The major contributions
of this work can be summarized as follows.

1) We design a reconfigurable and easy-to-extend hetero-
geneous computing architecture that can facilitate the
design of different MBAs for various applications with
massive MVM operations. The proposed MBA mod-
ule is integrated with a CPU simulator-ZSim [23] to
benchmark different kinds of applications.

2) To extend the adoption of MBAs for most real-
world applications, we redesign circuit models in
NeuroSim [21] to enable floating-point MVM opera-
tions and provide simple APIs for applications to use
the MBA easily.

3) To best utilize the memristor resource, we propose a best
fit algorithm combining with a binary tree bin-packing
(BTBP) algorithm to map weight matrices to memristor
XB arrays.

4) We validate the accuracy of MHSim with SPICE.
Experimental results show that MHSim leads to only
0.47% and 0.49% deviations in energy consumption and
latency compared with the SPICE model, respectively.
Our case studies also show that MHSim can quantify the
performance speedup of various neural network models
and the inference accuracy in MBA architectures.

The remainder of this article is organized as follows.
Section II introduces the background of MBA and the related
work. Section III describes our design of MHSim. Section IV
presents our simulation framework in detail. Section V
presents our evaluation methodology and experimental results.
We conclude in Section VI.

II. BACKGROUND AND RELATED WORK
A. Memristor and Crossbar Structure

Memristors are the fourth fundamental circuit elements that
provide the functional relation between charge and magnetic
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Fig. 1. (a) Analog dot-product operation in a single BL. (b) Analog MVM
using an XB array.

flux. A memristor cell is actually a variable resistor because
the magnetic flux changes along with the charge. With multiple
resistance states, a memristor cell is able to encode a range of
values with multiple bits in the analog domain. A number of
previous proposals [1], [2], [4], [5] have explored memristors
as PIM accelerators since memristors in XB arrays can act as
resistive random-access memory (ReRAM) and perform MVM
operations in-situ in the analog domain efficiently.

A memristor array is mainly comprised of multiple mem-
ristor cells, wordlines (WLs), bitlines (BLs), digital-to-analog
converter (DAC), and analog-to-digital converter (ADC) cir-
cuits. Fig. 1(b) illustrates a 4 x 4 memristor array. Each
memristor cell in the XB is located at the cross points of WLs
and BLs. Fig. 1(a) depicts how memristors perform multipli-
cation and accumulation in the memristor XB array. When
the XB array performs analog computation, the voltages V;
are applied to each WLs by DACs, and memristor cells act
as resistors with conductance G;j. According to Kirchhoff’s
circuit laws, the output currents /; of each BLs are equal to
> ViG;j and read by ADCs. Since the size of an ADC is
much larger than the memristor cell, a multiplexer (MUX)
is employed to share ADCs with multiple columns for area
efficiency. To perform an MVM operation in-sifu, a matrix
element is encoded as a conductance in each memristor cell,
and the input vector is encoded as the corresponding input
voltages. Finally, the voltage-conductance product can be read
at the end of BLs. The analog computation can be formu-
lated as (1). However, due to the analog nature of values
encoded in these memristors, only limited precision can be
achieved in MVMs and this limits the computation accuracy
of MBAs. To address this problem, a few proposals [4], [5]
use multiple memristors together to represent a high-precision
value through adder and shift registers
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Compared with the CMOS-based approach, memristor-

based in-situ MVM operations eliminate data movement
of weight matrices and offer much higher computation
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parallelism. Thus, memristor XB arrays can significantly
improve the performance and energy efficiency of MVM
operations.

B. Memristor-Based Heterogeneous Computing Architectures

Memristor XB arrays have been increasingly explored to
accelerate applications that contain massive MVMs. Both
PRIME [4] and ISAAC [5] propose memristor-based hetero-
geneous computing architectures to accelerate CNN inference.
PRIME is a morphable PIM architecture that exploits shared
peripheral circuits to support both memory and computation
modes of memristors. ISAAC proposes an MBA heteroge-
neous architecture that supports interlayer and intratile pipeline
to enhance tile parallelism. There have been also a number of
studies [1], [25]-[28] on neural network training with mem-
ristor XB arrays. TIME [25] proposes an in-memory training
architecture to avoid frequent read/write operations during
model training. PipeLayer [1] proposes a heterogeneous archi-
tecture that uses intra- and inter-layer pipelines to accelerate
CNN training. ReGAN [29], LerGAN [12], and ZARA [30]
employ MBAs to accelerate generative adversarial networks
(GANS) in both testing and training phases. PSB-RNN [31]
proposes an MBA architecture using Fourier transform and
systolic dataflow to support block circulant compression for
recurrent neural networks (RNNs).

Since graphs can be represented as sparse matrices in
the vertex-centric model, GraphR [2], RAGra [15], and
GaaS-X [14] use memristor XB arrays to achieve in-suit
graph computing efficiently. GraphR proposes a streaming-
apply execution model to process large graphs. RAGra
employs 3-D ReRAM to improve the computing parallelism
of graph processing. GaaS-X leverages content address-
able memory (CAM) and memristor XB arrays to accel-
erate sparse graph data processing. Feinberg et al [11]
proposed an MBA heterogeneous architecture for scientific
computing. They use memristor XB arrays to accelerate
sparse MVMs.

Most MBA heterogeneous computing systems use memris-
tor XB arrays as dot-product engines since MVMs are funda-
mental operations in diverse compute-intensive applications.
However, since those MBA architectures are implemented
with their in-house simulators, it is difficult to evaluate the
performance speedup and energy efficiency of different pro-
posals fairly. To this end, we focus on developing a general
simulation framework to evaluate the effectiveness and effi-
ciency of MBAs when they are used to accelerate diverse
applications with MVM operations.

