
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

VirtualSync+: Timing Optimization with Virtual
Synchronization

Grace Li Zhang, Bing Li, Xing Huang, Xunzhao Yin, Cheng Zhuo, Senior Member, IEEE, Masanori
Hashimoto, Senior Member, IEEE, Ulf Schlichtmann, Senior Member, IEEE

Abstract—In digital circuit designs, sequential components
such as flip-flops are used to synchronize signal propagations.
Logic computations are aligned at and thus isolated by flip-flop
stages. Although this fully synchronous style can reduce design
efforts significantly, it may affect circuit performance negatively,
because sequential components can only introduce delays into
signal propagations but never accelerate them. In this paper, we
propose a new timing model, VirtualSync+, in which signals, spe-
cially those along critical paths, are allowed to propagate through
several sequential stages without flip-flops. Timing constraints
are still satisfied at the boundary of the optimized circuit to
maintain a consistent interface with existing designs. By removing
clock-to-q delays and setup time requirements of flip-flops on
critical paths, the performance of a circuit can be pushed even
beyond the limit of traditional sequential designs. In addition,
we further enhance the optimization with VirtualSync+ by fine-
tuning with commercial design tools, e.g., Design Compiler from
Synopsys, to achieve more accurate result. Experimental results
demonstrate that circuit performance can be improved by up to
4% (average 1.5%) compared with that after extreme retiming
and sizing, while the increase of area is still negligible. This
timing performance is enhanced beyond the limit of traditional
sequential designs. It also demonstrates that compared with those
after retiming and sizing, the circuits with VirtualSync+ can
achieve better timing performance under the same area cost or
smaller area cost under the same clock period, respectively.

I. INTRODUCTION

IN DIGITAL circuit designs, clock frequency determines
the timing performance of circuits. In the traditional timing

paradigm, sequential components, e.g., edge-triggered flip-
flops, synchronize signal propagations between pairs of flip-
flops. Consequently, these propagations are blocked at flip-
flops until a clock edge arrives. At an active clock edge, the
data at the inputs of flip-flops are transferred to their outputs
to drive the logic of the next stage. Therefore, combinational
logic blocks are isolated by flip-flop stages. This fully syn-
chronous style can reduce design efforts significantly, since
only timing constraints local to pairs of flip-flops need to be
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met.
Within the traditional timing paradigm, timing analysis

and timing optimization have been explored extensively. In
timing analysis, researchers focus on improving the execu-
tion efficiency and accuracy of analysis [2]–[7]. In timing
optimization, several methods have been proposed to improve
timing performance. A widely adopted method is sizing, in
which logic gates are sized to improve objectives such as
clock frequency and area efficiency, while timing constraints
between flip-flops are satisfied. Typical methods for gate
sizing are based on Lagrangian Relaxation and sensitivity [8]–
[11]. The second method to improve circuit performance in
the traditional paradigm is retiming, which moves sequential
components, e.g., flip-flops, but still preserves the correct
functional behavior of circuits. The existing retiming methods
usually focus on reducing execution time while improving the
performance of digital circuits [12]–[16]. Useful clock skew
is the third method to enhance timing performance of digital
circuits. For example, [17]–[19] intentionally exploits clock
skews to improve the yield of digital circuits. Beyond these
techniques, a further method to improve clock frequency is to
introduce approximation in computational result [20].

Wave-pipelining is the third method to improve circuit per-
formance, where several logic waves are allowed to propagate
through combinational paths without intermediate sequential
components. Wave-pipelining paths are different from multi-
cycle paths where there is only one logic wave propagating
along them at a moment. In timing constraints, multi-cycle
paths only restrict their delays to be smaller than a specified
upper bound [21], [22] while wave-pipelining paths restrict
not only the upper bound but also the lower bound of their
delays. Wave-pipelining provides a mechanism to make the
clock frequency of a circuit independent of the largest path
delay, which limits circuit performance in traditional circuit
designs [23]. As early as in [24], an algorithm to automatically
equalize delays in combinational logic circuits is proposed to
realize wave-pipelining. In [25], a linear method to minimize
the clock period using wave-pipelining is proposed. This
method is also explored for majority-based beyond-CMOS
technologies to improve the throughput of majority inverter
graph designs in [26]. Testing methods of wave-pipelined
circuits are proposed in [27]. Recently, wave-pipelining is
applied to accelerate the dot-product operations of neural
network accelerators in [28]. In addition, wave-pipelining has
been applied to enhance netlist security [29], [30].

The first two methods above can be used separately or
jointly to improve circuit performance. However, sequential
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components are assumed to synchronize signal propagations
in these methods, where no signal propagation through se-
quential components is allowed except at the clock edges.
This synchronization with sequential components achieves
many benefits such as reducing design efforts. However, it
limits circuit performance in two regards. Firstly, sequential
components have inherent clock-to-q delays and impose setup
time. The former becomes a part of combinational paths driven
by the corresponding flip-flops and the latter requires a further
part of the timing budget for the critical paths. Secondly, delay
imbalances between flip-flop stages cannot be exploited since
signal propagations are blocked at flip-flops instead of being
allowed to propagate through flip-flops. Although clock skew
scheduling can relieve this problem to some degree, it still
suffers the inherent clock-to-q delays and setup time con-
straints of flip-flops. The third method above, wave-pipelining,
allows signals to pass through sequential stages without flip-
flops. However, this technique is not compatible with the
traditional timing paradigm. Although a wave-pipelining utility
that interacts with commercial tools is proposed in [28] to
achieve delay balance, the proposed method in this work
can only deal with generic combinational circuits without
feedback loops, which restricts its application in sequential
digital circuits.

In this paper, we propose a new timing model, VirtualSync+,
which removes the confines of the traditional timing paradigm.
Our contributions are as follows:

• In the proposed new timing model, sequential compo-
nents and combinational logic gates are both considered
as delay units. Combinational logic gates add linear
delays of the same amount to short and long paths, where
sequential components provide non-linear delay effects,
which provide different delay effects to fast and slow
signal propagations.

• With the new timing model, a timing optimization frame-
work is proposed to allocate sequential components only
at necessary locations in the circuit to synchronize signal
propagations, while the functionality of circuits is main-
tained. The absence of flip-flops at some sequential stages
allows a virtual synchronization to provide identical
functionality as in the original circuit. Consequently, the
original clock-to-q delays and setup requirements along
the critical paths can be removed to achieve a better
circuit performance even beyond the limit of traditional
sequential designs.

• The optimization with VirtualSync+ is further enhanced
by fine-tuning with commercial design tools, e.g., Design
Compiler from Synopsys, to achieve more accurate result.
To achieve this fine-tuning, we first optimize the circuits
by reallocating sequential components. Afterwards, the
removal locations of flip-flops with respect to the circuits
under optimization are extracted and the corresponding
wave-pipelining timing constraints compatible with com-
mercial design tools are established. These timing con-
straints are then incorporated into the optimization flow
of commercial tools to generate the optimized circuits.

The rest of this paper is organized as follows. In Section II,
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Fig. 1: Timing optimization methods. Delays of logic gates are
shown on the gates. The clock-to-q delay (tcq), setup time (tsu)
and hold time (th) of a flip-flop are 3, 1 and 1, respectively.
(a) Original circuit. (b) Sized circuit. (c) Circuit after retiming.
(d) Circuit after optimization using VirtualSync+.

we explain the motivation and the basic idea of the proposed
method. The timing optimization problem is formulated in
Section III. In Section IV, we provide a detailed description
of the proposed timing model VirtualSync+. The proposed
timing optimization with relaxed VirtualSync+ timing model is
described in Section V. Circuit fine-tuning with VirtualSync+
in commercial tools is explained in Section VI. Experimental
results are reported in Section VII. Conclusions are drawn in
Section VIII.