C. MBA Simulators

Recently, a few MBA simulators have been designed to
simulate nonideal properties of memristors, such as DL-
RSIM [16], RxNN [17], GraphRSim [32], MemTorch [19],
and AIHWKit [18]. They all focus on the accuracy of MBAs
since the nonideal electrical properties of memristor XB arrays
may cause significant accuracy degradation. DL-RSIM [16]
creates an error table based on an error analytical module and
then injects errors during computation to simulate the nonideal

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

properties of memristor cells and sense amplifiers. RxNN [17]
provides a fast XB model to simulate errors of MVMs
caused by nonideal properties of XB arrays. GraphRSim [32]
simulates the accuracy degradation of diverse graph algo-
rithms that use nonideal memristor XB arrays as dot-product
engines. MemTorch [19] is a high-level MBA simulator that
is integrated into the PyTorch machine learning framework. It
focuses on simulating the performance degradation of memris-
tive DNNs introduced by the nonideal device model. Similarly,
AIHWK:it [18] also simulates the nonideal properties of ana-
log devices and evaluates the impact of these properties on the
model accuracy of Al algorithms using the PyTorch frame-
work. Unlike those MBA simulators that focus on simulating
the nonideal property of memristors for machine learning pro-
gramming frameworks, MHSim provides a general-purpose
simulation framework that can quantify the performance and
energy efficiency of different MBA architectures for various
applications besides neural networks.

A few simulators are designed to evaluate the performance
speedup and energy efficiency of MBAs for domain-special
applications, such as MNSIM [20], NeuroSim [21], and
PUMAsim [13]. MNSIM [20] is an MBA simulation platform
for neuromorphic computing systems. MNSIM estimates the
area, latency, power, and computing accuracy of MBA hetero-
geneous computing systems based on behavior-level models.
However, since MNSIM does not run real applications in a
cycle-accurate model, the accuracy becomes a major concern
of using MNSIM. NeuroSim [21] provides detailed models
to quantify performance, energy consumption, and inference
accuracy of MBAs. It is integrated into a multilayer per-
ceptron (MLP) neural network. Since NeuroSim fixes the
peripheral circuits according to the MLP algorithm, its scala-
bility is very limited. Moreover, NeuroSim does not provide
user-friendly programming interfaces to design heterogeneous
computing architectures with memristor devices. Thus, it is
hard to construct a new MBA heterogeneous system and
run other applications using NeuroSim. Similar to NeuroSim,
circuit-level SPICE simulation schemes [33] are also hard to
simulate real applications and are not cost efficient in terms
of simulation time. PUMAsim [13] is an MBA simulator that
simulates instructions compiled from general machine learning
applications. PUMAsim assumes the weight in neural network
inference accelerators had been mapped into XB arrays before
the in-situ computation, without considering the cost of data-
mapping. Thus, PUMAsim can be only used to simulate MBAs
for inference algorithms, limiting its application scope.

Overall, the existing MBA simulators are designed for
special purposes or special applications. None of them pro-
vides interfaces to integrate them with traditional architectural
simulators. Thus, it is hard to use them to simulate com-
plex applications in a heterogeneous computing architecture
composed of both CPUs and MBAs. In contrast, MHSim
is a general-purpose and reconfigurable simulation frame-
work for designing MBA heterogeneous computing architec-
tures with easy-to-use interfaces. MHSim can evaluate the
performance and energy consumption of various applications
on heterogeneous computing architectures, without modifying
applications’ source codes.
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Fig. 2. Architecture of MBA.

III. MEMRISTOR-BASED ACCELERATOR

In this section, we first present the design of the MBA archi-
tecture and its key modules. Second, we present the resource
allocation scheme that combines a best fit algorithm with a
BTBP algorithm. Third, we illustrate how floating-point MVM
operations are enabled in memristor XB arrays. Finally, we
introduce the key instructions offered by MBAs and how they
are executed in a pipeline.

A. MBA Architecture

To simulate various applications accelerated in an MBA het-
erogeneous computing architecture, we design a reconfigurable
MBA, as shown in Fig. 2. The MBA chip consists of a global
I/O interface, a work scheduler, and multiple tiles (T) con-
nected by an H-tree. We choose the tree structure because
it shows higher energy efficiency than mesh or ring struc-
tures [34], [35]. The MBA chip accesses the main memory via
a special channel to avoid bus contention with CPUs. Each tile
in an MBA chip is composed of an eDRAM buffer, a simple
arithmetic logic unit (ALU), and multiple processing elements
(PEs). PEs are responsible for in-sifu fixed-point MVM oper-
ations. Each PE consists of several memristor XB arrays,
multiple input registers (IRs) and output registers (ORs), and
a subtractor (SUB). The IR and OR are used to store input
operands and output results, respectively. Each XB array is
connected with a number of MUXs, shift and adder (S&A)
units, and ADCs. XB+ and XB— arrays are used to store
positive and negative values, respectively. S&A units are uti-
lized to support bit slicing. The SUB combining with XB+
and XB— arrays can support operands with different signs in
an MVM operation. In the following, we describe the detailed
design of other key modules in the MBA.