II. BACKGROUND AND MOTIVATION

In traditional digital circuits, sequential components such
as flip-flops synchronize signal propagations between pairs of
flip-flops using a global clock signal, as shown in Fig. 1(a).
The combinational path between F2 and F3 is critical with a
path delay equal to 17. Assume that the clock-to-q delay, the
setup time and the hold time of a flip-flop are 3, 1, and 1,
respectively. The minimum clock period of this circuit is thus
equal to 21.

To reduce the clock period, logic gates with smaller delays
can be selected from the library to accelerate signal propaga-
tions on the critical paths of the circuit, at the cost of additional
area overhead, leading to the circuit shown in Fig. 1(b), where
the logic gates that are not on the critical path still have their
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original delays for the sake of saving area. After sizing, the
minimum clock period of this circuit is reduced to 16 units.
To reduce the clock period further, retiming can be deployed
to move F3 to the left of the XOR gate as shown in Fig. 1(c),
leading to a minimum clock period equal to 11.

The circuit in Fig. 1(c) has reached the limit of timing
performance in the traditional timing model, and no other
method except a logic redesign can reduce the clock period
further. However, this strict timing constraint can still be
relaxed by removing F6 from the circuit, leading to the circuit
in Fig. 1(d). If the signal from from F2 can reach the sink flip-
flops F3 and F4 after the next rising clock edge and before
the rising edge two periods later, data can still be latched by
F3 and F4 correctly. Since the inverter before F4 can also be
sized further, the largest path delay including clock-to-q delay
is 16. The minimum clock period constrained by this path is
thus (16+1)/2=8.5. In this scenario, the minimum clock period
of the circuit is limited by the delay of the path from F5 to F4,
which is 9, 18.2% lower than retiming. The circuit in Fig. 1(d)
is one of the solutions with VirtualSync+, where F6 is removed
and F5 as well as F3 are inserted back to block fast signals.

Since F6 can be removed from the circuit without affecting
its function in fact, it makes no contribution to the logic
function or timing performance in Fig. 1(c). However, the flip-
flop F5 in Fig. 1(c) cannot be removed, because the signal from
F1 should also arrive at F4 later than one clock period. Without
F5, the signal from F1 arrives at F4 even before the next rising
clock edge, and thus a loss of logic synchronization arises
compared with the circuit in Fig. 1(a). Comparing Fig. 1(b)
and Fig. 1(d), we can see that F3 in Fig. 1(b) blocks the
fast path from F1 to F4 and breaks the feedback loop to
avoid loss of logic synchronization, but it degrades the circuit
performance by delaying the signal from F2 to F4 too.

The concept to allow logic signals to span several sequential
stages without a flip-flop separating them is called wave-
pipelining [23]. Previously, this technique has only been
explored in the context of circuit design, where the numbers
of waves on logic paths should be defined and their syn-
chronization should be maintained by designers during the
design phase. Since logic design and timing cannot be han-
dled separately as in traditional synchronous designs, wave-
pipelining becomes incompatible with the traditional fully
synchronous design paradigm, which prevents its adoption in
practical designs. In VirtualSync+, we introduce a new timing
model that allows multiple waves on logic paths as a technique
of timing optimization for sequential digital circuits in the
traditional design style. The resulting circuits still provide
correct timing interfaces to sequential components, e.g., flip-
flops, at the boundary of the optimized circuits to maintain
timing compatibility.

III. PROBLEM FORMULATION

In digital circuits, we propose that the essential function of
sequential components is to delay signals along fast paths in
a circuit. For example, in Fig. 1(d), F5 must be kept in the
circuit to delay the signal propagation from F1 to F4. The
sequential components that only sit on the critical path can
thus be removed to improve circuit performance, such as F6

in Fig. 1(d).
In the VirtualSync+ framework, we remove all flip-flops and

then identify the necessary locations to block fast signals using
combinational gates and sequential components, e.g., buffers,
flip-flops, and latches. The advantage of this formulation is that
it is possible to insert the minimum number of delay units into
the circuit to achieve the theoretical minimum clock period.

The problem formulation of VirtualSync+ is described as
follows:
Given: the netlist of a digital circuit; the delay information of
the circuit; the target clock period T.
Output: a circuit with adjusted number and locations of
sequential components; logic gates with new sizes; inserted
delay units, e.g., buffers.
Objectives: the circuit should maintain the same function
viewed from the sequential components at the boundary of
the optimized circuit; the target timing specification should be
met; the area of the optimized circuit should be reduced.

In the following sections, we will introduce the proposed
VirtualSync+ timing optimization framework. Delay units and
their insertion with a complete timing model are first explained
in Section IV. Since it is time-consuming to optimize circuits
with the complete model, we introduce a heuristic optimiza-
tion framework with relaxed VirtualSync+ timing model in
Section V. This optimization is further applied together with
Design Compiler from Synopsys to achieve more accurate
results in Section VI.

IV. VIRTUALSYNC+ TIMING MODEL

A. Delay Units

In the VirtualSync+ framework, we first remove all sequen-
tial components, flip-flops, from the circuit under optimization.
Consequently, logic synchronization may be lost because sig-
nals across fast paths may arrive at flip-flops in incorrect clock
cycles, e.g., earlier than specified, or timing violations may be
incurred. In addition, signals along combinational loops should
also be blocked to avoid the loss of logic synchronization. For
example, in Fig. 1(d), the combinational loop across the XOR
gate must have a sequential component; otherwise a signal
loses synchronization after traveling across it many times.

To slow down a signal, three different components can
be used as delay units, namely, combinational gates such as
buffers, flip-flops, and latches, which exhibit different delay
characteristics, as shown in Fig. 2, where input/output time
refers to the input/out arrival time of a signal.

In Fig. 2(a), a combinational delay unit adds the same
amount of delay to any input signal. Consequently, the arrival
time sv at the output of the combinational delay unit is linear
to the arrival time su at the input of the delay unit. Therefore,
the absolute gap between the early and late arrival times of
signals through short and long paths does not change when a
combinational delay unit is passed through.

In delaying input signals, a flip-flop, as a sequential delay
unit, behaves completely differently from a combinational
delay unit, as shown in Fig. 2(b). If the arrival time of a signal
falls into the time window [th, T−tsu], where th is the hold
time and tsu is the setup time, the output signal always leaves
at the time T+tcq , with tcq as the clock-to-q delay of the
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Fig. 2: Properties of delay units, assuming the launching
and capturing times of an active clock edge are 0 and T ,
respectively. (a) Linear delaying effect of a combinational
delay unit. (b) Constant delaying effect of a flip-flop. (c)
Piecewise delaying effect of a latch.

flip-flop. Therefore, the gap between the early and late arrival
times of two signals reaching the input of a flip-flop is always
reduced to zero at the output of the flip-flop. This is a very
useful property because the delays of short paths and long
paths in a circuit may differ significantly after all sequential
components are removed from the circuit under optimization.
For many short paths, it is not possible to increase their delays
by adding combinational delay units such as buffers to them,
because the combinational delay units on the short paths may
also appear on other long paths. The increased delays along
long paths might affect circuit performance negatively. Flip-
flops are thus of great use in this scenario, because short paths
receive more delay padding than long paths to align logic
waves in the circuit.

As the second type of sequential delay units, level-sensitive
latches have a delay property combining those of combina-
tional delay units and flip-flops, as shown in Fig. 2(c), where
0<D<1 is the duty cycle of the clock signal. Assume that
a latch is non-transparent in the first part of the clock period
and transparent in the second part of the clock period. If two
input signals arrive at a latch when it is non-transparent, the
output gap is reduced to zero. If both signals arrive at a latch
when it is transparent, the gap remains unchanged. However,
if the fast signal reaches the latch when it is non-transparent
while the slow signal reaches it when it is transparent, the
gap between the early and late arrival times of two signals is
neither zero nor unchanged. Instead, it takes a value between
the two extreme cases as illustrated in Fig. 2(c). This property
gives us more flexibility to modulate signals with different
arrival times, specifically those along critical paths where fast
signals require more delay padding and slow signals should
not be affected.
B. Relative Timing References

In Fig. 1(a), if all the logic gates and flip-flop F3 are
considered as the circuit under optimization, F1, F2 and F4
are thus the boundary flip-flops. No matter how signals inside
the circuit propagate, the function of the whole circuit is still
maintained if we can guarantee that for any input pattern at
flip-flops F1 and F2 the circuit produces the same result at F4
at the same clock cycle as the original circuit.

Consider a general case in Fig. 3, where F1 and F4 are the
boundary flip-flops and F2 and F3 are removed in the initial

F2F1 F3

u v w t

F4
11 3 2

-10 -10

su=14 sv=4 sw=7 st=3

zo

sz=5so=3

boundary boundary
Fig. 3: Concept of relative timing references. Clock period
T=10. Clock-to-q delay tcq=3. Both setup time tsu and hold
time th are equal to 1. F3 is kept in the optimized circuit and
F2 is not included.

circuit for optimization. At F4, the arrival times are required
to meet the setup and hold time constraints, written as

sz+tsu≤T (1)
s′z≥th (2)

where sz and s′z are the latest and earliest arrival times at
z. These two constraints in fact are defined with respect to
the rising clock edge at F3, since the clock period T in (1)
shows that the signal should arrive at F4 within one clock
period. Although F2 and F3 are removed from the circuit, the
constraints at F4 should still be the same as (1)-(2) to maintain
the compatibility of the timing interface at the boundary flip-
flops.

In the general case in Fig. 3, we can also observe that the
timing constraint at F3 in the original circuit is also defined
with respect to the rising clock edge at F2. This definition
can be chained further back until the source flip-flop F1 at the
boundary is be reached. We call the locations of these removed
flip-flops such as F2 and F3 anchor points. After all sequential
components are removed from the circuit under optimization,
these anchor points still allow to relate timing information
to boundary flip-flops. Every time when a signal passes an
anchor point, its arrival time is converted by subtracting T
in VirtualSync+. When a signal finally arrives at a boundary
flip-flop along a combinational path, its arrival time must be
converted so many times as the number of flip-flops on the
path, so that (1)-(2) is still valid.

In Fig. 3, assume that F2 is removed but F3 is inserted back
in the optimized circuit. The arrival time su is subtracted by
the clock period T=10 to convert it with respect to the time
at F1, leading to sv=4. The arrival time sw is defined with
respect to the previous flip-flop before F3, so that the timing
constraints can be checked using (1)-(2). Since the arrival time
before F4 should meet its timing constraints, F3 thus cannot
be removed. Otherwise, the arrival time st would be equal to
7-10=-3. Accordingly, the arrival time sz becomes -3+2=-1,
definitely violating the hold time constraint in (2).

Since F3 is kept in the optimized circuit, it introduces the
delay with the property shown in Fig. 2(b). The arrival time
after this sequential delay unit thus becomes T+tcq=13. This
signal at t in Fig. 3 also passes an anchor point. Therefore,
the arrival time st is equal to 3, leading to no timing violation
at F4. This example demonstrates that the timing constraints
at the boundary flip-flops force the usage of the internal
sequential delay units. The model to automatically insert these
delay units will be explained in the next section.
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C. Synchronizing Logic Waves by Delay Units

With all flip-flops removed from the circuit under opti-
mization, we only need to delay signals that are so fast that
they reach boundary flip-flops too early; signals that propagate
slowly are already on the critical paths, thus requiring no ad-
ditional delay. Since it is not straightforward to determine the
locations for inserting additional delays, we formulate this task
as an ILP problem and solve it later with introduced heuristic
steps. The values of variables in the following sections are
determined by the solver, unless they are declared as constants
explicitly.

The scenario of delay insertion at a circuit node, i.e., a logic
gate, is illustrated in Fig. 4, where a combinational delay unit
ξuv may be inserted, the original delay of the logic gate may
be sized, and a sequential delay unit may be inserted to block
fast and slow signals with different delays. Furthermore, the
number of flip-flops between t and z in the original circuit
is represented by an integer constant λtz . When λtz≥1, an
anchor point is found at the location between t and z. λtz is
used to convert arrival times.
1) Combinational delay unit and gate sizing

In Fig. 4, the delay at the circuit node can be changed by
sizing the delay of the logic gate, e.g., the XOR gate in Fig. 4.
For the case that the required gate delay exceeds the largest
permissible value, a combinational delay unit is inserted at
the corresponding input. For convenience, we assume the
combinational delay unit inserted at the input is implemented
with buffers. The relation between the arrival times u and w
is thus expressed as

sw≥su+ξuv∗ru+dvw∗ru (3)

s′w≤s′u+ξuv∗rl+dvw∗rl (4)

where su, s′u, sw and s′w are the latest and earliest arrival
times of node u and w , respectively. ξuv is the extra delay
introduced by an inserted buffer and dvw is the pin-to-pin delay
of the logic gate. If ξuv is reduced to 0 after optimization,
no buffer is required in the optimized circuit. The ≤ and ≥
relaxations of the relation between arrival times guarantee that
only the latest and the earliest arrival times from multiple
inputs are propagated further. ru and rl are two constants to
reserve a guard band for process variations, so that ru>1 and
rl<1.

Rising and falling pin-to-pin delays of logic gates, e.g., the
XOR gate in Fig. 4, might be different. Using the rising and
falling pin-to-pin delays of logic gates to separately establish
the constraints of arrival times in (3) and (4) incurs high
computation complexity, and thus long execution time. For
simplification, we evaluate dvw with the average of the rising
and falling pin-to-pin delays of the logic gate. This simpli-
fication may lead to inaccuracy in evaluating arrival times
of signals and thus affect the subsequent timing optimization
negatively. To compensate this inaccuracy, we calibrate the
arrival times of signals with commercial tools, which will be
explained in Section VI-A.
2) Insertion of sequential delay units

Since arrival times through long and short paths reaching w

u
dvw

comb. delay?
seq. unit? anchor?

λtz
ξuv

sizing?

w t zv

Fig. 4: Delay insertion model in VirtualSync+.

may have a large difference, we may need to insert sequential
delay units to delay the fast signal more than the slow signal.
This can be implemented with the sequential units shown in
Fig. 2, where the gap between the arrival times is reduced
after passing a sequential delay unit, either a flip-flop or a
latch. To insert a sequential delay unit, three cases need to be
examined. These cases have an “either-or” relationship, which
can be converted into equivalent linear forms [31].

Case 1: No sequential delay unit is inserted between w and
t in Fig. 4, so that

st≥sw (5)
s′t≤s′w. (6)

Case2: A flip-flop is inserted between w and t. Assume
the flip-flop works at a rising clock edge. As shown in
Fig. 2(b), a flip-flop only works properly in a region th after
the rising clock edge and tsu before the next rising clock edge.
Therefore, we need to bound the arrival times sw and s′w into
such a region by

sw,s
′
w≥Nwt∗T+φwt+th∗ru (7)

sw,s
′
w≤(Nwt+1)∗T+φwt−tsu∗ru (8)

where Nwt is an integer variable whose value is determined by
the solver. This variable represents that the signal arrival time
of w can be within any clock cycle, the starting and ending
time of which are Nwt∗T and (Nwt+1)∗T , respectively. T is
the given clock period. φwt is phase shift of the clock signal.
The available values of φwt can be set by designers. If only
one clock signal is available, φwt can be set to 0 and T/2 to
emulate flip-flops working at rising and falling clock edges.