Work Scheduler: To perform an analog MVM in an XB
array, the weight matrix usually should be loaded in the XB
array in advance because the write latency of memristors is
rather high for mapping a large matrix to XB arrays. To effi-
ciently utilize the memristor resource for executing multiple
MVM operations concurrently, we design a work scheduler
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Address | Flag | TileID TileID [Available Size
(64 bits) | (1 bit) [ (7 bits) (7 bit) (25 bits)
Matrix 1 1 1 1 0.1 MB
Matrix 2 0 2 2 1.8 MB
128 2MB
(a) (b)

Fig. 3. (a) Mapping table records the mappings between weight matrices and
tiles. (b) Available resource table records the remaining memristor resource
in each tile.

to monitor the memristor resource and dispatch computing
tasks to available tiles. The work scheduler remains a table
to record the mappings between weight matrices and tiles. As
shown in Fig. 3(a), the mapping table contains the address
of weight matrices, the index of tiles mapping to matrices,
and the state flag that indicates whether the time-consuming
data mapping has been completed. When the work scheduler
receives a request for matrix multiplication, it first consults
the mapping table about the address of the weight matrix.
If the mapping table does not contain the corresponding item,
the work scheduler would allocate XB arrays to this MVM
task based on a best fit algorithm. If the weight matrix is still
being mapped to XB arrays (i.e., the state flag is zero), the
work scheduler denies this MVM operation at this time and
returns the task to the host’s CPUs. When a matrix is mapped
into XB arrays, we calculate the remaining capacity of each
XB array and get the available capacity of each PE. Then, we
update the available capacity of each tile in Fig. 3(b).

eDRAM Buffer: The eDRAM buffer in each tile is composed
of a data buffer and an instruction buffer. The data buffer
consists of an input buffer and an output buffer for caching
the input and output data, respectively. The instruction buffer
is used to store instructions in each tile.

ALU: To support floating-point MVM operations in MBAs,
we use an ALU to align the input operands in advance and
generate a series of fixed-point mantissas with the same expo-
nent for the input driver. The ALU can also perform simple
arithmetic operations to support general-purpose applications.

Control Unit: The control unit in each tile is responsible
for decoding instructions in the buffer and providing control
signals to PEs and the ALU.

B. Data Mapping to XB Arrays

To minimize resource fragmentation during mapping matri-
ces to tiles/PEs, we use a best fit algorithm to allocate storage
space to matrices in two layers, i.e., tiles and PEs. Given the
available sizes of tiles <S1, 2, ..., S,> in an ascending order,
the scheduler finds the best fit tile with the smallest available
size to map this matrix. Since a tile contains multiple PEs with
different free capacities <Cp, Ca, ..., C,>, we find a PE with
the best fit capacity to the matrix. If the matrix is larger than
the max capacity of PEs, we partition the matrix and map it
into multiple PEs. When a PE is allocated, we calculate the
remaining capacity of the PE and the corresponding tile and
then resort the available capacity of PEs and tiles.
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Fig. 4. (a) Directly mapping an 8 x 512 matrix into four 128 x 128 XB

arrays. (b) Folding and mapping the 8 x 512 matrix into a single 128 x 128
XB array.

As the shapes of matrices in real-world applications are
diverse while XB arrays are square and fix sized, irregular
matrices often degrade the resource utilization of XB arrays.
We usually have to partition a matrix to fit the XB array.
A naive approach is to partition a huge matrix according to
the size of XB arrays. For example, if we map an irregular
8 x 512 matrix to four 128 x 128 XB arrays directly, only
6.25% resource is utilized in the four XB arrays, as shown
in Fig. 4(a). However, if we fold the 8 x 512 matrix to a
32 x 128 matrix, only one single 128 x 128 XB array is
required to store the original matrix, as shown in Fig. 4(b). In
this way, the resource utilization is significantly improved by
four times.

Although the folding approach achieves maximum resource
utilization, it degrades the computation parallelism of MVM
operations. As shown in Fig. 4(b), only one 8 x 512 matrix can
be activated to perform the MVM operation at a time. Totally,
four times analog MVM operations are performed sequentially.
This approach cannot make full use of the parallelism of XB
arrays and thus lowers the performance speedup. To guarantee
high computing parallelism and resource utilization as much
as possible, we consider both shapes and sizes of matrices
when they are mapped into XB arrays. Actually, data map-
ping is essentially a 2-D bin-packing problem. We exploit
the BTBP algorithm [36] to solve this problem efficiently.
Algorithm 1 shows the procedure of the weight mapping. We
use a stack structure to store intermediate matrices generated
in each matrix mapping.

When a small matrix is mapped, we should find an XB
array that can best fit the matrix in the list of the remaining
capacities XBJ[O, ..., N—1]. If an XB array can accommodate
the matrix directly (lines 5-12 of Algorithm 1), we map the
matrix into the top-left corner of this XB array. The remaining
capacity of this XB array is usually composed of two unused
rectangles. To simplify the solving of bin packing and reduce
the storage cost of metadata for the remaining capacity, we
only record the width and height of the largest unused rect-
angle. Later, we can still map other small matrices to those
unused rectangles based on a best fit algorithm.

When a large matrix cannot be mapped in a single XB
array, it should be partitioned into multiple small matrices,
and then we map them into multiple XB arrays. To achieve
high computing parallelism and resource utilization, we use
the BTBP algorithm (lines 13—19 of Algorithm 1) to solve
this problem. We use an example to illustrate the mapping
strategy in Fig. 5. Assume there is a list of XB arrays with
different remaining capacities, as shown in Fig. 5(a), we first
pack the top-left elements of the original matrix into XBO
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Algorithm 1: BTBP-Based Mapping Algorithm
Input: The original matrix Myp; The remaining capacities
XB[O, ...,N — 1] in ascending order
Output: The available capacities XB[0, ..., N — 1]

1 Initiate stack S;
2 Push My into S;
3 while S is not empty and XB[N — 1] /= 0 do
4 Popup a matrix M from S;
5 for i = 0 to N-1 do
6 if XB[i] is larger than M then
7 Map M to the top-left corner of XB;;
8 Update XB[i];
9 Sort XB;
10 Break;
11 end
12 end
13 if M is not mapped then
14 Map the top-left elements of M to XBy—1);
15 Update XB[N — 1];
16 Sort XB;
17 Partition the remaining M into My and Mp;
18 Push M; and M> into S;
19 end
20 end
(a) (c)
Remaining XBO | XB2 % XB2
capacity L1
Gy |83 8] | [, k7 T
(b) [xB1]—[xB1]
XB0 % @
XBO | M1
0 XB3| [ hs
Original 57 M2 M2 @
Matrix
XB4|+|xB4
Fig. 5. Mapping a large matrix into multiple XB arrays based on the BTBP

algorithm. (a) The remaining capacity of each XB array. (b) Map the original
matrix into XBO0, and the unmapped portion are partitioned into two matrices
(M1 and M2). (c) Map M1 into XB2 and XB1. (d) Map M2 into XB3 and
XB4.