When the input arrival times fall into the valid region of a
flip-flop as constrained by (7)–(8), the signal always starts
to propagate from the next active clock edge, so that the
constraints can be written as

st≥(Nwt+1)T+φwt+tcq∗ru (9)

s′t≤(Nwt+1)T+φwt+tcq∗rl. (10)

Case3: A level-sensitive latch is inserted between w and t.
To be consistent with the active region of flip-flops, we assume
that the latches are transparent when the clock signal is equal
to 0. We can then bound the arrival times at w the same as
(7)–(8).

As illustrated in Fig. 2(c), the latch is non-transparent in the
first part of the region and transparent in the second region.
Accordingly, the latest time a signal leaves the latch can be
expressed as

st≥Nwt∗T+φwt+D∗T+tcq∗ru (11)
st≥sw+tdq∗ru (12)
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where (11) corresponds to the case that the latch is non-
transparent, so that the signal leaves the latch at the moment
the clock switches to 1. D is the duty cycle of the clock signal
with 0<D<1. (12) corresponds to the case that the latch is
transparent, so that only the delay of the latch is added to sw.
tdq is the data-to-q delay of the latch.

The earliest time a signal leaves the latch is, however,
imposed by a constraint in the less-than-max form as in [32],

s′t≤max{Nwt∗T+φwt+D∗T+tcq∗rl, s′w+tdq∗rl} (13)

which cannot be linearized easily. In the VirtualSync+ frame-
work, the purpose of introducing the sequential delay unit is to
delay the short path as much as possible. This effect happens
when a signal arrives at a non-transparent latch. Therefore, we
impose the arrival times of fast signals to be positioned in the
non-transparent region, expressed as

Nwt∗T+φwt+th∗ru≤s′w≤Nwt∗T+φwt+D∗T (14)

while relaxing (13) as

s′t≤Nwt∗T+φwt+D∗T+tcq∗rl. (15)

When inserting the sequential delay unit, each of the three
cases above can happen in the optimized circuit. We use an
integer variable to represent the selection and let the solver
determine which case happens during the optimization.
3) Reference shifting with respect to anchor points

The arrival times in the model need to be converted each
time when an anchor point is passed. The constant λtz
represents the number of flip-flops at such a point in the
original circuit. In Fig. 4, the arrival time at z is shifted as

sz=st−λtzT. (16)

4) Wave non-interference condition

Since we allow multiple waves to propagate along a com-
binational path, we need to guarantee that the signal of the
next wave starting from a boundary flip-flop never catches the
signal of the previous wave starting from the same flip-flop
[23]. This constraint should be imposed to every node in the
circuit. For example, the constraint for node u is written as

su+tstable≤s′u+T (17)

where tstable is the minimum gap between two consecutive
signals.
5) Overall formulation

The introduction of the relative timing references, or the
anchor points, in Section IV-B guarantees that the number of
clock cycles along any path does not change after optimization.
With the timing constraints (1)-(2) at boundary flip-flops, the
correct function of the optimized circuit is always maintained,
without requiring any change in other function blocks.

The constraints (1)–(17) excluding (13) need to be estab-
lished at each node in the circuit after flip-flops are removed
to guarantee the correct timing interface to flip-flops at the
boundary of the optimized circuit parts. If this timing interface
is correct, the functionality of the circuit is maintained [23],
[25], [28]. The appearance of the combinational and sequential

Emulation of sequential delays
with δ′wt−δwt

All δ′wt−δwt=0

No

No

Yes

Optimized circuit

Model approximation with clock/data-to-q delays

Buffer replacement using sequential delay units
and delay discretization

Decrease the lower bound of
δ′wt−δwt

Yes

Model legalization using accurate delay models
and update Sd

All δ′wt−δwt=0

Fig. 5: The proposed timing optimization with relaxed Virtu-
alSync+ flow.

delay units needs to be determined by the solver. The delays
of logic gates should also be sized. The objective of the
optimization is to find a solution to make the circuit work
at a given clock period T , while reducing the area cost.
Taking all these factors into account, the straightforward ILP
formulation may become insolvable. In practice, however, this
technique only needs to be applied to isolated circuit parts
containing critical paths. In addition, we introduce heuristic
techniques to overcome this scalability problem, as explained
in the following section.

V. TIMING OPTIMIZATION WITH RELAXED
VIRTUALSYNC+ TIMING MODEL

In applying the VirtualSync+ timing model above, we
introduce a framework to identify the locations of delay unit
with iterative relaxation of VirtualSync+. The flow of this
framework is shown in Fig. 5, which will be explained in this
section. The basic strategy is to remove flip-flops along critical
paths to eliminate the inherent clock-to-q delays and setup
time. Thereafter, fast signals of short paths will be blocked to
guarantee the correct functionality by inserting the minimum
number of sequential delay units and buffers. To reduce area
overhead, buffers are replaced with sequential delay units.
A. Emulation of Sequential Delay Units

After we remove all the flip-flops from the original circuit,
the short paths may have extremely small delays. The gap
between these delays and those of long paths is very large. It
cannot be reduced with combinational delay units since they
introduce the same delays to the fast and slow signals as shown
in Fig. 2(a). Instead, only sequential delay units are able to
reduce this gap so that the fast and slow signals still arrive
at boundary flip-flops within the same clock cycle as those of
the original circuit.

In the first step of the framework, we identify the locations
at which sequential delay units are indispensable. Without
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these units, the fast and slow signals, such as those within
feedback loops, may not be aligned properly into the correct
clock cycles, even though unlimited combinational delay units
can be inserted into the circuit. In practice, however, it is not
easy to identify the exact locations of these units using the
exact and complete model in (5)–(15) directly. To solve this
problem, we relax the timing constraints (5)–(15) instead of
modeling them directly. From Fig. 2, we can see that a buffer
slows down fast and slow signals with the same delay. On
the contrary, a sequential delay unit slows down fast and slow
signals with different delays. For example, no matter when fast
and slow signals arrive at the input of a flip-flop, they leave
the output of the flip-flop at the same time. Accordingly, the
flip-flop slows down the fast signal with a larger delay than
the slow signal. Taking advantage of this characteristic, we
use two non-negative variables δwt and δ′wt to emulate the
delay effects of three delay units as described above. In case
δwt=δ

′
wt, a buffer is inserted. In case δwt<δ

′
wt, a sequential

delay unit is inserted. When signals travel from u to z in
Fig. 4, the relation of arrival times from nodes u to z can be
written as

sz≥su+ξuv∗ru+dvw∗ru+δwt−λtzT (18)

s′z≤s′u+ξuv∗rl+dvw∗rl+δ′wt−λtzT (19)
0≤δwt≤δ′wt (20)

s′u+δ
′
wt≤su+δwt (21)

where the variables δwt and δ′wt emulate delays introduced by
sequential delay units. (20) specifies that the fast signal should
be padded with more delays than the slow signal. The purpose
of (21) is to guarantee that a sequential delay unit is required
to break a feedback loop.

The optimization problem to find the potential locations of
sequential delay units is thus written as

minimize α
∑
G

(δ′wt−δwt)+β
∑
G

(δ′wt+ξuv)−γ
∑
G

dvw

(22)
subject to (17)–(21) for each gate in G (23)

constr. (1)–(2) for each boundary flip-flop (24)

where G is the set of all logic gates in the original circuit.
This optimization problem also maximizes the overall delays
of logic gates in the circuit with the last term in (22) since
larger delays indicate smaller area. Since the area of a flip-
flop is about 6 times of the area of a buffer and the average
area of combinational gates, α, β and γ are set to 100,10,10,
to specify the balance between the area of sequential delay
units, inserted buffers and logic gates. With this setting, we
provide the solver a clear tendency to minimize the area of
sequential delay units, buffers and combinational gates with
different priorities. In the second term, δ′wt also represents the
existence of buffers in case δ′wt=δwt. Solving the optimization
problem above identifies nodes with unequal padding delays
δwt and δ′wt, indicating potential locations of sequential delay
units, as a set S. These delays may still violate the exact
constraints in (5)–(15), so that they need to be refined further.