with the maximum remaining capacity. Then, the remaining
portion of the original matrix can be partitioned into one or
two smaller matrices (e.g., M1 and M2), as shown in Fig. 5(b).
If the partitioned matrix is smaller than the maximum size of
the remaining XB arrays, we use the best fit algorithm (lines
5-12 of Algorithm 1) to map it. Otherwise, we repeat the
BTBP procedure (lines 13—19 of Algorithm 1) for all parti-
tioned matrices till they are all mapped into XB arrays, as
shown in Fig. 5(c) and (d).

Since a large matrix may be partitioned into multiple smaller
matrices that are mapped into different XB arrays, we have to
combine these partial outputs to get the final result when per-
forming an analog MVM. As a binary tree is used to organize
the partitioned matrices, we use a postorder traversal algorithm
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to combine the partial results. Taking Fig. 5(b) as an example,
we regard the result calculated by XBO0 as the current node of
the tree, and the partial results of M1 and M2 as the left sub-
tree and the right subtree, respectively. First, we coalesce the
partial results obtained from the left subtree (M1) and XBO
and get a larger vector. Second, we add this vector to the par-
tial result obtained from the right subtree (M2) and get the
final result.

C. Supporting Floating-Point MVM Operations

General matrix—matrix multiplication (GEMM) uses
floating-point numbers instead of fixed-point numbers,
however, existing MBA simulators have not yet supported
floating-point MVM operations because they are only
designed for domain-specific applications using fixed-point
numbers. To evaluate the performance benefit of using MBAs
for more general applications, we propose an effective design
in MBAs to support floating-point arithmetic according to the
IEEE-754 standard. First, to map the matrix of floating-point
numbers into XB arrays, MBA should align the exponents of
operands according to the maximum exponent in the matrix.
Second, since a single memristor can only represent a number
with limited precision (usually 2 bits), MBA splits the aligned
mantissas in the matrix and maps them into multiple XB
arrays to process high-precision mantissas. Third, XB arrays
perform the MVM operation in the analog domain. Finally,
MBA coalesces the intermediate results with the assistant of
S&A units and ORs. The detailed scheme is described in the
following.

1) Matrix Preprocessing: An 1EEE-754 single-precision
floating-point number contains a sign bit, an 8-bit biased
exponent, and a 23-bit mantissa (with implied leading 1). As
XB arrays perform multiplications and accumulations through
WLs and BLs, it is necessary to align the mantissas in the same
BLs before the data mapping. For example, the mantissas of
2 and 4 are both 800000H, while their exponents are 80H and
81H, respectively. Before the accumulation, the exponent of 2
should be aligned to 81H by shifting the mantissa right by 1
bit. Then, the two mantissas can add directly.

Exponent alignment has to find the maximum exponent of
elements in the target matrix. A simple approach is to scan all
the exponents of elements in the matrix. However, scanning
all the elements is usually costly. Feinberg et al. [11] exploited
the locality of exponent range to reduce the alignment over-
head of double-precision floating-point values. In our design,
we follow Feinberg’s approach and predefine a rather large
exponent for the mantissa alignment. As shown in Fig. 6(a),
we predefine the large exponent to be “11,” and thus the input
vector is aligned according to the exponent 11 rather than the
maximum exponent “10” in the vector. On the other hand, we
can update the predefine exponent in the matrix during align-
ing operands in the matrix incidentally. If an exponent in the
matrix is larger than the predefined exponent, we update the
predefined exponent to keep it as the largest.

We use an ALU in each tile to preprocess source operands as
follows. Given the maximum exponent Ey,x, for each operand
in the vector, the ALU calculates the difference of exponent
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Fig. 6. Example of performing floating-point analog MVM. (a) Alignment.
(b) Mapping. (c) Analog MVM. (d) Composing.

(AE;) and shifts the mantissa right by AE; bits. The aligned
mantissas are sent to IRs of PEs for mapping. As XB arrays
can only store unsigned mantissas, we employ positive XB
arrays (XB4) and negative XB arrays (XB—) [4] to han-
dle operands with different signs. The positive operands and
negative operands are mapped into XB+ and XB— arrays,
respectively.

We note that our design does not support not a numbers
(NaNs) and infinity defined by the IEEE-754 standard. Once
NaNs or infinity are detected by the ALU during the data
mapping, the MVM operation is interrupted and is sent to the
CPU for further processing.

2) Mantissas Mapping: We use multiple memristor cells
to represent multibit operands based on bit slicing [5]. The
mantissas in the IRs are split according to the precision of
memristor cells. Then, multiple slices of a mantissa are written
to adjacent cells in the same row to share the ADC and S&A.
As shown in Fig. 6(b), the weight element “0010” is split to
“00” and “10,” and they are placed in two adjacent memristor
cells.