B. Modeling with Clock/Data-to-Q Delays of Sequential De-
lay Units

The optimization problem (22)–(24) does not consider the
inherent clock-to-q delays of flip-flops and data-to-q delays of
latches. Since these delays are introduced only at locations
where sequential delay units are inserted, they need to be
modeled for all the locations S returned by the previous step.
We introduce a binary variable xwt to represent whether a
sequential delay unit appears at a location from S, and revise
the constraints (18)–(19) as

sz≥su+ξuv∗ru+dvw∗ru+xwtδwt+xwttcd→q∗ru−λtzT
(25)

s′z≤s′u+ξuv∗rl+dvw∗rl+xwtδ
′
wt+xwttcd→q∗rl−λtzT

(26)

where tcd→q represents clock-to-q delay or data-to-q delay,
which can be evaluated according to the output load of the
sequential components, and the delays δwt, δ′wt and tcd→q are
only valid when xwt is equal to 1. The inclusion of the binary
variables xwt is very computation-intensive, so that they can
only be dealt with after the potential locations of sequential
delay units are reduced to S by solving (22)–(24). Since xwt is
a binary variable, the multiplications xwtδwt and xwtδ

′
wt can

be converted into equivalent linear forms so that the overall
formulation is still an ILP problem.

Considering the inherent delays of sequential delay units,
their locations can be refined further by solving the optimiza-
tion problem as

minimize α
∑
G/S

(δ′wt−δwt)+β
∑
G/S

(δ′wt+ξuv)−γ
∑
G

dvw

(27)
subject to (17)–(21) for each gate in G\S (28)

(17), (20)–(21) for each gate in S (29)
(25)–(26) for each gate in S (30)
constr. (1)–(2) for each boundary flip-flop (31)
δ′wt−δwt≥dth if xwt=1 (32)

where dth is a predefined delay bound. The condition in (32)
can be converted into equivalent linear forms according to
[31].

To identify the necessary locations of sequential delay units,
we execute the optimization (27)–(32) iteratively until no
different δwt and δ′wt exist anymore. In each iteration, we
lower the delay bound dth linearly. A large bound of δ′wt−δwt

in the early iterations allows the solver to quickly determine
the important locations for inserting sequential delay units.
The refined locations of sequential delay units from this step
are returned as a set Sd, which is more accurate than S.
C. Model Legalization for Timing of Sequential Delay Units

In this step, the complete model described in Section IV-C
is applied to the locations in Sd to generate sequential delay
units that are really required in the circuit. The optimization
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problem is described as

minimize α
∑
G/Sd

(δ′wt−δwt)+β
∑
G/Sd

(δ′wt+ξuv)−γ
∑
G

dvw

(33)
subject to (17)–(21) for each gate in G\Sd (34)

(5)–(12) for each gate in Sd (35)
(14)–(17) for each gate in Sd (36)
constr. (1)–(2) for each boundary flip-flop. (37)

After solving the optimization above, there might still be
different δwt and δ′wt in G\Sd, because the timing legalization
of sequential delay units with the complete model (1)–(17)
excluding (13) in Section IV-C may invalidate some locations
in Sd so that Sd reduces in size. The complete model is applied
to these locations iteratively, until no different δwt and δ′wt

exists, indicating the remaining timing synchronization can be
achieved with buffers and gate sizing directly.
D. Buffer Replacement with Sequential Units

After solving (33)–(37), delays dvw of logic gates are set to
the nearest discrete delay values defined in the library. Buffer
delays ξuv are also determined. If ξuv is large, several buffers
are needed for its implementation. As shown in Fig. 2, sequen-
tial delay units can introduce a very large delay. For example,
a flip-flop can introduce a delay as large as T+tcq−th, if the
incoming signal arrives at the flip-flop right after a clock edge.
According to this observation, we iteratively replace buffers
with large delays by sequential delay units to reduce area.
In each iteration, the accurate sequential model (5)–(12) and
(14)–(17) is applied to guarantee these new sequential delay
units are valid. The iteration stops when no buffer can be
replaced by sequential units. Buffers that cannot be replaced
by sequential delay units are implemented directly in the
optimized circuit.

VI. CIRCUIT FINE-TUNING WITH VIRTUALSYNC+ IN
COMMERCIAL TOOLS

The timing optimization with relaxed VirtualSync+ de-
scribed in Section V can generate the optimized circuits where
timing performance is improved and area cost is reduced.
However, this method might be inconsistent when it is in-
terfaced with commercial tools, e.g., Design Compiler from
Synopsys. For example, the average pin-to-pin delays are
used in evaluating the arrival times of signals for the sake of
execution efficiency in the relaxed VirtualSync+. Therefore,
we fine-tune the optimized circuits with Design Compiler.

To fine-tune the optimized circuits with Design Compiler,
there are several challenges. First, the arrival times of signals
should be evaluated accurately to make the optimization
effective. Second, after the optimization, the removal locations
of flip-flops in the optimized circuits should be extracted to
establish the wave-pipelining timing constraints, with which
Design Compiler can fine-tune the circuits. Third, buffers
should be adjusted along short paths to satisfy the wave-
pipelining timing constraints.

To overcome the challenges described above, we first adjust
the iterative relaxation method where iterations of delay unit

insertion are executed, as described in Section V, to com-
pensate the inaccuracy in timing optimization. Afterwards, we
extract the removal locations of flip-flops with respect to the
circuits under optimization and establish the corresponding
wave-pipelining constraints compatible with Design Compiler.
These timing constraints are then incorporated into the com-
mercial tools to optimize the circuits. After this optimization,
the delays of short paths might be still too small to meet the
wave-pipelining constraints, so that buffers are inserted to pad
their delays until timing constraints are met. These steps can
be automatically executed without manual intervention.
A. Adjusting Iterative Relaxation for Fine-Tuning of Virtual-

Sync+

During the iterative relaxation described in Section V, the
average pin-to-pin delays are used in evaluating the arrival
times of signals for the sake of execution efficiency. However,
this simplification might incur inaccuracy in evaluating the
arrival times of signals and thus path delays. Therefore, critical
paths might be considered as non-critical and thus cannot be
optimized effectively. To solve this problem, we adjust the
iterative relaxation in Section V to compensate this evaluation
inaccuracy in timing optimization. In this adjustment, we first
run timing slack analysis for all the flip-flops of a circuit
with Design Compiler before executing the iterative relaxation
framework. Afterwards, the latest and earliest arrival times
of signals at the inputs of flip-flops evaluated with Design
Compiler are used to calibrate those evaluated with the average
pin-to-pin delays. Specifically, we record the gaps between
arrival times evaluated with Design Compiler and with average
pin-to-pin delays. During the optimization with the iterative
relaxation, the arrival times at the inputs of flip-flops evaluated
with average pin-to-pin delays are calibrated by adding the
corresponding gaps. With this calibration, the critical paths
can be identified and optimized effectively.

During the timing optimization with the iterative relaxation
framework, gate sizing plays an important role of increas-
ing/decreasing delays for short/long paths to meet the timing
constraints. Since Design Compiler has the advantages of
high accuracy and execution efficiency in sizing gates while
minimizing the area overhead, we shift the task of gate
sizing to Design Compiler in the adjusted iterative relaxation
framework. Specifically, we first adopt the adjusted iterative
relaxation without gate sizing to insert necessary sequential
delay units to block fast signals along short paths in a
circuit. Afterwards, we use Design Compiler to size gates to
increase/decrease delays of short/long paths. If the delays of
short paths are still too small after gate sizing, buffers are
inserted to pad their delays, as explained later.
B. Extracting Removal Locations of Flip-flops

After the adjusted iterative relaxation is executed, flip-
flops along critical paths are removed and fast signals are
blocked with sequential delay units in the optimized circuit.
Therefore, the sequential components in the optimized circuit
are reallocated with respect to the circuit under optimization.
Fig. 6 illustrates a circuit under optimization and the opti-
mized circuit where red dots represent anchor points, also the
removal locations of flip-flops. By comparing the circuit under
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Fig. 6: The circuit under optimization and the optimized
circuit after the adjusted iterative relaxation. (a) The circuit
under optimization where gi/ZN represent the output pin of
gi and gi/A, gi/A1 and gi/A2 are the input pins of gi. (b) the
optimized circuit where flip-flops are removed.

optimization in Fig. 6(a) and the optimized circuit in Fig. 6(b),
we can see that F6 in the circuit under optimization is moved
leftwards with retiming to block signals along a loop, while
the retimed flip-flops between g4 and g5, g2 and g5 and F5
are removed to allow slow signals to propagate through.

The removal of flip-flops creates wave-pipelining paths
where several logic waves propagate simultaneously in the op-
timized circuit. For example, in Fig. 6(b), the wave-pipelining
path from F2 to F4 has two logic waves propagating along it
since this path traverses through one removal location along
it and the wave-pipelining path from F1 to F4 has three logic
waves propagating along it since it traverses through two
removal locations along it. To guarantee the correct function-
ality of the optimized circuit, the delays of such paths should
satisfy the corresponding wave-pipelining timing constraints.
For example, the largest delay of the path between F1 and F4
should be smaller than 3·T−tsu, and the smallest delay should
be larger than 2·T+th, where T is the target clock period, tsu
and th are the setup time and hold time of F4, respectively. To
optimize such paths to satisfy the wave-pipelining constraints,
we should establish the wave-pipelining constraints compatible
with Design Compiler and then incorporate such constraints
into the optimization flow of Design Compiler. To achieve this
goal, we first extract the removal locations of flip-flops with
respect to the circuit under optimization.

According to Fig. 6, the removal locations of flip-flops in
the optimized circuit can be extracted by applying retiming to-
gether with removing flip-flops on the circuit under optimiza-
tion. To apply this technique on the circuit under optimization,
we use g∈G to represent a combinational gate and egi,gj∈E
between gates gi and gj to represent the net connecting the
output of the combinational gate gi and an input of another
combinational gate gj . egi,gj has a constant weight w(egi,gj )
to represent the number of flip-flops along the connection in
the circuit under optimization. Each combinational gate has a
retiming variable r(g), which defines how many flip-flops are

moved from the output of a gate to its inputs. After retiming,
the number of flip-flops on a net between gates gi and gj is
written as wr(egi,gj )=w(egi,gj )+r(gj)−r(gi). The number
of flip-flops along egi,gj in the optimized circuit is denoted as
w′(egi,gj ), which can be different from wr(egi,gj ) due to the
removal of flip-flops. To determine how many flip-flops along
egi,gj are removed in the optimized circuit, a variable yegi,gj
is assigned for egi,gj . With this setting, two cases for a net
between gates gi and gj should be examined.

Case 1: If the net from gate gi to gate gj has the retimed
weight equal to the weight in the optimized circuit, namely
wr(egi,gj )=w(egi,gj )+r(gj)−r(gi)=w′(egi,gj ), there is no
removal of flip-flops along this net, so that yegi,gj =0. For
example, yeg5,g6

=0 in case of r(g5)=1.
Case 2: If the net from gate gi to gate gj has the re-

timed weight larger than that in the optimized circuit, namely
wr(egi,gj )=w(egi,gj )+r(gj)−r(gi)≥w′(egi,gj )+1, flip-flops
are removed along this net, and the number of removed flip-
flops is yegi,gj =wr(egi,gj )−w′(egi,gj ). For example, yeg4,g5

=
1, yeg2,g5

=1 and yeg1,g2
=1 .

When establishing the relation between the circuit under
optimization and the optimized circuit, each of the cases above
can happen. We use the constraints in the two cases described
above to establish an ILP formulation and let the solver
determine which case actually happens during the adjusted
iterative relaxation. After that, we can obtain the removal
locations of flip-flops along net connections where yegi,gj ≥1
in the optimized circuit.
C. Generating Wave-pipelining Timing Constraints for Inte-

gration of VirtualSync+

After the removal locations of flip-flops are extracted with
the method in Section VI-B, we can use them to automatically
establish the wave-pipelining constraints compatible with De-
sign Compiler. In Design Compiler, wave-pipelining timing
constraints can be set with the following commands
set max delay d -from p1 -through p2 ... -through pn -to pn+1

set min delay d′ -from p1 -through p2 ... -through pn -to pn+1

where “set max delay” and “set min delay” are used to
establish setup and hold time constraints for long paths
and short paths, respectively, “through” means propagating
through, “from” and “to” mean leaving from and arriving at,
d and d′ are delay values and pi is a pin name. “-from p1” and
“-to pn+1” can be removed in the constraints as long as the
timing constraints are sufficient to identify required paths. In
these timing constraints, setup time and hold time of flip-flops
are subtracted and added automatically.

In Fig. 6, the path from F1 to F4 has three logic waves since
it traverses through two removal locations along it, namely the
connection between g1/ZN and g2/A as well as g2/ZN and
g5/A1. The wave-pipelining constraints from F1 to F4 can be
written as follows
set max delay 3·T -through g1/ZN -through g2/A -through

g2/ZN -through g5/A1 (38)
set min delay 2·T -through g1/ZN -through g2/A -through

g2/ZN -through g5/A1. (39)
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Fig. 7: Wave-pipelining paths with different number of logic
waves are entangled with each other. Red dots represent anchor
points, also the removal locations of flip-flops. P1, P2 and P3

are the path set. The paths in P1, as shown in blue, have three
logic waves propagating along them and the paths in P2 and
P3, as shown in green, have two logic waves propagating along
them.

The timing constraints of the paths with two logic waves in
Fig. 6, such as the paths from F2 to F4 and from F3 to F4
can be written similarly.

In Fig. 6, the wave-pipelining paths with different number of
logic waves are clearly separated. However, in some optimized
circuits, wave-pipelining paths with different number of logic
waves are entangled with each other. Fig. 7 illustrates such a
circuit, where the paths in P1, as shown in blue color, has three
logic waves propagating along it, since they traverse through
two anchor points. The wave-pipelining constraints for such
paths can be established with the two anchor points directly,
similar to (38)-(39). For example, the setup time constraint of
such paths can be written as follows
set max delay 3·T -through g1/ZN -through g4/A1 -through

g4/ZN -through g5/A1 (40)
However, the paths in P2 and P3, as shown in green color,
propagate through only one of the anchor points and entangle
with the blue paths with three logic waves. Directly using
one of the anchor points to establish the wave-pipelining
constraints for such paths with two logic waves leads to a
conflict with the wave-pipelining constraints established with
two anchor points. For example, if the setup constraint for the
paths in P2 is written as follow

set max delay 2·T -through g1/ZN -through g4/A1 (41)
this constraint and the constraint (40) confuse Design Com-
piler, since the paths propagating through two anchor points
also traverse through one of the anchor points. In this case,
Design Compiler ignores the constraint in (41), so that the
delays of the paths in P2 cannot be optimized correctly. To
solve this problem, the paths with two logic waves should
be differentiated from the paths with three logic waves when
establishing the corresponding timing constraints for the sub-
sequent optimization.

To differentiate the wave-pipelining paths with two logic
waves from those with three logic waves, we propose to
identify the pins that separate such paths. We call such pins
differentiating pins. For example, to differentiate the wave-

pipelining paths in P2 from those in P1, we first find the sink
flip-flops at which the paths in P2 and P1 arrive. As shown
in Fig. 7, F5 and F6 are such sink flip-flops. Since F6 is the
sink flip-flop at which only the paths in P2 can arrive, the
wave-pipelining constraints in such a case can be established
with the anchor point between g1/ZN and g4/A1 together with
the sink flip-flop as follows
set max delay 2·T -through g1/ZN -through g4/A1 -to F6/D

set min delay 1·T -through g1/ZN -through g4/A1 -to F6/D.