NeuroSim [21] provides a rowwise write scheme that can
update the conductance states of memristor cells in an XB
array row by row. This approach may result in a high miss
rate of the data buffer. When a matrix-vector product (M x V)
is performed, the columns of the matrix should be fetched
from the main memory and map into the XB array row by
row. Since these operands in each column of the matrix are
usually not in a contiguous address space, resulting in a high
miss rate of the data buffer. In contrast, performing a vector-
matrix product (V x M) does not lead to the above problem
since the operands in each row of the matrix are contiguous
in the main memory and are written to the same row of the
XB array. On the other hand, when we multiply two matrices
(M| x M3) in an MBA, one matrix is split into multiple vectors
which are used as the input vectors. If the split matrix is the
latter one (M>), each element in a vector is not contiguous in
the memory space since the latter matrix is processed column
by column. Considering these two observations, for the matrix
multiplication (M| x M3), we can reduce the miss rate of the
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TABLE I
INSTRUCTIONS OF MBA

Type Syntax Description
. Map the weight from the register (src) to the XB array (dst)
map map dst, src, width WitII: (width) goperands ¢ Y
Data Transfer set set dst, imm Set the register (dst) with an immediate value (imm)
load load dst, src, 1d_width Load the data from memory (src) with (Id_width) data to buffer (dst)
store | store dst, src, st_width Store the output vector (src) with (st_width) data to memory (dst)
. . Perform an analog MVM with the input vector (src, v_width)
mvm mvm dst, src, v_width, w_width . X .
Computational and the Welght_matrlx (dst, W_Wldth)_ _
alu aluop dst, srcl, src2 Scalar arithmetic (add/sub/multiply/divide)
alui aluop dst, srcl, imm Scalar arithmetic with an immediate value (imm)

buffer both in the mapping phase and the computing phase if
we map the latter matrix (M3) to XB arrays. Therefore, if the
matrix M must be mapped as the weight matrix, we transform
My x M to (M2T xM IT)T and map M lT into XB arrays. Finally,
we transpose the output matrix.

3) Matrix-Vector Multiplication: Since input vectors are
also floating-point numbers, these operands also should be
preprocessed using the same approach for matrix preprocess-
ing. We store the aligned mantissas and record the sign bit in
registers. After the exponent alignment, the mantissas of the
input vector are applied to the XB array as voltages by WLs
drivers. The ADC converts the analog result to a digital result
and sends it to the S&A, which shifts the digital result left
by a number of bits according to the order of input mantissas
and the position of cells, as shown in Fig. 6(c). In the follow-
ing, the S&A adds up all the intermediate results, as shown
in Fig. 6(d). To correctly handle signed operands, we perform
MVM operations in the XB+ and the XB—, respectively. First,
we apply voltages to the XB+ and XB— using the positive
and negative mantissas, respectively. The output intermediate
results of the two MVM operations are all positive. Second,
we swap the positive mantissas with the negative mantissas
and use them as input voltages for the XB+ and the XB—
again to obtain the negative intermediate results.

4) Intermediate Result Composing: We subtract the nega-
tive intermediate result from the positive intermediate result
by a SUB in each PE to get the sign bit and the absolute
value of mantissa for each dot-product result. Then, we find
the position of the most significant bit Eypsp in the mantissas
via a bit scan reverse (BSR) instruction. We use Egec, Ebias,
E,m, and E,;, to represent the length of decimal, the biased
exponent, the maximum biased exponent in the matrix, and the
input vector, respectively. In the IEEE-754 standard for single-
precision floating-point numbers, the Egec and Epyg are 23 and
127, respectively. The biased exponent of the final result E can
be calculated as (2). The decimal of the final result can be cal-
culated by shifting the mantissas right by (Emsp — Edec — 1)
bits and hiding the leading /. As shown in Fig. 6(d), the Egec,
Eviass Emm, Emy, and Eysp are 11, 0, 11, 11, and 110, respec-
tively. After the decimal normalization, the exponent and the
mantissa of the dot-product result are 0x101 and 1.100 (in the
IEEE-754 format, the leading 1 is hided)

E = Eym + Einy + EMsB — 2Edec — Ebjas — 1. (2)

We note that the above approach may generate NaNs or
infinity defined by the IEEE-754 standard for floating-point

numbers. In our work, the NaNs and infinities are retained
since they may be caused by the nonideal properties of
memristors. These exceptions should be considered by MBA
designers for further processing.

D. Instructions

We provide primitive instructions to program MBAs based
on a previous work [37]. As shown in Table I, we define a
map instruction to enable the data mapping operation. The
parameters dst, src, and width in the map instruction indicate
the destination address of the first memristor device in the XB
array, the index of the first register that stores the operands’
mantissas, and the number of mantissas mapping to the row
of XB arrays, respectively. The mvm instruction perform a
series of operations, including ADC, shifting, addition, and
subtraction mentioned in Section III-C. Similar to map, the
parameters of mvm contain the location of the weight matrix
in the XB array, the first register that stores the input vector,
the length of the input vector (rows), and the number of the
columns in the mapped matrix.

Recently, a few proposals exploit static/dynamic compila-
tion tools to improve instruction-level parallelism for programs
in PIM architectures [38], [39]. These techniques cannot
be employed directly because our MBA is mainly designed
to accelerate analog MVM operations at the function level.
However, inspired by these automatic parallelization and hard-
ware/software co-design techniques, our simulation framework
has a potential to further improve the computation parallelism
for multiple MVM operations in the MBA. For example, we
can also analyze the data dependency between MVMs through
static/dynamic compiling analysis and then perform indepen-
dent MVMs in different XB arrays in parallel. For MVMs
with data dependency, we can map them in adjacent XB
arrays/PEs/Tiles to reduce the communication cost.

E. Instruction Pipeline

ISAAC [5] and PipeLayer [1] design pipelines for running
specific NN applications in MBAs. However, these pipelines
are coarse grained because they are scheduled at the granular-
ity of NN layers. Inspired by these proposals, we further design
a fine-grained pipelining mechanism at the instruction level.
The proposed pipeline can hide the latency of loading vec-
tors by overlapping load instructions with other instructions,
as shown in Fig. 7. Our instruction-level pipelines can uti-
lize the resource of XB arrays efficiently. We note that analog
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[load]| alu map
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Fig. 7. Instruction pipeline in MHSim.
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Fig. 8. Simulation framework of MHSim.

MVMs should be performed after the matrix mapping. Since
XB arrays perform mvms sequentially, the following mvm may
stall if the previous mvm has not completed.