Since F5 is the sink flip-flop at which both wave-pipelining
paths in P1 and P2 can arrive, we need to find the differentiat-
ing pins to separate them. To achieve this goal, we enumerate
the paths starting from F5 and ending at the two anchor
points backwards. For example, the path propagating through
g6/A2, g3/A, and g4/A1 terminates at the anchor point between
g1/ZN and g4/A1 and the path propagating through g6/A1
and g5/A1 terminates at the anchor point between g4/ZN and
g5/A1. By comparing these paths, it is clear that the pin g6/A2
differentiates the wave-pipelining paths in P2 from those in P1.
Therefore, the wave-pipelining constraints for the paths in P2

can be established with the differentiating pin g6/A2 and the
anchor point between g1/ZN and g4/A1 as follows
set max delay 2·T -through g1/ZN -through g4/A1 -through

g6/A2

set min delay 1·T -through g1/ZN -through g4/A1 -through

g6/A2.

Similarly, to differentiate the wave-pipelining paths in P3 from
those in P1, we first find the common source flip-flops which
the paths in P3 and P1 start from. As shown in Fig. 7, this
common source flip-flop is F2. Afterwards, we enumerate the
paths starting from F2 and ending at the two anchor points
in a forward way. By comparing these paths, we can see that
the pin g2/A1 differentiates the wave-pipelining paths in P3

from those in P1. We then use the differentiating pin g2/A1
and the anchor point between g4/ZN and g5/A1 to establish the
wave-pipelining constraints. In a general case where N anchor
points exist in an optimized circuit after the removal locations
of flip-flops are extracted, we use the methods described above
to establish the wave-pipelining constraints for the paths where
the number of logic waves propagating along them is larger
than 1. The generation of wave-pipelining constraints is fully
automated without manual intervention.
D. Circuit Optimizing and Buffer Insertion with Commercial

Tools

After the wave-pipelining constraints are established for the
optimized circuit, we incorporate such constraints into Design
Compiler to optimize this circuit. During the optimization,
Design Compiler sizes gates to increase the delays in short
paths to satisfy the wave-pipelining constraints. After this
optimization, the delays of the short paths might still be
too small to satisfy the wave-pipelining constraints. To pad
their delays with Design Compiler, we insert buffers in the
optimized circuits to enlarge their delays with the command
“insert buffer p -no of cells d t”, where p is a pin name, d
is the number of buffers and t is the type of buffers, e.g.,
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TABLE I: Results of VirtualSync+
Circuit Ret.&Siz. Cri. Part Opt. Circuit Comparison Runtime
ns nc T (ps) n′

s n′
c n′

t n′
a ncs ncc nf nl nb nt na t(s)

systemcdes 574 1286 1132 523 2429 55.5% 23.1% 195 2290 65 66 31 2.5% -5.4% 2619.5
tv80 1014 2998 1025 1228 5818 40.0% 50.4% 296 5758 158 141 383 2% 0.6% 3081.5
wb dma 720 1632 666 716 1974 31.5% 11.4% 129 1375 65 46 240 8.5% 1.5% 2211.3
systemcaes 1181 3318 921 1635 5078 29.5% 38.0% 363 4531 258 150 141 3% -1.5% 2052.1
mem ctrl 879 1840 1105 1429 3318 51.0% 68.3% 290 2642 156 93 296 4.5% -1.5% 4510.5
usb funct 2699 4952 1042 3005 8901 35.5% 28.6% 333 6293 253 71 252 3% 0.1% 2166.5
ac97 ctrl 1145 1467 802 2021 2363 48.5% 70.9% 579 1978 430 125 163 1% -2.2% 1961.2
pci bridge 2301 4993 1141 6243 6476 33.5% 130.1% 264 4410 156 48 140 1% -0.7% 3563.1

BUF X1. The locations of buffers can be obtained from the
adjusted iterative relaxation. Due to the heuristic optimization
in the adjusted iterative relaxation, the number of buffers might
not be large or small enough to satisfy the wave-pipelining
constraints. To solve this problem, we iteratively insert/remove
buffers along the short/long paths until the wave-pipelining
constraints are met.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed method was implemented in C++ and tested
using a 3.20 GHz CPU. In the experiments, the circuits from
the TAU 2013 variation-aware timing analysis contest are first
optimized using 45 nm library with Design Compiler to reduce
area cost. These circuits are referred to the original circuits.
The clock periods of these original circuits are shown as T
in the fourth column. We optimize these circuits further using
the proposed VirtualSync+ to improve timing performance and
reduce area. The optimization results are shown in Table I.
The number of flip-flops and the number of combinational
components of the original circuits are shown in the columns
ns and nc, respectively. To tolerate process variations, 10%
of timing margin was assigned, so that ru and rl in Section V
were set to 1.1 and 0.9, respectively. In case of large vari-
ations in advanced technologies, a large timing margin can
be assigned by increasing ru and decreasing rl, respectively.
The allowed phase shifts φwt in Section V are 0, T/4, T/2
and 3T/4. tstable in equation (17) in Section IV is set to the
delay of a buffer to isolate signals on the next wave and the
previous wave. The initial delay bound dth in Section V is
7T/8 and iteratively reduced by T/8. The ILP solver used in
the VirtualSync+ framework was Gurobi.

The goal of VirtualSync+ is to enhance timing performance
and thus solve timing violations in the circuits which have
already been optimized. Therefore, the original circuits are
first retimed and sized extremely with Design Compiler to
achieve the limit of timing performance. Accordingly, extreme
retiming and sizing is an integral part of the VirtualSync+
framework. This extreme retiming and sizing, abbreviated
as extreme R&S, is realized by iteratively reducing the clock
period and optimizing the circuits with retiming and sizing in
Design Compiler until the circuits cannot be optimized further
anymore. In the circuits after extreme R&S, the number of flip-
flops and the number of combinational components, shown as
n′

s and n′
c in Table I, are different from those in the original

circuits. n′
t and n′

c show the clock period reduction and the
area increase of the circuits after extreme R&S with respect

to the original circuits. Overall, the timing performance of a
circuit is improved significantly by extreme R&S while the
area is increased.

To increase the timing performance with VirtualSync+, in
the circuits after extreme R&S, combinational paths whose
delays are larger than a specified clock period, which is eval-
uated by iteratively reducing the clock period obtained from
extreme R&S, were selected. The source and sink flip-flops
of these selected paths were allowed to be removed, while the
other flip-flops in the circuits were considered as boundary
flip-flops. All the combinational components that can reach
the flip-flops at the sources or sinks of these selected paths
through combinational paths are considered as the critical part
of a circuit together. The extracted critical part of the circuits
occupied a large portion of the circuits after extreme R&S,
as shown in ncs and ncc, which represent the percentage
of the number of flip-flops and combinational components
of the critical part in the circuits after extreme R&S. From
ncs and ncc, we can see that more than 4% of flip-flops
and more than 68% of combinational components have been
selected for timing optimization. In case of industrial designs
which contain hundreds of thousands of gates in the extracted
critical subcircuit, the critical subcircuit can be processed with
VirtualSync+ by iteratively selecting a small part for timing
optimization.
B. Experimental Results with Timing Optimization Using

Relaxed VirtualSync+ Timing Model

To verify the improvement of circuit performance, we
gradually reduced the clock period by 0.5% of the clock period
obtained from extreme R&S and applied the timing optimiza-
tion with relaxed VirtualSync+ in Section V to meet the timing
constraints. The results correspond to the results described in
the conference version [1] of this paper. The column nf and
nl show the numbers of flip-flops and latches in the critical
part after optimization with relaxed VirtualSync+, respectively.
The sums of these numbers are comparable or even smaller
than the numbers of flip-flops before relaxed VirtualSync+.
The numbers of extra inserted buffers to match arrival times
are shown in the column nb. Thanks to the buffer replacement
with sequential units in the proposed framework, the numbers
of extra inserted are not large. Compared with the number of
original combinational components shown in the column ncc,
these numbers show that the cost due to the inserted buffers
is still acceptable.