IV. SIMULATION FRAMEWORK

In this section, we introduce the simulation framework that
supports running diverse applications in a memristor-based
heterogeneous architecture, without modifying applications’
source codes.

A. Overview

To evaluate the performance speedup and the energy
efficiency for applications when they are going to deploy
in heterogeneous computing architectures with MBAs, a
heterogeneous simulation framework that supports different
applications is required. To achieve this goal, we design a
general-purpose MBA simulator based on NeuroSim [21] and
then integrate it with ZSim [23] to simulate a heterogeneous
computing system. ZSim is a cycle-accurate architectural sim-
ulator that provides processor, cache, and memory modules.
NeuroSim is a circuit-level MBA simulator which provides
circuit models of XB arrays and electrical properties of mem-
ristors. Fig. 8 shows the framework of MHSim. MHSim
designs circuit-level modules of MBAs using NeuroSim and
integrates the MBA modules with the architectural simulator
ZSim. In addition, we also provide high-level APIs to simulate
the analog MVM.

B. Key Modules

Task Dispatcher: In CPU-GPU heterogeneous computing
systems, computation tasks are dispatched by programmers

5483

and compiled to binary executable files with CUDA. Due to
the lack of a mature compiler for MBA heterogeneous archi-
tectures, it is hard to determine whether a matrix multiplication
should be processed by MBAs. Furthermore, small matrices
have low parallelism, and the performance running in XB
arrays may be even worse than that of running in CMOS-based
processors. In MHSim, we use a task dispatcher to determine
whether the task should be executed in an MBA or a CMOS-
based processor. Since the latency of analog computing for
different MVM operations in XB arrays is the same regard-
less of the matrix sizes, the total execution time of an MVM
operation (Txp) is mainly determined by the latency of ADC
operations. To simplify the estimation of Typ, we assume that
only one ADC is multiplexed by all columns of an XB array to
read each element of the output vector sequentially. Thus, the
total execution time of an MVM is mainly determined by the
number of columns N, that are used to map the weight matrix
in the XB array. Then, Txp can be estimated by N./Fapc,
where Fapc denotes the frequency of the ADC. In our simu-
lator, we set N, as the total number of columns in an XB array
to estimate the maximum execution time of an analog MVM.
To estimate the latency of MVMs in CMOS-based processors,
the task dispatcher uses a performance model to estimate the
execution time based on the matrix size and the instruction
cycles [40]. Assume K, M, T,,, and T, represent the rows of
the matrix, the columns of the matrix, the execution time of a
floating-point multiplication operation, and the execution time
of an addition operation, respectively. The total execution time
Tcmos of an MVM operation in CMOS-based processors is
estimated by (3). If Txg < Tcmos, the MVM task is assigned
to the MBA for higher performance

Tcmos = (K= 1D« M xTy, + K« M x T, 3)

Extensions for ZSim: ZSim is a DBI-based simulator which
inserts simulation codes between instructions. However, it
is difficult to recognize MVM operations from code snip-
pets. An effective approach to recognize MVM operations
is to find out MVMs based on the functions’ names or
the programming interfaces. However, ZSim does not sup-
port function-level instrumentation. Thus, we complement the
function-level instrumentation for ZSim to trace MVM func-
tions and orchestrate it with instruction-level instrumentation
to simulate instructions cautiously.

Extensions for NeuroSim: As discussed in Section II-C,
NeuroSim is designed for a specific neural network algorithm,
and the peripheral circuits are fixed. We redesign the structure
of the peripheral circuit in NeuroSim to support different sizes
of matrices and floating-point MVM operations. We also pro-
vide APIs to simulate analog MVMs for arbitrary sizes with
our reconfigurable peripheral circuit models and device models
provided by NeuroSim. These APIs can be easily integrated
into other applications or simulators.

C. Integration of CPU and MBA Simulations

As shown in Fig. 8, we employ DBI to track the spe-
cific functions such as MVMs through Intel Pin tool [41],
which provides function-level instrumentation. Originally, the
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TABLE 11
PARAMETERS OF MEMRISTOR DEVICES

. Nonlinearity ) CtoC
Devices (SET/RESET) | #of States [ Ron | v, ioiion

AgaSi (431 3.40/-4.88 97 6 MO | 350%

TaOX/HIOX [42] | 0.04/-0.63 128 100 KQ | 3.70%

Pin tool tracks the instructions of MVM operations and sim-
ulates them in the CPU simulator. In MHSim, we replace
the simulation of MVM operations in CPU with equivalent
operations simulated in MBAs.

As MBA mainly accelerates MVM operations, we track
each MVM function via a uniform interface. It is well known
that basic linear algebra subprograms (BLAS) provide a stan-
dard interface to perform common linear algebra operations,
such as dot products and matrix multiplication. The specifica-
tion contains GEMM and general MVM (GEMYV) functions.
As shown in Fig. 8, we hook applications and track the
GEMM and GEMV functions and then deliver them to the
task dispatcher.

We use ZSim to simulate CPUs and the memory hier-
archy and exploit NeuroSim to simulate the MBA. Once
GEMM/GEMYV functions are assigned to the MBA, MHSim
adds instrumentation for them and skips the simulation of these
functions in ZSim. Thus, applications with GEMM/GEMV
functions will call the MBA module simulated by NeuroSim
without any modification of source codes.

V. EVALUATION

We first validate our simulation framework with SPICE and
then conduct case studies to evaluate the inference accuracy
and performance of MBAs.

A. Experimental Setup

System Configurations: Table I shows the parameters of
two memristor devices. The number of states is the avail-
able conductance states, i.e., the number of values that one
memristor cell can represent. The CtoC variation refers to the
cycle-to-cycle variation during write operations. More details
on these memristor devices could be found in [42]. Table III
shows the system setup about the configuration of CPU, main
memory, the MBA, and the GPU. We note that a memris-
tor cell only represents a 2-bit number, and a number of cells
should be used to represent a single high-precision number via
bit slicing [5]. In our case studies, we choose the memristor
device TaOx/HfOx [42], which shows excellent linearity for
both SET and RESET operations.

Benchmarks: In our case studies, we use typical neural
network models, such as MLP [47], LeNet [44], AlexNet [48],
VGG16 [49], ResNet50 [50], and long short-term memory
(LSTM) [51] for different datasets, and run them in
Caffe [52]. Table IV depicts the detail of neural network
models and datasets, including the number of convolutional
(Conv) layers and fully connected (FC) layers, and LSTM
layers.
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TABLE III
SYSTEM SETUP

CPU and Main Memory

Processor 4 cores; 3GHz; Out-of-order
L1I&L1D cache 4 KB; 4-way; 2 cycles access
L2 cache 2 MB; 8-way; 10 cycles access
LLC 12 MB; 16-way; 27 cycles access
DRAM 100 cycles access

Memristor-based Accelerator
eDRAM buffer 1 MB

ADC 8 bit resolution; 1.2 GHz; 16 per PE

Memristor device TaOx/HfOx [42]
XB array 128x128; 2 bits per cell; 16 per PE

PE 16 per tile

Tile 128 per chip

Chip 8

GPU Platform
On-chip memory 16 GB HBM2
# CUDA cores 3584

Graphic card NVIDIA Tesla P100 (Pascal)

TABLE IV
NEURAL NETWORK MODELS

Dataset Network # COHY # FC # LST™M
Layers | Layers Layers
MLP - 3 -
MNIST [44] LeNet 5 5 -
AlexNet 5 3 -
ILSVRC 2012 [45] VGG-16 13 3 -
ResNet-50 53 1 -
COCO 2014 [46] LSTM - 1 2

B. Validation of Floating-Point MVMs

Because circuit/device models have been validated in
NeuroSim, we only validate the accuracy of the floating-point
MVM in our MBA simulator. We follow the circuit/device
parameter settings in SPICE for validation. We use ADCs
with 10-MHz frequency and 0.31-mW power consumption.
Each ADC is shared with 16 columns of an XB array by a
MUX. To mitigate the impact of DACs on computation accu-
racy, we do not use DACs to convert digital inputs into analog
voltages. Instead, we use 24-cycle pulses of voltages to repre-
sent 24-bit mantissas of the input vector [21]. Since different
values of memristor cells have an impact on the computing
latency and energy consumption, we set the initial value of all
memristor cells to high conductance (i.e., one) for all tests. We
conduct our experiments in different XB arrays whose sizes
increase from 16 x 16 to 256 x 256. We measure the latency
and energy consumption of one floating-point MVM operation
and compare experimental results in MHSim with the state-
of-the-art MNSIM and PUMAsim. We also use SPICE as the
baseline.

Fig. 9 shows the energy consumption and latency of one
floating-point MVM operation performed by an XB array with
different sizes. For each kind of XB arrays, the difference
of energy and latency between MHSim and SPICE is triv-
ial. Overall, the mean absolute percentage errors (MAPEs)
of energy and latency for different sizes of XB arrays are
only 0.47% and 0.49%, respectively. The errors of MHSim
are mainly introduced by clock signals and digital supplies
which are not simulated in SPICE. In contrast, the MAPEs
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Fig. 9. Energy consumption and latency of one floating-point MVM
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Fig. 10. Inference accuracy of neural network models using (a) Ag:a-Si and

(b) TaOx/HfOx devices.

of energy and latency in PUMASsim are 53.49% and 36.73%,
respectively. MNSIM shows even higher MAPEs for energy
and latency estimations. For PUMAsim and MNSIM, the sig-
nificant latency and energy deviations relative to SPICE mainly
stem from different circuit models, such as the frequency
and resolution of ADC. Despite the deviation of latency,
MNSIM and PUMAsim show a similar tendency of energy
consumption with MHSim and SPICE. This implies that
MNSIM and PUMAsim can achieve similar results using the
same circuit/device models/parameters. These experimental
results demonstrate that MHSim is able to accurately simulate
floating-point MVM operations in XB arrays.

C. Inference Accuracy

Fig. 10 shows how the precision of memristor cells affects
the inference accuracy of different neural networks. The infer-
ence accuracy reflects the accuracy of trained neural networks
for the image-recognition and natural language processing
applications. When multiple memristor cells are used to sup-
port full precision (24-bit mantissas), the inference accuracy of
MLP, LeNet, AlexNet, VGG16, ResNet50, and LSTM using
the Ag:a-Si device are 96.9%, 98.6%, 46.1%, 61.7%, 69.4%,
and 44.3%, respectively. Using TaOx/HfOx device, the infer-
ence accuracy of these neural networks are 96.8%, 98.6%,
56.1%, 68%, 71.4%, and 57.8%, respectively. Ag:a-Si leads to
lower inference accuracy compared with TaOx/HfOx since the
higher nonlinearity of Ag:a-Si causes much more computation
errors in MVM operations.

Fig. 11 shows the accuracy degradation of these neural
networks when the MBA uses Ag:a-Si and TaOx/HfOx as
the memristor device. The accuracy degradation refers to the
difference of the inference accuracy when the same neu-
ral network model is executed in the MBA and the CPU.
When we use Ag:a-Si as the memristor device with full
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Fig. 11. Accuracy degradation of neural network models using (a) Ag:a-Si
and (b) TaOx/HfOx devices.

precision, the accuracy degradation is 0.1%, 5.3%, 6.7%,
1.9%, and 13.9% for LeNet, AlexNet, VGG16, ResNet50,
and LSTM, respectively. For MLP, the MBA even achieves
0.1% accuracy improvement. This implies that the inference
accuracy of AlexNet, VGG16, and LSTM is more sensitive to
the computation accuracy. However, the accuracy degradation
approximates zero for these neural networks when we employ
TaOx/HfOx as the memristor device because TaOx/HfOx
shows excellent linearity for both SET and RESET operations.
These experimental results demonstrate that MHSim can effec-
tively simulate the computation accuracy of analog MVMs
with different device models.