The column nt in Table I shows the final clock period
reduction compared with the circuits after extreme R&S. The
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Fig. 8: Comparison of sequential delay
units after buffer replacement.
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Fig. 10: Area comparisons with extreme
R&S with the same clock period.
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Fig. 11: Comparison of the clock period reduction before and
after fine-tuning with Design Compiler.
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Fig. 12: Comparison of the area increase before and after fine-
tuning with Design Compiler.

maximum and average reduction are 8.5% and 3.2%, respec-
tively, which resulted from the compensation between flip-flop
stages and the removal of clock-to-q delays and setup time
requirements on critical paths. For all the cases, the minimum
clock periods have been pushed even further than those from
extreme R&S. The timing performance improvement nt is
achieved with relaxed VirtualSync+ described in Section V.
This method can be used to quickly evaluate the benefit of
VirtualSync+ in circuit design.

The area increase of the proposed method compared with
extreme R&S is shown in column na. In the cases with
area increase, the overhead is still negligible; in other cases,
the area is even smaller because unnecessary flip-flops were
removed in the proposed framework. The last column tr in
Table I shows the runtime of the proposed method. Since the
ILP formulation with the complete model in Section IV-C
is NP-hard, it is impractical to find a solution with respect
to area and clock period. In the experiments, the runtime
with iterative relaxations is acceptable in remedying remaining
timing violations for late design stage.

In the proposed framework, sequential delay units are first
inserted only at necessary locations to delay signal propaga-
tion. Afterwards, more of them are used to replace buffers
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Fig. 13: The reduction of power and power-delay-area product
compared with extreme R&S.

to reduce area, as described in Section V. To demonstrate
the effectiveness of the buffer replacement with sequential
units in the proposed framework, we compare the numbers of
sequential delay units without and with buffer replacement, as
shown in Figure 8. This figure shows an increase in the number
of such delay units replacing buffers. Figure 9 shows the ratio
of the chip area after buffer replacement to that before buffer
replacement. In all test cases, the area after buffer replacement
is smaller than that before buffer replacement, demonstrating
the efficiency of sequential delay units in delaying fast signals.

The comparison of the area overhead, shown as na in
Table I, is between the clock period achieved by extreme R&S
and the clock period reduced further by the proposed method.
To demonstrate the area efficiency of the proposed method,
we also compared the proposed method and the extreme R&S
with the same clock period from the latter. The results are
shown in Fig. 10. In most cases, our framework can further
reduce the area achieved by extreme R&S.
C. Experimental Results with Circuit Fine-Tuning in Design

Compiler

The experimental results described in Section VII-B are
generated with the timing optimization using relaxed Virtu-
alSync+ in Section V. These intermediate results might be in-
consistent with commercial tools due to the simplified model.
To provide more consistent results, we fine-tune the optimized
circuits with VirtualSync+ in Design Compiler, as described in
Section VI. After this fine-tuning, we reevaluated the improve-
ment of timing performance and area reduction with respect to
the circuits after extreme R&S. The comparisons between the
clock period reduction and the area reduction with and without
the fine-tuning with Design Compiler are illustrated in Fig. 11
and Fig. 12, respectively. According to these two figures, it
is clear that in most cases the timing performance with the
fine-tuning can still be pushed beyond that after extreme R&S
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Fig. 14: Area comparison between relaxed retiming and sizing and VirtualSync+ when the target clock period is relaxed to
1.05T, 1.10T, 1.15T, 1.20T and 1.25T, where T is the clock period achieved by extreme R&S.

while the area is reduced. Specifically, the timing performance
can be improved by up to 4% (average 1.5%) compared with
that after extreme R&S. However, the timing performance
improvement with the fine-tuning is less than that without
the fine-tuning in most cases. One of the reasons is that the
commercial tools do not support the timing optimization and
analysis of wave-pipelining paths where latches are inserted
to block fast signals. Accordingly, only flip-flops are used
as delay units to block fast signals in the fine-tuning of
VirtualSync+ with Design Compiler. Another reason of this
phenomenon is that in the iterative relaxation without the fine-
tuning, gates are sized ideally without considering the input
transitions and output loads of gates. Therefore, the timing
performance improvement without the fine-tuning is a theoret-
ical upper bound of timing performance improvement, which
can be used to quickly evaluate the benefit of VirtualSync+
in circuit design. If it is beneficial to apply VirtualSync+,
designers can then adopt the proposed fine-tuning method
with Design Compiler to generate the optimized circuits. With
VirtualSync+, the power consumption and power-delay-area
product of the optimized circuits can also be reduced in most
cases. The comparison is illustrated in Fig. 13.

In the experiments, the extreme R&S to push the timing
performance beyond the limit of traditional sequential designs
is realized by iteratively reducing the clock period and optimiz-
ing the circuits with retiming and sizing in Design Compiler
until the circuits cannot be optimized further anymore. This
method squeezes the timing performance at the cost of area
overhead. In cases where timing performance does not need
to be pushed so far for the sake of area, VirtualSync+ can
still outperform the method combining retiming and sizing
in terms of area and speed. To demonstrate the effectiveness
of VirtualSync+ in such cases, the clock period achieved by
extreme R&S, denoted as T , is relaxed, denoted as relaxed
R&S. For example, we used the relaxed clock periods 1.05T ,
1.10T , 1.15T , 1.20T and 1.25T to compare VirtualSync+
and relaxed R&S in terms of area and timing performance.

With these relaxed clock periods, VirtualSync+ with fine-
tuning in commercial tools is applied to improve the timing
performance of the circuits optimized with relaxed R&S. The
comparison in timing performance and area with respect to
the relaxed clock periods is illustrated in Fig. 14, where each
pair of symbols, e.g., triangles, represent a comparison in
timing and area between VirtualSync+ and relaxed R&S with
a specified clock period. For example, in Fig. 14(a), the pair of
triangles represent the results with VirtualSync+ and relaxed
R&S when the clock period is 1.05T . Since the result with
VirtualSync+ is at the lower left of the result with the relaxed
R&S, the timing performance with VirtualSync+ is better than
that of relaxed R&S, while the area overhead is reduced.
By connecting these symbols together, we can see that in
most cases VirtualSync+ achieves a smaller area under the
same clock period compared with relaxed R&S. In addition,
VirtualSync+ achieves a smaller clock period under the same
area cost compared with relaxed R&S.

VIII. CONCLUSION

In this paper, we have proposed a new timing model,
VirtualSync+, in which sequential components and combina-
tional logic gates are considered as delay units. They provide
different delay effects on signal propagations on short and
long paths. With this new timing model, a timing optimization
framework has been proposed to insert delay units only at
necessary locations. In addition, we further enhance the op-
timization with VirtualSync+ by fine-tuning with commercial
design tools, e.g., Design Compiler from Synopsys, to achieve
more accurate result. Experimental results show that circuit
performance can be improved by up to 4% (average 1.5%)
compared with that after extreme retiming and sizing, while
the increase of area is still negligible. In the future work, we
will enhance the framework to integrate VirtualSync+ with
physical design tools to fully automate virtual synchronization
into the EDA flow. To implement wave-pipelining paths with
latches using the commercial tools, however, either the com-
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mercial timing tools provide more flexible timing constraints
for these paths or they allow access to the APIs.
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