We also find that almost all neural networks achieve the
maximum accuracy when the precision of operands increases
to 6 bits. This implies that it is unnecessary to perform analog
MVM operations with full-precision floating-point operands
for these applications. This is because the least significant bits
have a little impact on the final result since the most significant
bits may lose computing precision due to the nonideal prop-
erties of memristor devices. In addition, the bit slicing for a
small exponent may also lose computing precision during the
exponent alignment. These experimental results demonstrate
that MHSim can be used to determine how many memristor
cells are needed to represent operands for a given application
while still guaranteeing adequate computation accuracy.

D. Performance of MBA

In this section, we evaluate the performance speedup of the
MBA for typical neural networks. We use eight 2-bit mem-
ristor devices to represent a weight operand, and 16-cycle
voltage pulses to represent an input operand. To fully uti-
lize XB arrays, we map weight matrices into XB arrays in
advance based on the weight replication technique [5]. We
map duplicate weights into XB arrays according to their avail-
able capacities based on the BTBP algorithm. ALUs are also
used to process rectified linear unit (ReLU) and max pool-
ing for tiles. We note that the interlayer pipeline proposed in
ISAAC [5] is not applicable since our MBA architecture does
not contain dedicated hardware for normalization or activation
operations.

Fig. 12 shows the normalized performance of MVM oper-
ations using CPU, GPU, and MBA. MBA achieves 83.9x,
20.8x, 398.9x, 145.2x, 70.7x, and 588.4x performance
speedup for MLP, LeNet, AlexNet, VGG16, ResNet50, and
LSTM, respectively. The significant speedup mainly stems
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from the high parallelism of XB arrays. For VGG16 and
ResNet50, we find that the speedups of the MBA are less
than that of GPUs because the finite memristor resource lim-
its the number of weight replications due to massive weight
parameters. For the first layer of VGG16, we can only replicate
512 weights for total 50 176 input vectors. We note that the
number of weight replications cannot fit the maximum input
vectors for most benchmarks except MLP and LeNet. Despite
the limited number of weight replications, the MBA achieves
better performances of MVM operations than GPU for MLP,
LeNet, AlexNet, and LSTM.

Fig. 13 shows the performance speedup of “CPU + GPU”
and CPU + MBA architectures, all relative to the “CPU-only.”
To figure out the root cause of the speedup, Fig. 14 also elabo-
rates the breakdown of the execution time for different neural
networks when they run in the CPU-only architecture.

As shown in Fig. 13, for MLP and LeNet, CPU + MBA
achieves 84.2x and 22.4x speedups, while CPU+4GPU
achieves less than 7x speedups compared with CPU-only.
The MBA achieves significant speedups because MVMs spend
about 99% of the total execution time, as shown in Fig. 14.
On the other hand, since the weight matrix is small, the MBA
can accommodate sufficient weight replications to improve the
parallelism.

For AlexNet and ResNet50, CPU + MBA only achieves
1.7x and 6.4 x speedups compared with CPU-only. The reason
is that local response normalization (LRN) layers and batch
normalization (BN) layers cannot be accelerated by memristor
XB arrays [5]. As shown in Fig. 14, LRN layers and BN layers
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the CPU-only architecture.

consume 59% and 14% of the total execution time for AlexNet
and ResNet50, respectively. Although Fig. 12 shows the exe-
cution time of MVM operations is 398x and 70x folded
for AlexNet and ResNet, the total speedups of these neural
networks are limited because the normalization layers become
the performance bottleneck of these neural networks after
MVMs are accelerated by the MBA. CPU + GPU achieves
220x and 70x speedups for AlexNet and ResNet50 because
all layers can be processed by GPUs effectively in Caffe [52].

For VGGI16, both CPU + MBA and CPU + GPU
achieve the maximum speedups among those neural networks.
Although MVMs are the dominant operation in VGG16, the
huge weight matrix limits the number of replicate weights
due to finite XB arrays. For LSTM, CPU 4+ MBA and
CPU + GPU achieve 3.7x and 37.1x speedups, respectively.
Although MBA achieves higher performance speedup than
GPU for MVM operations solely, as shown in Fig. 12, the
performance speedup for LSTM is limited to softmax func-
tions and LSTM layers (approximate 20% of total execution
time). Because memristor XB arrays are not able to accelerate
the sigmoid, hyperbolic tangent (tanh), and power functions
in the LSTM layers and softmax layers, they become the
performance bottleneck in the CPU + MBA architecture. In
contrast, because these layers are optimized using CUDA and
GPU, CPU + GPU achieves higher performance compared
with CPU 4+ MBA.

Overall, these case studies demonstrate that MHSim is able
to simulate a heterogeneous computing system composed of
CPUs and MBAs. It can evaluate the inference accuracy of
neural networks when they use the MBA to accelerate MVM
operations. MHSim can be also used to profile neural network
applications in a heterogeneous computing architecture and
estimate the performance speedup of MBAs.

VI. CONCLUSION

In this article, we develop MHSim, a simulation frame-
work for memristor-based heterogeneous computing archi-
tectures. MHSim supports floating-point MVM operations
to extend the adoption of MBAs for various real-world
applications. MHSim can simulate diverse applications imple-
mented with GEMM/GEMV functions via DBI. Experimental
results demonstrate that MHSim can evaluate the performance



LIU et al.: SIMULATION FRAMEWORK FOR MEMRISTOR-BASED HETEROGENEOUS COMPUTING ARCHITECTURES

speedup of various NN applications and the inference accuracy
in MBA computing architectures.
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